The CloudBrowser Web Application Framework

Brian McDaniel

Godmar Back

Department of Computer Science
Virginia Tech

brianmcd@vt.edu

CloudBrowser is a web application framework that sup-
ports the development of rich Internet applications whose
entire user interface and application logic resides on the
server, while all client/server communication is provided by
the framework. CloudBrowser thus hides the distributed na-
ture of these applications from the developer, creating an en-
vironment similar to that provided by a desktop user inter-
face library. CloudBrowser preserves the user interface state
in a server-side virtual browser that is maintained across vis-
its. Unlike other server-centric frameworks, CloudBrowser’s
exclusive use of the HTML document model and associ-
ated JavaScript execution environment allows it to exploit
existing client-side user interface libraries and toolkits while
transparently providing access to other application tiers. We
have implemented a prototype of CloudBrowser as well as
several example applications to demonstrate the benefits of
its server-centric design.

Categories and Subject Descriptors D.2.2 [Software En-
gineering]: Design Tools and Techniques User Interfaces;
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces Web-based Interaction

Keywords web application framework, AJAX, server-cen-
tric, remote display, PaaS, cloud applications

1. Introduction

More and more applications are moving from the desktop
to the web. Web applications can be accessed from any web
browser, regardless of underlying platform, allowing them to
be deployed and updated instantly. Users have begun to ex-
pect rich and expressive user interfaces whose single-page
design mirrors that of desktop applications. At the same
time, users assume that the data on which these applications
operate resides “in the cloud,” which stores any changes im-
mediately and persistently. Increasingly, users expect that

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

SPLASH’12, October 19-26, 2012, Tucson, Arizona, USA.

Copyright © 2012 ACM 978-1-4503-1563-0/12/10. .. $10.00

gback@cs.vt.edu

the state of the user interface is retained across page nav-
igation and sessions so they can pick up where they leave
off.

The creation of such rich Internet applications within the
context of the current web infrastructure is difficult for mul-
tiple reasons. Application developers and framework design-
ers must decide how to split the application’s user interface
code and its business logic between client-side JavaScript
code and server-side code, and how to structure the com-
munication between the client and the server on top of the
stateless HTTP protocol.

Traditional AJAX [18] applications, which are developed
using a mix of client- and server-side programming, fully ex-
pose developers to the underlying infrastructure’s distributed
nature. Developers must write view logic to produce an ini-
tial rendering of the user interface, then implement client-
side controller logic to track the user interface state using
JavaScript, use some variation of AJAX to inform the server
of relevant changes to the application data, and incorporate
any server responses into the HTML document that is ren-
dered for the user. If the user refreshes the page, or makes
use of the browser’s navigation buttons, the ephemeral client
state must be restored from scratch, often using hints stored
on the server, because there is no automatic way of preserv-
ing user interface state.

To address these problems, server-centric AJAX frame-
works [11, 27] move all application logic to the server,
hiding most or all client-side programming from the de-
veloper. Such frameworks maintain the view state for each
visit in a server-side representation, such as a document in a
framework-specific, higher-level markup language that pro-
vides elements that represent user interface components.
These components encapsulate the initial rendering into
HTML, manage the forwarding of client-side events to
server-side controller logic, and handle the propagation of
any resulting updates to the client-side document with which
the user interacts.

Existing server-centric frameworks suffer from multiple
shortcomings. First, since they instantiate components for
each visit, they also do not automatically preserve user in-
terface state across visits. Second, they still require the pro-
grammer to synchronize updates to the application’s model

state across visits. Third, in practice they can make styling
difficult, since the specifics of the rendering strategy used by
these high-level components is encapsulated in their imple-
mentation. Fourth, the necessary computation of incremental
client-side document updates after mutating the server-side
view is tedious and error prone. Fifth, these server-centric
frameworks often do not leverage the numerous JavaScript
libraries that have been developed to facilitate the interac-
tion with HTML documents, and thus cannot leverage the
substantial skill sets developers have acquired.

This paper presents CloudBrowser, a web application
framework that addresses these concerns. CloudBrowser
maintains an application’s user interface state server-side,
as a document in a headless, virtual browser. The applica-
tion logic interacts with the server-side representation in a
manner similar to how a desktop application interacts with
a graphical user interface (GUI) library, by creating and ma-
nipulating components and listening for events fired in re-
sponse to user interactions. This design hides the distributed
nature of the web from the application developer, because
all client-server communication is encapsulated inside our
framework. Clients connecting to application instances mir-
ror the user interface state using a synchronization/update
protocol we have developed. CloudBrowser automatically
interposes on any changes to the server-side document, re-
moving the need to manually compute updates. For effi-
ciency, the actual layout and rendering of user interface el-
ements is performed inside the actual browser by the client,
rather than the virtual browser on the server.

CloudBrowser uses exclusively HTML, CSS, and Java-
Script to express the user interface and its interaction with
the application, allowing us to leverage existing libraries and
developer skill sets, and avoiding any semantic overhead
associated with a translation from high-level components
to low-level components. Since CloudBrowser application
instances persist across visits, this design naturally handles
page navigation and refresh. It also provides a natural co-
browsing ability since it can support simultaneous display to
multiple clients.

CloudBrowser is targeted at developing web applications
in which most user interactions trigger persistent changes to
the application data that is stored on the server, and which
do not require read access to the computed layout from the
controller logic. Where necessary, CloudBrowser can be ex-
tended using traditional client-side components represented
by proxy objects on the server.

We have developed a prototype of our framework and im-
plemented several example applications, including some that
use sophisticated JavaScript libraries. We have found that
our framework greatly simplifies the development of the web
applications we target and that it imposes acceptable latency
overhead and bandwidth costs. We are currently creating a
Platform-as-a-Service (PaaS) infrastructure based on Cloud-
Browser.

2. Motivation

We motivate our approach using several example application
scenarios. First, consider an example application such as the
popular meeting scheduling service Doodle’ (doodle.com).
A user may initiate event scheduling by entering a set of pos-
sible meeting times, which are displayed to potential partici-
pants on a specially crafted webpage. Participants then enter
their name, check boxes indicating their preferences when to
meet, and hit a submit button, which navigates to a new page
that displays their preferences along with the preferences of
all other participants who have entered their preferences so
far.

The user experience of Doodle, as well as many other cur-
rently available similar services, could in our opinion be sig-
nificantly improved. For instance, a user does not see what
other participants have entered until they submit their own,
and subsequently only when they refresh or revisit the page,
even when the potential meeting participants visit the page
at around the same time. In addition, if the process of enter-
ing their name and checking appropriate times is interrupted,
perhaps because the user clicked an ad and navigated to an-
other page and returned to the page, the user will need to start
over. Lastly, if the user overlooks the submit button before
closing the page, their submission will not reach the server
at all, which frequently happens to users accustomed to the
single-click style used in their native OS (i.e., Mac OSX).

Second, consider a social forum application such as Pi-
azza (piazza.com), which provides an interactive Q & A
forum for instructional settings in which students can post
questions to other students and to instructors. From an in-
structor’s perspective, the Piazza user interface presents a
constantly changing dashboard - new questions are being
posted, questions are withdrawn, marked as answered by
other instructors or students, or archived (hidden from view)
after being answered. If the Piazza application is used from
multiple computers (say, the instructor’s work PC, work lap-
top, home PC, and perhaps a mobile device), the dashboard
views are not kept in sync: already answered questions ap-
pear as unanswered when the instructor revisits the class site
after returning home from work, forcing a manual refresh of
the page. When such a refresh happens, some user interface
state is lost - for instance, a different course may be selected,
ahomepage displayed instead of a student posting, displayed
toolbars may disappear and have to be reenabled, or selected
elements in an accordion-style display are not remembered,
requiring the instructor to find the point in the application at
which to resume responding to student questions.

Similar weaknesses apply to applications such as
Google’s Email service GMail. Although it is able to re-
member coarse information about which emails the user has
read, it generally does not remember fine-grained state such
as which emails in a thread the user looks at are shown
in collapsed view and which are not, often requiring man-
ual search to find the relevant email in a given thread. If a

user was working on a draft, they will have to navigate to a
”Draft” folder, find the draft, and continue, which sometimes
results in duplicated edits or even duplicated emails.

Third, consider online tax preparation programs such as
TaxACT (taxact.com). To prepare a tax return under the
United States tax code, taxpayers have to enter income and
expense information, and answer numerous questions to de-
termine their tax burden. Many people visit the tax site mul-
tiple times as documents arrive from their employers or fi-
nancial institutions and need to be entered, or if answer-
ing a question requires off-line inquiries. If the user revis-
its the site, they expect to be able to continue at exactly the
question where they left off. In currently available imple-
mentations, users are instead led to a top-level navigation
point from which they must find out where to continue, and
often have to repeat answering questions they already an-
swered. Similar considerations apply to configuration man-
agement applications that are web-based and which may in-
volve many tabs, dialogs, input fields, checkboxes or radio
buttons, which are often conditionally displayed or hidden
based on a user’s history of navigating through the applica-
tion.

These motivating applications share the following com-
mon characteristics.

e The user interface of these applications is rich, resem-
bling that of a desktop application. Users prefer a single-
page application style that gives them free reign in how
to use the application. The navigation space is typically
large.

e There appears to be little potential for offloading any ap-
plication logic, or keeping application state in the client’s
browser, which is used purely as a display device to dis-
play a view of a model’s state that is kept server-side. In
applications involving multiple users, a lack of immedi-
ate and tight synchronization between the displayed view
of the user interface and the application’s model state
may result in a degraded user experience.

e Users expect, or would prefer, if most or even all interac-
tions with the user interface resulted in persistent effects
independent of the device used to access the application,
and independent of how often they navigate to the appli-
cation.

® The number of users that access an instance of the ap-
plication simultaneously is small when compared to the
number of users a video distribution site such as YouTube
would need to accommodate. This reduces the need for
replication of an application’s state and makes them “em-
barrassingly” horizontally scalable in the sense that any
increase in the amount of dedicated resources yields a
proportional increase in the number of application in-
stances (with disjoint state) that can be supported.

e The frequency with which a user triggers relevant user
interface events is limited by human processing speed

and low when compared to, for instance, video game
applications. For instance, such applications generally do
not require tracking of mouse (move) events.

Current application frameworks make it difficult to main-
tain and synchronize an application’s view on the server. The
dominant model-view-controller (MVC) paradigm views the
client-side user interface as the view component that is con-
trolled by changes in a server-side model that is usually
devoid of user interface state. Programmers must manually
decide which, if any, user interface state they deem impor-
tant enough to include in their models. When a user returns
to a page, an initial view is constructed in response to the
browser’s HTTP request, which often involves constructing
HTML using server-side templating. Any changes resulting
from past interactions with the user interface must be incor-
porated manually into the templating logic, based on saved
model state. Even when such state is kept, it is often asso-
ciated with sessions, which are typically implemented using
cookies that are not synchronized across different devices a
user may use to access an application. Lastly, once a page
displays to the user, programmers must decide which por-
tions of the view they wish to keep in sync, using methods
such as long polling or server push which typically take extra
effort.

3. Developing CloudBrowser Applications

This section presents four examples that illustrate the
paradigm in which CloudBrowser applications can be built.
We start with an example that demonstrates the server-side
execution and compatibility with existing HTML/JS ap-
plications, then discuss how to use observers, templating,
and how to access shared data, and finally present a short
example of how to implement the model-view-controller
paradigm with a database-backed model.

3.1 Simple Document Example

Figure 1 shows an HTML document that contains a com-
plete CloudBrowser application. This application contains
two HTML text <input> elements and a element
whose text content depends on the input the user enters into
the text input fields. This example uses exclusively the DOM
Level 2 API [8] to manipulate DOM elements, and retrieve
and set their attributes. It runs in any DOM-Level 2 compli-
ant browser when fetched via a URL; in CloudBrowser, this
code is run server-side in a virtual browser. This example
demonstrates a key benefit: existing browsers can be used
to test the user interface logic before deployment, because
there is no user interface logic outside the HTML document
describing an application!

Today, most JavaScript developers use higher-level li-
braries such as jQuery [30] rather than the DOM API di-
rectly. Figure 2 shows the JavaScript code of the same ap-
plication, expressed more compactly using the appropriate
jQuery selectors and event bindings. CloudBrowser executes

<html>
<body style="font-family: Arial">
First name: <input id=’fname’ type=’text’ />
Last name: <input id=’lname’ type=’text’ />
Hello !
<script>
var fname = document.getElementById(’fname’),
lname = document.getElementById(’lname’),
output

function onChange () {
output.innerHTML = fname.value + ’ °’

+ lname.value;

fname.addEventListener (’change’, onChange) ;
lname.addEventListener (’change’, onChange);
</script>
</body>
</html>

Figure 1. A simple CloudBrowser application.

this application as well, without requiring any changes to the
jQuery (v1.7.1) library.

$ (’#fname,#1name’) .change (function () {
$(’#output’) .text ($(’#fname’) .val()
+ 2 2 + $(#lname’).val());
b;

Figure 2. CloudBrowser applications can use libraries such
as jQuery for DOM manipulation like the ones used in Fig-
ure 1.

3.2 Meeting Times Example

As the next example, consider the collaborative meeting time
application discussed in Section 2. We prototyped this appli-
cation using CloudBrowser using a model-view-controller
(MVC) approach [10]. Most MVC implementations use
some kind of expression language to bind views to controller
logic that draws from and updates an underlying model.
CloudBrowser facilitates the MVC paradigm by using ex-
isting JavaScript libraries originally designed for client-side
use. For example, the popular Knockout [31] client-side li-
brary gives a concise syntax for associating DOM elements
with model data, provides for the automatic update of the
UI when the model state changes through observers and ob-
servables [17], and provides templating facilities to gener-
ate DOM elements based on a model. Being designed for
the client portion of traditional AJAX applications, Knock-
out uses the term Model-View-View Model (MVVM) to ex-
press the assumption that the client-side UI ("View”) is syn-
chronized with a collection of JavaScript observables (" View
Model”) which is separately synchronized with the actual
model that is kept server-side. When running Knockout in
CloudBrowser, the ‘view model’ and the actual ‘model” be-

= document.getElementById(’output’) ;

§ e SEEN ™ - - ey X

mMaetmg Schedule App N W -~ - - -

C | @ theta.cs.vt.edu:3000/browsers/37d0167a891b39 *H*Escffjw#a,,ﬂg] l“ \“l

Pmkameﬂmgume

|
April April April April April
Tue 17 Wed 18 Wed18 Fri20 Fri 20
| 12:00pm - 9:15am- 2:45pm- 9:15am- 2:45pm -
2:00pm 11:15am 4:45pm 11:15am 4:45pm
Brian v x v ® v
Godmar x v v ® x

Figure 3. User interface of meeting time application.

<table>
<thead>
<tr><th width="25%"></th>
<!-- ko foreach: times -->

<th class="d-month container"
data-bind="text: getMonth()"></th>
<!-- /ko -->
</tr>
</thead>
<tbody data-bind="foreach: participants">
<tr class="participant-row">
<td class="container">
<a class="close" data-bind="
visible: !editing(),
click: $parent.removeParticipant">x
<span data-bind="
visible: !editing(),
click: function () {
editing(true)
1,
text: name">
<input data-bind="

visible: editing,
value: name,
hasfocus: editing"></input>
</td>
<!-- ko foreach: available -->
<td class="container" style="text-align: center"
data-bind="
text: $data.avail() 7 ’\u2714’ ’\u2716’,

1$data.avail(),
$data.avail ()},

css: { ’alert-danger’:
’alert-success’:
click: function () {

$data.avail(!$data.avail());

3>
</td>
<!-- /ko -=>
</tr>
</tbody>
</table>

<button data-bind="click: addParticipant">
New Participant
</button>

Figure 4. Excerpts of the meeting time application.

function Participant(name, editing) {
this.name = name;
this.editing = ko.observable(editing);
// ...

}

function Time(start, duration) {
this.getMonth = function ...
/7 ...

}

var appModel = {
times: ko.observableArray([

/...
D
participants: ko.observableArray(),
addParticipant : function () {

appModel .participants.push(
new Participant(’New Participant’, true));

},
removeParticipant : function (participant) {
appModel .participants.remove(participant) ;
}
I

ko.applyBindings (appModel) ;

Figure 5. The view model for the meeting time application.

// if running in CloudBrowser, provide a
// JSON service to obtain current data
if (typeof require == "function") {
var http = require(’http’);
http.createServer (function (req, res) {
try {
res.writeHead (200, {
’Content-Type’:
’application/json’});
res.end(ko.toJSON(appModel), ’utf-8’);
} catch (err) {
res.writeHead (500);
res.end(’Server Error: ’ + err);
}
}) .1isten(1337);
}

Figure 6. Exporting the view model as a JSON service.

come one and the same, eliminating the need for program-
ming any client-server interaction.

Figure 4 shows relevant excerpts of the HTML describ-
ing this simple application, shown in Figure 3. An HTML
table’s headings are created from an array of possible meet-
ing times, while its rows correspond to participants who
have indicated their availability. Participants can toggle their
availability, edit their names, or remove themselves from the
schedule via mouse clicks. The set of participants and their
availability is recorded in an underlying JavaScript object,
which makes use of the observable pattern. For example,

Cloud Browser Chat Home Chats

CloudBrowser Mode.js

Send

| 4 1 3

e

Figure 7. A screenshot of a simple chat room application.

clicking on a name trigger the corresponding ’click’ data
binding, which results in a transition to the editing state. In
this state the <input> box is visible via the visible bind-
ing and its value is tied to the participant’s name. The ’css’
binding applies different styles (red vs. green) depending on
the currently indicated availability.

Figure 5 displays excerpts of the associated JavaScript
code. Knockout’s applyBindings code ensures that any
changes to the observable members of the appModel object
are reflected in changes of the DOM. When run in Cloud-
Browser, multiple users can use the URL at which the ap-
plication is available. Any changes made by any user are
displayed in real-time to all connected users. Moreover, if
a user closes their browser and later reconnects, even from a
different browser using a different session, they will be able
to rejoin this meeting application.

Like the example shown in the previous section, we were
able to program and test the entire logic offline using a
web browser within the confines of a JavaScript sandbox.
Figure 6 shows how to add interaction with the outside
world. Using node.js’s http package, a simple HTTP server
can be created that provides a JSON [12] service that exports
the current results.

3.3 Chatroom Example

We prototyped a simple chatroom application, shown in Fig-
ure 7, to highlight two additional features of CloudBrowser.
Like the meeting time application, the chatroom keeps track
of model state (in this case, chat messages) in a JavaScript
object and updates observables when it changes. Unlike
in the previous example, multiple virtual browsers are in-
stantiated since each user may be at a different navigation
point. For instance, users may have joined different chat-

<div id="chat-tabs" data-bind=’foreach: myChats’>
<div class=’tab-pane’
data-bind="visible:

$root.activeRoom() === $data">
<textarea rows=’20’ data-bind=’value: messages’>
</textarea>
</div>
</div>

<input type=’text’ size=’160’
data-bind=’value: currentMessage’>
</input

<button data-bind=’click: postMessage’>Send</button>

Figure 8. An excerpt of chat room application view respon-
sible for displaying chat messages. The *foreach’ binding
duplicates its contained DOM nodes for each chat room that
the user has joined. The ’visible’ data binding ensures that
only the currently selected chat room is shown. The mes-
sages’ binding displays the chat messages for a room.

rooms. CloudBrowser allows the sharing of state across vir-
tual browser instances, thus allowing observers in all in-
stances to be notified when a new message appears in a
chat room. An excerpt of the view expressed using Knock-
out bindings is shown in Figure 8. For instance, the “data-
bind="value: messages’” attribute inside the <textarea> el-
ement ties the textarea’s content to the array of chat mes-
sages.

The second key feature demonstrated by this example is
the possibility for reusing higher-level UI libraries designed
for client-side use. For instance, the Bootstrap/JS library [1]
is used to implement a set of tabs (one per chatroom), which
are declared using HTML and <1i> elements. When
the document is loaded, additional DOM elements and styles
to represent actual tabs will be produced. The number of
tabs, and their labels, are thus tied directly to the number
of chatrooms that are accessible. The ability to run such
widgets is crucial for creating a rich user experience.

3.4 Phonebook Example

Whereas the preceding chatroom example used in-memory
JavaScript variables to represent its model state, a more
typical scenario is the use of a persistent store such as a
relational database. We provide a simple example of a phone
book application whose entries are backed by a database. We
use the Sequelize [15] Object Relational Mapping package
to map JavaScript objects to a MySQL [2] database.

Figure 9 shows the HTML template that lists phone book
entries and renders them in a table using Knockout’s text
data bindings. The phone book entry objects whose proper-
ties (e.g., 'fname’, ’Iname’) are referred to in these bindings
are constructed directly from the database. Figure 10 shows
a screenshot of the resulting application.

The view model for the application is shown in Figure 11.
Here, some glue is necessary to construct a view model suit-
able for use in Knockout, which wraps the sequelized phone

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody data-bind="foreach: entries">
<tr data-bind="click: $parent.rowClick">
<td data-bind="text: fname" /></td>
<td data-bind="text: lname" /></td>
<td data-bind="text: phoneNumber" /></td>
</tr>
</tbody>
</table>

Figure 9. The ’foreach’ data binding is used to map
database entries to table rows.

e(=) .

3 C @ theta.csvtedu:3000/brov 38 | X

O VirtualBrowser: eb21al8fab

First Name Last Name Phone Number

| Fred Flintstone 323 555 2121
Wilma Flintstone 323 555 2122
Barney Rubble 323 555 2211

Add Entry
First Name: Betty
Last Name: Rubble

Phone Number: 323 555 2212

‘ Save Delete

Figure 10. A simple database-backed phone book applica-
tion.

book entries that are mapped to the database. The callback
functions which are invoked for the *Save’ and ’Delete’ ac-
tions directly affect the persistent storage using methods pro-
vided by the reconstituted objects. This example demon-
strates how CloudBrowser applications can avoid separate
client- and server-side representations of their data, creating
the appearance of a non-distributed environment in which
application objects can be mapped to database records.

4. Design and Implementation

We chose the open source Node.js [14] JavaScript exe-
cution environment for our prototype, for multiple rea-
sons. First, Node.js is based on Google’s V8 JavaScript en-

var vm = {

entries : ko.observableArray(entries),
currentEntry : ko.observable(),
rowClick : function () {

vm.currentEntry(this);
},
save : function () {
this.save(); // persist to db
vm.entries.remove(this);
vm.entries.push(this);
vm.currentEntry(null);
},
remove : function () {
this.destroy(); // remove from db
vm.entries.remove(this);
vm. currentEntry(null) ;
},
create : function () {
this.currentEntry(phoneBook.createEntry()) ;
}

};

Figure 11. View model used in phone book application.

gine, which represents the current state of the art with re-
spect to execution performance. Second, Node.js’s devel-
oper community provides many packages we use, such as
the JSDOM JavaScript library [20] or the Sequelize [15]
object-relational mapping, and many others which provide
an environment that facilitates access to other application
tiers. Third, Node.js provides a single-threaded environ-
ment whose semantics matches exactly the familiar execu-
tion semantics found in today’s browser. Fourth, Node.js’s
event-based design provides for fast and efficient I/O, al-
though it requires the programmer to rearrange (i.e., stack-
rip [9]) their application to handle all I/O completion in
asynchronously invoked callbacks.

Figure 12 shows an overview of CloudBrowser’s design
and components. The left half of the figure shows the client
engine, which uses an update protocol to communicate with
a virtual browser instance executing inside a server-side
JavaScript virtual machine, shown on the right half of the
figure. This section discusses the application life cycle, the
client and server engine implementations, and the update
protocol used by CloudBrowser applications.

4.1 Application Life Cycle

If a client sends an HTTP request to a configured applica-
tion entry point (say /example/index.html), the Cloud-
Browser server starts a new virtual browser instance, cre-
ates an entry point for it (such as /browsers/2e90b4b3/
index.html), and redirects the user’s browser to that en-
try point. This browser URL is valid for the lifetime of the
virtual browser instance. It may be shared among multiple
users wishing to interact with the same application.

When a virtual browser accepts a new client, it sends a
small amount of HTML along with JavaScript code to boot-

PageLoaded(records)
DOMNodelnsertedIntoDocument(records)
DOMNodeRemovedFromDocument(parent, target)
DOMAttrModified(target, name, value)
DOMPropertyModified(target, property, value)
DOMCharacterDataModified(target, value)
DOMStyleChanged(target, attribute, value)
AddEventListener(target, type)

PauseRendering()

ResumeRendering()

Table 1. Client Engine RPC Methods

strap the client engine. The client engine then requests the
current state of the virtual browser’s DOM, which is re-
trieved and sent by the virtual browser’s server engine. Un-
like in a traditional AJAX application, refreshing or navigat-
ing to the browser URL does not discard and re-initialize the
virtual browser’s document. Clients can disconnect and re-
connect while the application instance’s state is preserved in
the context of the virtual browser document.

Virtual browsers pose a resource management problem.
Our current implementation provides an administrative mod-
ule to list, inspect and terminate instances. When used in
connection with user authentication, it allows the implemen-
tation of such policies as limiting each authenticated user to
at-most-one browser instance for a configured application so
that the inadvertent creation of multiple, separate instances is
prevented. Alternatively, users may maintain and select from
multiple instances. Conversely, it is also possible to imple-
ment single-instance applications in which there is at most
one virtual browser instance shared by all users.

If virtual browser instances are not terminated manu-
ally, CloudBrowser supports an idle timeout after which a
browser is terminated if no clients interact with it, allowing
for automatic garbage collection. If necessary, a callback al-
lows an application to save any transient state before termi-
nating.

4.2 Client Engine

The client engine is responsible for receiving and rendering
the initial state of the virtual browser’s document, as well as
for handling events on the client and receiving and rendering
any updates to the document. We use a remote procedure
call (RPC) abstraction to structure this communication. This
RPC layer is implemented on top of a bidirectional message-
based transport provided by the Socket.io [6] JavaScript
library, which in turn encapsulates a number of underlying
transport mechanism (web sockets for browsers that support
them, or other AJAX-based long polling mechanisms such
as Vault [34]).

At initialization, the client engine creates a connection
to the server engine and establishes an RPC endpoint. This
endpoint provides the methods shown in Table 1. The server

Web Browser

Virtual Browser

Server-side JS Environment (node.js)

Forwards Events JS Web Application
Client Engine €= ———— > Server Brsing ul CSS, Images
\z\:/eb So;ket &] Parses \ HTML
onnection
N~ ___—— N i s
. n Di h
Listens Applies Sends Updates E\Zﬁ? es() 8::?\:5 Data :Bindings Libraries (jQuery,
for Events Updates & knockout)
\ M
.y DOM
Update Adds Event JavaScript
Protocol erer Application podeis Other Tiers
|/ Code Libraries
Modifies DOM
JSDOM, Contextify
Figure 12. CloudBrowser Architecture Overview
processEvent(event) ciated with them in the virtual browser application. Instead,

setAttribute(target, attribute, value)

Table 2. Server Engine RPC Methods

Property| Type Description

type String | The type of node: text’ or ’ele-
ment’ or ’comment’

id String | The node’s unique identifier.

owner- String | The id of the document to which

Documen this node belongs

parent String | The id of this node’s parent
node.

name String | For element nodes, the type of
element (e.g. ’div’)

value String | For comment and text nodes, the
content of the node.

attributes | Object | The node’s attributes, in with
object properties as attribute
names and property values as at-
tribute values.

Table 3. DOM Node Record Format

engine then performs a pre-order traversal of the DOM tree,
which results in a serialized representation of the DOM’s
nodes that is sent to the client engine in JSON format, us-
ing the ’PageL.oaded’ RPC method shown in Table 1. Each
DOM node is assigned an id that can subsequently be used to
refer to it. The client engine reconstructs the DOM by inter-
preting the received representation. Table 3 shows the record
format used in this JSON representation.

The client engine must listen for and forward any client
events to the server engine. The client engine does not keep
track of which specific elements have event listeners asso-

it exploits capturing event handlers as defined in the DOM
Event specification. Any event that results from a user in-
teraction is first dispatched to capturing event listeners as-
sociated with the event target’s ancestors, starting with the
document root. The client engine intercepts the event here,
encodes the event in a message, and forwards it to the server
engine. The event’s ’stopPropagation’ and "preventDefault’
methods are then invoked to prevent the browser from fur-
ther processing the event. Preventing the default actions
means that, for instance, clicks on links represented by <a>
elements do not result in the user navigating away from the
page. Instead, default actions are processed by the server en-
gine and any resulting updates are propagated to the client.
Instead of having the client engine blindly listening for all
possible event types, the server engine infers which events
are actually being listened for in the server-side document by
intercepting calls to the addEventListener API. When a
server-side event listener is added, the AddEventListener
RPC is invoked at the client, instructing it to add a cap-
turing event listener for that event type. This optimiza-
tion avoids excessive client-server traffic for high-frequency
event types such as mouse movement events unless the appli-
cation makes use of them. Certain types of events are always
listened for on the client, such as mouse clicks, to avoid the
inadvertent execution of client-side default actions.

4.3 Server Engine

The server engine is part of the implementation of each
virtual browser instance. It comprises an HTML parser and
a complete implementation of the DOM Level 2 and DOM
Event APIs, based on the JSDOM library [20].

The server engine processes forwarded events sent by the
client engine(s) with which it maintains connections. Table 2
shows the RPC methods exposed by the server engine’s en-

try point. Besides the main processEvent method, which
clients invoke when forwarding events, the server provides a
setAttribute method that allows a client to set certain el-
ement attributes that might be accessed from within event
handlers. For instance, when a ’change’ event fires on a
<input> field, the change event listener expects to be able to
access the current "value’ attribute of the <input> element.

The processEvent method dispatches the received
event to the server document according to the DOM Event
specification, invoking registered event listeners and/or per-
forming the default actions for certain events (e.g., nav-
igation when a ’click’ event is dispatched on a <a> an-
chor). These event listeners are typically part of the applica-
tion’s controller code, and may directly or indirectly result
in changes to the server side document. The server engine
uses aspect-oriented techniques [22] (e.g., advices associ-
ated with the DOM manipulation methods) to interpose on
any changes to the server document. Consequently, unlike
in server-centric frameworks such as ZK [11], neither the
server document implementation nor the application code
incur any additional implementation burden to ensure that
server document changes are propagated to the client.

The interposed advice code invokes the client engine’s
DOM* methods shown in Table 1. To reduce the number of
calls to the client, we do not send a DOM node until after it
has been attached to the server document. Frequently, user
interface libraries build complex structures of unattached
DOM nodes before inserting them into the document. Send-
ing these nodes to the client when they are inserted allows us
to batch such updates by sending a serialized array of records
representing a node and all its descendants.

An event listener will typically cause multiple up-
dates to the server document. If these were sent to the
client and immediately applied to the client’s document,
flicker would result since the browser will re-render the
document after delivering each RPC request. To avoid
these unnecessary rendering cycles and prevent the associ-
ated flicker, the server surrounds all DOM updates occur-
ring during an event handler with PauseRendering and
ResumeRendering calls. PauseRendering instructs the
client engine to buffer any DOM updates it receives until
it receives the ResumeRendering call, at which point all
DOM changes are applied to the client document. Batching
the execution of multiple RPC requests by the client engine,
rather than the server engine, allows us to reduce latency by
overlapping the transmission of requests with the computa-
tion of additional requests.

To reduce the bandwidth consumption associated with
client/server RPC calls, we exploit two compaction methods
that are applied transparently to reduce the size of each RPC
request message. First, instead of using method names, we
use a numbered encoding for each RPC method. Since we
do not use an IDL compiler, the encoding table is built

dynamically by the server engine, and the method codes are
broadcast to all connected clients as necessary.

Second, instead of sending full DOM records as JSON
objects based on the format shown in Table 3, we use a po-
sitional encoding that avoids repeating the property names
and omits those properties that are not used in a particu-
lar call. These encoding operations are implemented trans-
parently in a separate layer whose code is shared between
client and server and which is downloaded as part of the
bootstrap library. Additional compression techniques such as
GZip compression could be applied by the underlying trans-
port, although web sockets currently do not support any.

In addition to dispatching client events and forwarding
DOM modifications to the client, the server engine must
provide a faithful implementation of the host environment
in which the application code’s can run. As discussed in
Section 3, our goal is to provide an environment that is
nearly indistinguishable from the environment familiar to
web developers writing ordinary JavaScript code that op-
erates on a client document. To achieve this goal, we im-
plemented host methods such as ’setTimeout’, *setInterval’,
"XMLHttpRequest’ etc. using Node.js’s and V8’s facilities.
We created a helper library, Contextify, which allows us to
bind a JavaScript object whose properties contain the im-
plementations of these methods to a V8 context such that
these properties are visible in the global scope to JavaScript
code executing in this context. This library ensures invari-
ants upon which JavaScript libraries rely, such as the invari-
ant that global variables appear as properties of the object
to which window is bound, as well as corner cases such as
the expression window === this, which must yield true
within the global scope.

4.4 Styling and Layout

The server engine includes a resource proxy and translator
for style sheets and other resources used by an application.
We rewrite references to those resources so that they refer to
the rewritten resource. We maintain application-defined CSS
style classes, element ids, and element hierarchy, allowing us
to send the style sheet mostly unchanged to the client, except
where there are references to other resources (e.g. @import,
or url() in background-image).

Unlike remote display systems such as Opera Mini [3]
or SkyFire [5], CloudBrowser does not layout or render
HTML components server side. We deemed it too expensive
to re-compute the layout inside the server engine, and we
also discarded the idea to send computed layout information
from the client to the server for the simple reason that it is
difficult to predict which properties the code might access.
Moreover, when supporting multiple, simultaneous visitors
to the same CloudBrowser instance, we cannot assume that
they use identical screen sizes.

As a result, JavaScript code that accesses layout proper-
ties that are computed post layout, such as ‘offsetWidth,” will
not work. Some JavaScript libraries use such information to

O VirtualBrowser: e7dd30 \yar

€ C @ theta.csvtedu3000/t 39 X
Selected date: Mon Jan 23 2012
| - January 2012 >

Su Mo Tu We Th Fr Sa
.1123456?

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28
| 29 30 31

Figure 13. Encapsulating the YUI-3 DatePicker component
in CloudBrowser

position elements based on the actual size of content or the
size of the viewport. Often, though not always, the desired
effect of such computations can be expressed using style
rules, particularly when targeting browsers that support the
newer CSS3 standard. We note that CloudBrowser does sup-
port the manipulation of CSS styles via JavaScript, e.g., set-
ting elem.style.display = ’block’ or $.addClass
works.

We have observed a trend in the web design community
away from directly accessing layout properties and relying
on CSS properties instead wherever possible. For instance,
the Bootstrap CSS library used by Twitter.com and other ma-
jor websites minimizes the use of JavaScript. For instance,
many cases where JavaScript accesses and manipulates po-
sition information can be expresses via CSS’s fixed and ab-
solute positioning. JavaScript-based animations can be re-
placed via CSS3 transitions; in fact, modern JavaScript li-
braries default to their use when it is available.

4.5 Client-side Components

For applications whose user interface cannot be expressed
using CSS style rules, we provide a mechanism to embed
client-side components in a CloudBrowser application. This
mechanism is based on the observation that well-designed
user interface libraries, such as the Yahoo! User Interface
Library, Version 3 (YUI-3) [7], are typically designed to
coexist with other JavaScript code in the same page, and that
they provide their functionality encapsulated in components
that can be instantiated as JavaScript objects. We provide
client-side and server-side glue code for these components
that allows them to be included in server documents. The
client-side code includes the original component library’s
JavaScript code, instantiates client-side components, inserts
them into the client document, registers event handlers, and

<script>

window.addEventListener(’load’, function () {
var vm = { selectedDate : ko.observable() };
ko.applyBindings (vm) ;

var picker = cloudbrowser.createComponent (

’calendar’,

document .getElementById(’datePicker’),

{ // options
height : ’100px’, width :
showPrevMonth : true,
showNextMonth : true

b;

»300px’,

picker.addEventListener (’Calendar:dateClick’,
function (e) {
var date = new Date(e.info.date)
vm.selectedDate(date.toDateString());
B
b
</script>

<body style="font-family: Arial">
<div>Selected date:

</div>
<div id=’datePicker’></div>
</body>

Figure 14. Encapsulating the YUI-3 DatePicker component
in CloudBrowser

provides way to set a component’s properties. For instance,
for a component such as a slider, the client glue code may
set/get the slider’s value, and register event handlers to listen
for value changes. Like for ordinary events, the client-side
glue forwards those events to the server engine.

The server-side glue code allows the application to in-
stantiate components, which returns a server proxy object
that the application code can use to interact with the com-
ponent. For instance, the application can attach event listen-
ers to this proxy object, which are fired when the client-side
event listener fires and forwards the corresponding event to
the server engine. We provide a cache to support direct ac-
cess to properties. For instance, if application code accesses
the ’value’ property of a proxied slider component, it will
obtain the last known snapshot of the component’s ’value’
property. All component-related events send a copy of a
component’s properties to the server engine, allowing it to
update this cache before executing event handlers.

As a proof of concept, we have implemented the glue
code for two components, YUI-3 Slider and DatePicker (cal-
endar) components. Figures 13 and 14 show how such com-
ponents can be integrated in a CloudBrowser application.
The ’CloudBrowser.createComponent’ API encapsulates ac-
cess to the server-side glue for each supported components.
We were able to encapsulate these components with rela-

Virtual
Browser

appl
Server Virtual
(multi Browser
multi-
Client
process) Virtual
Browser 3
rowser

Front-end Server

app2 Server
(single-process)

Virtual Virtual
k Browser Browser

\

Figure 15. Load balancing across multiple CloudBrowser
instances.

tively little effort; because of YUI-3’s inheritance-based de-
sign, much of the code is reusable to support the inclusion of
other components.

Providing support for components required changes to
our DOM event capturing model in the client engine, as
some events are now handled locally and must be passed
through so the local browser can process them. In addition,
the PageLoaded call was extended to instruct the client en-
gine to load and instantiate the needed component libraries
and instantiate the client-side glue.

4.6 Multiprocess Implementation

Single-threaded, event-based servers such as Node.js have
the potential for high performance [28, 29, 37], but they can-
not take advantage of multiple CPUs or cores. Moreover,
long-running event handlers that involve such tasks as the
parsing of large HTML documents delay the processing of
subsequent events, increasing request latency. To overcome
this problem, we defined a load balancing architecture that
allows CloudBrowser instances to be distributed across mul-
tiple processes on a single machine or multiple machines, as
shown in Figure 15.

Our architecture allows for flexible mappings of vir-
tual browser instances to OS-level processes - each virtual
browser may have its own dedicated process, or multiple
virtual browser instances may share one process. Such co-
location is required only if an application shares JavaScript
state across instances.

A front-end server hands off requests to a server that
manages instances for each application. Our current imple-
mentation uses client-side redirection (via a 301 HTTP re-
sponse), but other mechanisms such as passing of sockets via
sendmsg(3) could be used. For multi-process arrangements,
the application server forwards requests and responses via an
inter-process communication mechanism (i.e., Unix pipes).
Since this arrangement leaves the application server involved

in each request/response, we are currently exploring how to
extend the Socket.io library to support the handing off of
an established web socket connection directly to the corre-
sponding process.

5. Evaluation

We have evaluated our prototype in terms of memory usage,
event-processing latency, bandwidth consumption, and the
completeness of our server-side DOM implementation.

5.1 Memory Usage

We measured two aspects of memory usage: the cost of allo-
cating a virtual browser and the additional cost of adding a
client to an existing virtual browser when co-browsing. We
created a benchmark application that spawns an instance of
the CloudBrowser server and connects a configurable num-
ber of clients to it. The clients can connect to existing virtual
browsers or force the creation of new ones. In between each
connection, we force a full garbage collection cycle on the
server and record memory usage as reported by Node.js pro-
cess.memoryUsage() API, which reports the size of the live
heap maintained by the V8 virtual machine.

The memory requirements of a virtual browser depend on
the size of the HTML document describing the application,
as well as the amount of CSS stylesheets and JavaScript
code, which must be parsed and compiled by the V8 engine.

Using our x86_64 Node.js implementation, we found the
base memory consumption for an empty browser (with just
3 DOM nodes for <html>, <head>, and <body>) to be 164
KB. Including the jQuery 1.7.2 library and the Knockout.js
2.0.0 libraries increases this consumption by 1.05 MB and
0.33 MB, respectively. The chat application discussed in
Section 3.3, which in addition includes the Bootstrap CSS
stylesheets, consumes about 2.6MB per browser instance.
We see 2 opportunities for optimizations that have the po-
tential to reduce this memory usage drastically. First, the
V8 engine could recognize if the same JavaScript code is
included in multiple browsers and transparently share the
resulting intermediate representations and machine code, a
technique commonly exploited in multitasking Java virtual
machines such as MVM [13]. Second, the CSS implementa-
tion could similarly recognize when style sheets are included
multiple times and share the immutable portions of their rep-
resentation.

Adding additional clients to an existing virtual browser
adds only minimal overhead of about 16KB per connec-
tion, independent of the memory consumed by the virtual
browser.

5.2 Latency

To measure latency, we ran a single-process CloudBrowser
server on a server machine with 2 AMD Opteron 2380
2.5GHz quad-core processors and 16GB of RAM. Our sim-
ulated clients run within multiple processes (100 clients per

<html>
<head></head>
<body>
<div id=’target’></div>
<script>
var count = O0;
var div = document.getElementById(’target’);
div.addEventListener(’click’, function () {
div.innerHTML = ++count;
B;
</script>
</body>
</html>

Figure 16. The example application used in the latency
tests.

1400

' Iaten‘cy
1200 t

1000 |
800 | m=139271

600 |

Latency (ms)

400 |

200 |

0 100 200 300 400 500 600 700 800 900 1000
MNumber of Clients

Figure 17. The average latency for all connected clients
when running the application in Figure 16 with increasing
numbers of clients. In this experiment, clients sent new re-
quests immediately upon receiving a response to their previ-
ous request.

350

" latency ——

300 t
250
200

150 ¢

Latency (ms)

100
50

0

0 100 200 300 400 500 600 700 800 900 1000
Number of Clients

Figure 18. The average latency for all connected clients
when running the application in Figure 16 with increasing
numbers of clients. In this version of the experiment, clients
paused for between 1 and 5 seconds using a uniformly ran-
dom distribution before sending subsequent events.

process) on a separate machine with an Intel Q9650 quad-
core 3.00GHz processor with 8GB of RAM. The 2 machines
were connected via a Gigabit LAN.

The simulated clients each connect to the CloudBrowser
server and request a new virtual browser instance. The
CloudBrowser application used is shown in Figure 16. The
clients send a click event object corresponding to a click
on the DIV element, which triggers an event handler that
modifies the DOM by setting the innerHTML property of an
element, which triggers the necessary RPC requests to the
client (in this case, a DOMNodeRemovedFromDocument
followed by a DOMNodelnsertedIntoDocument call). The
client measures the elapsed time between sending the event
and receiving the resumeRendering RPC call, signifying
the end of the DOM updates for that event. Once a client
receives a response, it sends another event. This simulates
a user that interacts with a page, waits to see the results of
their action, and then interacts with the page again. To model
a more realistic use case, we added a uniformly random de-
lay between 1 and 5 seconds before the client submits the
next request, modeling the frequency with which a human
might interact with the application.

We measured the average latency for each client while
increasing the number of connected clients (up to 1000,
with a step size of 50). Each step was run with fresh
CloudBrowser server and client processes. When clients are
sending requests back-to-back, latency increases linearly by
about 1.4ms per client for this particular interaction, which is
shown in Figure 17. The different arrival process that results
from a 1-5 second delay that models active human users re-
sults in the latency characteristics shown in Figure 18. These
results show that for this benchmark, a single CPU can sup-
port up to 600 clients interacting with an equal number of
virtual browser instances before the average delay exceeds
37 ms. These results were obtained over a LAN; a WAN
deployment would incur added latency equal to the connec-
tion’s TCP round-trip time, which primarily depends on the
propagation delay introduced by geographical distance and
the queuing delay due to network congestion. As a point
of comparison, Keynote’s Internet Health report considers
latencies of less than 90ms between major US backbone
providers “healthy” [21].

A well-known result from usability engineering research
[25] holds that response times of less than 100ms feel instan-
taneous to the user, and that response times between 100ms
and 1 second, while noticable, allow uninterrupted work-
flows. Our results show that CloudBrowser is able to sup-
port an acceptable number of users economically for appli-
cations that benefit from the interaction style that motivates
our approach. We expect that the use of multiple processes,
as discussed in Section 4.6, could further increase the num-
ber of supported clients without adding significant latency,
especially when connections are handed off to separate pro-
cesses.

Client Engine 7.44KB
Socket.io Client | 8.18KB
jQuery 29.09KB
Base HTML 771 bytes

| Total | 45.46KB |

Table 4. Sizes of static bootstrap files.

Site Snapshot Raw

Size HTML
twitter.github.com/bootstrap | 276.03 KB | 82.06 KB
news.ycombinator.com 54.60 KB | 22.92 KB
ebay.com 123.87 KB | 70.86 KB
reddit.com 169.57 KB | 84.03 KB

Table 5. Comparing CloudBrowser snapshots with the
equivalent HTML that would be sent to a regular browser.

5.3 Bandwidth Consumption

Although not as important as latency, bandwidth consump-
tion is an important performance indicator, particularly in
cloud environments. CloudBrowser consumes bandwidth
during the bootstrapping process, to download an applica-
tion’s initial DOM snapshot, and for client and server engine
RPCs. This section provides estimates for each of these com-
ponents. We instrumented our server to count the number of
bytes sent and received at the TCP level. We selected the
web socket transport mode for the client/server communica-
tion and used Google Chrome (v16) as our client browser.

Table 4 shows the sizes of the bootstrap files sent to
the client. The JavaScript code (our Client Engine, and the
Socket.io Client and jQuery libraries we use) is minified and
GZip-compressed. Their bandwidth consumption is small
when compared to the amount of JavaScript code that is
transferred to clients in contemporary AJAX applications,
and they can be cached across different applications.

Table 5 compares the initial DOM snapshot sent to a
CloudBrowser client compared to the equivalent HTML that
would be sent to a regular browser when loading the same
page for selected URLs. The record-based serialized rep-
resentation of the DOM snapshot eliminates the need for a
parser, but introduces an increase in size ranging from 1.7x
to 3.4x when considering uncompressed sizes. As mentioned
in Section 4.3, web sockets do not currently support GZip
compression, although such an optimization is being consid-
ered [38]. GZip compression at the web socket layer would
transparently reduce the required bandwidth.

The bandwidth consumed during server engine RPC calls
is small, typically around 300 bytes for serialized events. A
setAttribute call, if required, adds an additional 70-80
bytes. The bandwidth consumed for client engine calls de-
pends on the number of DOM elements changed; we would

Test Suite Pass | Total | % Passed
Core 1306 | 1309 99.77
Callbacks 418 418 100
Deferred 155 155 100
Support 28 38 73.68
Data 290 290 100
Queue 32 32 100
Attributes 453 473 95.77
Events 476 482 98.75
Selector (Sizzle) 310 314 98.72
Traversing 297 298 99.66
Manipulation 530 547 96.90
CSS 58 93 62.37
AJAX 329 349 94.26
Effects 367 452 81.19
Dimensions 61 83 74.49
Exports 1 1 100
Offset N/A

Selector (jQuery) N/A

Table 6. jQuery Test Suite Performance

expect a similar ratio when compared to the size of an equiv-
alent HTML representation as for the initial DOM snapshot.

5.4 DOM Conformance

To measure the completeness of our virtual browser imple-
mentation, we have used the jQuery test suite (version 1.7.1),
which includes 5828 tests that exercise all aspects of the
jQuery JavaScript library. We run the tests in their unmod-
ified QUnit test harness inside a virtual browser, which we
visit to observe the results.

The results of running the jQuery test suite are shown in
Table 6. The results show that our server document imple-
mentation is mature enough to pass a majority of the jQuery
tests. This result, which reflects the implementation effort in-
vested so far by us and the developer community supporting
JSDOM, indicates that a complete server-side implementa-
tion of DOM specification is feasible with additional engi-
neering effort. We use jQuery heavily for our administrative
interface, which is written itself as a CloudBrowser applica-
tion.

We also compared the time it took to run the jQuery test
suite inside a virtual browser to the time it takes when run
in the Google Chrome browser. We observed a slowdown of
roughly 15x, indicating a tremendous potential for optimiza-
tions in the server document implementation.

6. Related Work

ZK [11] is a Java-based server-centric web framework that
is in wide use. ZK applications are constructed using com-
ponents, which are represented using the ZK User Interface
Markup Language (ZUML). ZUML components are trans-
lated into HTML and CSS when a page is rendered. A client-

side library handles synchronization between the client’s
view of and interaction with components, and their server-
side representation. Our extensive experience deploying ap-
plications with ZK [16, 35] inspired the work on Cloud-
Browser. Compared to CloudBrowser, ZK does not main-
tain a representation of the server document across HTTP
requests. Every visit to a ZK page creates a new ZK desk-
top, at which point the developer must use session-state in-
formation to bring the UI back into the desired initial state,
which may be far from the state it was in when the user last
visited it. Unlike CloudBrowser, ZK aims to support layout
attributes, but we have found that the complexity of its client
engine leads to numerous layout and compatibility bugs de-
velopers must work around, particularly when the server-
side document and the client-side document are not iden-
tical.

ItsNat [32] is a Java-based AJAX component framework
similar to ZK, although it uses HTML instead of ZUML to
express server documents, along with the Java W3C imple-
mentation. Unlike CloudBrowser, it also does not maintain
the server document state across visits, and cannot make use
of existing JavaScript libraries.

The Google Web Toolkit [19] allows the implementation
of AJAX applications in Java that are compiled to JavaScript
(or other targets). Like CloudBrowser, it provides an envi-
ronment similar to that provided by desktop libraries, but fo-
cuses on the client-side only; communication with the server
is outside its scope.

Fiz [26, 27] is a server-centric component-based AJAX
framework that uses page properties to maintain compo-
nent state on the server. Unlike in CloudBrowser, the server-
side implementations of Fiz components can be balanced
across multiple machines, allowing for horizontal scaling.
Fiz does not present the abstraction of a server-side docu-
ment to application developers, but it provides a way to build
component-based web applications, and simplifies the devel-
opment of additional components within its framework.

FlapJax [24] reduces the complexity of client-side
JavaScript programming by introducing “event streams’ and
“behaviors” abstractions. Behaviors provide a data binding
mechanism similar to Knockout.js’s, and event streams pro-
vide a way to react to asynchronous events. The FlapJax
primitives are intended to be used to simplify the client-side
portion of an AJAX application, but the communication is
still handled by the programmer. Since CloudBrowser appli-
cations can use existing client-side libraries, FlapJax could
be used in conjunction with CloudBrowser to mitigate the
error proneness of asynchronous programming; in fact, we
were able to run a subset of the published Flapjax examples
without changes.

Ripley [36] uses server-side browser emulation and event
processing to ensure the integrity of client-side computa-
tion in AJAX applications. Ripley is integrated with Volta,
a distributing compiler that partitions .NET applications be-

tween client and server. Similar to CloudBrowser, client-side
events are sent to the browser where they are dispatched
into a server-side DOM. Unlike CloudBrowser, the events
are also dispatched into the client-side DOM. With Ripley,
the resulting server-side DOM changes are used only to ver-
ify that the client has not sent malicious code or data to the
server, and the client- and server-side DOMs are compared
after event processing. For the example application studied,
Ripley used around 1.3 MB of memory for each server-side
DOM, which is similar to CloudBrowser’s memory usage.

Crawljax [23] is web crawler that supports AJAX ap-
plications, which are commonly ignored by search engines
due to their reliance on client-side computation. Crawljax
explores AJAX applications using a programmatically con-
trolled browser via the Selenium testing framework [4]. Un-
like CloudBrowser, Selenium uses off-the-shelf browsers
(IE, Chrome, Firefox) that render into a framebuffer display
device that is not made visible to the user.

Opera Mini [3] is a mobile browser that optimizes the
client experience by offloading browser rendering to a
server. Compression algorithms are run on the rendered
output from the server, reducing bandwidth requirements.
While Opera Mini does use a server-side DOM represen-
tation, its goals are inherently different from CloudBrowser.
Thus far, we have not tested CloudBrowser on mobile de-
vices, but the popularity of Opera Mini shows that it may
be possible to leverage server-side computation to provide a
better mobile experience than traditional AJAX applications.

Our system shares ideas with traditional thin-client and
remote display systems, going back to “dumb terminals”
based on the X Window System [33]. Compared to these
systems, CloudBrowser is unique in that it uses a markup
document and differential update to it to describe the struc-
ture and evolution of the user interface that is rendered to the
user.

7. Conclusion

This paper presented CloudBrowser, a server-centric web
application framework for the development of rich Internet
applications that keep both their application and their pre-
sentation state on the server. As a result, web application
development is greatly simplified because both the stateless
and the distributed nature of the web is hidden from the de-
veloper. By providing existing client-side programming en-
vironments such as HTML documents and JavaScript virtual
machines on the server, existing libraries and skill sets can
be reused, and translation overhead is minimized. We have
developed a prototype environment and applications, which
indicate that a server-centric approach is feasible and desir-
able for web applications in which users expect that most
interactions with the user interface result in updates that are
immediately stored “in the cloud,” even across page visits.

8. Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0845830.

The source code for CloudBrowser is available at https:
//github.com/brianmcd/cloudbrowser. An applica-
tion showcase is being created at http://cloudbrowser.
cs.vt.edu/.

References

[1] Twitter Bootstrap JavaScript Demo. http://twitter.
github.com/bootstrap/javascript.html.

[2] MySQL. http://mysql.com.

[3] Opera Mini Mobile Browser. http://www.opera.com/
mobile.

[4] Selenium web browser automation. http://seleniumhq.
org.

[5] SkyFire Mobile Browser. http://www.skyfire.com/en/
for-consumers/android/android.

[6] Socket.io. http://socket.io.

[7] Yahoo! User Interface Library. http://yuilibrary.com.

[8] Document Object Model (DOM) Level 2 Events Specifica-
tion. Technical report, Nov. 2000. URL http://www.w3.
org/TR/DOM-Level-2-Events/.

[9] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R.
Douceur. Cooperative Task Management Without Manual
Stack Management. In Proceedings of the General Track of
the annual conference on USENIX Annual Technical Confer-
ence, pages 289-302, Berkeley, CA, USA, 2002. USENIX
Association.

[10] S. Burbeck. Application Programming in Smalltalk-80: How
to use Model-View-Controller (MVC). Technical report, Uni-
versity of Illinois in Urbana-Champaign (UTUC).

[11] H. Chen and R. Cheng. ZK: Ajax without the Javascript
Framework. Apress, Berkely, CA, USA, 2007.

[12] D. Crockford. Json. http://www. json.org.

[13] G. Czajkowski and L. Daynés. Multitasking without com-
primise: a virtual machine evolution. SIGPLAN Not., 36(11):
125-138, Oct. 2001. doi: 10.1145/504311.504292.

[14] R. Dahl. Node.js. http://nodejs.org.

[15] S. Depold. Sequelize. http://sequelizejs. com.

[16] S. H. Edwards and G. Back. Bringing creative web 2.0
programming into CS1: conference workshop. J. Comput. Sci.
Coll., 26(3):54-55, Jan. 2011.

[17] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1994.

[18] J. Garrett. AJAX: A new approach to web appli-
cations. http://wuw.adaptivepath.com/ideas/
ajax-new-approach-web-applications, 2005.

[19] Google, Inc. Google web toolkit (gwt). http://code.
google.com/webtoolkit/.

[20] E. Insua. JSDOM. http://jsdom.org.

[21] Keynote Systems, Inc. Internet health report. http://wuw.
internetpulse.net/.

[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes,
J.-M. Loingtier, and J. Irwin. Aspect-oriented program-
ming. In ECOOP’97 Object-Oriented Programming, vol-
ume 1241, pages 220-242. Springer Berlin / Heidelberg,
Berlin/Heidelberg, 1997. doi: 10.1007/BFb0053381.

[23] A. Mesbah, A. van Deursen, and S. Lenselink. Crawling Ajax-
Based Web Applications through Dynamic Analysis of User
Interface State Changes. ACM Trans. Web, 6(1), Mar. 2012.
doi: 10.1145/2109205.2109208.

[24] L. A. Meyerovich, A. Guha, J. Baskin, G. H. Cooper,
M. Greenberg, A. Bromfield, and S. Krishnamurthi. Flapjax: a
programming language for Ajax applications. In Proceedings
of the 24th ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, OOPSLA °09,
pages 1-20. ACM, 2009. doi: 10.1145/1640089.1640091.

[25] J. Nielsen. Usability Engineering. Morgan Kaufmann, 1st
edition, Sept. 1993. ISBN 9780125184069.

[26] J. Ousterhout. Fiz: A component framework for web appli-
cations. Technical report, Dep. of CS, Stanford University,
2009.

[27] J. Ousterhout and E. Stratmann. Managing state for Ajax-
driven web components. In Proceedings of the 2010 USENIX
conference on Web application development, WebApps’10,
page 7, Berkeley, CA, USA, 2010. USENIX Association.

[28] D. Pariag, T. Brecht, A. Harji, P. Buhr, A. Shukla, and D. R.
Cheriton. Comparing the performance of web server architec-
tures. SIGOPS Oper. Syst. Rev., 41(3):231-243, Mar. 2007.
doi: 10.1145/1272998.1273021.

[29] W. Reese. Nginx: the high-performance web server and re-
verse proxy. Linux J., 2008(173), Sept. 2008.

[30] J. Resig. jQuery. http://jquery.com.
[31] S. Sanderson. Knockout. http://knockoutjs.com.

[32] J. M. A. Santamaria. ItsNat: Natural AJAX. component
based Java web application framework. http://itsnat.
sourceforge.net.

[33] R. W. Scheifler and J. Gettys. The X window system. ACM
Trans. Graph., 5(2):79-109, Apr. 1986. doi: 10.1145/22949.
24053.

[34] E. Stratmann, J. Ousterhout, and S. Madan. Integrating long
polling with an MVC framework. In Proceedings of the
2nd USENIX conference on Web application development,
WebApps’11, page 10. USENIX Association, 2011.

[35] E. Tilevich and G. Back. “Program, enhance thyself!”:
demand-driven pattern-oriented program enhancement. In
Proceedings of the 7th international conference on Aspect-
oriented software development, AOSD 08, pages 13-24, New
York, NY, USA, 2008. ACM. doi: 10.1145/1353482.1353485.

[36] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically
securing web 2.0 applications through replicated execution.
In Proceedings of the 16th ACM conference on Computer
and communications security, CCS 09, pages 173-186, New
York, NY, USA, 2009. ACM. doi: 10.1145/1653662.1653685.

[37] M. Welsh, D. Culler, and E. Brewer. SEDA: an architecture for
well-conditioned, scalable internet services. In Proceedings of
the eighteenth ACM symposium on Operating systems princi-
ples, volume 35 of SOSP ’01, pages 230-243, New York, NY,
USA, Dec. 2001. ACM. doi: 10.1145/502034.502057.

[38] T. Yoshino. WebSocket Per-frame DEFLATE Ex-
tension. Technical Report draft-tyoshino-hybi-
websocket-perframe-deflate-04.txt, IETF Secre-
tariat, Fremont, CA, USA, Aug. 2011. URL
http://www.rfc-editor.org/internet-drafts/
draft-tyoshino-hybi-websocket-perframe-deflate-04.
txt.

