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Neuronal circuits depend on the precise regulation of cell-surface receptors and ion channels. An 
ongoing challenge in neuroscience research is deciphering the functional contribution of specific 
receptors and ion channels using engineered modulators. A novel strategy, termed “tethered 
toxins”, was recently developed to characterize neuronal circuits using the evolutionary derived 
selectivity of venom peptide toxins and endogenous peptide ligands, such as lynx1 prototoxins. 
Herein,  the  discovery and engineering of cell-surface tethered peptides is reviewed, with 
particular attention given to their cell-autonomy, modular composition, and genetic targeting in 
different model organisms.The relative ease with which tethered peptides can be engineered, 
coupled with the  increasing number of neuroactive venom toxins and ligand peptides being 
discovered, imply a multitude of potentially  innovative  applications for manipulating neuronal 
circuits and tissue-specific cell networks, including treatment of disorders caused by malfunction 
of receptors and ion channels. 
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INTRODUCTION 
Understanding complex processes such as neuronal activity or 
cell signaling malfunctions that result in human disorders or 
diseases relies on extensive knowledge about the function, struc- 
ture and precision of ion channels, receptors and modulators. 
As a result of this, ion channels are at present the third biggest 
target class in drug discovery; yet still remain underexploited 
as drug targets. Recent reviews describe the increasing interest 
in peptide venom toxins for the development of drug therapies 
directed towards ion channels and receptors (Blumenthal and 
Seibert, 2003; Phui Yee et al., 2004; Lynch et al., 2006; Han et al., 
2008; Twede et al., 2009). Specific areas in which peptide toxins 
have demonstrated their potential include Alzheimer’s disease 
(candoxin)  (Nirthanan  et al.,  2002),  chronic  pain  (MVIIA) 
(Miljanich, 2004) and myasthenic autoimmune response (〈- 
Bgtx) (Drachman, 1981; Mebs, 1989). For instance, snake neu- 
rotoxins bind to nicotinic acetylcholine receptors (nAChRs) with 
affinities within the pico and nanomolar range (Chiappinelli, 
1991), which indicates that these would be among the best probes 
for investigating potential therapeutics that affect nAChR activ- 
ity. The unique homologies of endogenous lynx1 prototoxins 
with venom toxins provided a biological scaffold for developing 
recombinant molecules to selectively modulate ion channels and 
receptors. Thus, based on the characteristics and mode of action 
of lynx1 cell-surface modulators, new classes of “tethered toxins” 
and “tethered ligands” were created as probes to characterize ion 
channels and receptors (Ibañez-Tallon et al., 2004; Fortin et al., 
2009; Auer et al., 2009; Stürzebecher et al., 2009). Tethering pep- 
tide toxins or ligands close to their point of activity in the cell 
plasma membrane provides a new approach to the study of cell 
networks and neuronal circuits, as it allows selective targeting 
of specific cell populations, enhances the working concentration 

of the ligand or blocker peptide, and permits the engineering of 
a large variety of t-peptides (e.g., including use of fluorescent 
markers, viral vectors and point mutation variants). 

This focused review describes the identification of lynx-1 
and related endogenous cell surface modulators, the develop- 
ment of the t-peptide technology, and the application of the 
t-peptide strategy to basic research, cell-based therapies, and 
drug discovery. 
	
ENDOGENOUS CELL-SURFACE MODULATORS OF 
LIGAND-GATED ION CHANNELS: THE LY6 SUPERFAMILY 
Cell-surface receptors and ion channels are modulated by a rich 
variety of peptide neurotransmitters, hormones and ligands, but 
there are few examples of membrane-anchored modulators in 
nature. The Ly6 superfamily which includes lynx1-and slurp- 
1 cholinergic modulators, elapid snake venom toxins, and Ly6 
molecules of the immune system, constitutes a unique class of 
short proteins that are either tethered to the cell surface via a 
glycosylphosphatidylinositol (GPI) anchor, like lynx1, or secreted 
as venom toxins (Figure 1). Members of this superfamily share 
the characteristic 8–10 cysteine motif that determines their com- 
pact three-finger structure. Examples of the GPI-anchor sub- 
group include molecules of the immune system such as CD59 
(Davies et al., 1989), ly6A-E (Rock et al., 1989), ly6G (Mallya 
et al., 2006), and ly6K (de Nooij-van Dalen et al., 2003), the neu- 
ronal proteins lypd6 (Darvas et al., 2009), ly6H (Dessaud et al., 
2006) and the urokinase plasminogen activator receptor (uPAR) 
(Blasi and Carmeliet, 2002). Members lacking the GPI-anchor 
comprise  the  cholinergic  modulators  SLURP-1  (Adermann 
et al., 1999; Chimienti et al., 2003) and SLURP-2 (Tsuji et al., 
2003), cobra toxins, and other three finger venom toxins (Tsetlin, 
1999) (Figure 1). 
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FIGURE 1 | Schematic representation of Ly-6/uPAR channel modifiers and 
engineered tethered toxins (t-toxins). (A) Examples of the Ly-6/uPAR 
superfamily include soluble Slurp-1, snake 〈-bungarotoxin (〈Bgtx) and the GPI- 
anchored cell-membrane bound lynx1. The schematic below the drawing of the 
channel indicates the coding sequences associated with lynx1, namely an N- 
terminal secretory signal region, followed by the amino acid residues that 
correspond to the lynx1 peptide, and a C-terminal GPI anchor. (B) The structural 

homology of lynx1 with 〈Bgtx gave rise to the tethered-peptide strategy of using 
the biological scaffold of lynx1 (secretory signal and GPI signal) to generate 
recombinant membrane-bound toxins and peptide ligands such as the illustrated 
t-〈Bgtx. The schematic below the drawing of the channel indicates 
the coding regions that were conserved from lynx1 (shown in A), and those that 
were altered to accommodate the 〈Bgtx (the toxins sequence, flag tag, and 
linker regions). 

	
	

ALLOSTERIC MODULATION  OF NACHRS  BY Ly6 SUPERFAMILY 
MOLECULES 
Lynx1 was the first identified member of the Ly6 superfamily 
capable of cell-surface modulatory action on a neurotransmitter 
receptor (Miwa et al., 1999). Lynx1 assembles and colocalizes with 
nAChR in the brain (Ibañez-Tallon et al., 2002) and in the lung 
(Sekhon et al., 2005). nAChRs stably associated with lynx1 are less 
sensitive to their ligand agonists acetylcholine and nicotine, display 
more rapid desensitization, and show a shift in the distribution of 
channel openings toward a faster inactivating species with more 
uniform, larger amplitude currents (Ibañez-Tallon et al., 2002). 
These findings, along with studies showing enhanced nicotine- 
mediated calcium influx and synaptic efficacy in lynx1 null mutant 
mice, are strong indicators that lynx1 is an allosteric modulator of 
nAChR function in vivo (Miwa et al., 2006). Other lynx-like mol- 
ecules recently identified have similar properties. Lynx2 and ly6H, 
which are GPI-anchored to the cell membrane, have been localized 
to central and peripheral neurons in mice (Dessaud et al., 2006). 
Functional studies demonstrate that lynx2, but not ly6H, changes 
the agonist sensitivity and desensitization properties of nAChRs 
through direct association (Tekinay et al., 2009). Consistent with 
lynx2 enrichment in neurons that participate in circuits control- 
ling fear and anxiety, lynx2 null mice display increased anxiety- 
like behaviors due to enhanced nAChR activity (Tekinay et al., 
2009). Recently, a third allosteric modulator of nAChRs, named 
lypd6, has been identified in central neurons. Lypd6 is cell-mem- 
brane bound and selectively increases the calcium conductance of 
nAChRs (Darvas et al., 2009). The lynx1-related secreted ligands 
SLURP-1 and SLURP-2, also act as neuromodulators of nAChRs 
and have been linked to skin disorders (Chimienti et al., 2003; 
Arredondo et al., 2006). 

Ly6 SPECIES DIVERSITY 
Lynx1-like molecules are well conserved across species, both in 
structure and function, suggesting the importance of cell-sur- 
face modulators of  nicotinic receptors in nature. Examples of 
Ly6 superfamily species diversity include molecules found in C. 
elegans (Odr-2; Chou et al., 2001), fireflies (Pr-lynx1; Choo et al., 
2008), Drosophila (Hijazi et al., 2009) and chicken (recently iden- 
tified prostate stem cell antigen PSCA; Hruska et al., 2009). Pr- 
lynx1 and PSCA are of particular importance as Pr-lynx1 is the 
first modulator of nAChRs in an insect species (Choo et al., 2008), 
and PSCA appears to prevent programmed cell death of neurons by 
antagonizing nAChRs (Hruska et al., 2009). The lynx1-like family 
of allosteric modulators of nAChRs constitutes a unique example 
of cell-surface channel modifiers that have evolved for fine-tuning 
of neurotransmitter receptor function in vivo. 
	
VENOM PEPTIDE TOXINS: SPECIFIC MODULATORS OF ION 
CHANNELS AND RECEPTORS 
Venom peptide toxins from predatory organisms such as scorpi- 
ons, snakes and marine cone snails are suitable as agents for use 
in engineering cell-type specific modulators. Neurotoxins isolated 
from animal venom are disulfide-rich peptides that have been used 
extensively to characterize the structure–activity relationships of 
specific ion channels (ligand or voltage-gated) and cell-surface 
receptors (Catterall,  1986;  Tsetlin, 1999;  Norton  and  Olivera, 
2006). 〈-bungarotoxin and other 〈-neurotoxins from Elapidae and 
Hydrophidae snakes were used to provide the first identifi- 
cation of nAChRs (Endo and Tamiya, 1991; Hucho et al., 1996; 
Léna and Changeux, 1998). Similarly, 〈- and ®-neurotoxins from 
scorpions have been broadly used to modify voltage-gated sodium 
channels (VGSC or Navs) by delaying inactivation (〈) or shifting the 
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membrane potential dependence (®) (Zuo and Ji, 2004; Bosmans 
and Tytgat, 2007). Neuropeptides from venomous marine cone 
snails (conotoxins) are prolific in their range and specificity for tar- 
geting various ion channels and receptors (Terlau and Olivera, 2004; 
Gowd et al., 2008; Han et al., 2009). As shown in Table 1, venom 
peptide toxins modulate a wide range of molecular targets. Peptide 
toxins vary in length from 12–30 residues in cone snails to 40–80 
residues in toxins from scorpions and snakes. The relatively small 
size of these polypeptides, coupled with their structural integrity 
imposed by numerous disulfide bonds, have facilitated their use for 
investigating ion channels and receptors (Fontecilla-Camps et al., 
1988; Pashkov et al., 1988; Tsetlin, 1999; Zhang et al., 2006). 

	
PEPTIDE TOXINS SPECIFIC FOR nAChR AND  VOLTAGE-GATED 
ION CHANNELS 
〈-Neuropeptides, which target nAChRs compete with cholin- 
ergic agonists and antagonists (Endo and Tamiya, 1991) and 
are characterized by four to five disulfide bridges in snake and 

scorpion venoms (Possani et al., 1999; Phui Yee et al., 2004) or 
two to three disulfide bridges in cone snail toxins (Sine et al., 
1995; McIntosh et al., 1999; Ellison et al., 2006). 〈-neurotoxins 
that target nAChRs include 〈-Bgtx, MII and BuIA (Table 1), 
while other 〈-neurotoxins slow the sodium current inactivation 
in excitable membranes (Couraud et al., 1982). ™-Conotoxins, 
such as ™-SVIE, which bind to Navs also cause a delayed inactiva- 
tion of sodium currents (Bulaj et al., 2001). They share a cysteine 
framework with the structure C-C-CC-C-C, that is identical to 
that of µO-conotoxins, like MrVIA and MrVIB which inhibit 
Nav1.2, Nav1.4 and Nav1.8 (Terlau et al., 1996; Daly et al., 2004; 
Bulaj et al., 2006). µ-Conotoxins contain a framework of CC-C- 
C-CC and are by far the best characterized of all the conotoxins 
that target Navs. Several µ-conotoxins such as PIIIA, SmIIIA, and 
potentially BuIIIA, inhibit Navs in a similar manner to tetrodo- 
toxin (TTX), by binding to site I on the channel (Catterall, 2000; 
Goldin, 2001). Despite the ever growing number of discovered 
natural toxins, only a few ⎢-conotoxins have been characterized so 

	
Table 1 | Examples of venom peptide toxins used for generation of tethered modulators and corresponding targeted receptors/ion channels. 

	

Tethered 
toxin 

Origin Length 
(aa) 

Ion channel/receptor specificity Original reference 

AgaIIIA Agelenopsis aperta (funnel web spider) 76 VGCC: Cav2.2 (N-type), Cav1 (L-type) Mintz et al. (1991) 
AgaIVA 	 48 VGCC: Cav2.1 (P/Q-type) Mintz et al. (1992) 
APETx2 Anthopleura elegantissima (aggregating anemone) 42 homomeric ASIC3 > heteromeric Diochot et al. (2004) 

	 	 	 ASIC3-ASIC2b 	
〈-AuIB Conus aulicus (guilded cone snail) 15 nAChR: 〈3®4 >> 〈2®2 Luo et al. (1998) 

〈-Bgtx Bungarus multicinctus (multi-banded krait) 74 nAChR: 〈7, 〈1®1™©/∑, 〈3®2 Chang and Lee (1963), 

	 	 	 	 Nirthanan  and Gwee 

	 	 	 	 (2004) 

⎢-Bgtx 	 66 nAChR: 〈3®2, 〈7, 〈4®2 Chiappinelli (1983) 
µ-BuIIIA, B, C Conus bullatus (bubble cone snail) 26 VGSC: Nav1.4 Holford et al. (2009) 

〈-BuIA 	 13 nAChR: 〈6®2 > 〈3®2 > Azam et al. (2005) 

	 	 	 〈2®2 > 〈4®2 	
〈-GID Conus geographus (geography cone snail) 19 nAChR: 〈7 = 〈3®2 > 〈4®2, 〈3®4 Nicke et al. (2003) 
HntxIII Haplopelma  hainanum 35 VGSC: DRG Nav TTX-S Xiao and Liang (2003) 
HntxIV (Chinese giant black earth  tiger) 35 VGSC: DRG Nav TTX-S Xiao and Liang (2003) 
Kurtoxin Parabuthus transvaalicus  (South African 

fattail scorpion) 
63 VGCC: Cav3 (T-type), Cav2.1 

(P/Q-type) 
Chuang  et al. (1998) 

〈-MI Conus magus (Magician’s cone snail) 14 nAChR: 〈1®1™∑ >> 〈1®1™© McIntosh et al. (1982) 
〈-MII 	 16 nAChR: 〈6/〈3®2 > 〈3®2 > Cartier et al. (1996) 

	 	 	 〈3®4 = 〈4®2 	
⎤-MVIIA 	 25 VGCC: Cav2.2 (N-type) Bowersox and 

Luther (1998) 

⎤-MVIIC 

	
µO-MrVIA 

	
	

Conus marmoreus (marbled cone snail) 

26 

	
31 

VGCC: Cav2.1 (P/Q-type), 
Cav2.2 (N-type) 
VGSC: Nav  1.2, 1.4, 1.8 

Hillyard et al. (1992) 

	
McIntosh et al. (1995) 

µ-PIIIA Conus purpurascens (purple cone snail) 22 VGSC: Nav  1.2 Shon et al. (1998) 

⎢-PVIIA 	 27 VGKC: Kv1 shaker channel Terlau et al. (1996) 

〈-PnIB Conus pennaceus (penniform cone snail) 16 nAChR: 〈7 > 〈3®2 Fainzilber et al. (1994) 
〈-RgIA Conus regius (crown cone snail) 12 nAChR: 〈9〈10 >>> 〈7 Ellison et al. (2006) 
⎢M-RIIIK Conus radiatus (rayed cone snail) 24 VGKC: Kv1 shaker channel Ferber et al. (2003) 
µ-SmIIIA Conus stercusmuscarum (fly-specked cone snail) 30 VGSC: Nav  1.8 West et al. (2002) 
SNX482 
(1998) 

Hysterocrates gigas (Cameroon red baboon spider) 41 VGSC: Cav2.3 (R-type) Newcomb et al. 

™-SVIE Conus striatus (striated cone snail) 31 VGSC: Nav  1.4 > Nav  1.2 Lu et al. (1999) 
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far. ⎢-conotoxins bind to voltage-dependent potassium channels 
(VGKC or Kv) altering either the repolarization phase of action 
potentials or the resting membrane potential. The most com- 
monly identified ⎢-conotoxin is PVIIA, which blocks Shaker K 
channels cloned from Drosophila (Naranjo, 2002). Other gating 
modifiers of Kv channels are the phrixotoxins (PaurTX) I and II 
(Bosmans et al., 2006). Blockers of voltage-gated calcium channels 
(VGCC or Cav) include agatoxin IIIA and IVA. The most promi- 
nent VGCC toxin antagonist is conotoxin MVIIA, a highly specific 
blocker of N-type calcium channels which has been developed as 
an analgesic for the treatment of chronic pain (Miljanich, 2004; 
Staats et al., 2004). 

The high degree of specificity with which venom peptide 
toxins bind to voltage and ligand gated sodium (Nav), calcium 
(Cav), and potassium (Kv) ion channels, and receptors such as 
nAChRs, N-methyl-d-aspartate and G-protein coupled recep- 
tors (GPCRs), make them ideal for deciphering the connections 
between cell types, and for reversibly manipulating the activity of 
selective cell subtypes. 
	

ENGINEERING TETHERED PEPTIDES  FOR CELL-SURFACE 
MANIPULATIONS OF RECEPTORS AND ION CHANNELS 
The unique functionality of endogenous lynx1-like cell-surface 
modulators provides a framework to use peptide toxins from 
predatory animals to manipulate ion channels and receptors in a 
novel manner. Peptide toxins that have been routinely employed 

for neuroscience research do not normally exist as cell-surface 
anchored molecules. Using the scaffold of the lynx1-like gene 
family, i.e., secretory signal and consensus sequences for GPI 
processing and recognition, it is possible to produce a series 
of tethered toxins (t-toxins) that are highly effective modifiers 
of  neuronal activity (Ibañez-Tallon et al., 2004). This design 
directs any bioactive peptide to the secretory pathway, where 
the signal sequence is cleaved and the GPI targeting sequence 
is substituted by a covalent bond to GPI, anchoring the peptide 
to the extracellular side of the plasma membrane of the cell 
in which it is expressed (Figure 1B). Recombinant t-peptides 
have a modular framework consisting of a secretion signal, link- 
ers, epitopes and/or fluorescent markers and membrane tethers 
(Figures 1B and 2A). The GPI-anchor targeting motif can be 
replaced with transmembrane (TM) domains fused with fluo- 
rescent marker genes (Figures 2A,B) (Auer et al., 2009). So far, 
approximately 40 different chimeric t-toxins derived from the 
venom of several predatory animals have been cloned and their 
activity has been characterized on voltage and ligand-gated ion 
channels (Table 1)  (Ibañez-Tallon  et al.,  2004;  Hruska et al., 
2007; Wu et al., 2008; Stürzebecher et al., 2009; Auer et al., 2009). 
Furthermore, the t-peptide strategy has also been successfully 
extended to other bioactive peptides, such as ligand peptides for 
constitutive activation of GPCRs (Choi et al., 2009; Fortin et al., 
2009), illustrating the general applicability of this approach for 
cell-surface modulation of receptors. 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 2 | Modular architecture of membrane-tethered toxin and ligand 
peptides. (A) Illustration of tethered-peptide variants consisting of secretory 
pathway signal sequence (ss), toxin/ligand cassettes, fluorescence markers 
(EGFP or mCherry), epitopes for immunostaining (Flag-tag, Myc-tag), flexible 
linker regions, and distinct functional  modules for membrane attachment (GPI- 
signal, transmembrane-domain TM). (B) Illustration of t-toxin carrying the 
nAChR-specific snail-toxin GID with varying linker lengths [short (s), 1L, 2L and 
3L]. (C) Electrophysiological recordings in Xenopus laevis oocytes expressing 〈7 

nAChR alone (control) or together with tethered-GID (t-GID) with increasing linker 
lengths. t-GID expression results in complete block of nicotine-induced 〈7 nAChR 
current for short (6 aa, GIDs-TM) and long (20 aa, GID1L-TM) linker variants,  while 
longer linkers (GID2L-TM and GID3L-TM, 40 aa and 60 aa) lead to decreased 
blocking capability. Number of recorded cells displayed in/above columns. (D) 
Representative traces of electrophysiological recordings in (C) suggest an 
optimal distance of the GID peptide from the plasma membrane of 
9–22 aa to achieve complete inhibition of 〈7 nAChR. 
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COMPONENTS CRITICAL TO T-PEPTIDE  SYNTHESIS 
The biological activity of each tethered construct has to be individu- 
ally evaluated and optimized per receptor/channel combination. 
While anyone with knowledge of cloning technology can construct 
a tethered-peptide, some forethought is required depending on how 
the t-peptide will be implemented. This is due to several factors 
including variability in the nature of the bioactive peptide and ion 
channel or receptor being targeted, and in the constraints imposed 
by the modular architecture of the tethers, linkers and epitope-tags. 
The vast amount of modular choices available for constructing 
tethered toxins point to its broad appeal and indicate the feasibility 
of tailor-made tethered manipulators for a wide range of different 
receptors/channels. 
	

Amino acid composition of the bioactive peptide 
Expression and functional assays have revealed that several elements 
are critical to achieve robust expression on the cell-surface and rota- 
tional flexibility for correct modulation of the t-toxin/peptide to the 
receptor or channel of interest. The affinity of the bioactive peptide 
for its cognate ion channel or receptor has to be taken into account. 
Toxins with a strong affinity are potentially more effective. It is 
also important to consider the composition and length of the pep- 
tides to be tethered, i.e., charges and hydrophobicity of the amino 
acid residues, number of cysteine bonds in the case of toxins, and 
existence of non-canonical residues, or terminal amidations. For 
example, substitution of hydroxylated or carboxylated amino acids 
with non-modified residues in highly post-translationally modified 
conotoxins, such as GVIA (Olivera et al., 1984), RIIIK (Ferber et al., 
2003), PIIIA (Shon et al., 1998) and GID (Nicke et al., 2003), failed 
to yield satisfactory activity in their tethered constructs, except in 
the case of GID (see Figures 2C,D). Most likely these variations 
in efficacy are dependent on the location of the posttranslational 
modification in the toxin sequence. In general, the makeup of the 
peptide or toxin to be tethered has to be taken into account, but 
it is not predictive of the expression and activity of its tethered 
form. MrVIA and MrVIB, which despite their high hydrophobic- 
ity content and difficulties to be chemically synthesized (Terlau 
et al., 1996; Bulaj et al., 2006), are well expressed at the cell-mem- 
brane, and functionally active when tethered (Ibañez-Tallon et al., 
2004; Wu et al., 2008; Stürzebecher et al., 2009). Other examples 
are the tethered forms of 〈- and ⎢-bungarotoxins which were well 
expressed and functionally competent (Ibañez-Tallon et al., 2004; 
Hruska et al., 2007) despite being long peptides (68–82 aa), while 
shorter conotoxins such as SmIIIA (30aa) or MVIIC (26aa) were 
not heterologously expressed, possibly due to folding disturbances 
or high proportion of charged amino acids. 
	

Distance of the linker region 
Another relevant feature when designing t-peptide constructs is 
the linker sequence bridging the toxin peptide to the GPI anchor 
or TM domain (Figures 2A,B). The distance of the t-toxin or t- 
peptide from the cell-surface has to be tailor-made for individual 
receptors and channels, and can be used for mapping active binding 
sites. Tethered constructs have been cloned using linkers consisting 
of glycine–asparagine repeats with lengths varying from 6 amino 
acids (short) to 20 amino acids (long), 40aa (2⋅ long) or 60 aa 
(3⋅ long) (Figure 2B) (Ibañez-Tallon et al., 2004). The longer 
flexible 

linker provides rotational freedom for the t-toxin to bind within 
the vestibule of voltage-gated channels (Ibañez-Tallon et al., 2004), 
or for ligand peptides to reach their binding site, such as onto class 
B1 GPCRs (Fortin et al., 2009). Experiments varying the length 
of the linker region of t-GID conotoxin indicate that a linker is 
necessary for inactivation of 〈7 nAChR currents. However, when 
the linker exceeds a certain length the inactivation is incomplete 
(Figures 2B–D). Similarly, the tethered form of the neuropeptide 
pigment dispersing factor (t-PDF) requires a short linker for effec- 
tive binding to its receptor (Choi et al., 2009). 
	
Choice of membrane tether: GPI vs. TM 
The choice of membrane tether depends on the characteristics of 
the peptide as well as on the epitope-tags and markers to be used 
in combination (Figures 1B and 2A,B). GPI anchors, which are less 
bulky than TM domains, may facilitate the mobility of the t-peptide 
in close proximity to its receptor within the plasma membrane. If 
the toxin or peptide does not require a free N-terminus for interact- 
ing with its cognate receptor, GPI versions containing EGFP fol- 
lowed by the t-toxin may be used (Figure 2). However, GPI anchors 
are susceptible to cleavage by endogenous phospholipases, such as 
PI-PLC and phospholipase D (Paulick and Bertozzi, 2008). This has 
been suggested as a mechanism used by cells for selective and rapid 
release of certain GPI-anchored proteins at specific times. To avoid 
this potential problem, the GPI anchor can be replaced with a TM 
domain in t-toxins (Figure 2). TM domains can be used to retain 
t-peptides at the cell-surface and link fluorescent markers to the 
cytoplasmatic side of the plasma membrane avoiding hindrances 
between them. 
	
CELL-SPECIFIC TARGETING AND  CELL-AUTONOMOUS 
REGULATION IN MODEL ORGANISMS 
Tethered toxins and peptides can be used for very diverse applica- 
tions pertaining to experimental animal physiology. Because of 
their mode of action at the cell-surface, membrane-anchored pep- 
tide molecules act only on ion channels and receptors present in the 
membrane of the cell that is expressing the t-toxin or t-peptide, and 
not on identical receptors present on neighboring cells that do not 
express the tethered construct (Ibañez-Tallon et al., 2004). Several 
studies have shown that recombinant toxins as well as peptide lig- 
ands are not dispersed in solution and retain their high specificity 
for their cognate receptors, indicating that this approach can be 
used to restrict the site of neurotoxin or peptide ligand action to 
genetically targeted cells. For example, in vivo transgenic delivery of 
t-〈Bgtx in zebrafish using a muscle cell-specific promoter results in 
blockade of nAChR currents in muscle cells that express t-〈Bgtx but 
not in adjacent muscle fibers or in cells that express t-⎢Bgtx, which 
has no activity on muscle-nAChRs (Ibañez-Tallon et al., 2004). 
Similarly, experiments in chicken employing a viral system to trans- 
duce ciliary neurons have revealed that expression of t-〈Bgtx blocks 
calcium currents via nAChRs and prevents programmed cell-death 
of these neurons during early development (Hruska et al., 2007). 
Further in vivo applications of the tethered toxin strategy have 
been carried out using transgenesis in Drosophila melanogaster. 
These studies have shown that cell-specific expression of the sodium 
channel toxin ™-ACTX-Hv1a in pacemaker clock neurons induces 
arrhythmicity (Wu et al., 2008). Transgenic targeting of the same 
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clock neurons with a tethered form of the PDF neuropeptide, which 
is normally rhythmically secreted by these neurons, constitutively 
activates its cognate GPCR, interfering with circadian control cir- 
cuit (Choi et al., 2009). These examples illustrate the possibilities for 
cell-specific targeting and cell-autonomous regulation of channels 
and receptors with genetically encoded tethered toxins. As venom 
toxins are established tools for dissecting ionic currents in many 
animal species, the tethered-toxin strategy allows cell specific func- 
tional analysis of ion channels and receptors in model organisms 
(e.g., zebrafish, flies, rats, large mammals) for which transgenic 
methodologies are commonly used but gene targeting strategies 
are yet not available. 
	

APPLICATIONS  AND PERSPECTIVE USE OF CELL-SURFACE 
PEPTIDES  TO BASIC  RESEARCH, CELL-BASED THERAPIES 
AND DRUG DISCOVERY 
Ion channels and receptors are involved in every physiologi- 
cal action from breathing to heart beating. Understanding the 
mechanics and functional activity of these macromolecular 
complexes is a grand challenge in science. The tethered-peptide 
method is one tool that has the potential to tackle certain aspects 

of this challenge, particularly in the area of cell-specific modula- 
tors (Figure 3). Genetically encoded cell-surface modulators can 
be adapted to a wide range of applications due to their small 
size, amenability to point mutagenesis, and relative ease to be 
combined with fluorescent markers, viral and transgenic vectors, 
Cre-dependent and transcriptional-control elements, and sub- 
cellular targeting motifs. Inhibition or constitutive activation of 
ion channels and receptors can be attained in a cell-type specific 
manner depending on the selectivity of the neuroactive peptide 
or hormone. 
	
NEURONAL CIRCUITS: DISSECTING  INDIVIDUAL IONIC CURRENTS 
Manipulation  of  ion  channels  in  specific  neuronal  popula- 
tions within living animals can  be  achieved by  transgenesis 
(Ibanez-Tallon et al., 2004; Wu et al., 2008).  Similarly, viral 
methods can be employed to characterize the cellular functions 
mediated by specific ionic currents inactivated by delivery of 
t-toxins (Hruska et al., 2007). Gene knockouts led to a wide 
range of studies to characterize the function of receptors and 
ion channels (Capecchi, 2005). However, many receptors con- 
sist of  multimeric assemblies of  components, with common 

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

FIGURE 3 | Applications of the tethered-peptide strategy. Endogenous 
peptide ligands, natural toxins, and synthetic, modified versions of ligands or 
toxins can be integrated into recombinant membrane-attached fusion constructs 
and applied in vitro in transfected or transduced cells in cell-culture,  or in vivo in 

transgenic or virus-transduced animals. The t-peptide retains the specificity of 
the toxin/peptide ligand allowing controlled manipulation of distinct subtypes of 
ion channels and receptors in a given neuronal circuit without affecting other 
channels/receptors in the cell. 
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components frequently shared by functionally diverse receptor 
types, modifying any one gene can potentially compromise the 
function of every complex with which it is associated. For exam- 
ple, it has proven difficult to separate the contribution of Cav2.1 
and Cav2.2 VGCC channels by targeted deletion of one or the 
other alpha subunits because of functional compensation of ionic 
currents (Inchauspe et al., 2004; Takahashi et al., 2004). As venom 
toxins inactivate specific ionic currents produced by a receptor 
or channel complex, the t-toxin strategy could be an alternative 
to prevent compensatory ionic currents that may occur upon 
gene-deletion of receptor subunits. 

The cell-autonomous modulatory action of tethered peptides 
and their selectivity for cognate cell-surface molecules can be 
further exploited by directing t-peptide molecules to subcellular 
compartments within the neuron (Figure 3). For instance, t-tox- 
ins could be directed to the axon initial segment where sodium 
channels are concentrated (Garrido et al., 2003), or to the den- 
dritic compartment (Lewis et al., 2009). Further modifications of a 
number of optimized and novel tethered toxins for in vivo use will 
offer new possibilities for investigations regarding the physiology 
of neuronal circuits. 
	

CHANNELOPATHIES AND OTHER DISEASES 
The tethered-peptide strategy represents a potential new avenue 
for the development of genetic therapies for chronic diseases 
caused by malfunction of ion channels and peptide ligand recep- 
tors. Several human disorders that affect nervous system functions 
have been traced to mutations in genes encoding ion channels 
or regulatory proteins (George, 2005). These disorders, referred 
to as channelopathies, can be targeted by the tethered-peptide 
strategy when the disorder results in hyperactivity of the chan- 
nel. Examples of hyperactive disorders include gain-of-function 
mutations in P/Q-type calcium channels, linked to familial hemi- 
plegic migraine type 1 (Ophoff et al., 1996; Tottene et al., 2009), or 
mutations in neuronal nAChRs associated to autosomal dominant 
nocturnal frontal lobe epilepsy (Steinlein et al., 1995; Klaassen 
et al., 2006). One potential application would be to genetically 
introduce t-toxins into the corresponding mouse mutant models 
in a cell-specific manner to dissect the circuitry of the disease 
(Figure 3). Conversely, activation of  receptors with t-peptide 
ligands could be beneficial to control GPCRs in a cell-selective 
manner (Figure 3). For instance, isoforms of glucagon-like and 
calcitonin-gene-related peptides are presently being used to regu- 
late insulin release and bone remodeling in diabetes (Green and 
Flatt, 2007) and osteoporosis (Hoare, 2005). Similarly, feeding- 
regulation neuropeptides such as orexin or ghrelin (Shioda et al., 
2008) could be targeted to circuits involved in appetite control, or 
tethered opioid peptides could be directed to nociceptive neurons. 
With an ever-growing interest in identifying the potential of natu- 
rally occurring venom peptide toxins (Blumenthal and Seibert, 
2003; Han et al., 2008; Twede et al., 2009), as well as novel lig- 
ands for orphan GPCRs encrypted in the human proteome (Jiang 
and Zhou, 2006; Shemesh et al., 2008), an increasing number of 
peptide based therapies could be possible. Furthermore, parallel 
development on the safety of viral methods for genetic interven- 
tion will increase the number of diseases to which the t-peptide 
strategy is applicable. 

IMPLICATIONS  OF TETHERED PEPTIDES  FOR DRUG DISCOVERY 
Ion channels and GPCRs are some of the biggest molecular drug 
targets yet presently remain underexploited in drug discovery 
efforts. Peptide toxins, which are highly effective modulators of 
ion channels and GPCRs, offer an intriguing opportunity for 
increasing the drug development pipeline. Specific areas in which 
peptide toxins have demonstrated their potential include chronic 
pain (Miljanich, 2004) and myasthenic autoimmune response 
(Drachman, 1981). A major drawback to the universal usage of 
peptide toxins in the development of therapeutics has been the 
scarcity of obtaining the venom product. To circumvent this, most 
toxins are synthesized chemically, but this too has significant prob- 
lems, one being obtaining the correct disulfide scaffold with in 
vitro folding. To combat these synthesis hurdles several structural 
strategies and characterization methods have been developed 
(Munson and Barany, 1993; Cuthbertson and Indrevoll, 2000; 
Han et al., 2009; Ueberheide et al., 2009; Walewska et al., 2009). 
However, even when the toxin is successfully synthesized, soluble 
toxins cannot be directed to single cell populations, are expensive, 
and have a limited time of application that makes their use in vivo 
problematic. The t-peptide strategy surmounts these limitations 
with the ability to recombinantly synthesize the toxins or peptide 
ligands in the cell itself, and co-express it with the molecular 
target (receptor or channel) to be screened. Such a cell-surface 
peptide tethering strategy can readily introduce point mutations 
to interconvert tethered agonists into antagonists. Several recent 
reports use the t-peptide technology to characterize point mutants 
of peptide hormones against class B1 GPCRs (Ibañez-Tallon et al., 
2004; Fortin et al., 2009). In a similar manner, the t-peptide tech- 
nology could be applied to screen gene libraries of t-peptides 
against specific membrane proteins by co-expression in the same 
cell. T-peptides with activating or blocking capabilities could be 
monitored with functional assays, i.e., calcium influx. This type of 
screen could be beneficial to block channels that are hyperactive 
in certain diseases, such as TRPP2, for which no natural toxins 
have yet been identified. These features make the t-peptide genetic 
approach a promising strategy for drug discovery and develop- 
ment of targeted therapeutics. 
	
	
SUMMARY 
The t-peptide strategy is an innovative technique for manipulating 
neuronal circuits in order to dissect the specific biological roles of 
ion channels and cell-surface receptors both in vitro and in vivo. 
The studies presented here illustrate how the t-peptide approach 
can be used to increase cellular specificity of neuropeptides by 
restricting their actions to targeted cell types through membrane 
tethering. The t-peptide method is relatively easy to implement 
and has the potential to significantly impact neuroscience research 
and cell-based drug screening of membrane proteins for targeted 
therapeutics. 
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