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Abstract

Diffusion modeling in olivine is a useful tool to resolve the timescales of various magmatic processes. 
Practical olivine geospeedometry applications employ 1D chemical transects across sections that are 
randomly sampled from a given 3D crystal population, but the accuracy and precision with which times-
cales can be retrieved from this procedure are not well constrained. Here, we use numerical 3D diffusion 
models of Fe-Mg to evaluate and quantify the uncertainties associated with their 1D counterparts. The 
3D diffusion models were built using both simple and realistic olivine morphologies, and incorporate 
diffusion anisotropy as well as different zoning styles. The 3D model crystals were sectioned along ideal 
or random planes, which were used to perform 1D models and timescale comparisons. Results show 
that the timescales retrieved from 1D profiles are highly inaccurate and can vary by factors of 0.1–25 
if diffusion anisotropy is not taken into account. Even when anisotropy is corrected for, timescales can 
still vary between 0.2–10 times the true 3D diffusion time due to crystal shape and sectioning effects. 
Simple grain selection procedures are described to reduce the misfit between calculated and actual diffu-
sion times, and achieve an accuracy and precision of ~5% and ~15–25% relative, respectively. Provided 
that the grains are carefully selected, about 20 concentration profiles and associated 1D models suffice 
to achieve this accuracy.

Keywords: Olivine, geospeedometry, diffusion modeling, numerical modeling, crystal morphology, 
random sectioning

Introduction

The diffusion of atoms during magmatic reactions (e.g., melt-
ing, crystallization, solid-state re-equilibration) can be broadly 
described as the random jumps or movements of particles relative 
to other particles in a region of many particles (Onsager 1945; 
Chakraborty 2008). Because these movements occur at different 
rates for different chemical components and thermodynamic condi-
tions, modeling of element diffusion can be used for geospeedom-
etry, i.e., to backtrack the durations of geological processes (cf. 
Watson 1994; Chakraborty 1995, 2008; Ganguly 2002; Watson 
and Baxter 2007; Costa et al. 2008; Zhang 2010 for reviews). 
Diffusion modeling is thus becoming an essential utensil of the 
Earth scientist’s toolbox.

This investigation focuses on modeling chemical diffusion 
in minerals, a technique now regularly used to decipher magma 
residence times beneath volcanoes (e.g., Zellmer et al. 1999;  
Costa el al. 2003, 2008; Kahl et al. 2011; Cooper and Kent 2014), 
magma mixing/recharge events (Morgan et al. 2006; Druitt et al. 
2012; Ruprecht and Cooper 2012), ascent times from the mantle 
(Demouchy et al. 2006; Ruprecht and Plank 2013), and assimi-
lation of crustal material (Bindeman et al. 2006). In particular, 
olivine is well suited for diffusion studies involving mafic to 
intermediate magmas, because the diffusion coefficients (D) for 

major (Mg, Fe) and minor/trace (Ca, Mn, Cr, Co, Ni) elements 
are well constrained with respect to temperature (T), forsterite 
component (XFo), crystallographic orientation, and oxygen fugacity 
( fO2) (e.g., Chakraborty 1997, 2010; Petry et al. 2004; Coogan et 
al. 2005; Dohmen and Chakraborty 2007; Spandler and O’Neill 
2010). As a result, several studies have used diffusion modeling 
within olivine to decipher the durations associated with various 
magmatic processes (Nakamura 1995; Coombs et al. 2000; Pan 
and Batiza 2002; Costa and Chakraborty 2004; Costa and Dun-
gan 2005; Ito and Ganguly 2006; Kahl et al. 2011, 2013; Martí 
et al. 2013; Ruprecht and Plank 2013; Longpre et al. 2014), and 
user-friendly diffusion modeling algorithms are becoming avail-
able (e.g., DIPRA, Girona and Costa 2013). To date, however, 
diffusion modeling has been applied to natural magmatic crystals 
using almost exclusively one-dimensional chemical profiles. 
Analyses are typically performed along crystals exposed within 
two-dimensional thin sections, meaning that there are several 
potential sources of uncertainty: (1) diffusion occurs along the 
three spatial dimensions of a complex volume (e.g., Costa et al. 
2003, 2008); (2) diffusion may occur anisotropically within the 
mineral, implying that a 1D profile may sample the crystal along a 
fast or slow direction, or anywhere in between (e.g., Chakraborty 
1997); and (3) thin sections intersect crystals randomly, meaning 
that concentration gradient geometry may be dependent on sec-
tion orientation and distance from the crystal core (Pearce 1984; 
Wallace and Bergantz 2004).

In their investigation of Mg in plagioclase, Costa et al. (2003) 
found that adding a second dimension resulted in shorter calculated 
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diffusion timescales (i.e., in their case, magma residence times) 
compared to 1D models. It was also noted that the 1D-derived 
times were sensitive to the position of the profile with respect 
to the center of the crystal. The effects of diffusion anisotropy in 
olivine were also studied in 2D by Costa and Chakraborty (2004), 
who determined that sections cutting the crystal close to the fast 
diffusion direction were under certain circumstances more reliable 
for the retrieval of diffusion timescales. Pan and Batiza (2002) 
briefly examined the sectioning effect by numerically slicing a 
sphere containing an artificial diffusion profile, and showed that 
the recovered timescales followed an exponential distribution, 
with a low occurrence of durations shorter than the real input time, 
and a much higher incidence of durations close to the real time.

In this contribution, three-dimensional numerical diffusion 
models are developed to explore the influence of spatial dimen-
sions, crystal morphology, diffusion anisotropy, and sectioning 
on the timescales recovered. After examining cases with simple 
geometries, we allow models to progressively incorporate more 
complexity. The primary objective is to answer the simple ques-
tion: how reliable are diffusion timescales retrieved from olivine 

crystals as measured in typical thin sections? The importance of 
this inquiry is illustrated by constructing a numerical thin section 
containing 200 identical normally zoned olivine crystals that have 
been randomly sectioned after diffusing for a certain time (Fig. 
1). Despite being constructed from the same crystal template, the 
virtual thin section displays olivine slices that vary significantly 
in sizes, habits, and apparent concentration gradients. Thus, the 
diffusion times modeled from 1D profiles sampled within different 
olivines from this thin section may also differ. In this study, we 
examine the potential sources of variability in timescales retrieved 
from 1D diffusion models, and provide olivine crystal selection 
guidelines to maximize the accuracy and precision. Because 
parameters affecting timescales are numerous and complexly 
intertwined, a large number of methods, results, and interpreta-
tions sections are provided as Supplementary Material1 to keep 
this contribution focused on the essential.

Figure 1. Two-dimensional olivine sections within a “virtual” thin section composed of normally zoned crystals sliced randomly from the 
olivine crystal (top-left panel with a, b, and c being the crystallographic axes). The top-right insert displays the color scale and the equivalent 
forsterite content. The blue background represents the surrounding glass/melt with which the olivines were equilibrating. The sections outlined 
by red squares were discarded from further analysis due to their size. The rest were used for timescale comparisons. The green check marks and 
crosses designate the suitable and unsuitable sections for the purpose of 1D diffusion modeling (see Discussion).

1 Deposit item AM-15-105163, Supplemental Material and Figures. Deposit items 
are free to all readers and found on the MSA web site, via the specific issue’s Table 
of Contents (go to http://www.minsocam.org/MSA/AmMin/TOC/).
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Method
This section describes the 1D and 3D models used to simulate diffusion 

in olivine. After detailing the governing equations and the choice of diffusing 
components, the numerical implementation and the parameters investigated 
are described.

Diffusion equation
According to Fick’s second law, and if the diffusion coefficient D depends 

on the composition C of an element i in olivine (see below), the time-dependent 
3D diffusion equation (with spatial dimensions x, y, and z, and time t) takes the 
form (Crank 1975):
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If diffusion is isotropic, a single diffusion coefficient Dx = Dy = Dz suffices 
to define element mobility within the whole volume. In contrast, if diffusion is 
anisotropic, and for a crystal belonging to the orthorhombic system with crystal-
lographic axes a, b, and c, the diffusivity tensor takes the form (e.g., Zhang 2010):
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For the 3D expression given by Equation 1, the diffusivities are therefore 
defined as Dx = Da, Dy = Db, Dz = Dc. The 1D equivalent is simply obtained by 
removing the y and z components, and replacing Dx by Da, Db, Dc, or by an inter-
mediate diffusivity term (e.g., anisotropy-corrected D*V, see below).

Choice of elements and diffusion coefficients
The models in this contribution focus on Fe-Mg in olivine, treated here as 

the mole fraction of forsteritic component 

Fo = Mg
Mg+ Fe

with (Fo + Fa = 1, with Fa the fraction fayalite). These elements are commonly 
used for diffusion modeling (Nakamura 1995; Costa and Chakraborty 2004; 
Costa and Dungan 2005; Kahl et al. 2011, 2013; Ruprecht and Plank 2013; 
Longpre et al. 2014), and easy to measure with an electron microprobe. The dif-
fusion coefficient DFe–Mg is well established for various P, T, ƒO2 conditions (cf. 
Chakraborty 2010 and references therein) and known to be strongly anisotropic 
(Da

Fe–Mg = Db
Fe–Mg – 1/6 Dc

Fe–Mg; Chakraborty 1997). Along the c axis, the diffusion 
coefficient Dc

Fe–Mg (m2s–1) is expressed as (Dohmen et al. 2007; Costa et al. 2008; 
Chakraborty 2010):
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where ƒO2 is the oxygen fugacity (Pa), XFo the fraction forsterite, P the pressure 
(Pa), T the temperature (K), and R the gas constant [J/(K mol)]. In practice, 
concentration profiles taken across crystal sections are rarely aligned with the 
main diffusion directions and crystal axes, and must be corrected for orienta-
tion as well as anisotropy. Assuming a traverse is measured parallel to the 
concentration gradient, an anisotropy-corrected diffusivity DV* can be calculated 
providing that the angles α, β, and γ between the Cartesian coordinates x, y, 
and z and the crystallographic axes a, b, and c, respectively, are known (Costa 
and Chakraborty 2004):

DV* = Dacosα2 + Dbcosβ2 + Dccosγ2	 (4)

If, instead, the traverse is oblique to the concentration gradient, a more general 
form of Equation 4 is applicable (Zhang 2010) (cf. Supplementary Material1), 
but requires knowledge of the concentration gradient geometry along x, y, and z, 
which is not accessible within typical 2D thin sections. Because the purpose of 
this paper is to examine real case scenarios, the simpler form of the anisotropy 
correction is used herein.

Numerical implementation
The diffusion simulations were performed using finite-differences (e.g., 

Costa et al. 2003; Kahl et al. 2011; Druitt et al. 2012; Girona and Costa 2013; 
Pilbeam et al. 2013) (see Supplementary Material1). For all models, atmospheric 
pressure conditions (P = 105 Pa), an oxygen fugacity ƒO2 = 3 × 10–12 Pa, and a 
constant temperature T = 1200 °C were used. The simulated duration for most 
experiments was 6 days (144 h), although a few runs with shorter (12 and 72 h) 
and longer (576 and 864 h) durations were also done. The longer duration was 
chosen to allow sufficient time for the crystal core compositions to be affected. 
Olivine crystals with different shapes (see below) were built within a “melt” 
volume of 241 voxels/side (or 482 μm, with a step size of 2 μm per voxel), al-
lowing for reasonable computation times in 3D runs. The boundaries between 
crystal and melt were considered open, the melt effectively being an infinite 
reservoir of Fe-Mg and constant with time. The boundary compositions at the 
crystal rim were therefore constantly maintained during the runs (e.g., Costa 
and Chakraborty 2004).

Variables incorporated in the model
The main variables that determine how accurate timescales obtained via diffu-

sion modeling include: (1) the number of spatial dimensions; (2) the anisotropy of 
diffusion; (3) the shape/morphology of the crystal; (4) the location of the section 
or profile (i.e., along or off-crystallographic axis, on- or off-center); and (5) the 
nature of chemical zoning.

The influence of a given variable is difficult to completely isolate from the 
others, so we decided to organize the diffusion models as follows: First, a series of 
models tested the influence of crystal shape on retrieved timescales. 1D diffusion 
models on principal sections along the crystallographic axes were followed by more 
realistic scenarios that incorporated the effects of section orientation and off-center 
sectioning. Finally, a representative morphology was selected to explore the effect 
of variable zoning configurations (normal, reverse, core-rim).

Spatial dimensions. We focused chiefly on comparisons between 1D vs. 3D 
diffusion, but a few 2D models were also carried out for comparison, and are reported 
in the Supplementary Material1.

Crystal shape. Three crystal shapes were examined (Fig. 2a): a sphere with 
a 201 voxel diameter, a rectangular parallelepiped (hereafter labeled the “ortho-
rhombic” morphology) with dimensions 95 × 121 × 201 voxels (along x, y, and z, 
corresponding to crystallographic axes a, b, and c), and a realistic olivine morphology 
(labeled “polyhedral” throughout the text) based on Welsch et al. (2013) with an 
aspect ratio identical to that of the orthorhomb.

Diffusion anisotropy. For the spherical crystal models we used an isotropic D, 
while for the orthorhombic crystals we used either isotropic or anisotropic diffu-
sion to evaluate this effect on timescales. The polyhedral crystals were all modeled 
using anisotropic diffusion (Fig. 2b). The 1D simulations incorporated either a 
single diffusion coefficient Da, Db, Dc, (along the axes), or the orientation-corrected 
coefficient D*V (Eq. 4).

Types of section. The 3D crystal models were sectioned according to four 
types of planes (Fig. 2c): (1) principal sections (passing through the center, parallel 
to a-b, b-c, or a-c planes), hereafter termed “along-axes, on-center” sections, (2) 
sections parallel to the crystal axes at random distances from the center, so-called 
“along-axes, off-center,” (3) sections at random angles from the crystallographic 
axes passing through the center, or “randomly oriented, on-center” and (4) sec-
tions at random angles from the axes and distances from the center “randomly 
oriented, off-center.”

Style of Fo zoning. Six types of compositional zonings were used to simulate 
a range of magmatic scenarios (Fig. 2d): (1) “normal zoning I,” wherein a crystal 
of homogeneous composition Col = Fo90 is placed in contact with a melt with an 
“effective” composition Cmelt = Fo70 (i.e., the equilibrium olivine composition to-
ward which the crystal evolves), (2) “normal zoning II” with a homogenous crystal 
Col = Fo75 in contact with a similar melt Cmelt = Fo70; these zoning types 1 and 2 
mimic the removal of olivine crystals from a mafic melt, and their incorporation 
into more evolved magmas without rim growth (e.g., magma recharge, Costa and 
Chakraborty 2004; Kahl et al. 2011). (3) “reverse zoning” with an olivine Col = Fo70 
and a melt Cmelt = Fo80; this configuration could represent olivines from the more 
evolved magma being incorporated into the mafic recharge magma; (4) core-rim 
I configuration with a core Col–core = Fo70 and a rim Col–rim = Fo80 in contact with a 
melt Cmelt = Fo80; this type of zoning could also represent a magma mixing event 
but the olivine has grown a rim prior to diffusive equilibration of the core and the 
surrounding melt; (5) core-rim II zoning with a core Col–core = Fo75, a rim Col–rim 
= Fo70 in contact with a melt Cmelt = Fo80; and (6) core-rim III zoning with Col–core 
= Fo70, Col–rim = Fo80, and Cmelt = Fo75. The last two zoning patterns model more 
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complex magma interactions in which the growth rim has a different equilibrium 
Fo composition from that of the surrounding melt. Note that in all simulations, it 
is assumed that any crystal growth has progressed to completion before diffusion 
starts (i.e., instantaneous growth with a fixed liquid-crystal boundary).

Procedure for model comparisons
The numerical models were examined according to a systematic protocol, in 

which 3D simulations were used as ground-truth for comparisons with their 1D 
counterparts (Fig. 3). This procedure entailed: (1) sectioning the initial 3D olivine 
crystal before diffusion started; (2) discarding the smallest unsuitable 2D sections 
when necessary (i.e., for model series involving random sectioning); (3) choos-
ing the suitable section(s) to carry out 1D diffusion models; (4) performing the 
3D diffusion simulation; (5) sectioning the 3D “diffused” olivine along the same 
plane(s) or transect(s) as in steps 1 and 3; and (6) retrieving the 1D timescales that 

best match the concentration maps/profiles from the 3D model. The best-fit 1D 
calculated times are labeled t*1D, and the true 3D diffusion times t3D (i.e., best-fit times 
are marked by asterisks). Values of t*1D were calculated via the root-mean square 
deviation (RMSD) between the 3D (“real”) and 1D (“measured”) concentration 
profiles (e.g., Girona and Costa 2013) (see Supplementary Material1). For a set of 
parameters, typically one 3D model was used as ground-truth to compare with 200 
1D diffusion models. From a set of several hundred sections across the 3D olivine, 
those that were too small (i.e., typically <20% in area of the maximum section size 
observed) were discarded, and the first 100 sections from the leftover set were kept 
for further analysis (cf. Fig. 1 for an example). For each of these 100 sections, two 
profiles were manually selected across different crystal faces. To mimic real world 
practices, 1D transects were always chosen parallel to the concentration gradient 
within each section. Note that this does not imply, however, that the profiles were 
parallel to the concentration gradient in the third dimension.

Figure 2. Principal variables examined by the diffusion models. (a) The three different crystal shapes tested: a sphere, an orthorhomb, and a 
polyhedron with the same aspect ratio as the orthorhomb. (b) Anisotropy of Fe-Mg diffusion along the different crystallographic axes (shown as 
a “diffusivity ellipsoid” in gray). For the same diffusion time t, profiles sampled along different directions in a section appear different. Diffusion 
modeling of such profiles in 1D may yield different timescales (ta and tc along a and c, respectively) if anisotropy is not accounted for (small inserts 
on the right). (c) Different types of sections considered; principal sections (along-axes, center-cut), sections sampled away from the core and parallel 
to the axes (along-axes, off-center), sections passing through the core along any orientation (random orientation, center-cut), and randomly oriented 
sections taken at random distances from the core (random orientation, off-center). (d) Six distinct zoning patterns were evaluated, illustrated here 
through the b-c plane of the crystal. The corresponding starting Fo concentration profiles are shown below each zoning style. Note that the melt Fo 
content is displayed as an equivalent olivine Fo composition (i.e., the composition the crystal edge is in equilibrium with).
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Results and interpretations

For simplicity, and considering the large number of variables 
incorporated in the various models (crystal morphology, number 
of model dimensions, diffusion anisotropy, section orientation, 
section distance from the core, zoning configuration), results and 
interpretations are presented one after the other. The following 
paragraphs first explore the role of crystal morphology and dif-
fusion anisotropy, and later the zoning style. In each case the 
results are presented in order of increasing sectioning complexity, 
typically: (1) along-axes, on-center; (2) along-axes off-center; 
(3) randomly oriented, on-center; and (4) randomly oriented, 
off-center. Timescales are reported both as absolute values (in 
hours) and as relative mismatch, defined as

rt %( )=100×
t1D
* − t3D
t3D

. 

In the latter case, zero implies a perfect match, a positive 
number indicates a time overestimate, and a negative number 
an underestimate.

Influence of crystal shape and diffusion anisotropy
Two scenarios were tested, with isotropic (for the spherical 

and orthorhombic crystals) and anisotropic diffusion (for the 
orthorhombic and polyhedral crystals). For each situation, two 
3D models with diffusion times of 72 and 144 h were performed, 
and the results compared with 1D models. These models were 
all reversely zoned, with an initially homogenous Fo70 crystal 
equilibrating with a more mafic melt (Fo80).

Along-axis, on-center sections. For spherical crystals and 
isotropic D, the best matching 1D time always overestimated the 
true diffusion time, with t*1D = 80 and 180 h (+10 and +25% the 
true times t3D = 72 and 144 h, respectively) (Figs. 4a and 4b; also 
see Supplementary Material section 41 for corresponding concen-

tration profiles). Models with orthorhombic crystals reproduced 
the true diffusion times correctly, except for the 144 h models 
run using isotropic D, which result in slight time overestimates 
along b and c (t*1D ~154 h) (Fig. 4b). The polyhedral morphology 
yielded 1D times that are either similar to the true times (e.g., t*1D 
= 154 and 160 h along b or c in the 144 h simulations) or much 
longer (t*1D = 151 and 297 h along a in the 72 and 144 h runs, 
respectively, or a relative difference of +110%).

These observations argue for an important control of crystal 
shape on calculated diffusion times, interpreted here to be caused 
by merging element flux from multiple directions. In other words, 
if a diffusion front advances perpendicular to a given crystal face, 
then two diffusion fronts perpendicular to two faces at an angle 
lower than 180° from each other will merge (cf. Supplementary 
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Figure 3: Model comparison procedure. A 3D voxelized olivine with a given initial Fo zoning pattern (cf. Fig. 2d) is ‘cut’ prior to diffusion, 
producing a starting Fo section used to perform 1D diffusion simulations (A-B traverse). The initial 3D olivine diffuses for a certain time, 
and is sectioned along the same orientation as before to serve as a ‘ground-truth’ for comparison with the 1D model. As the 1D simula-
tions are run, each time step t(1) to t(i) is saved and compared with the ground-truth concentration profile from the 3D model. A minimum 
misfit is then calculated to yield the best-matching time t*1D . Also see text for details.

Figure 3. Model comparison procedure. A 3D voxelized olivine with a given initial Fo zoning pattern (cf. Fig. 2d) is “cut” prior to diffusion, 
producing a starting Fo section used to perform 1D diffusion simulations (A-B traverse). The initial 3D olivine diffuses for a certain time, and is 
sectioned along the same orientation as before to serve as a “ground-truth” for comparison with the 1D model. As the 1D simulations are run, each 
time step t(1) to t(i) is saved and compared with the ground-truth concentration profile from the 3D model. A minimum misfit is then calculated to 
yield the best-matching time t*1D. Also see text for details.

Figure 4. Influence of crystal morphology on timescales recovered 
from along-axis, on-center 1D models (i.e., a, b, or c axes). (a) Best-fit 
1D times for different crystal shapes as a function of crystallographic 
axis for a true diffusion time t3D = 72 h. (b) Same but for t3D = 144 h.
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Material1). Thus, diffusion fronts in an olivine with sets of parallel 
faces (orthorhombic morphology) will generally not intersect in 
transects collected away from the corners, leading to accurate 
timescale predictions (see Supplementary Material1). With in-
creasing duration, however, the diffusion fronts originating from 
different crystal faces may reach the core via the shortest crystal 
dimension (the a-axis), generating differences between 1D and 
3D along the other crystal dimensions, b and c. Compared with 
orthorhombic morphologies, polyhedral crystals typically have 
more faces meeting at angles <180°, thus promoting interacting 
diffusion fronts and leading to systematic differences between 
1D and 3D times, even along perfectly oriented transects (Ap-
pendix Fig. 41). The roughly twofold overestimate in 1D times 
along a in polyhedral models is a good example: the diffusion 
fronts originating from {110} converge or diverge (depending 
on whether Fe or Mg is considered) from/toward the profile 
passing through the crystal center along the a-axis, resulting in 
interactions that cannot be modeled in 1D (Appendix Figs. 31 
and 71). Finally, the surface of a sphere can be considered as an 
infinite combination of planes at a certain angle from each other, 
supporting the notion that even perfect sections or profiles across 
a sphere never produce the same results in 1D.

Along-axis, off-center sections. For all non-spherical mor-
phologies, concentration profiles could be sampled along a given 
axis using two possible planes (e.g., the a-b or the a-c for along-
a profiles). Here, the plane allowing for the longer sampling 
distance from the core was chosen (e.g., a-c was selected over 
a-b for the a-axis, b-c selected over a-b for the b-axis, and b-c 
chosen over a-c for the c-axis, Fig. 5). Furthermore, for off-center 
transects, the initial composition may only be apparent (i.e., 
different from the true initial Fo) (Costa and Chakraborty 2004; 
Costa et al. 2008). There are two possibilities to run the models: 
(1) using the true initial composition known from the 3D model, 
or (2) using the apparent extremum composition displayed by the 
off-center profile (the maximum or minimum Fo concentration, 
depending on whether zoning is normal or reverse). We initially 
tested the two possibilities for the spherical model (Fig. 5a). Us-
ing the initial composition as known, the difference between the 
true and the best-fit diffusion times (Δt1D–3D = t*1D – t3D) increased 
from +40 to +800 h (or +25 to +550% relative) with increasing 
sampling distance from the crystal center, until roughly 20 μm 
from the sphere edge. Then, closer to the edge, Δt1D–3D decreased 
abruptly. In contrast, if the initial concentration was taken as the 
observed maxima or minima Fo in the diffused profile, the 1D-
3D discrepancy was smaller, with values of Δt1D–3D = +200 h (or 
+140% relative) about 45 μm from the crystal edge, and decreas-
ing thereafter to negative values (i.e., 1D timescales became 
shorter than 3D). For the orthorhombic and polyhedral crystal, 
we took the initial concentration as observed (case B above). 
Orthorhombic models showed excellent agreement between 1D 
and 3D times (Δt1D–3D = 0) up to distances ~160 μm from the 
core for transects performed along the a and b axes, and up to 
~80 μm for those selected along the c axis. Closer to the crystal 
edges, Δt1D–3D increased to +25–50 h depending on whether 
diffusion anisotropy was accounted for (Figs. 5b and 5c). We 
note that contrary to spherical models, Δt1D–3D did not decrease 
noticeably as transects were sampled closer to the crystal faces. 
Polyhedral models yielded the most variable timescales (Fig. 5d). 

From the core to about ~140 μm, transects sampled along the 
a-axis systematically gave time overestimates (Δt1D–3D = +150 h 
or +105%). Closer to the edge, 1D times underestimated the true 
diffusion time (Δt1D–3D = –115 h or –80%). Concentration profiles 
taken along the b-axis showed good correspondence between 1D 
and 3D close to the core, rapidly degrading to values Δt1D–3D = 
+100–700 h at distances larger than 40 μm, then decreasing to 
negative values at the crystal edge. In contrast, transects along c 
produced timescales that agreed better with the known diffusion 
time. The topology of profiles obtained in polyhedral crystals 
were similar to those from the orthorhombic model along a, but 
closer to that of spherical models along b and c.

The effects of sampling distance from the core and choice of 
initial concentrations on calculated timescales can be interpreted 
as follows: if the initial Fo concentration is known, shorten-
ing of the profiles with increasing distance from core leads to 
longer calculated times, as the model requires additional total 
element transfer to reach the same final concentration gradient 
(cf. Supplementary Material1). With increasing distance from the 
center, however, this shortening induces a decrease in calculated 
times because the apparent element transfer becomes very small. 
This trade-off between profile length and element transfer re-
quired to attain a given concentration explains the increase and 
subsequent decrease in best-matching 1D times with increasing 
sampling distance from the core of spherical crystals (Fig. 5a). 
If the observed Fo extremum is chosen as the initial value, the 
same trade-off is observed, although a much smaller total flux 
is required to reach the final profile (Figs. 5a–5d), potentially 
leading to shorter calculated times and even time underestimates 
closer to the crystal edge (Figs. 5a and 5d). Overall, we emphasize 
that models employing the polyhedral shape display the most 
complex behavior with respect to transect distance from core, 
with no apparent systematic shifts in time mismatch common 
to the three sampling directions.

Randomly oriented, on-center sections. To isolate the 
influence of diffusion anisotropy from that of crystal geometry, 
the models were first run assuming isotropic diffusion (using D 
= Dc), and later incorporated the anisotropy correction (Eq. 4). 
Because transects were collected within sections passing through 
the core, the initial Fo concentration was generally preserved, 
except for the isotropic rectangular models run for 144 h, in 
which the core composition was slightly affected.

Sections obtained by slicing crystals through their cores 
generally showed a high degree of symmetry, with match-
ing concentration gradients for faces of the same form (e.g., 
{110} and {021}, Figs. 6a and 6b). Sets of traverses selected 
across opposite crystal faces displayed a similar topology, and 
anisotropy-corrected 1D models yielded timescales close to the 
true time (Fig. 6a). On the other hand, transects taken across 
section corners (Fig. 6b), despite maintaining fairly good sym-
metry, resulted in large time overestimates. Thus, for the rest of 
this study, all 1D models were sampled away from corners in 
a given olivine section (however note that the section may still 
have been close to an edge or corner in the third dimension).

Two-hundred 1D models performed in orthorhombic crys-
tals (isotropic diffusion) displayed minor time mismatches for 
profiles taken perpendicular to the crystal faces (Fig. 7a). In 
comparison, oblique transects and those collected toward edges 
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Figure 5. Influence of sectioning distance from the core for the three crystal shapes. (a) Sphere: profiles are sampled from the 3D model after 
diffusion for t3D = 144 h at increasing distances from the core (illustration at the bottom left). The difference between the true (3D) and best-fit 
(1D) times to each profile is plotted against distance from the core (plots at the right), both as absolute (hours, bottom x-axis) and relative (%, top 
x-axis). Two scenarios are examined for the spherical morphology, one where the initial concentration profile is the known 3D initial profile (“Initial 
Fo known”), the other using the apparent observed minimum Fo content (“Initial Fo unknown”). (b to d) Similar plots for the orthorhombic and 
polyhedral crystals using isotropic (b) or anisotropic (c and d) diffusion coefficients, sampled along each of the three crystallographic axes. For 
these models, the initial Fo was taken as the apparent minimum value. Note that the orthorhombic model using an isotropic D was only run for 
72 h so as to avoid affecting the concentration at the core (also see Supplementary Material1).
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and corners typically produced time overestimates Δt1D–3D > 
+100 h (with a maximum of +750 h, or +520% the true time). 
Similar models incorporating anisotropic diffusion showed 
good agreement between 1D and 3D times for profiles that 
were perpendicular to crystal faces (Fig. 7b). Edges or near 
corner transects result in time underestimates Δt1D–3D < –20 h 
(–15%), while transects that are oblique to crystal faces also gave 
overestimates Δt1D–3D > +20–100 h (+15–70%). For polyhedral 
morphologies with anisotropic diffusion, the best time estimates 
were still derived from transects perpendicular to crystal faces 
(Fig. 7c). Transects oriented close to the a, b, and c axes resulted 
in Δt1D–3D > +20–100 h, the worst cases were for profiles parallel 
to a and at slight angles from b and c.

We attribute the emergence of time underestimates, which 
only appear in the anisotropic 1D models (Figs. 7b and 7c), to 
the fact that several transects are not sampled perfectly parallel 
to the concentration gradient in all 3 dimensions. Along these 
directions, the anisotropy correction expression (Eq. 4) tends to 
overcorrect diffusivities (e.g., Supplementary Material1). These 
time underestimates are indeed clustered near crystal edges 
(orthorhombic crystal, Fig. 7b) or crystal faces that are oblique 
to the main diffusion axes (polyhedral crystal, Fig. 7c). On the 
other hand, time overestimates typically result from artificial 
lengthening of the concentration gradients. This lengthening 
may be caused by either sectioning a concentration gradient at 
an angle, and/or sampling locations affected by diffusion front 
interactions (corners and edges) (Figs. 7a, 7b, and 7c).

The consequences of adding section orientation as a free pa-
rameter in our simulations was also examined by displaying the 
same models as time-frequency histograms (Fig. 8). Timescales 
all fell within the 180–220 h range with a mode at t*1D = 200 h 
(+40% the true 3D time of 144 h; Fig. 8a). In contrast, isotropic 
models from orthorhombic crystals produced a broad distribution 
with a mode at t*1D = 140 h, heavily skewed toward high values 
(up to 875 h or +500% the true time, Fig. 8b). The 1D models 
with no D-correction replicated timescales produced by the 

orthorhombic models that incorporated anisotopropic D poorly, 
with a bimodal time distribution (modes at t*1D = 40 and 140 h). 
Correcting for D in these models resulted in a mostly unimodal 
distribution (mode at t*1D = 140 h and shoulder at 80 h), with a 
wide range of times 69 < t*1D < 490 h (Fig. 8c). Polyhedral crystals 
yielded trimodal distributions (modes at t*1D = 20, 80, and 160 h) 
for uncorrected D, while the same models generated unimodal, 
positively skewed distributions when the correction was applied 
(mode between t*1D = 120–140 h and range of timescales 86 < 
t*1D < 460 h; Fig. 8d).

Overall, if we do not correct for anisotropy in 3D models we 
find multimodal time distributions. The number of modes largely 
depends on the probability that a transect is taken across a given 
set of faces. For orthorhombic crystals (Fig. 8c), uncorrected 
bimodal time distributions correspond to the main diffusion di-
rections: the mode at short times t*1D = 20 h (–85% the true time) 
can be associated with profiles taken along the slower a and b 
axes (i.e., across faces belonging to the {100} and {010} forms), 
and the mode around the true 3D time t*1D = 140 h corresponds 
to those collected along the faster c-axis profiles (i.e., across 
{001}). The well-defined third mode in polyhedral crystals (Fig. 
8d) probably corresponds to transects taken across the prismatic 
faces of the olivine (i.e., faces belonging to the {110} or {021} 
forms, cf. Fig. 2a), which are absent in the rectangular shape.

Randomly oriented, off-center sections. The effects of 
random sectioning were first examined on a single section. Com-
pared with center-cut crystals (Figs. 6a and 6b), an off-center sec-
tion often showed asymmetrical concentration gradients across 
the different faces (Fig. 6c). Diffusion models performed using 
four such transects produced timescales that span a wide range 
t*1D = 72–989 h (–50 to +590%), with important time under- and 
overestimates.

Unlike previous cases where crystal sections were along-axis 
off-center (Fig. 5) or on-center but randomly oriented (Figs. 7a, 
7b, and 7c), identifying systematic behaviors when both orienta-
tion and off-center distance are randomized was more difficult 

Figure 6. Topologies of concentration profiles sampled from (a and b) sections passing through the crystal core, and (c) an off-center section. 
For each case, the top illustration displays the section and the traverse locations, and the bottom plots show the corresponding Fo profiles and best-
fit 1D diffusion times (absolute and relative). In all models, the diffusion coefficient D has been corrected for anisotropy to isolate the influence 
of section location from anisotropy.
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(Figs. 7d, 7e, and 7f). Compared with center-cut models (Fig. 
7a), transects sampled from off-center sections in orthorhombic 
crystals with isotropic D (Fig. 7d) showed a less well organized 
distribution of time overestimates with respect to orientation, 
in addition to producing time underestimates. Orthorhombic 
crystal runs using anisotropic D (Fig. 7e) also resulted in time 
underestimates more frequently compared to the center-cut ver-
sion (Fig. 7b). Finally, off-center polyhedral models displayed 
much more randomness in the distribution of timescales with 
respect to transect orientation (Fig. 7f).

When shown on time vs. frequency histograms, spherical 
crystals (Fig. 8e) displayed a clear mode at t*1D = 180 h (range 
of 180–912 h, or +25 to +530% the true time of 144 h) rapidly 
decaying toward high values when the initial Fo concentration 
was set to the known initial value (Fo70). Imposing the apparent 
observed Fo concentration as the initial value eliminated the 1D 
times greater than 400 h, but generated a few models with much 
lower durations with t*1D = 20 h (–85% relative). New secondary 
modes also appeared at t*1D = 220 and 300 h. Distributions from 
orthorhombic crystal simulations with isotropic D are unimodal 
(Fig. 8f), the mode corresponding to the 3D time only when the 
initial Fo is taken as the apparent measured value. Anisotropic 
models using a rectangular or polyhedral geometry yielded bi- to 

trimodal distributions with modes at t*1D = 20 h when a unique 
value of D is used, while those that are corrected for anisotropy 
gave mostly unimodal curves with modes at t*1D = 140 h (Figs. 
8g and 8h).

Globally, when initial concentrations are lost due to sec-
tioning, models that use the extremum Fo as an initial value 
produce timescales that may underestimate or overestimate the 
true value by factors of 4–5 (Figs. 5, 8e, and 8f). If instead the 
known initial profile is used, timescales are typically longer, 
and do not show any improvement on overall accuracy (Figs. 
5a, 8e, and 8f). In most cases the apparent measured Fo is 
used as initial concentration since in practice, estimating the 
composition before diffusion occurred is not straightforward; 
these results demonstrate that when initial compositions are 
lost due to sectioning effects, using the measured apparent Fo 
can actually be better than using the true initial composition, 
which is a counterintuitive result.

In summary, models testing the influence of section orienta-
tion and position on timescales show some trends (Figs. 5, 7a, 
7b, and 7c), but mainly complex patterns, particularly for olivines 
with realistic shapes (e.g., Fig. 7f). Profiles near the edge of a 3D 
crystal always result in inaccurate 1D timescales, independent 
of section orientation.

Figure 7. Effects of concentration profile orientation on calculated 1D diffusion times for transects collected along the crystal center (top row) 
and for transects sampled at random distances from the core (bottom row). Data are displayed as pole figures (equal-angle stereographic projections, 
plotted using Stereonet 9 by Cardozo and Allmendinger 2013), with the locations of crystal faces and corners indicated as yellow areas and large 
hollow diamonds, respectively (see small inset on the right). In all cases, the real diffusion time is t3D = 144 h and 1D model misfits are represented 
as a color-coded difference Δt1D–3D, with symbols containing a “plus” and “minus” sign being associated with time over- and underestimates, 
respectively. (a) Orthorhombic crystal with isotropic D, (b) orthorhombic crystal with anisotropic D, and (c) polyhedral crystal with anisotropic D. 
(d, e, and f) These are the same but allowed for off-center sectioning. All the models in this figure used the apparent observed extremum Fo as the 
initial concentration, which may or may not correspond to the true initial Fo (i.e., for on or off-center sections, respectively).
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Figure 8. Distribution histograms of best-fit 1D timescales for 200 randomly oriented, on-center models (left plots), and randomly oriented, 
off-center models (right plots). Four different distributions are shown, corresponding to models performed without anisotropy correction and with 
the known initial Fo profile assumption (black symbols), with isotropic D and an “unknown” initial Fo profile (using the apparent minimum Fo) 
(gray), with anisotropy correction and a known Fo profile (blue), or with anisotropy correction and an unknown initial Fo profile (red). For each of 
the spherical (a and e), orthorhombic (b, c, f, and g), and polyhedral (d and h) morphologies, the most accurate distribution is shaded according to 
the parameters assumed (gray, blue, or red). The vertical gray band marks the true 3D diffusion time of 144 h and the top x-axis marks correspond 
to the relative time difference.
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Influence of zoning configuration

We also examined the role of zoning style on the timescale 
distributions obtained from 1D models collected along random 
orientation and/or distances from the olivine core. Additional 
sets of 1D and 2D models performed along principal sections 
and crystal axes were also carried out to examine whether such 
ideal locations are better or worse for timescale extraction, and 
are presented in the Supplementary Material1.

Randomly oriented, on-center sections. Zoning style seems 
to have little effect on the distribution of timescales when sec-
tions were sampled on-center but along random directions (Fig. 
9a). For the 6 zoning styles examined, models that did not take 
into account diffusion anisotropy generally produced trimodal 
distributions with modes at t*1D = 20 h, 60 h, and around 120–160 h 
(at –85, –60, and –15 to +10% relative). The distributions became 
mostly unimodal (except for the core-rim I configuration, which 
has two apparent modes) and centered on the true time when we 
corrected for diffusion anisotropy. Maximum timescales calcu-
lated range from 300 to 400 h (+110 to +180% of t3D). It should 
be noted that after a duration t3D = 144 h, core-rim zoning types 
II and III (normal-reverse and reverse-normal, respectively) did 
not preserve the initial Fo concentrations at the core or at the rim 
(see Supplementary Material1). The initial rim compositions were 
erased after merely 12–24 h within core-rim model II. For these 
center cut sections, however, there is little difference between the 
accuracy of timescales retrieved at t3D = 12 h or t3D = 144 h (i.e., 
both have unimodal distributions centered on the correct time).

Overall, incorporating random section/profile orientation 
into the simple zoning models (Fig. 9a) still allows for accurate 
diffusion timescale predictions in 1D, provided that the anisot-
ropy of diffusion is accounted for. This implies that the large 
mismatches encountered along a (Figs. 4a and 4b) are an excep-
tion. However, even with anisotropy correction, some 1D models 
actually underestimated the true time because D was likely 
over-corrected in certain combinations of section orientation 
and sampling directions (also see Fig. 7). The time distributions 
produced from core-rim zoning types are fairly similar to simple 
normal- or reverse-zoned runs (Fig. 9a), with, nevertheless, a 
more prominent secondary peak of timescales underestimates.

Randomly oriented, off-center sections. For the six zoning 
styles, three types of simulations were examined: (1) no diffusion 
anisotropy correction and the initial Fo content was known; (2) 
the same as no.1 but with correction for diffusion anisotropy; 
and (3) with diffusion anisotropy correction and initial Fo taken 
as apparent observed extremum value.

Similarly to the center-cut models, off-center models uncor-
rected for diffusion anisotropy always displayed multimodal 
distributions (Fig. 9b). Also like center-cut models, simulations 
performed using anisotropy-corrected diffusion coefficients gave 
mostly unimodal distributions, with tails of longer durations, 
whether initial Fo was known or not. For the three simple crystal-
melt zoning configurations (normal I, normal II, and reverse), 
as well as for the core-rim I scenario, knowledge of the initial 
composition had a minor effect on the shape of the distributions 
or on the position of the main distribution mode, systematically 
located at the true time t*1D ≈ t3D = 140 h. In contrast, knowledge 
of initial Fo strongly influenced the location of the primary 
mode for zoning configurations core-rim II and III: if the initial 

composition was known, the distribution modes agreed with the 
true diffusion times, but if the initial Fo was taken as the appar-
ent observed composition, those modes shifted toward lower 
timescales t*1D = 60 h (–60% relative). This discrepancy arises 
from diffusive loss of the initial core and rim concentrations in 
the 3D models, meaning that apparent extremum concentrations 
used as initial profiles for 1D models are very different from the 
real initial concentrations and result in unrealistic timescales (see 
Supplementary Material1). In general, nevertheless, possessing 
information on initial concentrations resulted in broader time 
distributions than when information on initial Fo was lacking. 
For the core-rim I model, for example, 1D diffusion times 
reached values up to 1440 h (+900% of t3D) when the initial Fo 
was known, while maximum values only attained 540 h when 
the apparent observed Fo was used.

In summary, when off-center sections were allowed in the 
simulations, the narrow time distribution previously obtained 
for on-center sections (Fig. 9a) became wider in both longer and 
shorter times, and gained a large tail toward longer timescales 
(Fig. 9b). The time overestimates mostly stemmed from off-
center sections (Fig. 5), as well as orientations that favor loca-
tions of diffusion front interactions (Fig. 7). For core-rim models 
sectioned randomly after t3D = 144 h (Fig. 9b), the contrasting 
tendency for 1D time distributions to shift toward lower times-
cales can be ascribed to a loss of initial concentrations both at the 
rim and at the core. Therefore, overall, poor quality timescales 
were obtained from models with core-rim zoning patterns that 
no longer displayed compositional plateaus.

Discussion

In the following sections, we successively discuss the impor-
tance of considering spatial dimensions, compositional plateaus, 
diffusion anisotropy, and crystal morphology for applications 
aiming to extract timescales from diffusion modeling. Finally, 
we also examine the extent to which these considerations may 
apply to other elements and minerals.

Sectioning zoned crystals: Perspectives from the three 
dimensions

Irrespective of the specific crystal morphology, and whether 
diffusion is isotropic or not, it is very important to consider the 
effects of three dimensions in kinetic modeling. Pearce (1984) 
demonstrated that randomly sampling a zoned equidimensional 
olivine leads to various concentration profiles, from perfectly 
symmetrical to largely asymmetrical, from short to long (in 
terms of transect dimension along x), and with preservation or 
loss of initial compositional plateaus. Our 3D models confirm 
the variability of concentration profiles obtained by sectioning, 
particularly for those that are collected far from the core.

Costa et al. (2003) and Costa and Chakraborty (2004) in-
corporated 2D models within their investigation of diffusion in 
plagioclase and olivine to investigate the dimensional effects on 
retrieved timescales. For both types of minerals, they sampled 
the concentration profiles parallel to the crystallographic axes, 
and found that ignoring the element flux originating from other 
dimensions can lengthen the 1D-derived times by a factor of 
three if the profiles are taken on-center, and by a factor of five 
off-center. These conclusions are supported by our models, with 
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Figure 9. Distribution histograms 
for 200 models testing various initial 
zoning configurations. The reference 
3D model has a true diffusion time 
t3D = 144 h. Distributions obtained 
for (a) on-center, randomly oriented 
models, and (b) off-center, randomly 
oriented models. Black symbols 
designate the set of models performed 
using a single D value, while blue 
symbols represent models corrected 
for D anisotropy. Distributions in red 
symbols correspond to anisotropy-
corrected runs with no a priori 
knowledge of the initial concentration 
profile (“unknown Fo”). Gray vertical 
arrays mark the true 3D times.
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the added complexity that when the core Fo content is lost or 
the crystal geometry is non-rectangular (i.e., with narrowing 
across-crystal distances away from the core, Fig. 5), simulations 
may actually underestimate the true times. Whether the diffusion 
times are under- or overestimated in these cases depends purely 
on the apparent total mass transferred, and the direction of this 
discrepancy is hard to anticipate.

The role of initial concentration plateaus
In our study we focused on applying realistic initial boundary 

conditions (i.e., using the extremum observed concentration to 
build the initial Fo profile), and also explored cases where the 
true initial concentration was known. Interestingly, for simple 
zoning patterns (i.e., normal or reverse without rim), knowledge 
of the initial Fo was not advantageous for retrieving accurate 
timescales, as the 1D-3D time differences typically worsened 
in cases where we used the known initial composition. This is 
because in the initial 3D model, off-center locations will transfer 
Fo more rapidly than toward the core, and ascribing the “true” 
initial Fo to a 1D model artificially lengthens the total diffusion 
time. When the initial concentration has been lost to a significant 
extent at the core or at the rim, however, timescales are typically 
underestimated (see Supplementary Material1). In these situa-
tions, calculations of diffusion times should be tested for various 
plausible initial core and/or rim concentrations to determine 
potential uncertainties. An alternative approach used to infer the 
topology of the initial concentration for olivine or other phases 
such as plagioclase, is to measure slow-diffusing elements (e.g., 
Ca, P, or Al in olivine, CaAl-NaSi in plagioclase) concurrently 
with the elements of interest (Costa et al. 2003; Milman-Barris 
et al. 2008; Kahl et al. 2011; Druitt et al. 2012). A relationship 
between the main diffusing elements and the slow diffusers is 
calculated, and the initial concentration can be inferred. This 
type of calculation works if the crystal grew in near equilibrium 
conditions (e.g., using the melt P and the Fo component in olivine 
or Mg and An component in plagioclase) (e.g., Albarède and 
Bottinga 1972; Costa et al. 2010; Ruprecht and Plank 2013), 
yet sufficiently rapid compared to diffusion that the diffusive 
re-equilibration is distinct from growth.

An imperfect but adequate anisotropy correction
The equation used to correct for diffusion anisotropy (Eq. 

4) requires knowledge of section orientation with respect to the 
crystallographic axes, which is readily obtainable using electron 
backscatter diffraction (EBSD) analysis (Prior et al. 1999; Costa 
and Chakraborty 2004; Costa and Dungan 2005; Hammer et al. 
2010; Kahl et al. 2011; Sio et al. 2013). Without this correction, 
calculated timescales are likely to be inaccurate and imprecise 
(e.g., Fig. 8). Even when D is anisotropy-corrected, and sections 
are taken along the crystal center, 1D models do not result in a 
single timescale, but rather in a distribution around the true 3D 
time. This issue occurs because Equation 4 is strictly applicable 
to transects perfectly parallel to the concentration gradient, which 
is not necessarily the case in our simulations (or in nature) de-
spite appearing parallel on a section. The geometrically correct, 
generalized equation is not easily applicable in practice since 
concentration variations in the third dimension are not known. 
The rapidly advancing field of X‑ray micro-tomography analysis 

may allow an accurate 3D characterization of Fo in olivine in 
the near future (e.g., Pankhurst et al. 2014). Until then, using 
the simpler anisotropy correction formula already improves the 
accuracy and precision of timescales considerably.

We note that the quality of 1D model fits from uncorrected 
D are just as satisfactory as those obtained using a corrected 
D, implying that the goodness of fit is not necessarily a solid 
indicator of the timescale accuracy. Recent works have derived 
timescales in anisotropic minerals using diffusion coefficients 
along the slowest and/or the fastest crystal directions, and ar-
gued that those provide minimum or maximum estimates, or 
potentially encompass the possible range in diffusion times (e.g., 
Pan and Batiza 2002; Ruprecht and Plank 2013; Longpre et al. 
2014). However, even when using the fastest diffusion coefficient 
Dc, our randomly sectioned crystals with real diffusion times 
t3D = 144 h yielded best-fit 1D durations of anywhere between 
10–600 h (cf. Fig. 9). Using the slowest diffusion coefficient Da 
(= Db) would change this range by a factor of 6 (i.e., 60–3600 h). 
Therefore, without correcting for diffusion anisotropy, calculated 
timescales from randomly sectioned olivines can actually span 
anywhere from ~0.1–25× the true diffusion time.

Importance of considering crystal morphology
Multidimensional effects on calculated times are generally 

examined using simple geometries and analytical solutions (i.e., 
spheres, cylinders, and rectangular parallelepiped; Pan and Batiza 
2002; Costa and Chakraborty 2004, 2008; Watson et al. 2010), 
but the addition of morphological complexity of natural crystals 
combined with random sectioning during thin section preparation 
affects the calculated timescales considerably.

The results from our numerical models involving randomly 
sectioned spherical crystals yield longer timescales (cf. Fig. 
8) is opposite to that observed by Pan and Batiza (2002), who 
found that calculated times exponentially decreased toward 
small values, presumably as sections were sampled away from 
their centers. Such shorter times were rarely obtained in our 
simulations because the length of an apparent concentration 
gradient in a given random transect is always equal or longer 
than the true concentration gradient length. Only in cases 
where the transect width shortened closer to the edges did 
1D diffusion times underestimate the true time in spherical 
models (Fig. 5).

For other geometries (rectangular and polyhedral), the con-
vergence of diffusion fronts from different faces typically results 
in a longer apparent concentration gradient, and whether 1D 
modeling of such gradients yields shorter or longer timescales 
also depends on the relationship between apparent composition 
(whether initial plateaus are preserved or not) and the apparent 
width of the profile across the crystal. Zones of interacting dif-
fusion fronts, typically crystal corners, are not good for kinetic 
modeling of timescales.

Relevance of results for other elements, crystal shapes, and 
minerals

The diffusion and crystal sectioning exercise we have done for 
Fe-Mg in olivine is also relevant for other elements, such as Ca, 
Ti, V, Cr, Mn, Co, and Ni since they also show diffusion anisot-
ropy (faster in the c direction; e.g., Petry et al. 2004; Coogan et al. 
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2005; Chakraborty 2010; Spandler and O’Neill 2010). Moreover, 
the provisions dictated by dimensional, interacting diffusion 
fronts and sectioning effects highlighted above will also apply.

The polyhedral morphology we have used contains the most 
common crystal faces of olivines crystallizing in the laboratory 
or in nature (e.g., Faure et al. 2007; Welsch et al. 2009, 2013). 
Nevertheless, even this fairly archetypal olivine can appear in a 
wide variety of aspect ratios, which will presumably influence 
where the zones of interacting diffusion fronts occur, in addition 
to the rate at which the crystal core concentration will be affected 
by the diffusion process (e.g., the short axis of a highly elongate 
olivine). Even more complex morphologies resulting from rapid 
growth (e.g., spinifex, skeletal, or dendritic; Bryan 1972; Faure 
et al. 2003, 2006; Shea and Hammer 2013; Welsch et al. 2013) 
will host more regions of interacting diffusion fronts; therefore 
additional caution is warranted when attempting to perform 1D 
diffusion modeling in such crystals. Our models involving spheri-
cal shapes also displayed departures from the true diffusion times; 
olivines that have rounded rather than faceted habits are thus also 
susceptible to providing less accurate results.

Diffusion modeling of elements has also been recently used 
in feldspars (e.g., Mg, Sr, Ba) and pyroxenes (e.g., Fe-Mg) to 
decipher timescales of magmatic processes (e.g., Costa et al. 
2003; Morgan et al. 2004, 2006; Cherniak 2010; Druitt et al. 
2012; Saunders et al. 2012; Ruprecht and Cooper 2012). Diffu-
sion anisotropy for most elements in these minerals is not well 
characterized or appears to be moderate and should not be an 
important source of uncertainty in calculated times. Other issues 
of merging diffusion fronts and added flux from other dimen-
sions identified in this study are nevertheless expected to apply 
to feldspars and pyroxenes in the same fashion.

Implications

Which sections/profiles are most adequate?
While a suitable correction can be applied for diffusion 

anisotropy in olivine, there is no general quantitative adjustment to 
correct for problems associated with crystal sectioning or dimen-
sional effects because their influence on calculated timescales is 
too dependent on morphology (number and relationship between 

faces, aspect ratio, and roundness). Consequently, rather than at-
tempting to find a posteriori empirical corrections for intersection 
and third dimension issues, attention should be focused on iden-
tifying the best suitable sections for diffusion modeling. In their 
investigation of diffusion in natural garnets, Ganguly et al. (2000) 
noted that uncertainty in calculated timescales can partly derive 
from the profile not being perfectly parallel to the 3D concentration 
gradient. Our results support this notion, although the influence 
of less-than-perfect transect orientation on retrieved timescales is 
less important than not correcting for anisotropy or other section-
ing and/or second and third dimension effects (i.e., diffusion front 
interactions). Typically, the largest errors appear in sections that 
are oblique to crystal faces and generate extended concentration 
gradients. Such gradients are rarely observed in center-cut sec-
tions but much more common in highly off-center cuts. Because 
off-center sections often intersect sets of faces at very different 
angles, they also result in apparent concentration gradients with 
different widths from face to face, and thus often asymmetric. 
Yet another related symptom of off-center cuts is the presence of 
dipping plateaus in the observed gradients (also see Pearce 1984), 
and even in certain cases, the absence of any compositional plateau 
despite the fact that diffusion has not reached the crystal core (also 
see Costa et al. 2003; Costa and Chakraborty 2004).

Aside from problems of intersections, crystals that have no 
compositional plateau at the core (or at the rim in the case of more 
complex zonings) are more susceptible to give inaccurate times-
cales (both under- and overestimates are possible, Supplementary 
Material1) because they are likely to be: (1) either sectioned largely 
off-center, in which case using the apparent observed extremum 
composition as initial is no worse than knowing the initial concen-
tration, or (2) sectioned through their center but having diffused 
long enough to lose the initial concentration. Nonetheless, if no 
better sections are available, an analysis of timescale variability 
and goodness-of-fit as a function of initial concentration can be 
carried out.

We also showed that profiles measured across crystal regions 
containing corners or near face intersections are likely to yield 
incorrect timescales due to interacting diffusion fronts. While one 
it is difficult to ensure that a given section does not cut through 
such a region, it is at least possible to select a profile away from 

Figure 10. Choosing the right 
section and profile. Ten sections of a 
normally zoned olivine display various 
habits and concentration gradients. 
Green check marks and red crosses 
mark the suitability or unsuitability of 
each section for 1D diffusion modeling. 
Green and red dotted lines designate 
adequate and problematic profiles. 
Discarded profiles are labeled according 
to the various symptoms identified. Note 
that “(mf)” designates fronts originating 
from the third dimension, which would 
not be normally recognized in a section. 
For example, the two problematic 
profiles marked (mf) on the seventh 
section would likely be missed and 
considered appropriate for modeling.



SHEA ET AL.: DIFFUSION MODELING IN OLIVINE2040

any apparent face intersection. The same rule applies to any zones 
of the olivine displaying rounding.

In summary, when numerous crystals are available within a 
thin section, simple olivine selection guidelines can be followed 
(examples of suitable and unsuitable thin sections are given in Figs. 
1 and 10). Note that it is assumed here that the work of identifying 
distinct populations with different crystallization/diffusion histo-
ries has already been performed (i.e., populations with different 
zoning styles, e.g., Pan and Batiza 2002; Costa and Chakraborty 
2004; Kahl et al. 2011, 2013), and those guidelines apply to se-
lection of the most suitable crystals within one such population:

(1) When looking for good crystals disregard the smallest 
ones, which have a higher probability of being off-center sections. 
Note that small sections may also be center cuts through smaller 
crystal populations (e.g., Saltikov 1967) since olivine sizes vary 
in real rocks. Even so, smaller populations are more likely to 
experience other issues (loss of initial concentration) and it is 
better to avoid them.

(2) Profiles should be obtained away from crystal corners and 
locations of obvious concentration gradient “rounding” since 
these regions likely experienced merging diffusion fronts. This 
means that complex morphologies (e.g., skeletal olivines) should 
be avoided for 1D modeling considering their propensity to host 
numerous crystal edges and corners. Polyhedral, nicely faceted 
crystals are therefore preferable. More complex morphologies 
can be used but 2D and/or 3D models are probably required to 
recover robust timescales.

(3) If possible, choose olivines that display a clear concentra-
tion plateau but discard those that display dipping plateaus, since 
they are highly off center and/or oblique cuts. Identifying these 
sections is straightforward for Fo zoning since acquiring back-
scatter electron (BSE) images usually suffice to image relative 
variations in major element composition (see Supplementary 
Material1 for examples). In any case, it is recommended to check 
for core compositions using energy-dispersive X‑ray spectroscopy 
(EDS) spots or transects.

(4) Avoid olivine sections that completely lack any concentra-
tion gradient symmetry across the different faces (i.e., different 
gradient widths). Such cuts are often oblique to most faces and 
concentration gradients.

(5) If possible, find crystals that contain at least two suitable 
transect directions perpendicular to two different faces (cf. Fig. 
10). Finding such sections can help: (1) verify that diffusion oc-
curred anisotropically, and thus that gradients are not related to 
growth (Costa et al. 2008), and (2) test the variability of obtained 
timescales within a single olivine.

Providing that a sufficient number of crystal sections are avail-
able, these selection criteria are fairly easy to apply for modeling 
of Fo diffusion. The same is not necessarily true for trace elements 
since compositional variations are not resolved by BSE images. 
Nevertheless, the symptoms of unsuitable olivine sections will 
be the same, and the Fe-Mg content can still be used to perform 
the initial crystal selection process. Finally, once a set of adequate 
sections is identified, the analyst should determine grain orienta-
tion using EBSD (e.g., Costa and Chakraborty 2004) or other 
techniques such as microRaman (Ishibashi et al. 2008), since 
correcting for anisotropy is sine qua non to obtaining accurate 
1D timescales.

What is the accuracy and precision that can 
be expected from 1D modeling?

If the olivine selection criteria described above are applied to 
the sections obtained from the models in this study (100 olivine 
cuts, 2 traverses per crystal), the number of suitable sections 

Figure 11. Accuracy and precision of timescales retrieved from 1D 
models. The time distributions in gray are the raw histograms with 200 
profiles (cf. red curves in Fig. 9) while the red circles show the same 
distributions filtered for “unsuitable” olivines (see text for details). Black 
curves are best-fit Gaussians with accompanying mean and standard 
deviation values.
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typically ranges from ~30 to 70% of the total (Fig. 11). The 
“filtered” sections give few time overestimations and also show 
less prominent secondary modes or shoulders. Gaussian curves 
can be fitted to these distributions, and give mean values that are 
very close to the true 3D time for the three simple zoning styles 
(normal I and II and reverse) as well as the rim-core I zoning, 
(from 145 to 152 h, or an accuracy of 1–2% the total time, Fig. 
11). For core-rim zonings II and III, as well as for longer duration 
(~1152 h) normal zoning II models (Supplementary Material1), 
the mean value underestimates the true value by about half. This 
result is expected since the issues of underestimating timescales 
for these zonings stems from loss of rim plateau concentrations 
and not from poor selection of olivine sections. Irrespective of 
zoning style, the standard deviations or “precision” varies be-
tween 18–32 h, or typically ~15–25% the mean times. Therefore, 
providing the crystal sections are carefully selected, it can be es-
timated that 1D timescales will replicate the true diffusion times 
with a very high degree of accuracy (<5% from the true time) 
and reasonable precision (15–25% the calculated mean time).

How many sections/profiles are necessary to obtain 
accurate results?

The numerical models from this study also allow estimat-
ing the minimum number of concentration profiles required to 
establish the timescale of diffusion in a single olivine population 
accurately. The series of 200 one-dimensional models performed 
using the “reverse” zoning configuration (“raw data”) as well as 
the 66 models that adhered to the criteria above (“filtered data”) 
were used for this exercise. From the raw and filtered data, sets 
of 5, 10, 20, 40, and 60 timescales obtained by 1D models were 
sampled 20 times in a random fashion, and the mean time was 
computed for each subset. This random sampling provides a no-
tion of variability, expressed by the mean of a given distribution 
of timescales as a function of the total number of traverses. For 
the raw data set, increasing the number of analytical profiles 
decreases the variability of obtained mean diffusion times, 
but only for a large number of profiles (40 profiles) (Fig. 12). 
In addition, the calculated means converge around a time t*1D 

Figure 12. Number of concentration profiles necessary to obtain 
accurate diffusion timescales from a given olivine population. Except for 
the data corresponding to a single traverse (left-most points), each symbol 
represents the average of a set of 5, 10, 20, 30, 40, or 60 traverses. Both 
the unfiltered and filtered timescale data sets are shown.

= 170–250 h, which is largely over the true diffusion time of 
144 h. This result is somewhat expected considering the large 
number of time overestimates within the raw data, in addition to 
the non-normal nature of the timescale distribution (cf. Fig. 9b). 
In contrast, the filtered data yields timescales close to the true 
value when at least 20 profiles are used (Fig. 12). Thus, in addi-
tion to following the olivine section guidelines detailed above, 
it is recommended that for a given crystal population about 20 
analytical profiles should be obtained to ensure timescale accu-
racy. Even though the numerical experiments were constructed 
to represent nature inasmuch as practically feasible, the crystal 
populations investigated all derived from one single-crystal size, 
and a homogeneously well-recorded diffusion event of 144 h. 
Therefore, more complex natural cases may warrant more than 
20 transects.
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