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ABSTRACT

Diffusion modeling in olivine is a useful tool to resolve the timescales of various magmatic processes.
Practical olivine geospeedometry applications employ 1D chemical transects across sections that are
randomly sampled from a given 3D crystal population, but the accuracy and precision with which times-
cales can be retrieved from this procedure are not well constrained. Here, we use numerical 3D diffusion
models of Fe-Mg to evaluate and quantify the uncertainties associated with their 1D counterparts. The
3D diffusion models were built using both simple and realistic olivine morphologies, and incorporate
diffusion anisotropy as well as different zoning styles. The 3D model crystals were sectioned along ideal
or random planes, which were used to perform 1D models and timescale comparisons. Results show
that the timescales retrieved from 1D profiles are highly inaccurate and can vary by factors of 0.1-25
if diffusion anisotropy is not taken into account. Even when anisotropy is corrected for, timescales can
still vary between 0.2-10 times the true 3D diffusion time due to crystal shape and sectioning effects.
Simple grain selection procedures are described to reduce the misfit between calculated and actual diffu-
sion times, and achieve an accuracy and precision of ~5% and ~15-25% relative, respectively. Provided
that the grains are carefully selected, about 20 concentration profiles and associated 1D models suffice

to achieve this accuracy.
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INTRODUCTION

The diffusion of atoms during magmatic reactions (e.g., melt-
ing, crystallization, solid-state re-equilibration) can be broadly
described as the random jumps or movements of particles relative
to other particles in a region of many particles (Onsager 1945;
Chakraborty 2008). Because these movements occur at different
rates for different chemical components and thermodynamic condi-
tions, modeling of element diffusion can be used for geospeedom-
etry, i.e., to backtrack the durations of geological processes (cf.
Watson 1994; Chakraborty 1995, 2008; Ganguly 2002; Watson
and Baxter 2007; Costa et al. 2008; Zhang 2010 for reviews).
Diffusion modeling is thus becoming an essential utensil of the
Earth scientist’s toolbox.

This investigation focuses on modeling chemical diffusion
in minerals, a technique now regularly used to decipher magma
residence times beneath volcanoes (e.g., Zellmer et al. 1999;
Costael al. 2003, 2008; Kahl et al. 2011; Cooper and Kent 2014),
magma mixing/recharge events (Morgan et al. 2006; Druitt et al.
2012; Ruprecht and Cooper 2012), ascent times from the mantle
(Demouchy et al. 2006; Ruprecht and Plank 2013), and assimi-
lation of crustal material (Bindeman et al. 2006). In particular,
olivine is well suited for diffusion studies involving mafic to
intermediate magmas, because the diffusion coefficients (D) for
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major (Mg, Fe) and minor/trace (Ca, Mn, Cr, Co, Ni) elements
are well constrained with respect to temperature (7)), forsterite
component (Xg,), crystallographic orientation, and oxygen fugacity
(fo,) (e.g., Chakraborty 1997, 2010; Petry et al. 2004; Coogan et
al. 2005; Dohmen and Chakraborty 2007; Spandler and O’Neill
2010). As a result, several studies have used diffusion modeling
within olivine to decipher the durations associated with various
magmatic processes (Nakamura 1995; Coombs et al. 2000; Pan
and Batiza 2002; Costa and Chakraborty 2004; Costa and Dun-
gan 2005; Ito and Ganguly 2006; Kahl et al. 2011, 2013; Marti
et al. 2013; Ruprecht and Plank 2013; Longpre et al. 2014), and
user-friendly diffusion modeling algorithms are becoming avail-
able (e.g., DIPRA, Girona and Costa 2013). To date, however,
diffusion modeling has been applied to natural magmatic crystals
using almost exclusively one-dimensional chemical profiles.
Analyses are typically performed along crystals exposed within
two-dimensional thin sections, meaning that there are several
potential sources of uncertainty: (1) diffusion occurs along the
three spatial dimensions of a complex volume (e.g., Costa et al.
2003, 2008); (2) diffusion may occur anisotropically within the
mineral, implying that a 1D profile may sample the crystal along a
fast or slow direction, or anywhere in between (e.g., Chakraborty
1997); and (3) thin sections intersect crystals randomly, meaning
that concentration gradient geometry may be dependent on sec-
tion orientation and distance from the crystal core (Pearce 1984;
Wallace and Bergantz 2004).

In their investigation of Mg in plagioclase, Costa et al. (2003)
found that adding a second dimension resulted in shorter calculated
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diffusion timescales (i.e., in their case, magma residence times)
compared to 1D models. It was also noted that the 1D-derived
times were sensitive to the position of the profile with respect
to the center of the crystal. The effects of diffusion anisotropy in
olivine were also studied in 2D by Costa and Chakraborty (2004),
who determined that sections cutting the crystal close to the fast
diffusion direction were under certain circumstances more reliable
for the retrieval of diffusion timescales. Pan and Batiza (2002)
briefly examined the sectioning effect by numerically slicing a
sphere containing an artificial diffusion profile, and showed that
the recovered timescales followed an exponential distribution,
with a low occurrence of durations shorter than the real input time,
and a much higher incidence of durations close to the real time.
In this contribution, three-dimensional numerical diffusion
models are developed to explore the influence of spatial dimen-
sions, crystal morphology, diffusion anisotropy, and sectioning
on the timescales recovered. After examining cases with simple
geometries, we allow models to progressively incorporate more
complexity. The primary objective is to answer the simple ques-
tion: how reliable are diffusion timescales retrieved from olivine
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crystals as measured in typical thin sections? The importance of
this inquiry is illustrated by constructing a numerical thin section
containing 200 identical normally zoned olivine crystals that have
been randomly sectioned after diffusing for a certain time (Fig.
1). Despite being constructed from the same crystal template, the
virtual thin section displays olivine slices that vary significantly
in sizes, habits, and apparent concentration gradients. Thus, the
diffusion times modeled from 1D profiles sampled within different
olivines from this thin section may also differ. In this study, we
examine the potential sources of variability in timescales retrieved
from 1D diffusion models, and provide olivine crystal selection
guidelines to maximize the accuracy and precision. Because
parameters affecting timescales are numerous and complexly
intertwined, a large number of methods, results, and interpreta-
tions sections are provided as Supplementary Material' to keep
this contribution focused on the essential.

! Deposit item AM-15-105163, Supplemental Material and Figures. Deposit items
are free to all readers and found on the MSA web site, via the specific issue’s Table
of Contents (go to http:/www.minsocam.org/MSA/AmMin/TOC/).
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FIGURE 1. Two-dimensional olivine sections within a “virtual” thin section composed of normally zoned crystals sliced randomly from the
olivine crystal (top-left panel with a, b, and ¢ being the crystallographic axes). The top-right insert displays the color scale and the equivalent
forsterite content. The blue background represents the surrounding glass/melt with which the olivines were equilibrating. The sections outlined
by red squares were discarded from further analysis due to their size. The rest were used for timescale comparisons. The green check marks and
crosses designate the suitable and unsuitable sections for the purpose of 1D diffusion modeling (see Discussion).
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METHOD
This section describes the 1D and 3D models used to simulate diffusion
in olivine. After detailing the governing equations and the choice of diffusing
components, the numerical implementation and the parameters investigated
are described.

Diffusion equation

According to Fick’s second law, and if the diffusion coefficient D depends
on the composition C of an element 7 in olivine (see below), the time-dependent
3D diffusion equation (with spatial dimensions x, y, and z, and time #) takes the
form (Crank 1975):
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If diffusion is isotropic, a single diffusion coefficient D, = D, = D. suffices
to define element mobility within the whole volume. In contrast, if diffusion is
anisotropic, and for a crystal belonging to the orthorhombic system with crystal-
lographic axes a, b, and ¢, the diffusivity tensor takes the form (e.g., Zhang 2010):
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For the 3D expression given by Equation 1, the diffusivities are therefore
defined as D, = D,, D, = D,, D. = D.. The 1D equivalent is simply obtained by
removing the y and z components, and replacing D, by D,, D,, D, or by an inter-
mediate diffusivity term (e.g., anisotropy-corrected D¥, see below).

Choice of elements and diffusion coefficients

The models in this contribution focus on Fe-Mg in olivine, treated here as

the mole fraction of forsteritic component
Mg

Mg+ Fe
with (Fo + Fa = 1, with Fa the fraction fayalite). These elements are commonly
used for diffusion modeling (Nakamura 1995; Costa and Chakraborty 2004;
Costa and Dungan 2005; Kahl et al. 2011, 2013; Ruprecht and Plank 2013;
Longpre et al. 2014), and easy to measure with an electron microprobe. The dif-
fusion coefficient D¢ is well established for various P, 7, fo, conditions (cf.
Chakraborty 2010 and references therein) and known to be strongly anisotropic
(DfeMe = pieMe _ 1/ DFeMe; Chakraborty 1997). Along the ¢ axis, the diffusion
coefficient DI (m?s™') is expressed as (Dohmen et al. 2007; Costa et al. 2008;
Chakraborty 2010):

Fo=
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where fo, is the oxygen fugacity (Pa), Xj, the fraction forsterite, P the pressure
(Pa), T the temperature (K), and R the gas constant [J/(K mol)]. In practice,
concentration profiles taken across crystal sections are rarely aligned with the
main diffusion directions and crystal axes, and must be corrected for orienta-
tion as well as anisotropy. Assuming a traverse is measured parallel to the
concentration gradient, an anisotropy-corrected diffusivity D can be calculated
providing that the angles a, B, and y between the Cartesian coordinates x, y,
and z and the crystallographic axes a, b, and ¢, respectively, are known (Costa
and Chakraborty 2004):

Dif = D,cosa’ + Dycosp? + D cosy? 4

If, instead, the traverse is oblique to the concentration gradient, a more general
form of Equation 4 is applicable (Zhang 2010) (cf. Supplementary Material'),
but requires knowledge of the concentration gradient geometry along x, y, and z,
which is not accessible within typical 2D thin sections. Because the purpose of
this paper is to examine real case scenarios, the simpler form of the anisotropy
correction is used herein.
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Numerical implementation

The diffusion simulations were performed using finite-differences (e.g.,
Costa et al. 2003; Kahl et al. 2011; Druitt et al. 2012; Girona and Costa 2013;
Pilbeam et al. 2013) (see Supplementary Material'). For all models, atmospheric
pressure conditions (P = 10° Pa), an oxygen fugacity fo, =3 x 102 Pa, and a
constant temperature 7 = 1200 °C were used. The simulated duration for most
experiments was 6 days (144 h), although a few runs with shorter (12 and 72 h)
and longer (576 and 864 h) durations were also done. The longer duration was
chosen to allow sufficient time for the crystal core compositions to be affected.
Olivine crystals with different shapes (see below) were built within a “melt”
volume of 241 voxels/side (or 482 um, with a step size of 2 pm per voxel), al-
lowing for reasonable computation times in 3D runs. The boundaries between
crystal and melt were considered open, the melt effectively being an infinite
reservoir of Fe-Mg and constant with time. The boundary compositions at the
crystal rim were therefore constantly maintained during the runs (e.g., Costa
and Chakraborty 2004).

Variables incorporated in the model

The main variables that determine how accurate timescales obtained via diffu-
sion modeling include: (1) the number of spatial dimensions; (2) the anisotropy of
diffusion; (3) the shape/morphology of the crystal; (4) the location of the section
or profile (i.e., along or off-crystallographic axis, on- or off-center); and (5) the
nature of chemical zoning.

The influence of a given variable is difficult to completely isolate from the
others, so we decided to organize the diffusion models as follows: First, a series of
models tested the influence of crystal shape on retrieved timescales. 1D diffusion
models on principal sections along the crystallographic axes were followed by more
realistic scenarios that incorporated the effects of section orientation and off-center
sectioning. Finally, a representative morphology was selected to explore the effect
of variable zoning configurations (normal, reverse, core-rim).

Spatial dimensions. We focused chiefly on comparisons between 1D vs. 3D
diffusion, but a few 2D models were also carried out for comparison, and are reported
in the Supplementary Material'.

Crystal shape. Three crystal shapes were examined (Fig. 2a): a sphere with
a 201 voxel diameter, a rectangular parallelepiped (hereafter labeled the “ortho-
rhombic” morphology) with dimensions 95 x 121 x 201 voxels (along x, y, and z,
corresponding to crystallographic axes a, b, and ¢), and a realistic olivine morphology
(labeled “polyhedral” throughout the text) based on Welsch et al. (2013) with an
aspect ratio identical to that of the orthorhomb.

Diffusion anisotropy. For the spherical crystal models we used an isotropic D,
while for the orthorhombic crystals we used either isotropic or anisotropic diffu-
sion to evaluate this effect on timescales. The polyhedral crystals were all modeled
using anisotropic diffusion (Fig. 2b). The 1D simulations incorporated either a
single diffusion coefficient D,, D,, D,, (along the axes), or the orientation-corrected
coefficient Djf (Eq. 4).

Types of section. The 3D crystal models were sectioned according to four
types of planes (Fig. 2¢): (1) principal sections (passing through the center, parallel
to a-b, b-c, or a-c planes), hereafter termed “along-axes, on-center” sections, (2)
sections parallel to the crystal axes at random distances from the center, so-called
“along-axes, off-center,” (3) sections at random angles from the crystallographic
axes passing through the center, or “randomly oriented, on-center” and (4) sec-
tions at random angles from the axes and distances from the center “randomly
oriented, off-center.”

Style of Fo zoning. Six types of compositional zonings were used to simulate
a range of magmatic scenarios (Fig. 2d): (1) “normal zoning I,” wherein a crystal
of homogeneous composition C,; = Foy, is placed in contact with a melt with an
“effective” composition Cy, = Foy (i.e., the equilibrium olivine composition to-
ward which the crystal evolves), (2) “normal zoning II” with a homogenous crystal
C, = Foss in contact with a similar melt C,,.. = Fo,; these zoning types 1 and 2
mimic the removal of olivine crystals from a mafic melt, and their incorporation
into more evolved magmas without rim growth (e.g., magma recharge, Costa and
Chakraborty 2004; Kahl et al. 2011). (3) “reverse zoning” with an olivine C,,; = Foy,
and a melt C,,, = Fog; this configuration could represent olivines from the more
evolved magma being incorporated into the mafic recharge magma; (4) core-rim
I configuration with a core C,j core = FOq and a rim Cyy_i,, = Fog, in contact with a
melt C,,., = Fog; this type of zoning could also represent a magma mixing event
but the olivine has grown a rim prior to diffusive equilibration of the core and the
surrounding melt; (5) core-rim II zoning with a core Cyy core = F075, @ rim Cyy i
= Foy, in contact with a melt C,,., = Fog; and (6) core-rim IIT zoning with Cyy core
= Foy, Copsim = Fogo, and C,,y = Foy5. The last two zoning patterns model more
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FIGURE 2. Principal variables examined by the diffusion models. (a) The three different crystal shapes tested: a sphere, an orthorhomb, and a
polyhedron with the same aspect ratio as the orthorhomb. (b) Anisotropy of Fe-Mg diffusion along the different crystallographic axes (shown as
a “diffusivity ellipsoid” in gray). For the same diffusion time ¢, profiles sampled along different directions in a section appear different. Diffusion
modeling of such profiles in 1D may yield different timescales (¢, and 7, along a and ¢, respectively) if anisotropy is not accounted for (small inserts
on the right). (¢) Different types of sections considered; principal sections (along-axes, center-cut), sections sampled away from the core and parallel
to the axes (along-axes, off-center), sections passing through the core along any orientation (random orientation, center-cut), and randomly oriented
sections taken at random distances from the core (random orientation, off-center). (d) Six distinct zoning patterns were evaluated, illustrated here
through the b-c plane of the crystal. The corresponding starting Fo concentration profiles are shown below each zoning style. Note that the melt Fo
content is displayed as an equivalent olivine Fo composition (i.e., the composition the crystal edge is in equilibrium with).

complex magma interactions in which the growth rim has a different equilibrium
Fo composition from that of the surrounding melt. Note that in all simulations, it
is assumed that any crystal growth has progressed to completion before diffusion
starts (i.c., instantaneous growth with a fixed liquid-crystal boundary).

Procedure for model comparisons

The numerical models were examined according to a systematic protocol, in
which 3D simulations were used as ground-truth for comparisons with their 1D
counterparts (Fig. 3). This procedure entailed: (1) sectioning the initial 3D olivine
crystal before diffusion started; (2) discarding the smallest unsuitable 2D sections
when necessary (i.e., for model series involving random sectioning); (3) choos-
ing the suitable section(s) to carry out 1D diffusion models; (4) performing the
3D diffusion simulation; (5) sectioning the 3D “diffused” olivine along the same
plane(s) or transect(s) as in steps 1 and 3; and (6) retrieving the 1D timescales that

best match the concentration maps/profiles from the 3D model. The best-fit 1D
calculated times are labeled 7, and the true 3D diffusion times #;, (i.e., best-fit times
are marked by asterisks). Values of 7, were calculated via the root-mean square
deviation (RMSD) between the 3D (“real”) and 1D (“measured”) concentration
profiles (e.g., Girona and Costa 2013) (see Supplementary Material'). For a set of
parameters, typically one 3D model was used as ground-truth to compare with 200
1D diffusion models. From a set of several hundred sections across the 3D olivine,
those that were too small (i.e., typically <20% in area of the maximum section size
observed) were discarded, and the first 100 sections from the leftover set were kept
for further analysis (cf. Fig. 1 for an example). For each of these 100 sections, two
profiles were manually selected across different crystal faces. To mimic real world
practices, 1D transects were always chosen parallel to the concentration gradient
within each section. Note that this does not imply, however, that the profiles were
parallel to the concentration gradient in the third dimension.
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FIGURE 3. Model comparison procedure. A 3D voxelized olivine with a given initial Fo zoning pattern (cf. Fig. 2d) is “cut” prior to diffusion,
producing a starting Fo section used to perform 1D diffusion simulations (4-B traverse). The initial 3D olivine diffuses for a certain time, and is
sectioned along the same orientation as before to serve as a “ground-truth” for comparison with the 1D model. As the 1D simulations are run, each
time step #(1) to #(i) is saved and compared with the ground-truth concentration profile from the 3D model. A minimum misfit is then calculated to

yield the best-matching time ;. Also see text for details.

RESULTS AND INTERPRETATIONS

For simplicity, and considering the large number of variables
incorporated in the various models (crystal morphology, number
of model dimensions, diffusion anisotropy, section orientation,
section distance from the core, zoning configuration), results and
interpretations are presented one after the other. The following
paragraphs first explore the role of crystal morphology and dif-
fusion anisotropy, and later the zoning style. In each case the
results are presented in order of increasing sectioning complexity,
typically: (1) along-axes, on-center; (2) along-axes off-center;
(3) randomly oriented, on-center; and (4) randomly oriented,
off-center. Timescales are reported both as absolute values (in
hours) and as relative mismatch, defined as

x
o " bp -

7(%)=100x

3D

In the latter case, zero implies a perfect match, a positive
number indicates a time overestimate, and a negative number
an underestimate.

Influence of crystal shape and diffusion anisotropy

Two scenarios were tested, with isotropic (for the spherical
and orthorhombic crystals) and anisotropic diffusion (for the
orthorhombic and polyhedral crystals). For each situation, two
3D models with diffusion times of 72 and 144 h were performed,
and the results compared with 1D models. These models were
all reversely zoned, with an initially homogenous Fo, crystal
equilibrating with a more mafic melt (Fog).

Along-axis, on-center sections. For spherical crystals and
isotropic D, the best matching 1D time always overestimated the
true diffusion time, with £, = 80 and 180 h (+10 and +25% the
true times #;p = 72 and 144 h, respectively) (Figs. 4a and 4b; also
see Supplementary Material section 4' for corresponding concen-

tration profiles). Models with orthorhombic crystals reproduced
the true diffusion times correctly, except for the 144 h models
run using isotropic D, which result in slight time overestimates
along b and ¢ (¢, ~154 h) (Fig. 4b). The polyhedral morphology
yielded 1D times that are either similar to the true times (e.g., £,
=154 and 160 h along b or ¢ in the 144 h simulations) or much
longer (£, = 151 and 297 h along a in the 72 and 144 h runs,
respectively, or a relative difference of +110%).

These observations argue for an important control of crystal
shape on calculated diffusion times, interpreted here to be caused
by merging element flux from multiple directions. In other words,
if a diffusion front advances perpendicular to a given crystal face,
then two diffusion fronts perpendicular to two faces at an angle
lower than 180° from each other will merge (cf. Supplementary
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FIGURE 4. Influence of crystal morphology on timescales recovered
from along-axis, on-center 1D models (i.e., a, b, or ¢ axes). (a) Best-fit
1D times for different crystal shapes as a function of crystallographic
axis for a true diffusion time #;, = 72 h. (b) Same but for £;p = 144 h.
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Material'). Thus, diffusion fronts in an olivine with sets of parallel
faces (orthorhombic morphology) will generally not intersect in
transects collected away from the corners, leading to accurate
timescale predictions (see Supplementary Material'). With in-
creasing duration, however, the diffusion fronts originating from
different crystal faces may reach the core via the shortest crystal
dimension (the a-axis), generating differences between 1D and
3D along the other crystal dimensions, b and ¢. Compared with
orthorhombic morphologies, polyhedral crystals typically have
more faces meeting at angles <180°, thus promoting interacting
diffusion fronts and leading to systematic differences between
1D and 3D times, even along perfectly oriented transects (Ap-
pendix Fig. 41). The roughly twofold overestimate in 1D times
along « in polyhedral models is a good example: the diffusion
fronts originating from {110} converge or diverge (depending
on whether Fe or Mg is considered) from/toward the profile
passing through the crystal center along the a-axis, resulting in
interactions that cannot be modeled in 1D (Appendix Figs. 3!
and 7'). Finally, the surface of a sphere can be considered as an
infinite combination of planes at a certain angle from each other,
supporting the notion that even perfect sections or profiles across
a sphere never produce the same results in 1D.

Along-axis, off-center sections. For all non-spherical mor-
phologies, concentration profiles could be sampled along a given
axis using two possible planes (e.g., the a-b or the a-c for along-
a profiles). Here, the plane allowing for the longer sampling
distance from the core was chosen (e.g., a-c was selected over
a-b for the a-axis, b-c¢ selected over a-b for the h-axis, and b-c
chosen over a-c for the c-axis, Fig. 5). Furthermore, for off-center
transects, the initial composition may only be apparent (i.e.,
different from the true initial Fo) (Costa and Chakraborty 2004;
Costa et al. 2008). There are two possibilities to run the models:
(1) using the true initial composition known from the 3D model,
or (2) using the apparent extremum composition displayed by the
oft-center profile (the maximum or minimum Fo concentration,
depending on whether zoning is normal or reverse). We initially
tested the two possibilities for the spherical model (Fig. 5a). Us-
ing the initial composition as known, the difference between the
true and the best-fit diffusion times (At 3p = i — £3p) increased
from +40 to +800 h (or +25 to +550% relative) with increasing
sampling distance from the crystal center, until roughly 20 pm
from the sphere edge. Then, closer to the edge, At 3p decreased
abruptly. In contrast, if the initial concentration was taken as the
observed maxima or minima Fo in the diffused profile, the 1D-
3D discrepancy was smaller, with values of Az, 35 =+200 h (or
+140% relative) about 45 pm from the crystal edge, and decreas-
ing thereafter to negative values (i.e., 1D timescales became
shorter than 3D). For the orthorhombic and polyhedral crystal,
we took the initial concentration as observed (case B above).
Orthorhombic models showed excellent agreement between 1D
and 3D times (At;p3p = 0) up to distances ~160 um from the
core for transects performed along the a and b axes, and up to
~80 pm for those selected along the ¢ axis. Closer to the crystal
edges, At;p 3p increased to +25-50 h depending on whether
diffusion anisotropy was accounted for (Figs. 5b and 5c¢). We
note that contrary to spherical models, At;p 3p did not decrease
noticeably as transects were sampled closer to the crystal faces.
Polyhedral models yielded the most variable timescales (Fig. 5d).
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From the core to about ~140 pm, transects sampled along the
a-axis systematically gave time overestimates (At;p 3p =+150 h
or +105%). Closer to the edge, 1D times underestimated the true
diffusion time (At;p_3p=—115 h or—80%). Concentration profiles
taken along the h-axis showed good correspondence between 1D
and 3D close to the core, rapidly degrading to values At 3p =
+100-700 h at distances larger than 40 pm, then decreasing to
negative values at the crystal edge. In contrast, transects along ¢
produced timescales that agreed better with the known diffusion
time. The topology of profiles obtained in polyhedral crystals
were similar to those from the orthorhombic model along a, but
closer to that of spherical models along b and c.

The effects of sampling distance from the core and choice of
initial concentrations on calculated timescales can be interpreted
as follows: if the initial Fo concentration is known, shorten-
ing of the profiles with increasing distance from core leads to
longer calculated times, as the model requires additional total
element transfer to reach the same final concentration gradient
(cf. Supplementary Material'). With increasing distance from the
center, however, this shortening induces a decrease in calculated
times because the apparent element transfer becomes very small.
This trade-off between profile length and element transfer re-
quired to attain a given concentration explains the increase and
subsequent decrease in best-matching 1D times with increasing
sampling distance from the core of spherical crystals (Fig. Sa).
If the observed Fo extremum is chosen as the initial value, the
same trade-off is observed, although a much smaller total flux
is required to reach the final profile (Figs. 5a—5d), potentially
leading to shorter calculated times and even time underestimates
closer to the crystal edge (Figs. 5a and 5d). Overall, we emphasize
that models employing the polyhedral shape display the most
complex behavior with respect to transect distance from core,
with no apparent systematic shifts in time mismatch common
to the three sampling directions.

Randomly oriented, on-center sections. To isolate the
influence of diffusion anisotropy from that of crystal geometry,
the models were first run assuming isotropic diffusion (using D
= D,), and later incorporated the anisotropy correction (Eq. 4).
Because transects were collected within sections passing through
the core, the initial Fo concentration was generally preserved,
except for the isotropic rectangular models run for 144 h, in
which the core composition was slightly affected.

Sections obtained by slicing crystals through their cores
generally showed a high degree of symmetry, with match-
ing concentration gradients for faces of the same form (e.g.,
{110} and {021}, Figs. 6a and 6b). Sets of traverses selected
across opposite crystal faces displayed a similar topology, and
anisotropy-corrected 1D models yielded timescales close to the
true time (Fig. 6a). On the other hand, transects taken across
section corners (Fig. 6b), despite maintaining fairly good sym-
metry, resulted in large time overestimates. Thus, for the rest of
this study, all 1D models were sampled away from corners in
a given olivine section (however note that the section may still
have been close to an edge or corner in the third dimension).

Two-hundred 1D models performed in orthorhombic crys-
tals (isotropic diffusion) displayed minor time mismatches for
profiles taken perpendicular to the crystal faces (Fig. 7a). In
comparison, oblique transects and those collected toward edges
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and corners typically produced time overestimates At 3p >
+100 h (with a maximum of +750 h, or +520% the true time).
Similar models incorporating anisotropic diffusion showed
good agreement between 1D and 3D times for profiles that
were perpendicular to crystal faces (Fig. 7b). Edges or near
corner transects result in time underestimates Aty 3p < —20 h
(—15%), while transects that are oblique to crystal faces also gave
overestimates At;p 3p > +20-100 h (+15-70%). For polyhedral
morphologies with anisotropic diffusion, the best time estimates
were still derived from transects perpendicular to crystal faces
(Fig. 7c). Transects oriented close to the @, b, and ¢ axes resulted
inAtp 3p > +20-100 h, the worst cases were for profiles parallel
to @ and at slight angles from b and c.

We attribute the emergence of time underestimates, which
only appear in the anisotropic 1D models (Figs. 7b and 7c¢), to
the fact that several transects are not sampled perfectly parallel
to the concentration gradient in all 3 dimensions. Along these
directions, the anisotropy correction expression (Eq. 4) tends to
overcorrect diffusivities (e.g., Supplementary Material'). These
time underestimates are indeed clustered near crystal edges
(orthorhombic crystal, Fig. 7b) or crystal faces that are oblique
to the main diffusion axes (polyhedral crystal, Fig. 7c). On the
other hand, time overestimates typically result from artificial
lengthening of the concentration gradients. This lengthening
may be caused by either sectioning a concentration gradient at
an angle, and/or sampling locations affected by diffusion front
interactions (corners and edges) (Figs. 7a, 7b, and 7c¢).

The consequences of adding section orientation as a free pa-
rameter in our simulations was also examined by displaying the
same models as time-frequency histograms (Fig. 8). Timescales
all fell within the 180-220 h range with a mode at #}, = 200 h
(+40% the true 3D time of 144 h; Fig. 8a). In contrast, isotropic
models from orthorhombic crystals produced a broad distribution
with a mode at 7, = 140 h, heavily skewed toward high values
(up to 875 h or +500% the true time, Fig. 8b). The 1D models
with no D-correction replicated timescales produced by the

E] On-center section

@ On-center section
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orthorhombic models that incorporated anisotopropic D poorly,
with a bimodal time distribution (modes at i, = 40 and 140 h).
Correcting for D in these models resulted in a mostly unimodal
distribution (mode at #f, = 140 h and shoulder at 80 h), with a
wide range of times 69 <}, <490 h (Fig. 8c). Polyhedral crystals
yielded trimodal distributions (modes at ¢, = 20, 80, and 160 h)
for uncorrected D, while the same models generated unimodal,
positively skewed distributions when the correction was applied
(mode between i, = 120-140 h and range of timescales 86 <
th <460 h; Fig. 8d).

Overall, if we do not correct for anisotropy in 3D models we
find multimodal time distributions. The number of modes largely
depends on the probability that a transect is taken across a given
set of faces. For orthorhombic crystals (Fig. 8c), uncorrected
bimodal time distributions correspond to the main diffusion di-
rections: the mode at short times #, = 20 h (-85% the true time)
can be associated with profiles taken along the slower a and b
axes (i.e., across faces belonging to the {100} and {010} forms),
and the mode around the true 3D time £, = 140 h corresponds
to those collected along the faster c-axis profiles (i.e., across
{001}). The well-defined third mode in polyhedral crystals (Fig.
8d) probably corresponds to transects taken across the prismatic
faces of the olivine (i.e., faces belonging to the {110} or {021}
forms, cf. Fig. 2a), which are absent in the rectangular shape.

Randomly oriented, off-center sections. The effects of
random sectioning were first examined on a single section. Com-
pared with center-cut crystals (Figs. 6a and 6b), an off-center sec-
tion often showed asymmetrical concentration gradients across
the different faces (Fig. 6¢). Diffusion models performed using
four such transects produced timescales that span a wide range
£ =72-989 h (50 to +590%), with important time under- and
overestimates.

Unlike previous cases where crystal sections were along-axis
oft-center (Fig. 5) or on-center but randomly oriented (Figs. 7a,
7b, and 7c), identifying systematic behaviors when both orienta-
tion and off-center distance are randomized was more difficult
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FIGURE 6. Topologies of concentration profiles sampled from (a and b) sections passing through the crystal core, and (¢) an off-center section.
For each case, the top illustration displays the section and the traverse locations, and the bottom plots show the corresponding Fo profiles and best-
fit 1D diffusion times (absolute and relative). In all models, the diffusion coefficient D has been corrected for anisotropy to isolate the influence

of section location from anisotropy.
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FIGURE 7. Effects of concentration profile orientation on calculated 1D diffusion times for transects collected along the crystal center (top row)
and for transects sampled at random distances from the core (bottom row). Data are displayed as pole figures (equal-angle stereographic projections,
plotted using Stereonet 9 by Cardozo and Allmendinger 2013), with the locations of crystal faces and corners indicated as yellow areas and large
hollow diamonds, respectively (see small inset on the right). In all cases, the real diffusion time is #;, = 144 h and 1D model misfits are represented
as a color-coded difference Af,p 3p, with symbols containing a “plus” and “minus” sign being associated with time over- and underestimates,
respectively. (a) Orthorhombic crystal with isotropic D, (b) orthorhombic crystal with anisotropic D, and (¢) polyhedral crystal with anisotropic D.
(d, e, and f) These are the same but allowed for off-center sectioning. All the models in this figure used the apparent observed extremum Fo as the
initial concentration, which may or may not correspond to the true initial Fo (i.e., for on or off-center sections, respectively).

(Figs. 7d, 7e, and 7f). Compared with center-cut models (Fig.
7a), transects sampled from off-center sections in orthorhombic
crystals with isotropic D (Fig. 7d) showed a less well organized
distribution of time overestimates with respect to orientation,
in addition to producing time underestimates. Orthorhombic
crystal runs using anisotropic D (Fig. 7e) also resulted in time
underestimates more frequently compared to the center-cut ver-
sion (Fig. 7b). Finally, off-center polyhedral models displayed
much more randomness in the distribution of timescales with
respect to transect orientation (Fig. 7f).

When shown on time vs. frequency histograms, spherical
crystals (Fig. 8e) displayed a clear mode at #f, = 180 h (range
of 180-912 h, or +25 to +530% the true time of 144 h) rapidly
decaying toward high values when the initial Fo concentration
was set to the known initial value (Fo,,). Imposing the apparent
observed Fo concentration as the initial value eliminated the 1D
times greater than 400 h, but generated a few models with much
lower durations with #, = 20 h (-85% relative). New secondary
modes also appeared at ¢, = 220 and 300 h. Distributions from
orthorhombic crystal simulations with isotropic D are unimodal
(Fig. 8f), the mode corresponding to the 3D time only when the
initial Fo is taken as the apparent measured value. Anisotropic
models using a rectangular or polyhedral geometry yielded bi- to

trimodal distributions with modes at %, = 20 h when a unique
value of D is used, while those that are corrected for anisotropy
gave mostly unimodal curves with modes at #;, = 140 h (Figs.
8g and 8h).

Globally, when initial concentrations are lost due to sec-
tioning, models that use the extremum Fo as an initial value
produce timescales that may underestimate or overestimate the
true value by factors of 4-5 (Figs. 5, 8e, and 8f). If instead the
known initial profile is used, timescales are typically longer,
and do not show any improvement on overall accuracy (Figs.
Sa, 8e, and 8f). In most cases the apparent measured Fo is
used as initial concentration since in practice, estimating the
composition before diffusion occurred is not straightforward;
these results demonstrate that when initial compositions are
lost due to sectioning effects, using the measured apparent Fo
can actually be better than using the true initial composition,
which is a counterintuitive result.

In summary, models testing the influence of section orienta-
tion and position on timescales show some trends (Figs. 5, 7a,
7b, and 7¢), but mainly complex patterns, particularly for olivines
with realistic shapes (e.g., Fig. 7f). Profiles near the edge ofa 3D
crystal always result in inaccurate 1D timescales, independent
of section orientation.
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INFLUENCE OF ZONING CONFIGURATION

We also examined the role of zoning style on the timescale
distributions obtained from 1D models collected along random
orientation and/or distances from the olivine core. Additional
sets of 1D and 2D models performed along principal sections
and crystal axes were also carried out to examine whether such
ideal locations are better or worse for timescale extraction, and
are presented in the Supplementary Material'.

Randomly oriented, on-center sections. Zoning style seems
to have little effect on the distribution of timescales when sec-
tions were sampled on-center but along random directions (Fig.
9a). For the 6 zoning styles examined, models that did not take
into account diffusion anisotropy generally produced trimodal
distributions with modes at #§,= 20 h, 60 h, and around 120-160 h
(at—85,-60, and —15 to +10% relative). The distributions became
mostly unimodal (except for the core-rim I configuration, which
has two apparent modes) and centered on the true time when we
corrected for diffusion anisotropy. Maximum timescales calcu-
lated range from 300 to 400 h (+110 to +180% of f3p). It should
be noted that after a duration #;p = 144 h, core-rim zoning types
II and III (normal-reverse and reverse-normal, respectively) did
not preserve the initial Fo concentrations at the core or at the rim
(see Supplementary Material'). The initial rim compositions were
erased after merely 12—-24 h within core-rim model II. For these
center cut sections, however, there is little difference between the
accuracy of timescales retrieved at ;0 =12 h or t;p = 144 h (i.e.,
both have unimodal distributions centered on the correct time).

Overall, incorporating random section/profile orientation
into the simple zoning models (Fig. 9a) still allows for accurate
diffusion timescale predictions in 1D, provided that the anisot-
ropy of diffusion is accounted for. This implies that the large
mismatches encountered along a (Figs. 4a and 4b) are an excep-
tion. However, even with anisotropy correction, some 1D models
actually underestimated the true time because D was likely
over-corrected in certain combinations of section orientation
and sampling directions (also see Fig. 7). The time distributions
produced from core-rim zoning types are fairly similar to simple
normal- or reverse-zoned runs (Fig. 9a), with, nevertheless, a
more prominent secondary peak of timescales underestimates.

Randomly oriented, off-center sections. For the six zoning
styles, three types of simulations were examined: (1) no diffusion
anisotropy correction and the initial Fo content was known; (2)
the same as no.1 but with correction for diffusion anisotropy;
and (3) with diffusion anisotropy correction and initial Fo taken
as apparent observed extremum value.

Similarly to the center-cut models, off-center models uncor-
rected for diffusion anisotropy always displayed multimodal
distributions (Fig. 9b). Also like center-cut models, simulations
performed using anisotropy-corrected diffusion coefficients gave
mostly unimodal distributions, with tails of longer durations,
whether initial Fo was known or not. For the three simple crystal-
melt zoning configurations (normal I, normal II, and reverse),
as well as for the core-rim I scenario, knowledge of the initial
composition had a minor effect on the shape of the distributions
or on the position of the main distribution mode, systematically
located at the true time #}, = #;p = 140 h. In contrast, knowledge
of initial Fo strongly influenced the location of the primary
mode for zoning configurations core-rim II and III: if the initial
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composition was known, the distribution modes agreed with the
true diffusion times, but if the initial Fo was taken as the appar-
ent observed composition, those modes shifted toward lower
timescales #f, = 60 h (—60% relative). This discrepancy arises
from diffusive loss of the initial core and rim concentrations in
the 3D models, meaning that apparent extremum concentrations
used as initial profiles for 1D models are very different from the
real initial concentrations and result in unrealistic timescales (see
Supplementary Material'). In general, nevertheless, possessing
information on initial concentrations resulted in broader time
distributions than when information on initial Fo was lacking.
For the core-rim I model, for example, 1D diffusion times
reached values up to 1440 h (+900% of #;p) when the initial Fo
was known, while maximum values only attained 540 h when
the apparent observed Fo was used.

In summary, when off-center sections were allowed in the
simulations, the narrow time distribution previously obtained
for on-center sections (Fig. 9a) became wider in both longer and
shorter times, and gained a large tail toward longer timescales
(Fig. 9b). The time overestimates mostly stemmed from off-
center sections (Fig. 5), as well as orientations that favor loca-
tions of diffusion front interactions (Fig. 7). For core-rim models
sectioned randomly after #;p = 144 h (Fig. 9b), the contrasting
tendency for 1D time distributions to shift toward lower times-
cales can be ascribed to a loss of initial concentrations both at the
rim and at the core. Therefore, overall, poor quality timescales
were obtained from models with core-rim zoning patterns that
no longer displayed compositional plateaus.

DISCUSSION

In the following sections, we successively discuss the impor-
tance of considering spatial dimensions, compositional plateaus,
diffusion anisotropy, and crystal morphology for applications
aiming to extract timescales from diffusion modeling. Finally,
we also examine the extent to which these considerations may
apply to other elements and minerals.

Sectioning zoned crystals: Perspectives from the three
dimensions

Irrespective of the specific crystal morphology, and whether
diffusion is isotropic or not, it is very important to consider the
effects of three dimensions in kinetic modeling. Pearce (1984)
demonstrated that randomly sampling a zoned equidimensional
olivine leads to various concentration profiles, from perfectly
symmetrical to largely asymmetrical, from short to long (in
terms of transect dimension along x), and with preservation or
loss of initial compositional plateaus. Our 3D models confirm
the variability of concentration profiles obtained by sectioning,
particularly for those that are collected far from the core.

Costa et al. (2003) and Costa and Chakraborty (2004) in-
corporated 2D models within their investigation of diffusion in
plagioclase and olivine to investigate the dimensional effects on
retrieved timescales. For both types of minerals, they sampled
the concentration profiles parallel to the crystallographic axes,
and found that ignoring the element flux originating from other
dimensions can lengthen the 1D-derived times by a factor of
three if the profiles are taken on-center, and by a factor of five
off-center. These conclusions are supported by our models, with



FIGURE 9. Distribution histograms
for 200 models testing various initial
zoning configurations. The reference
3D model has a true diffusion time
t;p = 144 h. Distributions obtained
for (a) on-center, randomly oriented
models, and (b) off-center, randomly
oriented models. Black symbols
designate the set of models performed
using a single D value, while blue
symbols represent models corrected
for D anisotropy. Distributions in red
symbols correspond to anisotropy-
corrected runs with no a priori
knowledge of the initial concentration
profile (“unknown Fo”). Gray vertical
arrays mark the true 3D times.
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the added complexity that when the core Fo content is lost or
the crystal geometry is non-rectangular (i.e., with narrowing
across-crystal distances away from the core, Fig. 5), simulations
may actually underestimate the true times. Whether the diffusion
times are under- or overestimated in these cases depends purely
on the apparent total mass transferred, and the direction of this
discrepancy is hard to anticipate.

The role of initial concentration plateaus

In our study we focused on applying realistic initial boundary
conditions (i.e., using the extremum observed concentration to
build the initial Fo profile), and also explored cases where the
true initial concentration was known. Interestingly, for simple
zoning patterns (i.e., normal or reverse without rim), knowledge
of the initial Fo was not advantageous for retrieving accurate
timescales, as the 1D-3D time differences typically worsened
in cases where we used the known initial composition. This is
because in the initial 3D model, off-center locations will transfer
Fo more rapidly than toward the core, and ascribing the “true”
initial Fo to a 1D model artificially lengthens the total diffusion
time. When the initial concentration has been lost to a significant
extent at the core or at the rim, however, timescales are typically
underestimated (see Supplementary Material'). In these situa-
tions, calculations of diffusion times should be tested for various
plausible initial core and/or rim concentrations to determine
potential uncertainties. An alternative approach used to infer the
topology of the initial concentration for olivine or other phases
such as plagioclase, is to measure slow-diffusing elements (e.g.,
Ca, P, or Al in olivine, CaAl-NaSi in plagioclase) concurrently
with the elements of interest (Costa et al. 2003; Milman-Barris
et al. 2008; Kahl et al. 2011; Druitt et al. 2012). A relationship
between the main diffusing elements and the slow diffusers is
calculated, and the initial concentration can be inferred. This
type of calculation works if the crystal grew in near equilibrium
conditions (e.g., using the melt P and the Fo component in olivine
or Mg and An component in plagioclase) (e.g., Albaréde and
Bottinga 1972; Costa et al. 2010; Ruprecht and Plank 2013),
yet sufficiently rapid compared to diffusion that the diffusive
re-equilibration is distinct from growth.

An imperfect but adequate anisotropy correction

The equation used to correct for diffusion anisotropy (Eq.
4) requires knowledge of section orientation with respect to the
crystallographic axes, which is readily obtainable using electron
backscatter diffraction (EBSD) analysis (Prior et al. 1999; Costa
and Chakraborty 2004; Costa and Dungan 2005; Hammer et al.
2010; Kahl et al. 2011; Sio et al. 2013). Without this correction,
calculated timescales are likely to be inaccurate and imprecise
(e.g., Fig. 8). Even when D is anisotropy-corrected, and sections
are taken along the crystal center, 1D models do not result in a
single timescale, but rather in a distribution around the true 3D
time. This issue occurs because Equation 4 is strictly applicable
to transects perfectly parallel to the concentration gradient, which
is not necessarily the case in our simulations (or in nature) de-
spite appearing parallel on a section. The geometrically correct,
generalized equation is not easily applicable in practice since
concentration variations in the third dimension are not known.
The rapidly advancing field of X-ray micro-tomography analysis
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may allow an accurate 3D characterization of Fo in olivine in
the near future (e.g., Pankhurst et al. 2014). Until then, using
the simpler anisotropy correction formula already improves the
accuracy and precision of timescales considerably.

We note that the quality of 1D model fits from uncorrected
D are just as satisfactory as those obtained using a corrected
D, implying that the goodness of fit is not necessarily a solid
indicator of the timescale accuracy. Recent works have derived
timescales in anisotropic minerals using diffusion coefficients
along the slowest and/or the fastest crystal directions, and ar-
gued that those provide minimum or maximum estimates, or
potentially encompass the possible range in diffusion times (e.g.,
Pan and Batiza 2002; Ruprecht and Plank 2013; Longpre et al.
2014). However, even when using the fastest diffusion coefficient
D,, our randomly sectioned crystals with real diffusion times
t;p = 144 h yielded best-fit 1D durations of anywhere between
10-600 h (cf. Fig. 9). Using the slowest diffusion coefficient D,
(=D,) would change this range by a factor of 6 (i.e., 60-3600 h).
Therefore, without correcting for diffusion anisotropy, calculated
timescales from randomly sectioned olivines can actually span
anywhere from ~0.1-25x% the true diffusion time.

Importance of considering crystal morphology

Multidimensional effects on calculated times are generally
examined using simple geometries and analytical solutions (i.e.,
spheres, cylinders, and rectangular parallelepiped; Pan and Batiza
2002; Costa and Chakraborty 2004, 2008; Watson et al. 2010),
but the addition of morphological complexity of natural crystals
combined with random sectioning during thin section preparation
affects the calculated timescales considerably.

The results from our numerical models involving randomly
sectioned spherical crystals yield longer timescales (cf. Fig.
8) is opposite to that observed by Pan and Batiza (2002), who
found that calculated times exponentially decreased toward
small values, presumably as sections were sampled away from
their centers. Such shorter times were rarely obtained in our
simulations because the length of an apparent concentration
gradient in a given random transect is always equal or longer
than the true concentration gradient length. Only in cases
where the transect width shortened closer to the edges did
1D diffusion times underestimate the true time in spherical
models (Fig. 5).

For other geometries (rectangular and polyhedral), the con-
vergence of diffusion fronts from different faces typically results
in a longer apparent concentration gradient, and whether 1D
modeling of such gradients yields shorter or longer timescales
also depends on the relationship between apparent composition
(whether initial plateaus are preserved or not) and the apparent
width of the profile across the crystal. Zones of interacting dif-
fusion fronts, typically crystal corners, are not good for kinetic
modeling of timescales.

Relevance of results for other elements, crystal shapes, and
minerals

The diffusion and crystal sectioning exercise we have done for
Fe-Mg in olivine is also relevant for other elements, such as Ca,
Ti, V, Cr, Mn, Co, and Ni since they also show diffusion anisot-
ropy (faster in the ¢ direction; e.g., Petry et al. 2004; Coogan et al.
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2005; Chakraborty 2010; Spandler and O’Neill 2010). Moreover,
the provisions dictated by dimensional, interacting diffusion
fronts and sectioning effects highlighted above will also apply.

The polyhedral morphology we have used contains the most
common crystal faces of olivines crystallizing in the laboratory
or in nature (e.g., Faure et al. 2007; Welsch et al. 2009, 2013).
Nevertheless, even this fairly archetypal olivine can appear in a
wide variety of aspect ratios, which will presumably influence
where the zones of interacting diffusion fronts occur, in addition
to the rate at which the crystal core concentration will be affected
by the diffusion process (e.g., the short axis of a highly elongate
olivine). Even more complex morphologies resulting from rapid
growth (e.g., spinifex, skeletal, or dendritic; Bryan 1972; Faure
et al. 2003, 2006; Shea and Hammer 2013; Welsch et al. 2013)
will host more regions of interacting diffusion fronts; therefore
additional caution is warranted when attempting to perform 1D
diffusion modeling in such crystals. Our models involving spheri-
cal shapes also displayed departures from the true diffusion times;
olivines that have rounded rather than faceted habits are thus also
susceptible to providing less accurate results.

Diffusion modeling of elements has also been recently used
in feldspars (e.g., Mg, Sr, Ba) and pyroxenes (e.g., Fe-Mg) to
decipher timescales of magmatic processes (e.g., Costa et al.
2003; Morgan et al. 2004, 2006; Cherniak 2010; Druitt et al.
2012; Saunders et al. 2012; Ruprecht and Cooper 2012). Diffu-
sion anisotropy for most elements in these minerals is not well
characterized or appears to be moderate and should not be an
important source of uncertainty in calculated times. Other issues
of merging diffusion fronts and added flux from other dimen-
sions identified in this study are nevertheless expected to apply
to feldspars and pyroxenes in the same fashion.

IMPLICATIONS

Which sections/profiles are most adequate?

While a suitable correction can be applied for diffusion
anisotropy in olivine, there is no general quantitative adjustment to
correct for problems associated with crystal sectioning or dimen-
sional effects because their influence on calculated timescales is
too dependent on morphology (number and relationship between
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faces, aspect ratio, and roundness). Consequently, rather than at-
tempting to find a posteriori empirical corrections for intersection
and third dimension issues, attention should be focused on iden-
tifying the best suitable sections for diffusion modeling. In their
investigation of diffusion in natural garnets, Ganguly et al. (2000)
noted that uncertainty in calculated timescales can partly derive
from the profile not being perfectly parallel to the 3D concentration
gradient. Our results support this notion, although the influence
of less-than-perfect transect orientation on retrieved timescales is
less important than not correcting for anisotropy or other section-
ing and/or second and third dimension effects (i.e., diffusion front
interactions). Typically, the largest errors appear in sections that
are oblique to crystal faces and generate extended concentration
gradients. Such gradients are rarely observed in center-cut sec-
tions but much more common in highly off-center cuts. Because
off-center sections often intersect sets of faces at very different
angles, they also result in apparent concentration gradients with
different widths from face to face, and thus often asymmetric.
Yet another related symptom of off-center cuts is the presence of
dipping plateaus in the observed gradients (also see Pearce 1984),
and even in certain cases, the absence of any compositional plateau
despite the fact that diffusion has not reached the crystal core (also
see Costa et al. 2003; Costa and Chakraborty 2004).

Aside from problems of intersections, crystals that have no
compositional plateau at the core (or at the rim in the case of more
complex zonings) are more susceptible to give inaccurate times-
cales (both under- and overestimates are possible, Supplementary
Material') because they are likely to be: (1) either sectioned largely
off-center, in which case using the apparent observed extremum
composition as initial is no worse than knowing the initial concen-
tration, or (2) sectioned through their center but having diffused
long enough to lose the initial concentration. Nonetheless, if no
better sections are available, an analysis of timescale variability
and goodness-of-fit as a function of initial concentration can be
carried out.

We also showed that profiles measured across crystal regions
containing corners or near face intersections are likely to yield
incorrect timescales due to interacting diffusion fronts. While one
it is difficult to ensure that a given section does not cut through
such a region, it is at least possible to select a profile away from

FIGURE 10. Choosing the right
section and profile. Ten sections of a
normally zoned olivine display various
habits and concentration gradients.
Green check marks and red crosses
mark the suitability or unsuitability of
each section for 1D diffusion modeling.

Green and red dotted lines designate
mf+cl  mftcl+dp . .
+dp adequate and problematic profiles.
Discarded profiles are labeled according
to the various symptoms identified. Note
that “(mf)” designates fronts originating
from the third dimension, which would
not be normally recognized in a section.
For example, the two problematic
profiles marked (mf) on the seventh
section would likely be missed and
considered appropriate for modeling.
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any apparent face intersection. The same rule applies to any zones
of the olivine displaying rounding.

In summary, when numerous crystals are available within a
thin section, simple olivine selection guidelines can be followed
(examples of suitable and unsuitable thin sections are given in Figs.
1 and 10). Note that it is assumed here that the work of identifying
distinct populations with different crystallization/diffusion histo-
ries has already been performed (i.e., populations with different
zoning styles, e.g., Pan and Batiza 2002; Costa and Chakraborty
2004; Kahl et al. 2011, 2013), and those guidelines apply to se-
lection of the most suitable crystals within one such population:

(1) When looking for good crystals disregard the smallest
ones, which have a higher probability of being off-center sections.
Note that small sections may also be center cuts through smaller
crystal populations (e.g., Saltikov 1967) since olivine sizes vary
in real rocks. Even so, smaller populations are more likely to
experience other issues (loss of initial concentration) and it is
better to avoid them.

(2) Profiles should be obtained away from crystal corners and
locations of obvious concentration gradient “rounding” since
these regions likely experienced merging diffusion fronts. This
means that complex morphologies (e.g., skeletal olivines) should
be avoided for 1D modeling considering their propensity to host
numerous crystal edges and corners. Polyhedral, nicely faceted
crystals are therefore preferable. More complex morphologies
can be used but 2D and/or 3D models are probably required to
recover robust timescales.

(3) If possible, choose olivines that display a clear concentra-
tion plateau but discard those that display dipping plateaus, since
they are highly off center and/or oblique cuts. Identifying these
sections is straightforward for Fo zoning since acquiring back-
scatter electron (BSE) images usually suffice to image relative
variations in major element composition (see Supplementary
Material' for examples). In any case, it is recommended to check
for core compositions using energy-dispersive X-ray spectroscopy
(EDS) spots or transects.

(4) Avoid olivine sections that completely lack any concentra-
tion gradient symmetry across the different faces (i.e., different
gradient widths). Such cuts are often oblique to most faces and
concentration gradients.

(5) If possible, find crystals that contain at least two suitable
transect directions perpendicular to two different faces (cf. Fig.
10). Finding such sections can help: (1) verify that diffusion oc-
curred anisotropically, and thus that gradients are not related to
growth (Costa et al. 2008), and (2) test the variability of obtained
timescales within a single olivine.

Providing that a sufficient number of crystal sections are avail-
able, these selection criteria are fairly easy to apply for modeling
of Fo diffusion. The same is not necessarily true for trace elements
since compositional variations are not resolved by BSE images.
Nevertheless, the symptoms of unsuitable olivine sections will
be the same, and the Fe-Mg content can still be used to perform
the initial crystal selection process. Finally, once a set of adequate
sections is identified, the analyst should determine grain orienta-
tion using EBSD (e.g., Costa and Chakraborty 2004) or other
techniques such as microRaman (Ishibashi et al. 2008), since
correcting for anisotropy is sine qua non to obtaining accurate
1D timescales.
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WHAT IS THE ACCURACY AND PRECISION THAT CAN
BE EXPECTED FROM 1D MODELING?

Ifthe olivine selection criteria described above are applied to
the sections obtained from the models in this study (100 olivine
cuts, 2 traverses per crystal), the number of suitable sections
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FIGURE 11. Accuracy and precision of timescales retrieved from 1D
models. The time distributions in gray are the raw histograms with 200
profiles (cf. red curves in Fig. 9) while the red circles show the same
distributions filtered for “unsuitable” olivines (see text for details). Black
curves are best-fit Gaussians with accompanying mean and standard
deviation values.
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FIGURE 12. Number of concentration profiles necessary to obtain
accurate diffusion timescales from a given olivine population. Except for
the data corresponding to a single traverse (left-most points), each symbol
represents the average of a set of 5, 10, 20, 30, 40, or 60 traverses. Both
the unfiltered and filtered timescale data sets are shown.

typically ranges from ~30 to 70% of the total (Fig. 11). The
“filtered” sections give few time overestimations and also show
less prominent secondary modes or shoulders. Gaussian curves
can be fitted to these distributions, and give mean values that are
very close to the true 3D time for the three simple zoning styles
(normal I and II and reverse) as well as the rim-core I zoning,
(from 145 to 152 h, or an accuracy of 1-2% the total time, Fig.
11). For core-rim zonings Il and 111, as well as for longer duration
(~1152 h) normal zoning IT models (Supplementary Material'),
the mean value underestimates the true value by about half. This
result is expected since the issues of underestimating timescales
for these zonings stems from loss of rim plateau concentrations
and not from poor selection of olivine sections. Irrespective of
zoning style, the standard deviations or “precision” varies be-
tween 18-32 h, or typically ~15-25% the mean times. Therefore,
providing the crystal sections are carefully selected, it can be es-
timated that 1D timescales will replicate the true diffusion times
with a very high degree of accuracy (<5% from the true time)
and reasonable precision (15-25% the calculated mean time).

How many sections/profiles are necessary to obtain
accurate results?

The numerical models from this study also allow estimat-
ing the minimum number of concentration profiles required to
establish the timescale of diffusion in a single olivine population
accurately. The series of 200 one-dimensional models performed
using the “reverse” zoning configuration (“raw data’) as well as
the 66 models that adhered to the criteria above (“filtered data™)
were used for this exercise. From the raw and filtered data, sets
of'5, 10, 20, 40, and 60 timescales obtained by 1D models were
sampled 20 times in a random fashion, and the mean time was
computed for each subset. This random sampling provides a no-
tion of variability, expressed by the mean of a given distribution
of timescales as a function of the total number of traverses. For
the raw data set, increasing the number of analytical profiles
decreases the variability of obtained mean diffusion times,
but only for a large number of profiles (40 profiles) (Fig. 12).
In addition, the calculated means converge around a time £},
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= 170-250 h, which is largely over the true diffusion time of
144 h. This result is somewhat expected considering the large
number of time overestimates within the raw data, in addition to
the non-normal nature of the timescale distribution (cf. Fig. 9b).
In contrast, the filtered data yields timescales close to the true
value when at least 20 profiles are used (Fig. 12). Thus, in addi-
tion to following the olivine section guidelines detailed above,
it is recommended that for a given crystal population about 20
analytical profiles should be obtained to ensure timescale accu-
racy. Even though the numerical experiments were constructed
to represent nature inasmuch as practically feasible, the crystal
populations investigated all derived from one single-crystal size,
and a homogeneously well-recorded diffusion event of 144 h.
Therefore, more complex natural cases may warrant more than
20 transects.
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