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Abstract Melt extraction from the Earth’s mantle through high-porosity channels is required to explain
the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt
into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth’s
mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts
that form as melt flows across the lithological interface between the heterogeneity and the ambient mantle.
Here we present a chromatographic analysis of reactive melt transport across lithological boundaries, using
the theory of hyperbolic conservation laws. This is an extension of linear trace element chromatography to
the coupling of major elements and energy transport. Our analysis allows the prediction of the nonlinear
feedbacks that arise in reactive melt transport due to changes in porosity. This study considers the special
case of a partially molten porous medium with binary solid solution. As melt traverses a lithological contact,
binary solid solution leads to the formation of a reacted zone between an advancing reaction front and the
initial contact. The analysis also shows that the behavior of a fertile heterogeneity depends on its absolute
concentration, in addition to compositional differences between itself and the refractory background. We
present a regime diagram that predicts if melt emanating from a fertile heterogeneity localizes into high-
porosity channels or develops a zero porosity shell. The theoretical framework presented here provides a
useful tool for understanding nonlinear feedbacks in reactive melt transport, because it can be extended to
more complex and realistic phase behaviors.

1. Introduction

Geological and petrological observations require that melt extraction below mid-ocean ridges is localized
into high-porosity channels [Kelemen et al., 1995, 1997]. The upper portions of these channels are thought
to consist of dunite which allows melt extraction from depth without reequilibration [Liang et al., 2010].
Aharonov et al. [1995] recognized that increasing orthopyroxene solubility with decreasing depth could pro-
vide a positive feedback mechanism to localize melt flow. Initial simulations of reactive melt transport in a
compacting matrix show the spontaneous localization of melt into channels [Spiegelman et al., 2001]. It is
now generally accepted that reactive feedback mechanisms cause the channelization associated with
dunite formation, although other purely mechanical mechanisms may also lead to melt localization [Stevenson,
1989; Katz et al., 2006; Keller et al., 2013].

Channel formation was not observed in subsequent studies which improved the model description by account-
ing for mantle upwelling, variable bulk viscosity, and melting induced either by the dissolution of orthopyrox-
ene or the coupling of mass and energy transfer through phase behavior. For the orthopyroxene dissolution
models, the growth rate of channels decreases with increasing upwelling and is dramatically lower in models
where bulk viscosity decreases with increasing porosity [Hesse et al., 2011]. For typical conditions beneath mid-
ocean ridges, these models give rise to compaction-dissolution waves rather than high-porosity channels [Liang
et al, 2011]. For models that couple mass and energy transfer, the melting rate increases with upwelling and
increasing thermal diffusivity, but it is inversely proportional to the latent heat of fusion [Hewitt, 2010; Katz and
Rudge, 2011; Weatherley and Katz, 2012]. For preferred mantle properties, these models show that the melt flux
from a homogeneous mantle is insufficient to trigger spontaneous channelization [Hewitt, 2010; Weatherley and
Katz, 2012]. However, in both types of models, fusible heterogeneities can supply a melt flux sufficient for chan-
nelization [Liang et al., 2010; Weatherley and Katz, 2012]. This highlights the role of lithological heterogeneities
in the Earth’s mantle as potential seeds for the nucleation of high-porosity channels.
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During partial melting, fusible lithological heterogeneities with a lower solidus produce local regions of
high porosity. Reaction fronts develop as melt advects from heterogeneities across a lithological boundary
into the ambient mantle. An upstream increase in porosity across a reaction front can cause a reaction infil-
tration instability that is characterized by scalloping of the reaction front and the eventual localization of
melt flow into high-porosity fingers [Chadam et al., 1986; Hinch and Bhatt, 1990; Szymczak and Ladd, 2013;
Pec et al., 2015]. Therefore, the key to understand if a heterogeneity will seed high-porosity channels is the
change in porosity across the reaction front. Although the reaction infiltration instability is intrinsically a
multidimensional phenomenon, changes in porosity across a reaction front can be predicted using one-
dimensional analysis.

The reactive transport due to the advection of melt across a lithological interface can be represented as a
one-dimensional problem with an initial discontinuity separating two regions, also known as a Riemann
problem. In the limit of local thermodynamic equilibrium, negligible hydrodynamic dispersion, and a rigid
porous medium, the equations governing reactive melt transport reduce to a system of quasi-linear hyper-
bolic equations. In this limit, the theory of hyperbolic equations allows a full analysis of Riemann problems
[Lax, 1973; LeVeque, 1991]. In the context of reactive transport in porous media, this approach is commonly
referred to as the theory of chromatography [DeVault, 1943; Glueckauf, 1945; Rhee et al., 1989; Mazzotti and
Rajendran, 2013]. This framework has been used successfully to describe reactive transport of multiple,
interacting components in complex, natural porous media both in laboratory experiments and field applica-
tions [Pope et al., 1978; Valocchi et al., 1981; Appelo and Postma, 2010; Venkatraman et al., 2014].

In the geological sciences, the full chromatographic theory has primarily been used to describe infiltration
metasomatism. Korzhinskii [1965, 1968] was the first to recognize the importance of chromatographic sepa-
rations and reaction fronts during metasomatism. The work of Korzhinskii considered classical dissolution-
precipitation reactions between multiple pure mineral phases and an aqueous solution. Hofmann [1972]
applied chromatographic theory to binary ion exchange in feldspars and Sedqui and Guy [2001] explored
ternary ion exchange during the formation of scarn garnets.

While studies of metasomatism considered the nonlinear interactions between major elements, most chro-
matographic work on melt migration in the mantle, starting with Navon and Stolper [1987], focuses on the
transport of trace elements of variable compatibility at constant melt fraction (see among others DePaolo
[1996], Hauri and Kurz [1997], and Hauri [1997]). This leads to a linear and decoupled system of equations
that predicts a reduction of the transport velocity for trace elements with increasing compatibility in the
solid phases. However, to understand nonlinear feedbacks such as the localization of melt flow into high-
porosity channels, previous work must be extended to include the coupling between energy and mass
transfer along with the interactions of major elements during reactive melt transport. While some studies
consider porosity changes across reaction fronts, these changes are imposed rather than allowed to emerge
as a consequence of the reactive melt transport itself [Godard et al., 1995].

This contribution extends the chromatographic analysis of reactive melt transport to major elements. In this
case, the coupling between energy and mass transport is described by a phase diagram, and porosity
evolves dynamically. Mass transfer between solid and melt may be compositionally or thermally driven dur-
ing reactive melt transport. For purpose of illustration, an ideal binary solid solution liquid solution is consid-
ered, which yields a system of two nonlinear, coupled, hyperbolic partial differential equations. The analysis
is presented as follows: section 2 introduces the nonlinear system of algebraic equations that determines
the thermodynamic state of the system; section 3 introduces the partial differential equations describing
the transport of energy and mass during reactive melt transport; section 4 presents the chromatographic
analysis that forms the central contribution of this study; section 5 shows that the one-dimensional analysis
predicts the stability of reaction fronts in higher dimensions and discusses geological applications.

2. Thermodynamic State Equations

Any reactive transport model requires a set of thermodynamic equations that determine the intensive state
of the system and conservation equations that determine the extensive state of the system. Together they
form a nonlinear system of algebraic equations that contain the key nonlinearities, couplings, and feed-
backs during reactive melt transport. This section introduces these state equations and the phase space
used to analyze the reactive transport behavior in section 4. The full description of the state of the system
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Figure 1. (a) Binary phase diagram for an ideal solid solution liquid solution, showing the two-phase region bound from below by the soli-
dus X,(T) and above by the liquidus X/(T). Porosity, ¢, is shown by the color map, and the black lines show the tie lines of constant tempera-
ture, T, in °C. X, is the mole fraction of the refractory end-member. (b) The same phase diagram plotted in the phase space formed by the
conserved quantities, bulk composition, C, and bulk enthalpy, H. Isothermal tie lines for Trand T, at each end of the phase diagram are
vertical.

requires phase relations introduced in section 2.1, the equations describing the partitioning of the energy
between phases in section 2.2, and the conservation equations given in section 2.3. Finally, a simplified set
of state equations, comparable to those used in previous literature, is introduced and its properties are dis-
cussed in section 2.4. This system will subsequently be used in the analysis of reactive melt transport.

2.1. Ideal Binary Solid Solution Phase Behavior

Following previous work in melt migration, an ideal binary solid solution liquid solution is assumed that
may represent the olivine solid solution in the mantle systems and the plagioclase solid solution in crustal
systems [Katz, 2008; Hewitt, 2010; Rudge et al.,, 2011; Solano et al., 2014]. The component with the lower
melting point, Ty, is referred to as the fusible component and denoted by the subscript f and the component
with the higher melting point, T,, is termed refractory and indicated by the subscript r. All expressions below
are given in terms of the mole fractions of the refractory component in the melt, X, - = X, and in the solid,
Xs = X;. The mole fractions of the fusible components can be obtained from the mole fraction constraint
in each phase, so that X; r=1—X; and Xy, r=1—Xp,.

The standard formulation of an ideal solid solution liquid solution phase loop is chosen here to demonstrate
the applicability of the analysis to proper thermodynamic descriptions of phase behavior. In this case, the
dependence of melt and solid composition on temperature, T, are given by

1— efAG,/(ZRT)

Xm M

T - AG/(2RT) — g—AG,/(2RT) ’

(-I _e—AG,/(ZRT))e—AG(/(ZRT)

Xs= o AG//(2RT) — o~ AG,J(2RT)

)

and referred to as the liquidus and solidus curves that bound the two-phase region. Here R is the universal
gas constant. The Gibbs free energy of fusion of the fusible and refractory end-members AG; and AG, are
described by equations (A1)-(A9) in Appendix A. The resulting phase diagram is modeled after the olivine
solid solution, shown in Figure 1a. The parameter values used are given in Table 1. The stoichiometry of the
olivine reaction accounts for the factor of 2 in the exponents in (1) and (2).

In previous work on trace element transport, the relationship between solid and melt composition is linear,
Xs = KzXm, although Ky may vary with time as a function of pressure and temperature [White, 2013]. This rela-
tion is nonlinear for major elements and variations in pressure and temperature cannot be separated from com-
position. In the case of ideal solid solution liquid solution discussed here, the relationship between X; and X,,, is
monotonic and convex, d?X; /dX2 £ 0, if T,> T The treatment of the nonlinearity in major element phase
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behavior in the chromatographic analysis of the reactive melt transport is one of the main advances in this
contribution.

2.2. Enthalpies in an Ideal Solid Solution
In an ideal binary solid solution, the specific enthalpy of the solid is the mechanical mixture of the specific
enthalpies of the two end-members

hs=X; hst(T)+(1—X;) hst (T), (3)
which are linear functions of T and given in Appendix B. The specific enthalpy of the melt is that of the solid
phase plus the specific latent heat of fusion

hm=hs+AH. 4

The latent heat of fusion in an ideal solid solution liquid solution system is the mechanical mixture of the
specific latent heats of fusion of the two end-members

AH=XAH,(T)+(1=X) AH(T), )

which are also linear functions of T and given in Appendix B. Here X is the total mole fraction of the refrac-
tory component in the partially molten system given by

X=FXp+(1—F)X;, 6)

where F is the mole fraction of the melt.

2.3. Conserved Quantities

The thermodynamic equations above determine the intensive state of the system and are sufficient to
determine the equilibrium state of the system. However, reactive melt transport requires knowledge of the
proportions of the phases. Due to mass and energy transfer between phases during reactive melt transport,
the conserved quantities are the total moles of the refractory component in the system, C, and the total
enthalpy of the system, H. These quantities are per unit volume. Therefore, they depend on the molar den-
sities, p, and ps, and the volume fraction of the melt, ¢. Thus, conserved quantities are given by

C:pm(bxm+ps(1_¢)X57 (7)
H:pm¢hm+ps(1_¢)h57 (8)
where the pore space is saturated with melt. The porosity is related to the mole fraction of the melt as follows

_ P
¢pm+(1 _(,b)PS .

The conserved quantities C and H form a phase space that allows a two-dimensional representation of all
model states. At any point within this phase space, (6)-(9) form a closed system of four nonlinear algebraic
equations for the four unknowns T, X, F, and ¢. Once these primary variables are known all other model
quantities can be determined.

F )

2.4, Simplified Model Equations

For clarity of presentation, a simplified system, similar to those presented in the recent literature [Katz,
2008; Hewitt, 2010; Solano et al., 2014], is considered
for the analysis below.

Table 1. Simplified Model Thermodynamic Properties In the limit where all phases have the same constant
Based on the Olivine Solid Solution Liquid Solution density, p, equation (9) simplifies to F=¢, so that
;P '

Parameter Value Units C= pX. In section B4, we show that latent heat of
;' 1??‘; g fusion becomes constant, AH =L, in the limit where
Af,.,,=AHf=L 100 K/mol all enthalpic properties are constant and equal across
ho 250 kJ/mol phases and end-members. After applying these sim-
, 2EE AT SElET plifications, the expressions for conserved quantities
G 2 kJ/K/mol ] !
are given by,
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C=p(PXm+(1—P)X;). (10)

In the simplified expression for enthalpy, (11), ¢, is the specific molar heat capacity and hq is specific
enthalpy at the reference temperature, T.

The simplified model equations (10) and (11) form a closed system for T and ¢ given C and H. This allows
the reduction of the state equations to a single nonlinear equation for T. Equation (10) is rearranged for ¢
and substituted into (11) yielding

R(C,H,T)=(C—pX(T))L+ (hs(T)—H)(Xm(T)—Xs(T))=0. (12)

Equation (12) cannot be inverted for T explicitly, but it can be solved robustly and efficiently using a one-

dimensional root finding method. Once the temperature of the system is known ¢ can be obtained from
(10). Figure 1b shows the variation of T and ¢ in two-phase region of the CH-phase space.

3. Transport Model

In a reference frame moving with the solid phase, the conservation equations are given by

C+V - (qoXm—¢pDV Xp)=0, (13)

Hi+V - (aphm—pkVT)=0, (14)

where q is the volumetric melt flux relative to the solid given by Darcy’s law, and the subscript, t, denotes the
time derivative. Diffusion in the solid has been neglected in (13), and D is the effective hydrodynamic dispersion
of the porous medium. The average thermal conductivity of the medium is given by k=(¢/9)kn+(1—¢)ks,
where 9 is the tortuosity, and k,, and k; are the thermal conductivities in the solid and the melt.

The equations are recast in terms of dimensionless variables

T-T
T-T

C=%, and r=t7q, (15)

C=E, T=

where g=|q|, which is given and constant in one dimension. These scales imply the following expression
for dimensionless enthalpy
_H=ph{
PCAT

(16)

For the initial condition considered below, the reactive melt transport problem does not contain an intrinsic
length scale. Here the spatial coordinate, x, is normalized by the dimension of the heterogeneity, /.

The dimensionless conserved quantities simplify to
C=Xn(T)+(1=)X(T), (17)

H=T+%, (18)

where the ratio of sensible heat to latent heat is the Stefan number, Ste=c,(T,—T¢)/L. Equation (18) is rear-
ranged for ¢ and substituted into (17) giving the dimensionless equation of state,

SN (CH, T)=C+Ste(H—T)[Xs (T)—Xm(T)]—X:(T) =0. (19)

The dimensionless conservation laws for composition and enthalpy are
Co+V - (Xm—Pe; ' pVXn) =0, (20)
H+V - (im—Pey! (p+1(1—¢))VT)=0, 1)

where k=k1J/k; and the Péclet numbers are given by Pec=qd/D and Pe;;=q¥/k;. Note that ¢ has not
been absorbed into the Péclet numbers because it evolves dynamically and may even vanish. Here the
dimensionless enthalpy of the melt is given by
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Figure 2. (a) The dimensionless flux of composition, given by fo=Xp,, in the CH phase space. (b) The dimensionless flux of enthalpy, given
by fH=ﬁm.

iy =T +Ste™ . (22)
Details of the nondimensionalization of enthalpy can be found in Appendix C.

In reactive melt transport, advection dominates diffusion [Aharonov et al, 1995; Katz, 2008; Hesse et al.,
2011]. Therefore, the analysis below considers the limit of Pec — oo and Pey; — oc. In this limit, the govern-
ing equations reduce to a quasi-linear system of coupled hyperbolic equations

u,+V - f(u)=0. (23)

Here u=|C, H] is the vector of conserved quantities and f(u)=[Xy,, fi,] is their nonlinear flux vector. These
fluxes are shown in Figure 2 and represent the amount of material and energy that can be transported by the
melt. It should be noted that the solutions to (23) are weak solutions that may contain discontinuities, where the
derivatives are not defined and require a suitable entropy condition to guarantee uniqueness [LeVeque, 1991].

4, Melt Transport Across a Discontinuity

This section considers the reaction fronts that arise as melt flows across a discontinuity in composition
and enthalpy as shown in Figure 3a. The essential behavior of these problems can be understood by a
one-dimensional analysis. Section 5 will discuss how higher-dimensional phenomena such as the occur-
rence of melt localization can be deduced from the one-dimensional analysis.

4.1. General Structure of Reaction Fronts
Consider the following one-dimensional initial value problem commonly referred to as a Riemann problem

a) u.+f(u),=0, {€ R (24)
444 JVI‘L»AAAAJJ»L++++F+++++++++++
u D L T T u, C<0,
JﬂL »4»77;;LJﬂLAr++++++++++++++++ u= (25)
: u, (>0.
u — u, m
b) ] e, s Subscripts / and r refer to left and right states
c g';* G i Cr 1 of enthalpy and concentration. This nomen-
os_t ] clature is commonly used in theory of hyper-
08 " ’H, T 7-{, — bolic conservation laws [LeVeque, 1991]. In the
H g'g [ ! = i analysis that follows, the flow always traverses
05 o T T from left to right such that g > 0. The initial
4 08 -06 -04 -0 02 04 06 08 1

condition is illustrated in Figure 3b.

o~ ofl-+

The solution of the Riemann problem for
Figure 3. (a) Schematic representation of u across a lithological disconti- Il-beh d f led .
nuity. (b) Initial conditions for the Riemann problem for conserved varia- well-behaved systems of two coupled quasi-

bles C and H plotted against dimensionless spatial coordinate (. linear equations is characterized by the
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formation of an intermediate state, wu;
bounded by two waves #"; and %", [LeVeque,
1991]. This solution structure evident in Figure
4 and can be represented as follows

W Wy
u—u——u,. (26)

In the context of reactive melt transport, the
waves are reaction fronts and the intermediate
state corresponds to a reacted zone that forms
between the fronts.

The system of nonlinear hyperbolic equations
can be written in quasi-linear form,

u;+Vyf(u)u;=0, (27)

where gradient of the flux with respect to the

K conserved quantities is given by
Figure 4. (a) Evolution of the dimensionless total concentration in { and £ £
.(b) Th lution plotted as function of similarity variable, n={/x. ¢c ICH
7. (b) The same solution plotted as function of similarity variable, n={/t Vuf u)= (28)
frue fum

Within the two-phase region, the derivatives of the flux gradient above can be evaluated through implicitly
differentiating the function S (C,H, 7), see Appendix D1. Equation (27) is a system of advection equations
where the propagation velocity is determined by the flux gradient. The flux gradient itself only depends on
u. Figure 4a shows the development of reaction fronts emerging in a typical Riemann problem. The pattern
of reaction fronts remains the same through time, because each reaction front moves with its own charac-
teristic velocity. Essentially, solution profiles stretch with time.

4.2, Self-Similarity of Reaction Fronts
The recognition of the constant, stretching morphology of the reaction fronts allows the introduction of the
similarity variable

n={/z. (29)

Physically, n describes the dimensionless propagation velocity of the reaction fronts. Figure 4b shows that
the solution collapses to a single profile when plotted as function of 5. This suggests that the system of
partial differential equations, given by (24), can be reduced to a system of ordinary differential equations
given by

(Vuf=72pl) j—: =(A=7pl)r,=0, pell, 2. (30)

This system of two differential equations can be thought of as a nonlinear eigenvalue problem, where
the eigenvalues 1, and /, are the characteristic propagation speeds of #"; and #/",, respectively. The asso-
ciated eigenvectors r,=du/dy give pathways through CH phase space that satisfy the conservation
equations.

Any constant sate u satisfies du/di=0 and is a trivial solution to (30). Continuous solutions to (30) must sat-
isfy the eigenvalue problem,

(A=Jpl)r,=0. €2}

The propagation velocity of discontinuities in the solution must satisfy the Rankine-Hugoniot jump
condition

fu)—f(u_) _ [f(u)]

up—u_ [u] ’

Ap(ur,u_)= (32)
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Figure 5. (a) The eigenvalue /, in the two-phase region. (b) The scaled eigenvalue ¢/,, associated with propagation speed of the reaction
fronts relative to the average melt velocity.

which arises from mass balance around the discontinuity [LeVeque, 1991]. This condition can be thought of
as a discrete version of the eigenvalue problem (31). Here u_ is the state to the left of the discontinuity and
u, is the state to the right, so that the notation [-] indicates the jump across the discontinuity. The values
for u_and u. describe the immediate vicinity of the moving discontinuity and are not necessarily the same
as u;and u, as they may refer to the intermediate state, u;.

4.3. Construction of Solution Grid in CH Space

The self-similar solutions are constructed by identifying directions in CH phase space that satisfy the con-
servation laws and the equation of state. One such set of directions that allows reaction fronts with continu-
ous variations in u is obtained by integrating the eigenvectors. Another set of directions is determined by
the nonlinear algebraic system of equations arising from the jump condition (32) and describes discontinu-
ous reaction fronts [LeVeque, 1991].

The eigenvalues of (31) are given by,

21=0 and )Lz:fcﬁc‘i‘fH)H. (33)

Figure 5a shows that 4, is nonnegative and increases monotonically in the direction of increasing C and has
a maximum at the solidus of the refractory end-member. The eigenvalue, /,, gives the dimensionless propa-
gation speed of the reaction front, %, as a function of C and . The first reaction front, %", is stationary
because 4, = 0. Therefore, all solutions have a single moving reaction front. Due to variable porosity, the
dimensionless system is scaled with respect to the constant volumetric flux, g, rather than the variable melt
velocity. Hence the propagation speed of the second reaction front relative to the melt is ¢/,, as shown in
Figure 5b. As expected, the propagation velocities relative to the melt are significantly retarded near the
solidus.

The corresponding eigenvectors yield two linearly independent directions in CH phase space

Y Ay
r= OH and r=| d7 |, (34)
1 1
that can be integrated
Ul
u(uo,n):u0+J rpdr’, (35)
0

to obtain solution pathways. These paths in CH phase space comprise the set of states that can be con-
nected to uy by a reaction front with a continuous variation in u. Figure 6a illustrates solutions to the
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Figure 6. (a) Integral curve (line) and Hugoniot-locus (dotted line) associated with a left state given by u,. (b) Rarefaction fronts for three
states along the integral curve. (c) Shock fronts for three states along the Hugoniot-locus.

eigenvalue problem at a particular state, ug. The discussion below assumes that ug is a left state, u;, and
describes the set of permissible right states, u,.

4.3.1. Stationary Linear Reaction Front

The integral curves associated with 4, and r;, known as the first characteristic field [LeVeque, 1991], are par-
allel to the isothermal tie lines of the phase diagram in CH phase space. Any right state, u,, along this inte-
gral curve, connected to uy by a stationary discontinuity is a weak solution of (24). Because the 7, is
constant, the first characteristic field is linearly degenerate and the stationary front is referred to as a contact
discontinuity, ;. This front is stationary, because the composition and enthalpy of the melt are soley func-
tions of temperature and hence identical on either side of an isothermal contact. Therefore, fluxes of C and
'H (Figure 2) are constant so that melt transport does not change C and H and the front does not evolve.

The importance of tie lines in the solution construction of multicomponent systems has been observed for
multiphase flow with partitioning in gas-liquid [Welge et al., 1961] and liquid-liquid [Wachmann, 1964] sys-
tems. See Orr [2005] for a comprehensive review. In general, the recovery of the single-component solution
from the multicomponent system requires that tie lines are solution paths.

4.3.2. Moving Nonlinear Reaction Front

The integral curves associated with the second characteristic field mimic the shape of the liquidus because
they are obtained by integrating dX,/d7 . Since 1, varies smoothly, any u along this integral curve is con-
nected to ug by a continuously varying reaction front. The propagation velocity along these continuous
reaction fronts increases monotonically such that the reaction front spreads with time. These fonts are
referred to as rarefactions and denoted Z,. Rarefactions are a weak solution of (30) if the resultant profile of
u is single valued. This condition is satisfied if u lies on the branch of the integral curve emanating from ug
in the direction of increasing A, toward the refractory end-member, as shown in Figure 6a. Examples of rare-
faction profiles corresponding to a sequence of right states along the integral curve are shown in Figure 6b.

If u lies on the opposite branch of the integral curve, a continuous reaction front would result in unphysical
triple-valued solutions. In this case, u is connected to u, by a discontinuous reaction front that propagates
with a velocity, A;(ug, u), set by the jump condition. Such fronts are referred to as shocks and are denoted,
5. The set of permissible u that can be connected to u, by shocks lie on the segment of the Hugoniot-
locus that satisfies the entropy condition. The Hugoniot-locus is obtained by solving the two nonlinear alge-
braic equations given by (32) for the two components of u and A,. For the system of equations discussed
here, the Hugoniot-locus is visually indistinguishable from the integral curve. The segment that satisfies the
entropy condition lies on the branch of the Hugoniot-locus emanating from ug in the direction of decreas-
ing /1, toward the fusible end-member, as shown in Figure 6a. Examples of shock profiles corresponding to
a sequence of states along the Hugoniot-locus are shown in Figure 6c.
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Figure 7. (a and b) The intermediate state, u;, formed by the intersection of the integral curves (line) and Hugoniot-loci (dotted line) associ-
ated with u; and u,. Solution paths are shown in black. (c and d) Self-similar profiles corresponding to solution paths shown in Figures 7a
and 7b.

The previous analysis searched for connected states, u assuming that the given a state, uy, is a left state, u,. The
same arguments show that the location of the integral curve and the Hugonoit-locus are switched if the refer-
ence point up is a right state.

4.3.3. Intermediate State: Formation of a Reacted Zone

The solution profile contains a single reaction front if u; and u, share the same integral curve or Hugonoit-
locus. In all other cases, a reacted zone forms, which is represented in CH phase space as an intermediate
state, u;. At this intermediate state, the solution switches from the first characteristic field to the second (Fig-
ures 7a and 7b). In other words, at u; the solution changes from the stationary front along isothermal tie
lines to the advancing reaction front along the paths that mimic the liquidus.

The two possible intermediate states are given by the intersections of the integral curves and Hugoniot-loci
emanating from u; and u,, as shown in Figure 7a. Only one intersection yields a physically realistic single-
valued solution. The correct intersection is selected by requiring that the propagation speed increases
monotonically from u, to u,. Because 1; < 1,, the integral curves and Hugoniot-loci associated with the first
characteristic field are referred to as slow paths and those associated with the second characteristic field
are termed fast paths. A single-valued solution is ensured if and only if u; is connected to u; along the slow
path and u; is connected to u, along the fast path. The reactive melt transport system considered here
allows only two fundamental solution structures

G A G S
u—u—u, and u—u——u,, (36)

because the first characteristic is linearly degenerate and the reaction front along the slow path is always a
contact discontinuity.

The reactive melt transport across an initial discontinuity is characterized by the formation of a reacted
zone corresponding to u; that is bounded between a stationary front, 7, and an advancing front that is
either a spreading rarefaction front, %5, as illustrated in Figures 7a and 7c or a shock, %, as illustrated in
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t (t + At) Figures 7b and 7d. The transient solution in
| Figure 4 is equivalent to the self-similar solu-
fe(w) fe(uy) tion profiles in Figure 7c.
Crosf —> —>

07k 5. Discussion
The analysis of reactive melt transport across
0.6 F an initial discontinuity presented above leads
C to multiple important insights and their impli-
05 1 1 L cations are discussed below. Section 5.1 gives
the physical interpretation of the different
fronts that arise in reactive melt transport. Sec-
0.8F fu(w) fu(u) tion 5.2 shows that the entire reactive melt
—> —> transport behavior can be summarized graphi-
Hl 0.7F cally, which leads to a regime diagram that
identifies unstable reaction fronts that localize
0.6 the melt flow as well as self-limiting fronts that

Hr 0.5 " . L, cut off the flow.

-0.2 0 0.2 0.4 5.1. Physical Interpretation of Reaction

I—AiB—i Fronts
This section complements the mathematical
Figure 8. Mass and energy balances across a moving reaction front vsi ted i ti 4 with physical
considered in (37). Control volume over which balance is considered is analysis presented In section wi physica
shown in gray. Reaction front moves distance Ax over time interval At. interpretation of the different behavior of the
reaction fronts. The analysis identified station-
ary isothermal fronts (contact discontinuities), moving discontinuous fronts (shocks), and moving fronts
that widen with time (rarefactions).

5.1.1. Stationary Isothermal Fronts: Contact Discontinuities

The formation of the isothermal stationary front, %, at the location of the initial interface may be counterin-
tuitive. This is best understood through a physical interpretation of the jump condition (32) that determines
the velocity of sharp reaction fronts. Figure 8 shows that the jump condition can be thought of as a mass
balance on a control volume around the moving front. The motion of the reaction front is the manifestation
of a change in bulk composition or bulk enthalpy or both in its vicinity. Such changes are due to a
imbalance in the composition and enthalpy fluxes across the front.

For example, consider the change in bulk composition across the contact discontinuity pictured in Figure 8.
The change in mass of the refractory component within the control volume due to the migration of the
reaction front by distance Ax is given by AM=AAx(C,—Cg), where A is a unit cross-section perpendicular to
the direction of flow. This change in mass is due to the difference in the mass flux on the left and right
boundaries of the control volume so that

AAX(C—C,)=qAAt(fc(u) —fc(uy)), (37)

where At is the time interval over which the change occurs. This mass balance can be solved for the propa-
gation speed of the front, given by

Ax(fe(u)—f(u)
At_q( -G ) (38)

Together with a similar balance for enthalpy across the front and suitable nondimensionalization, this leads
to the jump condition for propagation speed of the reaction front (32).

Within this context, consider two rocks of different bulk composition that are separated by an isothermal
discontinuity. They both lie along the same tie line and must have the same melt composition and
enthalpy in melt. As energy and mass are only transported by the melt phase, the fluxes, f- and fy, are
constant across the discontinuity (Figure 2), so that frontal velocity is zero according to the jump condi-
tion (38).
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5.1.2. lon Exchange at Nonlinear Moving Fronts

The moving reaction front, #/",, can either be a sharp shock, .%,, or a spreading rarefaction, %,. This type of
behavior is well known for reactive transport with surface reactions such as adsorption-desorption or ion
exchange [DeVault, 1943; Glueckauf, 1945; Rhee et al., 1970; Mazzotti and Rajendran, 2013]. Rarefactions
have not been described for classical reactions with porosity change [Korzhinskii, 1968; Bryant et al., 1987;
Walsh et al., 1984]. A particular challenge in the description of reactive melt transport in binary systems with
solid solution liquid solution is the coupling ion exchange, heat transfer, and porosity change.

In the absence of porosity change, (20) reduces to the retardation equation typically written as follows,

X | X 10X
_t —— =
Xm) 3¢ a7 ~Pec PR (39)
where the retardation is given by
dX.
RXm)=p+(1=¢) =~ (40)

dXy,

The relationship between X; and X, is determined by the phase behavior. For sufficiently dilute concentra-
tions, Henry's law applies, so that X; = K Xp,. In this limit, the retardation equation reduces to the linear
equation for trace element transport given by Navon and Stolper [1987]. The propagation velocity of a trace
element relative to the melt velocity is controlled solely by its partition coefficient. From (40), it can be seen
that retardation increases linearly with K; so that compatible trace elements lag behind incompatible trace
elements.

Nonlinear retardation equations also describe the equilibrium transport of major cation species in ground-
water in the presence of ion exchange with sorbed species on the solid surface [Appelo and Postma, 2010].
Here the aqueous concentration is analogous to the melt mole fraction, c,q ~ Xm, and the sorbed concen-
tration is analogous to the solid mole fraction, ¢; ~ X;. During contaminant transport, concentrations are
often high enough that a nonlinear relationship between sorbed and aqueous concentrations must be con-
sidered. Since the temperature is often constant in environmental applications, the relationship between
sorbed and aqueous concentrations is referred to as an isotherm [Rhee et al., 1989; Mazzotti and Rajendran,
2013].

For nonlinear isotherms, the retardation is strongly dependent on the concentration which gives rise to
self-sharpening shocks and spreading reaction fronts. When a cation species is introduced into the ground-
water, ion exchange with the solid retards its propagation speed in similar fashion to the retardation of a
compatible trace element in melt transport. Adsorption fronts are self-sharpening because low concentra-
tions ahead of the shock are retarded more strongly than high concentrations behind the shock. In contrast,
desorption fronts spread with time because desorption becomes less favorable as concentration decreases.

A similar process occurs in reactive melt transport along the nonlinear moving front. The relation between
the liquidus and solidus compositions, shown by the Roozeboom plot in Figure 9, determines whether the
reaction front is spreading or self-sharpening in a similar manner to the ion exchange isotherm in contami-
nant transport applications [Roozeboom, 1899].

For the example of the olivine solid solution liquid solution, the Roozeboom plot illustrates that magnesium
is preferentially incorporated into the solid while iron is enriched in the melt. Equation (40) shows that the
retardation of the magnesium mole fraction in melt transport is proportional to the slope in the Roozeboom
plot. Therefore, the transport speed, given by 1/R(X,,), increases with increasing magnesium mole fraction,
as shown in Figure 5a. Furthermore, this dependence of the propagation speed on composition provides
an intuitive explanation for the formation of shocks along the Hugonoit-locus and rarefactions along the
integral curve as shown in Figure 6a.

5.2. Graphical Representation of Full Set of Solutions

The analysis presented in section 4 allows graphical representation of the complete set of solutions for reac-
tive melt transport across a discontinuity in enthalpy and composition. Figure 9 shows a net of integral
curves across the two-phase region of CH phase space. This net is composed of the slow paths that lie
along isothermal tie lines and the fast paths that mimic the liquidus. For any left and right state, this
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net allows the construction of the solu-
tion according to the wave structures
given by (36). The intermediate state
between the stationary and advancing
reaction front lies at the intersection of
the slow path emanating from the left
state and the fast path emanating from
the right state. The morphology of the
advancing reaction front is determined
by the direction of the solution along the
fast path between the intermediate state
and the right state. A spreading wave
forms if the solution follows the arrows
along the fast path in Figure 9, otherwise,
a shock forms. The figure also allows for
the prediction of porosity changes across
reaction fronts by inspection.

01 02 03 04 05 06 07 08 09 1
C

Figure 9. Porosity contours with net of solution paths demonstrating the solu- 5.2.1. Melting-Freezing Versus

tion structure. Solutions must first travel along the slow path (line) and then Dissolution-Precipitation

follow the fast path (arrow). Solutions that move in the direction of the arrows Porosity changes are induced both by
follow the integral curves and form rarefactions. Solutions that follow the . . L. .
Hugoniot-loci move against the arrows and form shocks. A hypothetical path- dISSO|utI0n-pI’eCIpItatI0n driven by
way for a self-limiting reaction front is shown (red dotted line). Inlay: Rooze- changes in composition and melting-

boom diagram for olivine solid solution. The relationship between liquidus and freezing driven by changes in enthalpy. A
solidus compositions along the Roozeboom diagram determine whether the . . .
reaction front is spreading or self-sharpening. For the case X; =KXy, the Roo- porosity change along a vertical solution
zeboom diagram is a straight line with slope K. path in CH space indicates pure melting,

whereas a porosity change along a hori-
zontal solution path indicates pure dissolution-precipitation. The slope of solution paths shown in Figure 9
demonstrates that porosity changes across both the stationary and the moving reaction fronts are induced
by both processes. Pure melting and freezing only occurs in pure component systems. In this limit, the
dynamics can be described by enthalpy balance alone, and there is a single stationary front along the verti-
cal slow paths corresponding to the T, and T;isotherms of the solution grid in Figure 9. Although there are
vertical pathways in CH space at end-members, there are no horizontal pathways. Therefore, there are no
pure dissolution-precipitation reactions possible during reactive melt transport with binary solid solution.
5.2.2. Riemann Problems Without Solution: Self-Limiting Reaction Fronts
It is possible to choose left and right states that cannot be connected by solution paths because the paths
terminate at the solidus and the intermediate state lies in the solid region. For this case, a physically mean-
ingful self-similar solution to the Riemann problem does not exist because it relies on the fact that a con-
stant melt flux is maintained. Numerical simulations in section 5.4.3 show that these cases correspond to
self-limiting reaction fronts where porosity and melt flux decay to zero. Although a self-similar solution
does not exist in such cases, Figure 9 allows the identification of situations where reactive melt transport is
self-limiting. An example of the graphical representation and identification of a self-limiting pathway is
demonstrated in Figure 9. Left and right CH states are connected by pathways that intersect at an inter-
mediate state that lies below the solidus. Therefore, the Riemann solution connecting the left state (sym-
bolically denoted with a circle) and the right state (triangle) cannot reach their intermediate state (square),
before porosity is forced to zero at the interface. Thus, flow is shut off and the reaction front is self-
limiting.

5.3. Regime Diagram for Localization in Reactive Melt Transport

Although the localization of reactive melt transport into high-porosity channels is an intrinsically multidi-
mensional phenomenon, its occurrence can be predicted from the porosity changes in one dimension. An
upstream increase in porosity is a necessary condition for the localization of melt [Chadam et al., 1986;
Szymczak and Ladd, 2013]. This implies that the intermediate state must have a higher porosity than the
right state. A strength of the analysis presented in section 4 is that it predicts the upstream porosity
increases needed for localization. Figure 9 summarizes this analysis and allows the determination of poros-
ity changes by inspection.
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Figure 10. (a) The isotherm 7 4 lies along the locus where V¢ - r, =0. This splits the phase diagram into two distinct regimes. In the
regime below 7 4, rarefactions are always stable and shocks are unstable. In the regime above 7 4, rarefactions may be unstable and
shocks do not become unstable. (b-e) Since there are two distinct solution structures and two morphological regimes in phase space, four
types of solution structure are possible. Figures 10b and 10c are associated with temperatures greater than 7 4 while Figures 10d and 10e
are associated with temperatures less than 7 .

Previous work on reaction-infiltration instabilities has only considered reaction fronts that are either sharp
or of constant width due to the presence of dispersion and kinetics. Section 4 shows that reactive melt
transport can lead to either sharp reaction fronts, shocks, or spreading reaction fronts, rarefactions. Since
porosity can either increase or decrease across both reaction front morphologies, there are four distinct
solution cases illustrated in Figure 10.

Inspection of Figure 9 shows that porosity initially increases along the fast path in the direction of the
arrows before beginning to decrease roughly half way across the phase diagram. This is most pronounced
near the solidus where the fast paths and porosity contours have opposite curvature. The locus of porosity
maxima along the integral curves is given by

V¢ -r=0, (41)

and separates the phase diagram into two regions along an isotherm 7, as shown in Figure 10a. At
Ty <T < T, rarefaction fronts are associated with upstream increases in porosity and may be unstable
while shocks are stable (in Figures 10b and 10c). At 7 < 7T < T, shock reaction fronts induce an
upstream increase in porosity and are unstable while rarefaction fronts induce an upstream decrease in
porosity and are stable (in Figures 10d and 10e). To our knowledge, there is no detailed study of the reac-
tion infiltration instability for reaction fronts that widen with time. Physical intuition suggests that instability
depends on the relative growth rates of the instability and the widening of the front. In the problems con-
sidered here, the rarefaction fronts spread relatively slowly, (see Figure 6) and numerical solutions
presented below suggest that rarefactions in regions of the phase diagram near the solidus are unstable
as well.

5.4. Two-Dimensional Simulations of Melt Emanating From Fertile Heterogeneities

Fusible lithological heterogeneities that melt at lower temperatures are thought to play an important role
during partial melting of the Earth’s mantle [Sobolev et al., 2007] and have been proposed to aid in the crea-
tion of high-porosity channels that allow the extraction of melt without reequilibration with the surround-
ing mantle [Aharonov et al, 1995; Spiegelman and Kelemen, 2003; Liang et al., 2010; Hesse et al., 2011;
Weatherley and Katz, 2012]. Despite the recognized importance of heterogeneities, most studies examine
the localization of melt driven by a gradient reaction at the tectonic scale. Such models produce high-
porosity channels with wavelengths on the order of a compaction length. In contrast, we examine the sta-
bility of a local reaction front emanating from the interface of a lithological heterogeneity and the ambient
mantle on much smaller scales. The one-dimensional theory presented above predicts when the moving
reaction front induces an upstream increase in porosity, a prerequisite for reaction infiltration instability.
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Figure 11. The evolution of the porosity field in numerical simulations of melt emanating from two different fertile heterogeneities with
bulk compositions on either side of 7 in the regime diagram in Figure 10. In both simulations, melt flows from the left to the right. (a)
The composition of the fertile heterogeneity on left and the composition of the ambient mantle on the right are given by C;=0.89 and
C,=0.91. The initial enthalpy is constant across the domain and given by H;="H,=0.7125. The resultant initial porosities are ¢,=0.066
inside heterogeneity and ¢,=0.003 in the ambient mantle. (b) The composition of the fertile heterogeneity on left and the composition of
the ambient mantle on the right are given by C;=0.307 and C,=0.333. The initial enthalpy is constant across the domain and given by
‘H;="H,=0.125. The resultant initial porosities are ¢,=0.035 inside heterogeneity and ¢,=0.009 in the ambient mantle. For both simula-
tions, Pec=10° and Pey =107, based on parameters given in Table 2. Note that the color scale has been truncated to emphasize the
reacted zone.

5.4.1. Governing Equation for Melt Flow

Two-dimensional simulations have been performed to test if the magnitude of the porosity change is suffi-
cient to induce reaction infiltration instability and localize melt transport. Similar to the one-dimensional
analysis, it is assumed that the flow in the two-dimensional simulations is driven by a constant melt flux, g,
across the left boundary.

In a viscously compacting medium, the overpressure, p=ps—ps, driving the melt flow is given by the follow-
ing dimensionless Helmholtz equation,

62
_v. [¢3Vp] + 5 ¢p=0, (42)

where / is the dimension of the heterogeneity, ¢ is the compaction length, and the overpressure has been
scaled by gu¢/Ky (see Appendix E for derivation). Previous work has considered heterogeneities with dimen-
sions that are comparable or even larger than the compaction length [Weatherley and Katz, 2012]. Here we
consider reaction infiltration instabilities occurring at spatial scales much smaller than the compaction
length. To resolve such small length scales, the domain width in the simulations presented below has been
chosen as ¢ = 0.20. In the limit of fz/é2 < 1, the Helmholtz equation reduces to the Poisson equation gov-
erning fluid flow in rigid porous media. At scales of interest here, ¢?/3%=0.04. Therefore, the porous
medium is approximately rigid and the simplified governing equation for the pressure is solved.

5.4.2. Fertile Heterogeneities That Lead to Reactive Infiltration Instability

Instantaneous decompression melting of a fusible heterogeneity leads to a Riemann-type initial condition
with an initial step in bulk composition and a constant enthalpy throughout the domain. We first consider
this problem to test the predictions of the one-dimensional theory before considering a more realistic initial
condition below.

Figure 11a shows the evolution of the porosity due to melt emanating from a fertile heterogeneity after
instantaneous decompression melting. For this simulation, the initial enthalpy is constant and the bulk
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compositions of both the heterogeneity and the
Table 2. Dimensional Parameters Used for Two-Dimensional .
el b it e i S 12 ambient mantle are such that they plot on the
Symbol Meaning Valluz refractory side of 74 in the regime diagram
shown in Figure 10a. This initial condition yields

Ko Reference permeability 1X107 "% m?

m Viscosity of melt 1Pas a reacted zone with a porosity higher than the
A g F 19 . . . . .

o iR /el RSO ambient mantle, similar to the one-dimensional

04 Thermal conductivity of melt 1X107° m/s N .

. Toeinel cnr Al e sl 1X1076 m/s2 profile shown in Figure 10c, with the structure

0 Tortuosity V2 @ P

D Hydrodynamic dispersion 1X10°7 m%/s u,imiimr,

J Compaction length 100 m

l Dimension of heterogeneity 20m

The simulation assumes instantaneous decom-
pression melting of the heterogeneity, which
leads to an initial condition with constant
enthalpy throughout the domain, but an increased porosity inside the heterogeneity. Although, the propa-
gating reaction front is a rarefaction and thus slowly spreads with time, localization of the flow is observed.
This suggests that the perturbations grow faster than the reaction front, %,, widens with time. Figure 11a
shows the formation of high-porosity channels due to a reaction infiltration instability emanating from the
interface between a fertile partially molten heterogeneity and the low-porosity, ambient mantle.

The porosity of the reacted zone is substantially lower than within the heterogeneity because the enthalpy
of the fertile melt is not sufficient to further raise the porosity of the refractory ambient mantle. Nonethe-
less, the upstream porosity increase in Figure 11a is more than eightfold and sufficient to localize melt into
higher-porosity channels. For the Péclet numbers chosen here (Table 2), the wavelength of the channels is
approximately 6/25.

It is important to note that the speed of the advancing reaction front is very slow relative to percolating
melt as shown by Figure 5b. This is expected because the end-members in an ideal solid solution are highly
compatible and at low porosities there is an abundance of solid available for reaction with the melt. Reac-
tion fronts may propagate significantly faster in reactive melt transport models that consider multiple solid
phases, if the volume fractions of the reactive solid phases are small and the solubilities in the melt are high
[Liang et al., 2010].

5.4.3. Fertile Heterogeneities That Lead to Self-Limiting Flow

Figure 11b also shows the evolution of the porosity due to melt emanating from a fertile heterogeneity
after instantaneous decompression melting at constant initial enthalpy. This case was chosen to have the
same initial porosity within the fertile heterogeneity and ambient mantle as in Figure 11a. However, in this
case, the CH states of both the heterogeneity and ambient mantle plot on the fusible side of 7 in the
regime diagram in Figure 10a.

This initial condition corresponds to a Riemann problem without a solution, as discussed in section 5.2.2
and illustrated by the unphysical intermediate state below the solidus plotted as a square in Figure 9. To fur-
ther illustrate the self-limiting nature of reactive transport, the numerical simulation in Figure 11b is initial-
ized with a continuous transition zone rather than a sharp boundary between the interior of the fertile
heterogeneity and the ambient mantle. This allows the porosity in the reacted zone to gradually approach
zero, at which point melt flux stops. The formation of a zero porosity shell around the heterogeneity stops
the leakage of melt from entering the mantle.

If partial melting is modeled using a binary solid solution liquid solution, the behavior of a fertile heteroge-
neity depends on its absolute concentration, in addition to compositional differences between itself and
the refractory background. This dependence of the behavior on absolute concentration has not been appre-
ciated previously. The regime diagram presented in Figure 10a can be used to select compositions for fertile
heterogeneities conducive to reactive infiltration instability and channelization.

5.4.4. Melt Emanating From a Fertile Heterogeneity With a Diffusive Halo

The examples shown in Figure 11 assume that melting is instantaneous and that melt migration commen-
ces immediately. If time elapses between the onset of melting and the beginning of melt migration, heat
conduction acts to bring the heterogeneity into thermal equilibrium with the surrounding mantle. Given
that the latent heat of fusion has lowered the temperature within the fertile heterogeneity, heat is
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conducted from the ambient mantle into the cooler heterogeneity. This leads to the smoothing of the
thermal gradient in the immediate vicinity of the heterogeneity and creates a halo in the ambient mantle
where the temperature, enthalpy, and porosity are reduced [Katz and Rudge, 2011; Weatherley and Katz,
2012].

To test if the reactive infiltration instability still occurs in the presence of such a thermal halo, a reactive
melt transport simulation was conducted that used a one-dimensional conductive profile as an initial condi-
tion. This conductive profile was created by allowing the initial condition for the Riemann problem in Figure
11a to evolve until porosity in the thermal halo was reduced to 0.0001. Figures 12a and 12b compare the
Riemann and the conductive initial condition. Note that conduction has slightly shifted the location of the
fertile heterogeneity, corresponding to the circle plotted in CH phase space. As the reactive melt transport
proceeds, the solution path in CH phase space evolves back toward the path predicted by the one-
dimensional analysis, as indicated by the arrow in Figure 12a.

The evolution of the porosity field due to melt emanating from a fertile heterogeneity with a thermal
halo is shown in Figure 12c. A reactive infiltration instability similar to Figure 11a is observed. The poros-
ity minimum in the thermal halo accelerates the melt flow and increases the effective Péclet number in
the halo. As expected, this decreases the width of the reaction front and therefore the wavelength of
the instability.

Figure 12d illustrates temperature, composition, and enthalpy fields corresponding to the last porosity field
in Figure 12c. The temperature has been redimensionalized and shows that melting in the fertile heteroge-
neity drops the temperature by approximately 4°. As this cooled melt emanates from the fertile heterogene-
ity, the mantle is refertilized as the fusible component partitions from the melt into the solid.

As long as thermal conduction does not reduce the porosity to zero, preventing any flow, the long-term
behavior of the moving reaction front converges to the one-dimensional analysis. This is due to the self-
similar nature of reactive transport, where perturbations of the initial condition do not affect the long-term
behavior advancing front.

In previous work on channel formation during melt extraction beneath mid-ocean ridges, the channels
often nucleate shallow and grow downward into the mantle. In this context, the fertile heterogeneity pro-
vides the increased melt flux required to initiate channel formation [Weatherley and Katz, 2012; Hewitt,
2010]. In contrast, here we suggest that the high-porosity channels may nucleate at the heterogeneity itself.
While the channels formed by a frontal reaction infiltration instability considered here are small, they may
provide the necessary perturbation required to induce channeling over larger distance driven by the large-
scale gradient reaction induced by orthopyroxene dissolution [Liang et al., 2011].

6. Conclusions

This manuscript shows that the theory of hyperbolic conservation laws provides a general framework for
reactive melt transport in the limit of local thermodynamic equilibrium and negligible hydrodynamic dis-
persion. The framework is illustrated with a detailed study of a simplified, ideal binary solid solution liquid
solution modeled after the olivine phase diagram. The analysis yields a grid of all possible solution paths
contained within a modified phase diagram in composition-enthalpy space. These pathways show that
dissolution-precipitation and melting-freezing are tightly coupled in solid solutions and pure melting is
only possible at end-members. For the binary solid solution considered here, reactive melt transport across
an initial lithological boundary leads to the formation of a reacted zone that is bounded between a station-
ary and an advancing reaction front. Unlike systems with pure solid phases which always lead to sharp
fronts, the solid solution considered here can also give rise to spreading fronts. The stability of the advanc-
ing reaction front depends on the porosity of the reacted zone, which can be determined by inspection of
the modified phase diagram presented in this manuscript.

The analysis predicts the instability of the reaction front that forms in numerical simulations of melt emanat-
ing from a fusible heterogeneity into the ambient mantle. Furthermore, the numerical simulation highlights
the ability of heterogeneities to seed high-porosity channels at wavelengths much smaller than a compac-
tion length. The analysis also shows that the behavior of a fertile heterogeneity depends on its absolute
concentration, in addition to compositional differences between itself and the refractory background. The
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analysis allows the construction of a regime diagram that predicts if melt emanating from a fertile heteroge-
neity localizes into high-porosity channels or develops a zero porosity shell. This illustrates the complexities
of reactive melt transport, despite the simplicity of the underlying phase behavior.

Appendix A: Gibbs Free Energy for Binary Solid Solution With Liquid Solution

The description of Gibbs free energy begins with equilibrium expressions for end-members of a solid solu-
tion in terms of the Gibbs energies of fusion. If the solid solution is ideal, AH = 0 and end-member activities
are equal to their respective mole fractions. The change in Gibbs free energy is given as,

AG)=RTIn (ﬁ) (A1)

im
The full temperature dependence of AG? is,
AGP=AH'—TAS?, (A2)

where the enthalpy and entropy for end-member i at the end-member melting temperature (T,,, i) are,

T

AH?:AHZme'r+J (Cpmi—Cps)AT=AH" + Acyi(T—Tetr), (A3)
Tmelt
-
Acy; T
ASI'O:ASITMM"_J Cp dT:AS,T“"-i-AC,,An ( )7 (A4)
Tmelt Timelt
Tmelt Tmelt AC .
AG,‘»’=AH,-TW"+J Acpde—T(As,TmE"+TJ —T‘”dr) (A5)
T T

where subscript m denotes the temperature of melting/freezing point and Ac,;=(cps;—Cpm,) is the differ-
ence melt-solid specific heat over the temperature range spanned by the liquidus curve for each end-
member, respectively.

Assuming local thermodynamic equilibrium, at the melting point of either end-member, the Gibbs equation
becomes,

AGY = AH[™ —Trnen AS]™ =0, (A6)
which implies that,

Tmelt
AH;

A Sl?—melt — (A7)

melt

Substitution of expressions for enthalpy and entropy into the Gibbs energy of fusion equation for both end-
members yields

;

.. (00 )7

AGY=AHI™ (%) +AcH ! . (A8)
melt Tme/r

For a binary solid solution with a fusible and refractory end-member, i=f or i =r. Given known melting

temperatures for each end-member, T, = T¢ or T, = T), and known Ac,; at both end-members, the Gibbs

free energy of both end-members can be calculated.

The final term multiplied by Ac,; can be neglected because the enthalpy and entropy of fusion at the melt-
ing point are very large relative to the corrections introduced by the specific heat terms. Thus, a simplified
version of the Gibbs energy of fusion for derivation of the phase diagram can be written as,

melt

Tet—T
AGY=AH]" (L“ ) : (A9)

Throughout the main body of the text, the superscript for the change in Gibbs free energy is dropped.
The change in free energy for the refractory end-member is given by AG, and the fusible end-member
as AGy.
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Appendix B: Enthalpy in Binary Solid-Solution Liquid-Solution

B1. Full System
Assuming negligible pressure changes, the specific enthalpies of end-members of the solid-solution are given by

hss=h ¢+t (T—To), (B1)
hsr=h,+¢p 5 (T—To), (B2)

where the parameters ¢, and ¢, s, are the specific heat capacities at constant pressure for the fusible and
refractory end-members. Their reference enthalpies, h?f and hg,, are given at 298°K, Ty,. Finally, the specific
latent heats of the two end-members are given by

AH,=AH!" = Ac, ,(T—T,), (B3)
AHr=AH] —Acy ¢(T—Ty), (B4)

where Acy,=Comr—Cpsr and Ac,r=Cpmr—Cpsr are the differences in specific heat capacity between the
liquid and solid phases of the end-members. Their reference enthalpies of fusion, AH” and AH?, are given
at their respective melting points.

B2. Enthalpy of Solid Solution
The enthalpy solid solution is the composition-weighted average of the temperature adjusted solid end-
member enthalpies:

hs(Xes(T), T)=hs(Xs,(T)) +hse(1—X;,(T)). (B5)

We assume that specific heats (at dP ~ 0) are constant but not necessarily equal across end-members and
phases. The parameters ¢, s and ¢, are the solid specific heat constants for the fusible and refractory end-
members. Solid enthalpy expressions become,

hss=h ¢+t (T—To), (B6)
hs,r:h?‘,+cpAsr(T_T0)7 (B7)

and can be substituted into (B5) to obtain the h(T) for the enthalpy of solid-solution.

B3. Enthalpy of Molten Solution

At equilibrium when both the solid and melt phases present, the enthalpy of the liquid phase is that of the
solid phase plus the contribution of latent heat from the phase change. The molar enthalpy of the liquid
can be described as,

hon (Xe, T)=hs(T)+AH(X;, T). (B8)

where AH the latent heat of fusion adjusted for a linear mixture of end-members across the phase diagram and
X, is the bulk mole fraction of the binary system in terms of the refractory end-member. The enthalpy of fusion
is a function of the overall composition of the system due to differences in the latent heats and heat capacities
of the end-members. The terms AH!" and AH;’ in (B6) and (B7) represent the molar latent heat of fusion at
each end-member at their respective melting temperatures. The latent heat of fusion in (B8) is presented as the
mole fraction weighted average of AH for the refractory and fusible end-members across the solid-solution:

AH=X,AH,(T)+(1—X,)AH¢(T). (B9)

The full dimensional expression for enthalpy for a specific porosity, ¢, can now be written as a function of X,
and T given the phase densities, p;, the specific heats for liquid and solids at both end-members, and their
reference enthalpies of fusion:

H=p,¢ (hs,r (Xsﬁr) +hsf(1 7Xs,r) +AH) +P;(1 - §b) (hsﬁr (XsAr) 4”"5,)‘(‘I 7Xs,r)) . (B10)

The densities of both phases, p,, and p;, are written as a function of X, and the molar volumes, V,,;, of both
phases at end-members,
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1
VI,er,r+ Vl,f(1 _Xm.r) ’

Pm (B11)

1
a Vs.rXs,r + Vs‘f(‘l _Xstr) '

3 (B12)

B4. Simplified System
In the simplified system, h?f=h?,=ho and ¢, s=Cpsr=Cp SO that the specific enthalpy of the two end-
members are the same the specific enthalpy of the solid is given by

h5=ho+Cp(T—To). (313)
If the system is simplified further such that p,,=p,, the latent heat of fusion can be described by the con-

stant AH = L. The thermodynamic properties needed to solve the simplified system are given in the main
text by Table 1.

Appendix C: Dimensionless Equations for Simplified One-Dimensional
Model Equations

The dimensionless variables described in section 3,

q T—T,
==, T=——",
p T,—T¢

t
c=’7§, and 1:77, <)

are inserted into the nonlinear algebraic system of equations governing the transport of conservation and
enthalpy:

C:¢Xm,r+ (1 _d))Xs,h (C2)

¢
H=—+T a
Ste ©

1—e©(1-T)/(©5+7))
Xnr(T)= [e(*G)zT/(@erT) _e<®1<1—7>/<®3+7>>} : )
[1—€(©1(1-7)/(©3+T)) | o ~027/(05+T)
Xs r( = — — (C5)
e(=0:7/(03+T) —o(©:(1-T7)/(0:+T))

The dimensionless parameters set by end-member melting temperatures and the constant latent heat of
fusion are

L L T
O=—, Oy=—, O3=-_.
! 2TRTT AT

RT. (Co)

The parameters ®, and ®, are ratios of molar energy released in terms of the end-member melting tem-
peratures. Adjustment of these parameters controls the curvature of the phase diagram. The ratio ®3
weighs the melting temperature of the first incremental bit of melt possible in the two-phase region of
phase space against the entire temperature range where the end-members can coexist in two-phase
equilibrium.

The dimensionless expression for enthalpy is set by substituting 7 into the dimensional expressions for the
enthalpy liquidus and solidus h,,, and h;. The expressions for dimensionless enthalpy follow as,

_hs=h _
hs= AT =T, (C7)
. hp—hlt L
= =T+ :
fm AT T AT 8

Using equations (C7) and (C8), the full dimensionless enthalpy budget (C3) is constructed.
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Appendix D: Flux Gradient for Melt Transport Across a Discontinuity: Simplified
Model Equations

D1. Flux Derivatives
The entries for the flux gradient are,

_ WXy 0T
“CT4T ac

_ Xy 0T
CHTGT oM’

¢ 9hm 0T
"CT4T ac

_ dhm 0T
R 9T oHC

Within the two-phase region, these derivatives must be evaluated through implicitly differentiating
the function Sx (C,H,7) along with differentiating equations (C4) and (C8) with respect to dimension-
less temperature.

The derivative with respect to dimensionless temperature needed from the function X, , is as follows:

K _ #O (1-H)AO—&O)

S _ , (D5)
d7  A-& (A—%)°
where,
&:e®1(1*7)/(®3+7))’ (D6)
‘:e—GzT/(ez +T)7 (D7)
@, 0,(1-7))
O=- - ; (D8)
(©3+7)  (©3+7)
0,7 0,
O= - , (D9)
(0:+7)* (0:+T)
A= (1-T)/(0:+T))=0,T /(03 +T) (D10)
The derivative with respect to dimensionless temperature needed from the function X; is,
A _OA—(1-3)80  (1-%)8(OA-&O) o
dT a2 T
Mercifully, the derivative with respect to dimensionless temperature needed from the function f, is
dhn,
—=1. 12
a7 (D12)
For the partial derivatives in the flux function, % and % are found via implicit differentiation:
— B
9T _~%c (D13)
ac ‘ij
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_ O3>
g = ﬂ, (D14)
OH ﬁ
where the denominator, which is denoted after the Egyptian hieroglyph for “D"
_ 0% 93 dXy O3 dX D15)
T T Xy dT | OX, AT
The partial derivatives needed to construct the flux function from the implicit function are,
A
= D16
ac ) (D16)
OS>~
S =Ste(X;—Xm), (D17)
0>
s =Ste(Xm—X;), (D18)
0>
X, =Ste(H—7)—1, (D19)
OS>
— = -T7). 2
X, Ste(H—T) (D20)

Appendix E: Compaction

The governing equations for melt transport are obtained from the continuity equation of the two-phase
mixture,

V- ($¥m+ (1-$)V) =0, &)

where v,,, and v; are the velocities of melt and solid phases. The volumetric flux of the melt in the reference
frame of the solid is given by,

K
q=¢>(vmfvs)=fﬁ(foApgé), (E2)

where g is gravitational acceleration, 2 denotes upward unit vector, K=Ko¢> is the permeability of the
porous medium, u is the melt viscosity, and Ap is the density difference between the liquid and solid
phases. In a viscously compacting medium, the melt flow is driven by overpressure, defined as

p=pm—ps=EV - Vs, (E3)

where p,, and p; are the pressure of the melt and solid phases and ¢=n,/¢+4/3 ny = 1,/ ¢, where ng is the
reference shear viscosity. Substituting (E1) and (E2) into (E3), we obtain a governing equation for the evolu-
tion of the fluid overpressure,

K p Apg(dK)
—V . |ovp|+P=—2P9 (2], E4
L ”} & (&4

Scaling distance by the dimension, 4, of the heterogeneity and scaling the pressure with gu¢/K, the dimen-
sionless Helmholtz equation is given by,

7 Apgp (d¢?
—_ . 3 J— = —_ _—
V¢ Vp]+62 op o < dz), (E5)

where the compaction length, d=1/Ko#,/u. In the simulations presented here, the domain is horizontal
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