
Rich Cloud-based Web Applications
with CloudBrowser 2.0

Xiaozhong Pan
Department of Computer Science

Virginia Tech
bladepan@cs.vt.edu

Godmar Back
Department of Computer Science

Virginia Tech
gback@vt.edu

ABSTRACT
Designing modern web applications involves a wide spec-
trum of choices when it comes to deciding where the differ-
ent tiers of application and framework code that constitute
these distributed applications should be placed. These sys-
tem design choices affect programmer productivity, ease of
deployment, security, and performance, particularly with re-
spect to latency and scalability.

In this paper, we propose and evaluate a design choice in
which not only all application logic executes server-side, but
most presentation logic as well. The client browser is re-
duced to a rendering and I/O engine, similar to a “thin
client” or “dumb terminal,” but retains the full expressive-
ness of rich, modern Internet applications.

We have developed CloudBrowser 2.0, a system that imple-
ments this distribution model using a scalable multiprocess
approach. In this paper, we perform an evaluation of the
benefits and costs of this approach when compared to both
more traditional approaches as well as emerging alternatives.
We focus on programmability and systems aspects including
performance and latency.

CCS Concepts
•Information systems → Web applications; Web in-
terfaces; •Computer systems organization → Client-
server architectures;

1. INTRODUCTION
Most newly developed applications that provide a user in-
terface to end users are web-based. Modern browsers pro-
vide powerful and expressive user interface elements, allow-
ing for rich applications, and the use of a networked plat-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from permis-
sions@acm.org.
SAC 2016,April 04 - 08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851859

form simplifies the distribution of these applications. As
a result, researchers and practitioners alike have devoted a
great deal of attention to how to architect frameworks on
this platform, which is characterized by the use of the state-
less HTTP protocol to transfer HTML-based user interface
descriptions to the client along with JavaScript code, which
in turn implements interactivity and communication with
the application’s backend tiers.

In many recently developed frameworks, much of the presen-
tation logic of these applications executes within the client’s
browser. User input triggers events which result in infor-
mation being sent to a server and subsequent user interface
updates. Such updates are implemented as modifications
to an in-memory tree-based representation of the UI (the
so-called document object model, or DOM), which is then
rendered by the browser’s layout and rendering engine so the
user can see it. However, the state of the DOM is ephemeral
in this model: when a user visits the same application later
from the same or another device, or simply reloads the page,
the state of the DOM must be recreated from scratch. In
most existing applications, this reconstruction is done in an
rudimentary and incomplete way, because application pro-
grammers typically store only application state, and little or
no presentation state in a manner that persists across visits.
As a result, many web applications do not truly feel like per-
sistent, “in-cloud” applications to which a user can connect
and disconnect at will. By contrast, users are accustomed
to features such as Apple’s Continuity[1] that allows them
to switch between devices while preserving not only essen-
tial data, but enough of the applications’ view to create the
appearance of seamlessly picking up from where they left
off.

This paper explores an alternative design that keeps the
state of the HTML document in memory on the server in
a way that is persistent across visits. In this model, pre-
sentation state is kept in virtual browsers whose life cycle
is decoupled from the user’s connection state. When a user
is connected, a client engine mirrors the state of the vir-
tual browser in the actual browser which renders the user
interface the user is looking at. Any events triggered by the
user are sent to the virtual browser, dispatched there, and
any updates are reflected in the client’s mirror. This idea
is reminiscent of “thin client” designs used in cloud-based
virtual desktop offerings, but with the key difference that in
this proposed design the presentation state that is kept in
a virtual browser is restricted to what can be represented

at the abstract DOM level; no flow layout or rendering is
performed by the virtual browser on the server.

This model entails additional benefits: since only framework
code runs in the client engine, the application code run-
ning on the server does not need to handle any client/server
communication and can be written in an event-based style
similar to that used by desktop user interface frameworks.
Since the virtual browser has the same JavaScript execution
capabilities as a standard browser, emerging model-view-
controller (MVC) frameworks such as AngularJS [7] can be
directly used, further simplifying application development.
More side benefits include: a lighter weight client engine
that can load faster, a resulting application that is more se-
cure since no direct access to application data needs to be
exposed, the ability to co-browse by broadcasting the virtual
browser state to multiple clients.

We first introduced the idea of HTML-based server-centric
execution in [9]. In CloudBrowser 2.0, we provide the first
multi-process implementation of the CloudBrowser concept
which enables its use on multiprocessor machines and on
clusters. We have also investigated and implemented sev-
eral features commonly expected from a framework, such as
authentication and administration. CloudBrowser 2.0 also
includes a model for the deployment of applications and in-
troduces the concept of an application instance, which al-
lows multiple virtual browsers to share state. We have im-
plemented a number of sample and benchmark applications
and profiled them to better understand the intrinsic and ex-
trinsic limitations of this design.

2. MOTIVATION
With the emergence of AJAX as a technique over ten years
ago a shift commenced from traditional, page-based appli-
cations to the single-page applications in use today. Al-
though hybrid forms have been emerging recently, architec-
tural frameworks for these applications largely falls into two
groups: client-centric and server-centric. Client-centric ap-
proaches focused on the creation of powerful JavaScript li-
braries that execute in the browser and which provide high-
level abstractions such as two-way data bindings and custom
directives to manage UI state.

However, the user interface programmer must decide when
to retrieve the data from the server and when to save/up-
date the server’s state. Any type of “server-push” must be
explicitly programmed. Moreover, such applications rarely
remember presentation state across visits, and when they
do, they do so using storage facilities (such as HTML5’s
localstorage) that is not available on other devices on
which a user might use the application.

By contrast, server-centric approaches represent the user in-
terface on the server. In a server-centric approach, the ap-
plication programmer writes only code that executes on the
server, whereas all client-side code is framework-provided
code. A pioneering framework in this area was ZK [3]. This
simplified model, along with having to maintain a single and
much smaller codebase, is tied to significant productivity
gains. Unfortunately, even in this approach, the user inter-
face representation is recreated every time a user navigates
to a page. If programmers wish to preserve UI state across

visits, they have to represent it in session state or in per-
sistent state such as a database, and retrieve it from there
every time the view is rebuilt.

Our own experience includes the development of two sub-
stantial applications using a server-centric approach [5, 4]:
an application to allow students to develop ZK applications
in the cloud, and a complex configuration management sys-
tem. This experience convinced us of the feasibility and
value of a server-centric approach. In particular, our users
reported enjoying the user interface style we were able to
present, in which their actions took immediate effect [2].
Notably, the latency introduced by server round trips did
not present a barrier to usability.

We soon felt hampered by the lack of persistence across visits
and no obvious way to solve it, other than to tie all variables
controlling the application’s view to model variables that
were, in turn, stored persistently in some way. We hesitated
to do that since we did not want to pollute our relatively
clean model that represented the business data of our ap-
plication with less critical state solely intended to improve
usability.

A second limitation that influenced our thinking was the
mismatch between server side representation (XUL) and the
HTML used in the browser, which meant that debugging lay-
out issues became difficult since it required understanding
or reverse engineering how ZK’s components were imple-
mented. Thus born was the idea to keep the presentation
state in HTML on the server.

Keeping presentation state on the server imposes a cost that
not all types of applications may be willing to pay, even
when the reduced development effort is taken into account.
In [9], we discuss the types of applications for which we be-
lieve the trade-off we propose may be worthwhile: personal
and business applications such as tax preparation systems
or configuration management systems. These applications
are characterized by the following traits:

• They are single-page applications with a large naviga-
tion space in which the user has free reign, thus remem-
bering the exact view state is crucial for a satisfactory
user experience.

• Users expect that their actions take immediate effect,
that is, almost every user input must trigger a com-
munication with the server.

• Users expect that updates to application state done by
others become immediately reflected in their UI.

2.1 Challenges
Successfully applying the idea of preserving presentation
state using virtual browsers in server memory imposes a
number of challenges which this work makes an attempt
to better understand. These are related to user interface
implementation, latency, resource consumption, scalability,
and behavior in the presence of faults.

A virtual browser does not lay out HTML elements or com-
pute their styles in the way that the rendering engine in the
actual browser will, as doing so would be cost-prohibitive

Web Browser Server‐side JS Environment (node.js)
Virtual Browser

Forwards Events JS Web Application

Client Engine

AppliesListens Sends Updates

Web Socket
Connection

Server Engine

ObservesDispatches

HTML
CSS, Images

JS
Lib i (jQ

Parses

DOM

Applies
Updates

Listens
for Events

Sends Updates

Update
Protocol

DOM

Changes
p

Events

JavaScript
Application

Libraries (jQuery,
knockout)

Adds Event
Listeners node.js

Data Bindings

Oth Ti

JSDOM, Contextify

Code

Modifies DOM

j
Libraries Other Tiers

Figure 2: Single Process CloudBrowser Architecture Overview

Load
Balancer

Internet

Web Servers

HTTP Requests
Dispatch

Web Layer Storage Layer

Internal
Protocols

Client Layer

Back-end ServersHTML, CSS, Javascript,
Bootstrap, JQuery,
Angular, Reactjs … Tomcat, Apache, PHP,

JSP, Ruby on Rails …
MySql, Redis, BigTable

Cassandra, …

visualize how data flows

html…

use same style as other figs

HTML, JSON,
javascript…

Web Browser

Web Browser

Figure 1: Traditional Scalable Multitier Application Design

and not help at all when the user switches devices. As
such, it cannot support inquiries by code about computed or
user-determined attributes such as what is the screen size,
or what is the height of an element after its layout has
been computed. Recent trends in web development have
made this much less of a problem; for instance, in applica-
tions that use responsive design (e.g. the Bootstrap library),
programmers are discouraged from directly inquiring about
computed style attributes.

Secondly, since events are dispatched on the server, the delay
of a wide area network roundtrip is added to the process-
ing delay, along with any request queuing that may occur.
According to the human computer interface literature, the
resulting latency must not be larger than 100-150ms for the
user to be perceived negatively. We treat this as a cut-off
for the feasibility of a server-centric design.

A third concern is resource consumption, in particular mem-
ory and CPU consumption. Virtual browsers will consume
memory while they exist, and consume CPU time while han-
dling events. The use of high-level JavaScript libraries exac-
erbates this effect because they are often designed for use on
powerful client machines, although optimizations in terms
of CPU and memory for use on less powerful mobile devices
helps us.

A fourth concern which this paper focuses on, is how to
implement scalability across multiple processes and/or ma-
chines. Related to that is the behavior of the system if server
processes fail or must be restarted for other reasons. Fig. 1
shows a canonical architecture used for scalable, multi-tier
web applications, of which numerous variations exist. Scala-
bility is achieved by having a load balancer spread individual
HTTP requests across multiple web or application servers,
which in turn talk to databases or other storage providers.
In this model, the load balancer must be able to dispatch
requests to any web server as web servers can be added and
removed at will. To handle a request, a web server needs
to have access to session state, which is replicated and kept
consistent across the web servers. Though session state may
be cached in a web server’s memory, it is stored in a way
that allows for server processes to restart. At the same time,
loss of session state is not catastrophic as essential user data
is stored in a separate storage layer.

A scalable virtual browser environment can be implemented
in similar fashion; however, here the load balancer is re-
stricted in the choice of web server to which to forward re-
quests as soon as a server process is chosen on which the vir-
tual browser is allocated. A crash or restart of such a process
leads to the loss of all presentation state. To prevent this
from becoming catastrophic, applications developers must,
as before, decide which part of their state is deemed essen-
tial data that must be stored in the separate storage layer.
This can be done by accessing existing storage layers, but
we also added a facility that allows applications to save a
snapshot of their state and resume from it later.

3. DESIGN AND IMPLEMENTATION
Full details of a single process implementation of the Cloud-
Browser architecture are available in [9]. We highlight only
the essential design here. Figure 2 shows the relationship
between the client engine running in the user’s browser and
the virtual browser running server side. When the user vis-
its the application, the client engine code is downloaded and
restores the current view of the application by copying the
current state of the server document. Subsequently, user in-

put is captured, forwarded to the server engine inside the
virtual browser, which then dispatches events to the docu-
ment. All application logic runs in the global scope asso-
ciated with the virtual browser’s window object. Since the
server environment faithfully mimics a real browser, libraries
such as AngularJS can be used unchanged to implement the
user interface. Client and server communicate through a
lightweight RPC protocol that is layered on top of a bidirec-
tional web socket communication. Stylesheets, images, etc.
are provided to the client through a resource proxy.

3.1 Application Deployment Model
We designed an application deployment model for Cloud-
Browser 2.0 that allows different instantiation strategies.
This deployment model addresses a problem that traditional
web applications so far have not faced, which is to manage
the lifetime of virtual browsers as users create them, connect
to them, and disconnect from them. The underlying goal is
to minimize the level of awareness on both the side of the
application developer and the applications’ users.

Application programmers can create CloudBrowser applica-
tions in the same way in which they create the client-side
portion of a client-centric application, using low or high level
JavaScript libraries such as jQuery [8] or AngularJS. A de-
scriptor in the application’s manifest describes their appli-
cation’s required instantiation strategy. When a user in-
stantiates an application, the allocated application instance
object represents metadata about this application instance,
such as ownership and access permissions, along with appli-
cation data that the application’s code can directly access.

Virtual Browser 3Virtual Browser 2

App Instance Figure

UserChat App

ChatRoom

ChatRoom Messages

! PostMessage()App Instance

View

Model Application code

UserChat App

ChatRoom

Application code

UserChat App

ChatRoom

Application code

User Session 1 User Session 2 User Session 3

Virtual Browser 1

ReferenceReference

Figure 3: This figure shows how multiple virtual browsers can
directly, and seamlessly share relevant application data, in this
case chat messages, which then become part of the model that
drives the presentation MVC framework.

As an example, consider a scenario for a Chat application de-
veloped using AngularJS, depicted in Figure 3. A system ad-
ministrator of a CloudBrowser deployment would install the
application, which give users the ability to create application
instances. To start a chat site, a user would create an ap-
plication instance and share its URL with chat participants.
As the participants join the chat site, a virtual browser is
created on demand for each participant, which is connected
to the application instance (the users can bookmark their
virtual browser’s URL to later return.) The shared appli-
cation instance data in such an application consist of the

CloudBrowser Installation

Application 1
multi-instance

Application 1
Instance 1

Application 1
Instance 2

Application 1
Instance 3

Application 2
single-instance

Application 2
Instance 1

Virtual
Browser 1

Virtual
Browser 1

++

++

Virtual
Browser 2

Must be colocated in the same process

++ ++

…

co-browse

http://example.com/app1 http://example.com/app2

example.com

Figure 4: Hierarchy of applications, application instances, and
virtual browsers. Note that a single virtual browser may be broad-
cast to multiple clients (cobrowsing).

chatroom(s), users and their associated messages.

The hierarchy that results from applications, application in-
stances, and virtual browsers is depicted in Figure 4. This
figure shows the general case in which an application might
allow multiple instances, and in which each user can cre-
ate multiple virtual browsers. We also found it useful to
support more specialized instantiation modes, which are re-
lated to the user’s authentication state. These include sin-
gleAppInstance, singleUserInstance, and multiInstance, and
correspond to a single instance for all users (as in a tradi-
tional webpage), a single instance per authenticated user,
and multiple instances per user. Only the last instantiation
mode exposes users to a management interface for virtual
browsers that allows them to create new virtual browsers,
or reconnect to existing ones when the connect/disconnect
from the web applications.

3.2 Distributed Implementation
Figure 5 shows the distributed design of CloudBrowser 2.0,
which consists of a single master process, multiple reverse
proxies, and multiple worker processes. The number of work-
ers is determined by the number of CPUs available, due to
the event-based (nonblocking) implementation of the node.js
platform on which CloudBrowser is implemented. All pro-
cesses communicate via standard TCP/IP sockets, so they
can be located on a shared multiprocessor machine or in a
cluster.

The master process maintains a table of which application
instances have been created and which worker is responsi-
ble for which application instance. When a new application
instance is created, the master will apply a load balancing
algorithm to decide on which worker to place this instance.
We support two load balancing strategies: first, the mas-
ter can assign application instances to workers in a simple
round-robin fashion. However, since application instances
may vary widely in terms of the actual cost they impose on
a worker, we also implemented a load-based scheme in which

Web Browser

Client Engine

DOM
Master

Forwards Events

Sends Updates

Web Socket
 Connection

Listens
for Events

Applies
Updates

App Instance 3

Worker 2

Dispatch

App Instance 1Worker 1

App Instance 2

Virtual Browser 2-2

Virtual Browser 2-3

DOM

Virtual Browser 2-1Web Socket
 Connection

Worker 2 App Instance …

TCP/IP

DOM Updates

App Instance ObjectReferenceApp Instance
Map

Load Balancer

Reverse Proxy

Figure 5: Multiprocess Architecture Overview

workers periodically report a measure of current load to the
master.

Multiple reverse proxy processes are bound to the socket
that accepts client requests, allowing the OS to distribute
pending client connections in a round-robin fashion. When a
proxy process accepts a client, it parses the incoming HTTP
request to extract the application id, which is part of the re-
quest’s URL. Each proxy process maintains a table of known
mappings from application ids to workers. If the requested
id is already cached in that table, the request is directly
relayed to the worker. Otherwise, the master is contacted
to find out which worker is assigned to that application id,
triggering an initial assignment if necessary. The reverse
proxy can relay both HTTP requests/responses as well as
the bidirectional web socket protocol after the connection
has been upgraded. Once established, the majority of traf-
fic will be web socket messages for which there is relatively
little per-message overhead.

3.3 Interprocess Communication
Masters, proxies, and workers need to be able communicate
with one another. This communication takes places at the
level of JavaScript method calls. To facilitate the invocation
of JavaScript methods that belong to objects residing in
other processes, we developed nodermi, a remote method
invocation (RMI) library [12].

nodermiuses JavaScript’s reflection facilities to transpar-
ently create client-side stubs for remote objects on the fly.
Since JavaScript does not use static typing and heavily uses
variadic functions, it serializes method arguments dynami-
cally via reflection. Our system supports all primitive Java-
Script types, objects, and arrays; it can handle cyclic object
graphs. It also recognizes when arguments refer to remote
objects, in which case the receiving side will create its own
stub that directly refers to the remote object. If an argu-
ment is a function, a stub will be created on the remote side
that, when invoked, will make a RPC request back to the
requestor.

4. EVALUATION
Our main focus in this evaluation is to demonstrate that
the multiprocess implementation in CloudBrowser 2.0 can
scale with the number of available cores on which to place
separate workers. Our secondary focus is to investigate the
cost of using different client libraries on the throughput we
achieve.

To test CloudBrowser 2.0 with existing applications, we de-
veloped a small expect-like language in which to describe
scenarios. A client test tool interprets test scripts written
in this language and makes RPC calls to a server in the
same way the client engine would in actual deployment, then
checks whether the server is making the expected RPC calls
back that would reflect requests to the client engine to up-
date the DOM the user sees. Like a (patient) human user,
the script will not send the next event until after the previ-
ous event resulted in the expect DOM update. To simulate
human processing speed, a programmable “thinking delay”
can be introduced between receiving an expected response
and sending the next event. To create test scenarios from
actual applications, we run those applications using a real
browser and record the client/server interactions in a log,
which our test tools can reply.

We used a dual-socket, 8 core Intel Xeon 2.27GHz processor
with 38GB of RAM on the machine on which we run Cloud-
Browser 2.0’s master, worker, and proxies. We colocate the
first proxy with the master in the same process. This sys-
tem is connected via Gigabit Ethernet to a 8 core AMD
machine with 16GB of RAM on which the test client(s) ex-
ecute. Both machines run Ubuntu 14.04 with a stock Linux
3.13 kernel. We use Node.js 0.10.33 and the version of JS-
DOM 2.0 we customized. We use the static load balancing
strategy discussed in Section 3.2 to ensure an exactly pre-
dictable distribution of application instances onto workers.

4.1 Click Application
Our first benchmark is a simple click application that in-

crements a counter on a page whenever the user clicks. It
is written without any libraries, making direct use of the
JavaScript DOM API. It only has 14 lines of HTML and
5 lines of JavaScript code. As such it most closely mea-
sures the overhead of our framework only, e.g. the overhead
of making RPC calls, serialization and deserialization, and
dispatching events into the server-side DOM, observing any
DOM changes occurring as a result, and relaying those to
the client.

We consider two possible scenarios, a fast “Back-to-back”
click application with no thinking times between clicks, and
a more “Human-paced” click application in which there is a
think time drawn from a uniform distribution in the range
of 1 to 2 seconds. We perform 5 runs for each data point
and report the mean. For all benchmarks, the variance was
small. The vast majority of data points incurred a relative
standard error below 5%, the maximum relative standard
error was 11%.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000 1200

T
h
ro

u
g
h
p
u
t(

o
p
e
ra

ti
o
n
s
/s

e
c
o
n
d
)

client count

Click application

1 worker
2 workers
4 workers
6 workers
8 workers

Figure 6: Throughput of “Back-to-back” click application.

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200

L
a
te

n
c
y
(m

s
)

client count

Click back to back

1 worker
2 workers
4 workers
6 workers
8 workers

Figure 7: Latency of “Back-to-back” click application.

We measure throughput in terms of operations per second
and average latency. Figure 6 shows the throughput of the
application for different numbers of workers. In those cases,
all workers become CPU bound, adding more workers that
can use additional cores increases throughput near linearly
up to 6 workers. In this scenario, a single proxy is sufficient

to support up to 8,000 operations per second at which point
it becomes CPU bound; for the 6 and 8 worker cases, we
add a second proxy process. Since the reverse proxy pro-
cesses run on the same machine as the workers, throughput
does not increase beyond 6 workers since this machine has
only 8 cores. We carefully monitor the CPU usage on the
benchmark client machine, adding new test driver instances
as needed, up to 8.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 5000 10000 15000 20000 25000 30000

T
h
ro

u
g
h
p
u
t(

o
p
e
ra

ti
o
n
s
/s

e
c
o
n
d
)

client count

Click application with delay

1 worker
2 workers
4 workers
6 workers
8 workers

Figure 8: Throughput of click application, after introducing
artificial delay.

For the back-to-back scenario, throughput is limited by the
CPU capacity available to the workers for 100 clients or
more. Throughput stays relatively constant as the number
of client increases, but the observed latency increases, which
is shown in Figure 7. We consider a latency of more than
100ms unacceptable [11], which is why we cut off the y-axis
accordingly. In this scenario, a single worker can support up
to 200 clients, and 6 workers can handle about 1,200 clients
before latency increases to unacceptable levels.

When introducing think times to simulate “human-paced”
clients, we obtain the throughput and latency shown in Fig-
ures 8 and 9. In those cases, a larger number of clients
can be supported, and maximum throughput will not be
reached until the number of clients ramps up. For each

 0

 50

 100

 150

 200

 0 5000 10000 15000 20000 25000 30000

L
a
te

n
c
y
(m

s
)

client count

Human paced click application

1 worker
2 workers
4 workers
6 workers
8 workers

Figure 9: Latency of click application, after introducing artificial
delay.

Figure 10: Chat Room Application

worker configuration, the maximum acceptable latency is
reached slightly before maximum throughput is reached. In
these experiments, we do not increase the number of clients
further if latency has already reached unacceptable levels.
We must note that the latency reported here does not in-
clude a wide-area network (WAN) delay; which when taken
into account would reduce the bounds on acceptable pro-
cessing delay. Nevertheless, we conclude that our method of
scaling to multiple processes is effective and that the reverse
proxy in particular does not become a bottleneck.

4.2 Chat Application
A key part of the productivity promise for using the server-
centric CloudBrowser framework is the ability to reuse high-
level libraries such as AngularJS with little or no changes, so
that applications prototyped in AngularJS can be directly
executed in virtual browsers. These libraries are designed
for client-side use, however. We prototyped a Chat appli-
cation to investigate the overhead of this usage scenario, a
screenshot is shown in Figure 3. The application is only 207
lines of HTML and JS code while providing features such
as creating chatrooms, joining them, chatting and changing
the desired display name.

We make use of shared application instance data as discussed
in Section 3.1 to hold the last 50 chat messages. Each ap-
plication instance is visited by 5 simulated users, each in-
stantiating their own virtual browser. Each user sends 100
chat messages in our script, consisting of a sentence of 15-20
characters. We set the think time to 5-10 seconds between
messages. We define latency as the time taken to hit enter
and when the message appears in the chat window.

Fig.11 shows the latency perceived by benchmark tool un-
der different numbers of clients. While scaling to multiple
workers remains effective, the use of AngularJS imposes a
significant cost, reducing the number of concurrent users
that can be supported with the same hardware. Most of the
time is spent in the AngularJS framework, which we discov-
ered through profiling. Optimizations made in successive
revisions of AngularJS heavily impacted our performance;
for instance, a single commit to optimize needless reexecu-
tion of so-called filters in AngularJS improved benchmark

 0

 50

 100

 150

 200

 0 200 400 600 800 1000 1200 1400 1600 1800

L
a
te

n
c
y
(m

s
)

client count

Chat application with Angular.js

1 worker
2 workers
4 workers
8 workers

Figure 11: Latency of chat application with Angular.js.

 0

 50

 100

 150

 200

 0 500 1000 1500 2000 2500 3000 3500

L
a
te

n
c
y
(m

s
)

client count

Chat application with JQuery

1 worker
2 workers
4 workers
8 workers

Figure 12: Latency of chat application with JQuery.

performance by 20%.

To eliminate the impact of AngularJS, we also reprototyped
the same application with a lower-level library, jQuery, which
increased its size significantly (and made it significantly less
readable). Avoiding AngularJS’s method of dirty checking
to identify model changes roughly doubled performance, as
shown in Figure 12.

5. RELATED WORK
ZK [3], which we use as part of our motivation in Section 2
is a Java-based server-centric web framework that is in wide
use. ZK applications are constructed using components,
which are represented using the ZK User Interface Markup
Language (ZUML). ZUML components are translated into
HTML and CSS when a page is rendered. A client-side li-
brary handles synchronization between the client’s view of
and interaction with components and their server-side repre-
sentation. Our extensive experience deploying applications
with ZK ([15, 4]) inspired the work on CloudBrowser. As
discussed, ZK does not maintain a representation of the
server document across page reloads, which means that all
presentation state must be tied to session or persistent state.
To scale ZK to multiple processes or servers, this session
state must be replicated.

Unlike CloudBrowser, ZK aims to support layout attributes,
but we have found that the complexity of its client engine
leads to numerous layout and compatibility bugs developers
must work around, particularly when the server-side doc-
ument and the client-side document are not identical. By
contrast, CloudBrowser uses identical, HTML-based docu-
ments on the client and the server.

ItsNat [13] is a Java-based AJAX component framework
similar to ZK, although it uses HTML instead of ZUML to
express server documents, along with the Java W3C imple-
mentation. Unlike CloudBrowser, it also does not maintain
the server document state across visits, and cannot make
use of existing JavaScript libraries.

The Google Web Toolkit [6] allows the implementation of
AJAX applications in Java that are compiled to JavaScript
(or other targets). Like CloudBrowser, it provides an envi-
ronment similar to that provided by desktop libraries, but fo-
cuses on the client-side only; communication with the server
is outside its scope.

A closely related project that pursues similar goals in sim-
plifying the development of rich web applications is Me-
teor [10], a full stack platform for building web and mobile
applications. Meteor provides mechanisms that tie a client’s
presentation state directly to model state that is kept in a
server-side database, which in turn is partially replicated
on the client. As such, user input can be handled, opti-
mistically, before the server roundtrip has completed. If an
update is rejected by the server, the optimistic application
is undone. Like with client-centric frameworks, no presen-
tation state is kept on the server. Asynchronous updates to
model data is pushed to clients.

Meteor will have lower server-side cost, and thus higher scal-
ability, than CloudBrowser, as well as the ability to reduce
user-perceived latency because of its optimistic processing.
However, we believe that this comes at a high price of com-
plexity and increased risk. For instance, programmers must
be extremely careful to not leak sensitive data to the client,
and they may easily expose (unintentionally) sensitive busi-
ness logic to the client. Meteor also does not focus on the
problem of simplifying the retention of presentation state
across visits, either making that state ephemeral, or requir-
ing the programmer use session state or store all necessary
model variables in the database.

Lastly, our system shares ideas with traditional thin-client
and remote display systems, going back to “dumb termi-
nals” based on the X Window System [14]. We note that
VMWare’s Horizon product provides a way to see the user
interface of actual virtual machines via a browser, with its
BLAST protocol. Compared to these systems, CloudBrowser
is unique in that it uses a markup document and differential
update to it to describe the structure and evolution of the
user interface that is rendered to the user.

6. CONCLUSION
This paper discusses a scalable, multiprocess implementa-
tion of web application framework that maintains rich pre-
sentation state server-side. This approach has many advan-
tages, from simplified and accelerated application develop-

ment, improved user experience across visits without requir-
ing programmer effort, and potentially increased security.
As such, it has the potential to lead to applications that
truly “live” in the cloud, rather than merely interactive web
pages.

Our results show that this design can be implemented in
a scalable way such that adding more resources results in
a proportional increase in capacity. However, it also shows
that the use of code and libraries originally intended for
client-side use on the server can be very expensive, primar-
ily in terms of CPU time. These limitations will narrow
the scope of applications for which a pure server-centric ap-
proach such as ours is applicable.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the National
Science Foundation under Grant No. CCF-0845830. The
source code for CloudBrowser 2.0 is available at https://
github.com/brianmcd/cloudbrowser, branch deployment2.

8. REFERENCES
[1] Apple Inc. Connect your iPhone, iPad, iPod touch,

and Mac using Continuity.
http://support.apple.com/en-us/HT6337, 2014.

[2] A. Bailey and G. Back. Streamlining access to library
resources. In E. Iglesias, editor, Robots in the
Academic Library. IGI Global, Hershey, PA, 2013.

[3] H. Chen and R. Cheng. ZK: Ajax without the
Javascript Framework. Apress, Berkeley, CA, USA,
2007.

[4] S. H. Edwards and G. Back. Bringing creative web 2.0
programming into CS1: conference workshop. J.
Comput. Sci. Coll., 26(3):54–55, Jan. 2011.

[5] T. Gaat. The LibX edition builder. Master’s thesis,
Virginia Tech, 2007.

[6] Google, Inc. Google Web Toolkit (GWT).
http://code.google.com/webtoolkit/.

[7] M. Hevery. Building web apps with Angular, 2009.
[8] jQuery Foundation jquery.org. jQuery.

http://jquery.com/, 2015.
[9] B. McDaniel and G. Back. The CloudBrowser web

application framework. In Proceedings of the 3rd
annual conference on Systems, programming, and
applications: software for humanity, pages 141–156.
ACM, 2012.

[10] Meteor. https://www.meteor.com/, 2015.
[11] J. Nielsen. Usability Engineering. Morgan Kaufmann,

1st edition, Sept. 1993.
[12] X. Pan. nodermi.

https://github.com/bladepan/nodermi, 2014.
[13] J. M. A. Santamaria. ItsNat: Natural AJAX.

component based Java web application framework.
http://itsnat.sourceforge.net.

[14] R. W. Scheifler and J. Gettys. The X window system.
ACM Trans. Graph., 5(2):79–109, Apr. 1986.

[15] E. Tilevich and G. Back. ”Program, enhance thyself!”:
demand-driven pattern-oriented program
enhancement. In Proceedings of the 7th international
conference on Aspect-oriented software development,
AOSD ’08, pages 13–24, New York, NY, USA, 2008.
ACM.

