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Summary

Many eukaryotic green algae possess biophysical carbon-concentrating mechanisms (CCMs) that
enhance photosynthetic efficiency and thus permit high growth rates at low CO, concentrations.
They are thus an attractive option for improving productivity in higher plants. In this study, the
intracellular locations of ten CCM components in the unicellular green alga Chlamydomonas
reinhardtii were confirmed. When expressed in tobacco, all of these components except
chloroplastic carbonic anhydrases CAH3 and CAH6 had the same intracellular locations as in
Chlamydomonas. CAH6 could be directed to the chloroplast by fusion to an Arabidopsis
chloroplast transit peptide. Similarly, the putative inorganic carbon (Ci) transporter LCI1 was
directed to the chloroplast from its native location on the plasma membrane. CCP1 and CCP2
proteins, putative Ci transporters previously reported to be in the chloroplast envelope, localized
to mitochondria in both Chlamydomonas and tobacco, suggesting that the algal CCM model
requires expansion to include a role for mitochondria. For the Ci transporters LCIA and HLA3,
membrane location and Ci transport capacity were confirmed by heterologous expression and
H'*CO5™ uptake assays in Xenopus oocytes. Both were expressed in Arabidopsis resulting in
growth comparable with that of wild-type plants. We conclude that CCM components from
Chlamydomonas can be expressed both transiently (in tobacco) and stably (in Arabidopsis) and

mechanism, bicarbonate transporter,
Arabidopsis thaliana, tobacco,
Chlamydomonas reinhardftii.

retargeted to appropriate locations in higher plant cells. As expression of individual Ci
transporters did not enhance Arabidopsis growth, stacking of further CCM components will
probably be required to achieve a significant increase in photosynthetic efficiency in this species.

Introduction

Most plants, including the major grain crops rice and wheat,
assimilate carbon using the C3 photosynthetic pathway. C; plants
rely on passive diffusion to deliver carbon dioxide (CO,) from the
atmosphere (ca. 400 ppm) to the chloroplasts inside leaf mes-
ophyll cells, wherein CO, photoassimilation proceeds via the
primary carboxylase enzyme, ribulose-1,5-bisphosphate carboxy-
lase/oxygenase (RuBisCO, EC 4.1.1.39). Diffusive resistances
result in a gradient (ca. 40% under high irradiance) between
CO, levels in the substomatal cavity of the leaf and the steady-
state level of dissolved CO, in chloroplasts (10-20 pm at 25 °C)
(Price et al., 2011). Here, CO, is not saturating for RuBisCO and
oxygen (O,; ca. 250 pum at 25 °C) competes at the RuBisCO
active sites, resulting in both loss of assimilated carbon and
nitrogen and energy consumption in the photorespiratory path-
way that recycles the product of RuBP oxygenation (Sharkey,
1988). The productivity of Cs crops is thus limited by the
efficiency of CO, photoassimilation, even when grown under
elevated CO, levels (up to 650 ppm) (Long et al, 2006).
Generating C3 crop plants with increased photosynthetic effi-
ciencies is a major target for improving yields and safeguarding
future food security. Strategies under consideration and devel-
opment include modifying canopies to increase light interception,

enhancing repair mechanisms to overcome lags associated with
photoprotection, increasing the efficiency of RuBisCO and
eliminating photorespiration by introducing molecular compo-
nents of microbial carbon-concentrating mechanisms (CCM) (Lin
et al., 2014a,b; Long et al., 2015; Parry et al., 2013; Whitney
et al., 2011; Zhu et al., 2010).

Many photosynthetic organisms including cyanobacteria, most
green algae and a single group of land plants, the hornworts,
have evolved biophysical CCMs that actively increase the CO,
concentration around RuBisCO, thus suppressing RuBisCO oxy-
genase activity and associated photorespiration. In eukaryotic
algae, CCMs involve inorganic carbon (Ci) transporters at the
plasma membrane and chloroplast envelope and carbonic anhy-
drases, which act in concert to deliver above ambient concentra-
tions of CO, to RuBisCO, usually within a chloroplast
microcompartment called the pyrenoid. The pyrenoid is mainly
composed of densely packaged RuBisCO (Engel et al., 2015).
Whilst not all algae with a CCM have a pyrenoid, the microcom-
partment enhances the efficiency of CO, assimilation (Morita
et al.,, 1998). Theoretical modelling approaches have demon-
strated the requirement for a pyrenoid in algal systems (Badger
et al., 1998) and shown that some form of microcompartment
containing RuBisCO would also be needed for a successful CCM
in higher plant systems (Price et al., 2013).
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Table 1 Chlamydomonas CCM genes used in this study. Locus name refers to the gene ID as supplied by Phytozome v5.5
(http://phytozome.jgi.doe.gov/pz/portal.html#!info?alias=0rg_Creinhardtii)

Protein length,

Putative function in native algal

Examples of experimental evidence for

Gene  Locus name size of precursor ccM function Mutant phenotype
HLA3  Cre02.g097800 1325 aa, 147 kDa  Ci uptake into cytosol RNAJ lines grown under alkaline conditions Reduction in Ci accumulation
(main Ci species is HCO3) have a HCR (1); when CO, <0.02%; HCR
synergistic effect with LCIA (1;2); "Ci uptake
assay (2;3); affinity for Ci when controlling
gene expression with dTALE (3); + work
presented here
LCIn Cre03.9g162800 192 aa, 21 kDa Ci uptake into cytosol 4Ci uptake assay (4) No published mutant;
overexpression in CCM
regulatory mutant promotes
HCO;3 uptake

LCIA Cre06.9g309000 336 aa, 35 kDa Ci transport from cytosol to Synergistic effect with HLA3 (2;3); Reduction in Ci accumulation

stroma electrophysiology in Xenopus oocytes (5); when CO, <0.02%; HCR
reduced affinity for Ci at alkaline pH (6); +
work presented here

CCP1  Cre04.9223300 358 aa, 38 kDa Ci transport from cytosol to RNAi lines support role in Ci transport (7); No published mutant
stroma putative localization inferred

bioinformatically

CCP2  (Cre04.9222750 355 aa, 38 kDa Ci transport from cytosol to RNAi lines support role in Ci transport (7); No published mutant
stroma putative localization inferred

bioinformatically

CAHT1  Cre04.9223100 377 aa, 42 kDa CO, and HCO3 at cell surface Absence of growth effect in the presence of ~ No apparent deleterious effect

membrane impermeable CA inhibitors (9) on growth

CAH6 Cre12.g485050 264 aa, 28 kDa Recapture of CO, leaking from  No experimental evidence of function; No published mutant
the pyrenoid putative role in CCM inferred from putative

localization

CAH3 (Cre09.g415700 310 aa, 33 kDa Terminal dehydration of HCO;  Low CO,-induced phosphorylation relocalizes  Mutation produces
to CO,, to saturate RuBisCO in  CAH3 preferentially to pyrenoid tubules (13);  overaccumulation of Ci
the pyrenoid alternative CCM-unrelated function

(regulation of water oxydation at PSIl) has
been proposed (14)

LCIB  Cre10.g452800 448 aa, 48 kDa CO, uptake or trapping of Synergetic role with Ci pumps (Icia/lciB double  Lethal under air-level CO, but
stromal CO,, pyrenoid mutant lethal when CO, <0.02%) (1); MS- rescued when CO, <0.02%
localization identification of LCIB-FLAG pull-down and

gel filtration showed that LCIB-C form a
360 kDa hetero-hexamer, which localizes
around the pyrenoid when CO, <0.02% (16)

LCIC  Cre06.9g307500 443 aa, 48 kDa CO, uptake or trapping of MS-identification of LCIB-FLAG pull-down and  No published mutant
stromal CO,, pyrenoid gel filtration showed that LCIB-C form a
localization 360 kDa hetero-hexamer, which localizes

around the pyrenoid when CO, <0.02% (16)
Examples of experimental
Location as per latest CCM evidence for location; work
Gene Locus name Functional annotation model (Wang et al., 2015) presented here for all ten genes References
HLA3 Cre02.9097800 ABC transporter superfamily Plasmamembrane Immunofluorescence (2); (1) Duanmu et al. (2009a); (2)
immunoblot on membrane Yamano et al. (2015); (3) Gao
fractions (2;3) et al. (2015)
LCI Cre03.9162800 Unknown Plasmamembrane Immunofluorescence + GFP (4) Ohnishi et al. (2010
fusion + immunoblot on
membrane fractions (4)
LCIA Cre06.9309000 Formate/nitrite transporter Chloroplast membrane Immunofluorescence (2;6) (5) (Mariscal et al. (2006); (6)
Wang and Spalding, (2014a)
CCP1 Cre04.9223300 Mitochondrial carrier protein Chloroplast membrane (7) Pollock et al. (2004); (8)

Ramazanov et al. (1993)
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Table 1 Continued

Gene

Locus name

Functional annotation

Location as per latest CCM
model (Wang et al., 2015)

Examples of experimental
evidence for location; work
presented here for all ten genes

References

ccrP2

CAH1

CAH6
CAH3

LCIB

LCIC

Cre04.9222750

Cre04.9223100

Cre12.9485050
Cre09.g415700

Cre10.g452800

Cre06.9307500

Mitochondrial carrier protein

o carbonic anhydrase

B carbonic anhydrase
o carbonic anhydrase

Unknown

Unknown

Chloroplast membrane

Periplasmic space

Stroma
Thylakoid lumen

Stroma

Stroma

Immunoblot on membrane
fractions (8)); + work presented
here

Immunoblot on membrane
fractions (8); + work presented
here

Cell wall lysis + CA assay on
supernatant (10); immunogold

amn

Immunogold (12)
Immunogold (12;15)

Immunogold (16); GFP fusion
(16,17); immunofluorescence
(6;18)

Immunogold +
immunofluorescence (16)

(7) Pollock et al. (2004); (8)
Ramazanov et al. (1993)

(9) Moroney and Tolbert,
(1985); (10) Kimpel et al.
(1983); (11) Ynalvez et al.
(2008)

(12) Mitra et al. (2004)

(13) Blanco-Rivero et al. (2012);
(14) Villarejo et al. (2002); (15)
Markelova et al. (2009)

(16) Yamano et al. (2010); (17)
Yamano et al. (2014); (18)
Wang and Spalding (2014b)

CA, carbonic anhydrase; Ci, inorganic carbon; HCR: high CO,-requiring phenotype, a nonlethal mutation rescued by growth under elevated CO, (2-5% [v/V]).

The best-characterized algal CCM is that of the model green
alga Chlamydomonas reinhardtii (Chlamydomonas throughout).
To date, a large number of molecular components have been
implicated in the Chlamydomonas CCM through mutant screens,
transcriptomic studies and functional homology with components
in other photosynthetic organisms (Brueggeman et al., 2012;
Fang et al., 2012; Meyer and Griffiths, 2013). At least 14 genes
are thought to be important in maintaining a fully functional
CCM under ambient or below ambient CO, concentrations (see
Wang et al. (2015) for review). Briefly, these include five Ci
transporters, four CAs, two pyrenoid peripheral proteins, a
putative methyl transferase and two nuclear transcription regu-
lators. The precise function and importance of these components
remains only partly understood. In addition, the Chlamydomonas
CCM requires a RuBisCO that can be targeted to the pyrenoid, a
property known to be dependent on sequence elements of the
RuBisCO small subunit (Genkov et al., 2010; Meyer et al., 2012).

To examine the feasibility of enhancing photosynthetic efficiency
in Cs plants by introducing CCM components from Chlamy-
domonas, we chose ten components that are considered essential
or potentially important for CCM functionality (Table 1). These
included intracellular components that mediate the transport and
conversion of Ci from the external environment to the active sites of
RuBisCO. LCIT and HLA3 are putative Ci transporters reportedly in
the plasma membrane; LCIA, CCP1 and CCP2 are putative
chloroplast envelope Ci transporters, although only the former
has been localized in vivo. CAH1, CAH3 and CAH6 are carbonic
anhydrases, thought to be located in the periplasmic space (CAH1),
the thylakoid lumen (CAH3) and the chloroplast stroma (CAH6).
LCIB and LCIC are proteins of unclear function that are reported to
surround the pyrenoid when CO, becomes limiting.

We first expressed fluorescently tagged versions of all these
proteins in Chlamydomonas cells to obtain definitive information

about their locations and then expressed them transiently in
tobacco (Nicotiana benthamiana L.) leaves. With one exception,
proteins localized to identical compartments in the two organisms.
Subsequent analyses focussed on the putative Ci transporters LCIA
and HLA3, which have been shown to cooperatively drive bicar-
bonate uptake from the extracellular environment to the chloro-
plast stroma (Yamano et al., 2015). We showed that both function
as Ci transporters when expressed in the outer membrane of
Xenopus oocytes. We also expressed these proteins stably in
transgenic Arabidopsis plants, which grew as well as wild-type
plants. Our results show that CCM components from Chlamy-
domonas can be expressed in appropriate locations in higher plant
cells without compromising growth, although — consistent with
modelling predictions — additional elements of the algal CCM will
need to be co-expressed to achieve enhanced productivity.

Results

Subcellular localization of native CCM components in
Chlamydomonas

The locations of CCM components in Chlamydomonas were
investigated by transforming Chlamydomonas cells with con-
structs encoding these proteins fused to a fluorescent tag (Venus)
at the C-terminus (Figures 1a and S1a). Full-length open reading
frames were cloned from genomic DNA and constitutively
expressed from the PsaD promoter. Most of the proteins had
the subcellular locations expected from previous studies (Table 1).
LCIA: Venus was confined to the chloroplast envelope; CAH3:
Venus, LCIB: Venus and LCIC: Venus were in the chloroplast, with
LCIC: Venus and LCIB: Venus producing the distinctive circular
pattern around the pyrenoid in CO,-starved cells. LCI1: Venus
and HLA3: Venus were in the plasma membrane. In the absence
of an available Chlamydomonas strain expressing tagged CAHT,

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315
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Figure 1 Expression of fluorescent-tagged CCM components in Chlamydomonas and tobacco. Expression of Venus-fused CCM components in
Chlamydomonas reinhardltii (a). Expression in tobacco of GFP-fused CCM components from Chlamydomonas (b). Green and purple signals are Venus or
GFP fluorescence and chlorophyll autofluorescence, respectively. Overlaid images of these signals are shown: overlaps are white. Scale bar = 5 pm (all
5 pum for Chlamydomonas images). For images of separate signals see Figure S1.

we examined the location of the structurally related isozyme
CAH2 (contiguous to CAH1 on chromosome 4, probably resulted
from a gene duplication event, 91.8% identical amino acid
sequences) (Fujiwara et al., 1990). CAH2: Venus was at the cell
periphery, consistent with the expected periplasmic locations of
CAH1 and CAH2 (Ynalvez et al., 2008). Unexpectedly, signals for
CCP1: Venus and CCP2: Venus showed punctate subcellular
localization, consistent with location in mitochondria. Further-
more, the location of fluorescence for CCP1: Venus and CCP2:
Venus overlapped with that of a mitochondrial marker dye
(Mitotracker Red CMXRos), indicating that both of these putative
Ci transporters were located in mitochondria (Figure S2). There
were no obvious signals for CAH6: Venus inside the Chlamy-
domonas cell (not shown).

Chlamydomonas CCM proteins can be expressed in
tobacco leaves

The CCM components localized in Chlamydomonas cells were
selected for expression in tobacco leaves. Binary expression

vectors carrying each CCM gene individually were generated by
PCR amplification of cDNA and subsequent Gateway cloning
(Karimi et al., 2002). Gene expression in tobacco was under the
control of the constitutive 35S promoter and nopaline synthase
(nos) terminator. Stop codons were removed to allow in-frame
C-terminal fusion to a sequence encoding GFP. For CAH1, the
N-terminal sequence (17 aa) was replaced with a leader
sequence (22 aa) from tobacco, as described by Roberts and
Spalding (1995), to facilitate processing and secretion to the
apoplast.

The GFP-fused CCM components were expressed transiently in
tobacco leaves by agro-infiltration. The locations of eight of the
components were consistent with the demonstrated location in
Chlamydomonas (Figures 1b and S1b). Fluorescent signals for
LCIA: GFP were in the chloroplast envelope, and LCIB: GFP and
LCIC: GFP signals were stromal. LCI1: GFP, HLA3: GFP and CAH1:
GFP were at the cell periphery. The location of fluorescence for
LCI1: GFP and HLA3: GFP overlapped with that of an integral
plasma membrane transporter protein (NPSN12, AT1G48240)

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315
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GFP mCherry Chlorophyll le\iérIa_y :
PM control .

Figure 2 Co-expression of GFP-fused CCM components with a mCherry-fused plasma membrane transporter NPSN12 or a known mitochondrial marker
(the targeting sequence of yeast cytochrome oxidase IV [COX4] fused to mCherry) in tobacco. Purple, green and cyan signals are chlorophyll
autofluorescence, GFP and mCherry fluorescence, respectively. Overlaid images of these signals are shown: overlaps of GFP and mCherry are pale green.

PM, plasma membrane; MT, mitochondria. Scale bar = 10 um.

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315



Figure 3 Expression of GFP-fused CCM
components carrying native Arabidopsis
chloroplast transit peptides in tobacco. Green and
purple signals are GFP fluorescence and
chlorophyll autofluorescence, respectively.
Overlaid images of these signals are shown:
overlaps are white. 1A-TP, RuBisCO small subunit
RBCS1A (AT1G67090) transit peptide; ABC-TP,
ABC transporter ABCI13 (AT1G65410) transit
peptide; mCAH6, mature CAH6; mLCIA, mature
LCIA. Main image scale bar = 10 um, inset image
scale bar = 3 um. For images of separate signals
see Figure S3.

fused to mCherry (Geldner et al., 2009), indicating that both of
these putative Ci transporters were associated with the plasma
membrane (Figure 2). Although co-expression of CAH1: GFP with
NPSN12: mCherry indicated that CAH1 was located at the cell
periphery, we could not resolve whether the enzyme, which is
periplasmic in Chlamydomonas, was expressed discretely in the
intercellular space. The fluorescence signals for CCP1: GFP and
CCP2: GFP appeared predominantly in numerous discrete struc-
tures much smaller than chloroplasts. This distribution is consis-
tent with the locations of these proteins in mitochondria, as was
the case in Chlamydomonas (Figure 1a). Furthermore, fluores-
cence signals for CCP1: GFP and CCP2: GFP overlapped with that
of a mitochondrial marker (the targeting sequence of yeast
cytochrome oxidase IV [COX4] fused to mCherry [Nelson et al.,
2007]), indicating that both of these putative Ci transporters were
associated with the mitochondria (Figure 2).

The fluorescent signal for CAH3: GFP was present in both
cytosol and chloroplasts when this fusion protein was expressed
in tobacco. In contrast, CAH6: GFP appeared to be located
exclusively in the cytosol (Figure 1b). Our own and previous data
suggest that CAH3 is chloroplastic in Chlamydomonas and
probably contained within the thylakoid lumen where it is
suggested to play a pivotal role in the supply of CO, to RuBisCO
(Figure 1) (Blanco-Rivero et al., 2012; Duanmu et al., 2009b;
Karlsson et al.,, 1998; Sinetova et al., 2012). CAH6 has a
predicted chloroplast transit peptide (TP), and there is some
evidence for a chloroplast location in Chlamydomonas (Mitra
et al., 2004). However, our CAH6: Venus protein did not have a
clear intracellular location. Thus, CAH3 appears to be mistargeted
when expressed in tobacco, and there is insufficient information
on CAH6 to determine whether this protein is correctly localized
in tobacco.

Modification of target peptides for direction of CCM
components to tobacco chloroplasts

We tested whether plasma membrane localized Ci transporters
from Chlamydomonas could be retargeted to the chloroplast
envelope in tobacco leaves. Screening of the plant membrane
protein database (Aramemnon, http://aramemnon.botanik.uni-
koeln.de/) identified a chloroplast envelope transporter belonging
to the ATP-binding cassette (ABC) superfamily: ABCI13 of

ABC-TP : HLA3

Introducing an algal CCM into higher plants 1307

A-TP : mCAHS

Arabidopsis (AT1G65410). The predicted N-terminal TP of
ABCI13 (ABC-TP, 60 aa) was attached to the N-termini of HLA3
and LCI1. As controls, we used constructs encoding a Chlamy-
domonas protein: GFP fusion already shown to localize to the
tobacco chloroplast envelope (LCIA, see above) that were
modified either to remove the TP or to replace it with the ABC-TP.

When expressed transiently in tobacco, LCIA: GFP lacking the
predicted native LCIA-TP (73 aa) (Miura et al., 2004) localized to
the cytosol instead of the chloroplast (Figures 3 and S3).
Chloroplast envelope targeting was recovered with a N-terminal
ABC-TP, similarly to full-length LCIA: GFP. This result showed that
the ABC-TP could target some transporter proteins to the
chloroplast envelope. However, the addition of the ABC-TP to
LCI1: GFP or to HLA3: GFP was not sufficient to retarget these
two proteins to the chloroplast envelope. The fluorescence signal
for ABC-TP: LCI1: GFP indicated that the protein was in the
chloroplast stroma, whereas the signal for ABC-TP: HLA3: GFP
was in the cytosol.

Having found that CAH6: GFP did not localize to the
chloroplast stroma, we replaced the native TP with the TP of
the Arabidopsis RuBisCO small subunit, RBCS1A (AT1G67090). By
placing the first 80 aa of RBCS1A (1A-TP) upstream of the mature
CAH6 (mCAH®6) to generate 1A-TP: mCAH6: GFP, the CAH6: GFP
protein was retargeted to the chloroplast stroma (Figure 3). Thus,
1A-TP is a suitable sequence to direct the localization of soluble
Chlamydomonas proteins to the stroma.

LCIA and HLAS3 are located in the plasma membrane in
Xenopus oocytes and increase Ci uptake rates

To investigate the putative function of LCIA and HLA3 as
transmembrane Ci transporters, we expressed these proteins in
Xenopus oocytes, with or without N-terminal GFP fusions.
Oocytes injected with mRNA of either mature LCIA: GFP (mLCIA;
lacking the N-terminal TP) or HLA3: GFP displayed a fluorescent
signal on the cell surface after 3 d, indicating protein expression
and incorporation into the plasma membrane (Figure 4a). mRNA-
injected cells were assayed for Ci uptake using H'*CO5™ as a
tracer. Oocytes transformed with mLCIA: GFP or HLA3: GFP
accumulated 2.0- and 2.7-fold more 'C than water-injected
controls, respectively (Figure 4b). The presence of a GFP-tag had
no adverse effect on H'*CO5™ uptake.

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315
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Figure 4 Chlamydomonas CCM components LCIA and HLA3 facilitate
increased accumulation of inorganic carbon in Xenopus oocytes. Confocal
images of oocytes expressing GFP fused to mature LCIA (LCIA lacking a
chloroplast transit peptide, mLCIA) or HLA3 3 d after injection (a). 4c
accumulation in oocytes expressing mLCIA or HLA3 either untagged or
fused to GFP following 10-min incubation in MBS containing 0.12 mM
NaH'4COs5 (b). Values are means of measurements on 20 oocytes; bars are
means + standard error (SE). Letters above the bars indicate a difference
or between values; where a, b and ¢ indicate significant difference

(P < 0.05) as determined by analysis of variance (ANOVA) followed by
Tukey's honestly significant difference (HSD) tests.

LCIA and HLA3 express in appropriate locations in
Arabidopsis leaf cells following stable transformation

Following transformation by floral dip, three Arabidopsis thaliana
(ecotype Columbia; Col-0) homozygous T3 lines with stable
expression of either LCIA: GFP or HLA3: GFP were selected for
further study. Both fusion proteins resulted in fluorescent signals in
the same subcellular locations as in tobacco leaves (Figures 5a and
S4). Leaf proteins were separated on SDS-PAGE and probed after
blotting with a commercial antibody raised against GFP. Polypep-
tides corresponding to 54 kDa for LCIA: GFP and 170 kDa for
HLA3: GFP were resolved (Figure 5b). These masses are consistent
with those expected for GFP (27 kDa) fusions of LCIA after TP
cleavage (27.5 kDa) and HLA3 (147 kDa) (Yamano et al., 2015).

Transgenic Arabidopsis have normal growth and
photosynthetic characteristics

Wild-type plants and LCIA: GFP- or HLA3: GFP-expressing lines
were grown together under ambient CO; (ca. 400 umol/mol) and
a light intensity of 100 pmol photons/m?/s (Figure 6a). Growth
rate was compared by measuring rosette expansion, fresh weight
and dry weight. No differences were observed between wild-type
and transgenic lines. Furthermore, there was no difference in leaf

chlorophyll content (Figure S5). To investigate whether the
presence of algal Ci transporters affected growth rate under
conditions in which chloroplastic CO, concentration is expected
to be a major limitation on photosynthesis, plants were grown
under low CO, (250 pmol/mol) and high light (350 umol
photons/m?/s) (Figure 6b). All genotypes had higher growth rates
and lower specific leaf areas under these conditions (Figure S6),
but again, there were no significant differences in growth
between wild-type and transgenic lines.

We checked whether expression of LCIA: GFP or HLA3: GFP
affected the steady-state rate of photosynthetic CO, assimilation
at ambient CO; (A,) (Table 2). We also measured the relationship
between the rate of photosynthesis and the CO, concentration in
the leaf substomatal cavity (A/G, Figure 7) and used this to infer
other photosynthetic parameters including the diffusion of CO,
from substomatal cavity to chloroplast (mesophyll conductance,
9m) (Griffiths and Helliker, 2013) and the maximum RuBisCO
carboxylation rate (Ve max). There were no significant differences
in any of the parameters between transgenic lines expressing
LCIA: GFP or HLA3: GFP and wild-type plants.

Discussion

The introduction of a microbial eukaryotic CCM into crop plants
will require robust methods to ensure that the proteins of interest
perform their intended function in the foreign host system. To
that effect, we developed a pipeline to (i) determine the native
subcellular location in Chlamydomonas, (ii) test the targeting
efficiency of constructs by transient expression in tobacco and (i)
provide a platform for physiological characterization of transgenic
lines by stably transforming Arabidopsis. Through this approach,
we showed that eight CCM components from Chlamydomonas
can be successfully transferred into appropriate locations in leaves
of higher plants. Confirmation of subcellular localization of CCM
components is an important step in systematic introduction of a
fully operational CCM into higher plants (Pengelly et al., 2014).
For example, successful expression and assembly of components
of the cyanobacterial carboxysome microcompartment in tobacco
chloroplasts will help to guide future attempts to assemble the
cyanobacterial CCM into higher plants (Lin et al., 2014a,b). In
contrast, transfer of ictB, a putative cyanobacterial CCM compo-
nent, into Arabidopsis and tobacco plants has resulted in
enhanced biomass accumulation (Lieman-Hurwitz et al.,, 2003;
Simkin et al., 2015), but lack of information on ictB protein
structure, function and cellular localization in transgenic plants
limits our understanding of this growth response (Simkin et al.,
2015).

The need to establish robustly the native location of CCM
components, prior to incorporation into higher plants, is further
supported by our work on two putative chloroplast membrane
transporters. The suggestion that CCP1 and CCP2 are in the
chloroplast envelope was based on their enrichment in chloro-
plast preparations and in preparations of envelope membranes
(Mason et al., 1990; Ramazanov et al., 1993). The possibility of a
mitochondrial location was not explicitly examined in these
studies. Here, our robust co-expression approach revealed that
tagged CCP1/2 proteins were associated with mitochondria
rather than the chloroplast envelope in both Chlamydomonas
and tobacco (Figures 1 and 2; Figures S1 and S2). This location is
also consistent with the high degree of similarity between CCP1/2
and the mitochondrial carrier protein superfamily (Pollock et al.,
2004; Pfam 00153; KOGQ758). The expression of CCP1 and

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315



Figure 5 Stable expression of LCIA: GFP and
HLA3: GFP in Arabidopsis. Representative
confocal images of LCIA and HLA3 fused to GFP (b)
(a). Green and purple signals are GFP fluorescence

Introducing an algal CCM into higher plants 1309

LCIA:GFP, LCIA:GFP, LCIA: GFP4

and chlorophyll autofluorescence, respectively.
Overlaid images of these signals are shown:
overlaps are white. Scale bar = 10 um. For images
of separate signals see Figure S4. Immunoblots of
rosette extracts (10 pg protein) from LCIA: GFP-
and HLA3: GFP-expressing lines probed with an
antibody against GFP (b). LCIA: GFP is present in
three separate homozygous T3 insertion lines
(LCIA: GFP.3), but not in segregating wild-type
lines. HLA3: GFP is visible in HLA3: GFP,_3 but not
in the segregating wild-type for HLA3: GFP, or a
wild-type equivalent for HLA3: GFP, and HLA3:
GFP23. LCIA: GFP and HLA3: GFP have
approximate masses of 54 and 170 kDa,
respectively (arrow). Ponceau stains of each blot
(right) show the band attributable to the RuBisCO
large subunit (RbcL, 55 kD) as a loading control.

HLAS:GFP[:>

CCP2 is strongly induced by low CO, both genes are under the
control of the CCM 'master switch’ Cia5/Ccm1, and reducing
CCP1/2 expression (through an RNAi approach) resulted in slower
growth rates at low CO,. However, cells with reduced CCP1/2
proteins did not lose CCM or photosynthetic capacity at low CO,
(Pollock et al., 2004). Taken together, these results suggest that
transport across mitochondrial membranes plays an important
role in coordinating the CCM with growth-related metabolism. In
Chlamydomonas, mitochondria are known to relocate from a
central position within the cup of the chloroplast to a peripheral
position close to the plasma membrane when cells grown in high
CO; are exposed to limiting CO, (Geraghty and Spalding, 1996).
It has been suggested that mitochondrial relocation may be
important either for energization of plasma membrane Ci
transporters (to date, plasma membrane HLA3 is the only ATP-
dependent Ci transporter candidate) or for scavenging glycolate
produced in photorespiration during acclimation to limiting CO,
(Spalding, 2009). A better understanding of the role of CCP1/2 in
Chlamydomonas will inform future engineering strategies for
higher plants.

The location of the carbonic anhydrases CAH3 and CAH6 in
tobacco also differed from predicted results (Figure 2). The partial
cytosolic localization of CAH3 is likely an effect of the failure of
the higher plant import machinery to recognize the dual
signalling peptide of this protein. In Chlamydomonas (Figure 1),
results were consistent with location of the protein in the
thylakoid lumen (Duanmu et al., 2009b; Sinetova et al., 2012). In
particular, the presence of fluorescence in the centre of the
pyrenoid is consistent with the suggestion that CAH3 is concen-
trated in the transpyrenoidal thylakoid tubules following low
CO,-induced phosphorylation (Figure 1) (Blanco-Rivero et al.,
2012). In contrast, there is no clear evidence of a role for CAH6

HLA3: GFP,

wt Homo wt Homo wt Homo

LCIA:GFPD l i ,| ; g 1

HLA3: GFP,

HLA3: GFP,

wt Homo Homo Homo wt

s

TS e—a—T—

in the Chlamydomonas CCM, and very little is known about its
function. CAH6 represents the only apparent stromal carbonic
anhydrase activity and has been adopted into the current CCM
model as a speculative mechanism for Ci uptake and/or recovery
of CO, escaping from the pyrenoid (Wang et al., 2015; Yamano
et al., 2010). Evidence for chloroplast location in Chlamy-
domonas is based on a predicted stroma-signalling peptide and
on immunogold labelling (Mitra et al, 2004), but we did not
observe an intracellular location for a CAH6: Venus protein.

Our attempts to relocate CCM components in tobacco cells by
modifying targeting sequences were successful for some com-
ponents. CAH6 could be redirected from the cytosol to the
chloroplast stroma in tobacco by removal of the predicted TP and
fusion to the TP of the Arabidopsis RuBisCO small subunit 1A, 1A-
TP (Figure 3). The plasma membrane protein LCI1 could be
relocated to the chloroplast by fusion with the TP of an
Arabidopsis chloroplast envelope transporter, and the same TP
could substitute for the native TP of the Chlamydomonas
chloroplast envelope protein LCIA. However, this TP did not
redirect the plasma membrane protein HLA3 to the chloroplast
envelope. Moving larger transmembrane proteins like HLA3 to
the chloroplast may require further modifications to remove
potential competing signal motifs and to ensure correct orienta-
tion in the case of directional channels.

The putative Ci transporters HLA3 and LCIA localized to the
plasma membrane and chloroplast envelope, respectively, in
Chlamydomonas, tobacco and Arabidopsis (Figures 1 and 5).
Recent work has confirmed these locations in Chlamydomonas
(Yamano et al., 2015). We showed that both proteins can
facilitate uptake of Ci into Xenopus oocytes, consistent with
previous demonstrations that LCIA can facilitate Ci movement
across membranes (Mariscal et al., 2006) and that HLA3 overex-
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Figure 6 Growth of phenotypes in different environmental conditions of transgenic Arabidopsis plants expressing LCIA or HLA3. Plants were grown under
ambient CO, (ca. 400 umol/mol) and 100 pmol photons/mz/s (@) or low CO, (250 umol/mol) and 350 pmol photons/mZ/s (b). Growth rates (1st and 3rd
row) and fresh weight (FW) and dry weight (DW) (2nd and 4th row) are shown for LCIA and HLA3, respectively. HLA3 transgenic lines had a lower FW and
DW compared to LCIA when grown under ambient CO,, as plants were harvested slightly earlier (at 29 days vs 31 days). All plants grown under low CO,
were harvested at 30 days. Values are the means + SE of measurements made on 24 rosettes.
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Table 2 Photosynthetic parameters determined from gas exchange analysis of LCIA or HLA3 transgenic plants. Values are the mean =+ SE of
measurements made on four leaves, each from a different plant (as shown in Figure 7)

Wild type HLA3: GFP, HLA3: GFP, HLA3: GFP; wild type LCIA: GFP, LCIA: GFP, LCIA: GFP3
An (umol COx/m?/s) 9.4 + 0.6 11 +09 10 £ 0.8 9.9 + 0.8 9.7 £0.2 9.4 + 0.5 9.7 £1.2 8.8 + 0.2
gs (mol COz/mZ/S) 0.21 + 0.04 0.29 + 0.03 0.21 + 0.03 0.25 + 0.04 0.26 + 0.03 0.24 + 0.04 0.25 + 0.05 0.24 + 0.01
9m (Mol CO,/m%/s) 0.047 + 0.003 0.048 + 0.005 0.047 + 0.003 0.044 + 0.005 0.04 + 0.001 0.038 4+ 0.002 0.04 4+ 0.004 0.034 + 0.001
Ve max (LMol COZ/mz/s) 30 + 3.2 304 +£24 293+ 1.8 273 +£22 287 £ 1.1 292 +238 314+ 23 27 £ 0.7
Jimax (umol e'/mZ/S) 645 + 4.8 716 £ 56 67 + 4.7 64.3 +52 645+ 1.9 65.1 + 4.6 69.5 + 6.6 615+ 1.1
' (umol COy/mol) 395+ 25 44 + 2.6 379 £ 1.4 36.1 £ 2.6 332 +£ 0.6 315+ 24 329 +£0.9 29.1 £1
Initial slope (A//C 0.044 + 0.002 0.046 + 0.004 0.044 + 0.003 0.043 + 0.004 0.038 + 0.001 0.035 + 0.002 0.038 + 0.005 0.036 + 0.001

An, net photosynthesis at ambient CO,; gs, stomatal conductance to CO5; gm, mesophyll conductance to CO;; Ve max, maximum velocity of RuBisCO carboxylation;

Jmax, Maximum capacity of electron transport; I', CO, compensation point.

ANOVA revealed that there were no statistically significant differences between samples (P < 0.05).
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Figure 7 Photosynthetic responses of transgenic plants. Photosynthetic rates were determined as a function of increasing substomatal CO,
concentrations (A/C) at saturating light levels (1500 umol photons/m?/s). Each curve represents the means + SE of values from four leaves, each on a

different plant.

pression contributes to increased Ci uptake in Chlamydomonas
(Gao et al., 2015; Yamano et al., 2015). Further kinetic analyses
will be required to determine the mode of action of these proteins
(i.e. active vs. passive transport). This information will be crucial
for modelling approaches and rational engineering strategies. For
example, rational approaches for engineering the cyanobacterial
CCM into higher plants are based on a good understanding of
the catalytic characteristics of cyanobacterial Ci transporters BicA
and SbtA (Du et al., 2014; McGrath and Long, 2014, Price et al.,
2011, 2013).

The addition of LCIA or HLA3 did not confer a growth
advantage to Arabidopsis plants (Figures 6 and 7, Table 2). This is
not entirely unexpected, as biophysical CCMs, in both algae and
cyanobacteria, require additional features to function, including a
microcompartment containing RuBisCO and additional compo-
nents to reduce Ci leakage (Badger et al, 1998; Price et al.,
2013; Yamano et al., 2010). Furthermore, it is likely that native
carbonic anhydrase activity, particularly in the stroma, would

hinder Ci accumulation. Biophysical CCMs rely on the capacity to
accumulate bicarbonate; thus, specific localization and control of
carbonic anhydrase activity appear to play an important role in
functionality. For example, ectopic expression of carbonic anhy-
drase within the cytoplasm of cyanobacterial cells leads to a
debilitating leakage of Ci due to rapid equilibration between
bicarbonate and CO, in the cytosol (Price and Badger, 1989).
Predictive models indicate that the removal of native stromal
carbonic anhydrases is a key target for introducing biophysical
CCMs into higher plants (McGrath and Long, 2014; Price et al.,
2013). Our results do demonstrate that higher plant cells can
express Ci transporters from Chlamydomonas in appropriate
locations, without deleterious effect. Both LCIA and HLA3
showed appropriate transmembrane integration and increased
Ci uptake when expressed in Xenopus oocytes (Figures 1, 4 and
5). Furthermore, we were able to detect both proteins in
transgenic Arabidopsis leaves (Figure 5). Together, these data
suggest that LCIA and HLA3 were active, but that activity was not
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sufficient to drive up CO, levels around RuBisCO and hence
improve the rate of CO, assimilation.

Recent work has shown that expression and function of HLA3
and LCIA may be closely coordinated in Chlamydomonas
(Yamano et al., 2015). Enhanced Ci uptake was observed when
both proteins were overexpressed in wild-type Chlamydomonas
at high CO,. However, negligible changes in photosynthesis and
Ci uptake were observed when either HLA3 or LCIA was
overexpressed, indicating that, in the absence of other CCM
components or a microcompartment such as a pyrenoid, these
proteins are not able to enhance chloroplastic CO, concentrations
(Gao et al., 2015; Yamano et al., 2015). These data suggest that
subsequent engineering strategies in higher plants should focus
on co-expression of HLA3 and LCIA. Additional modifications will
probably be required to establish a functional biophysical CCM in
higher plants, including the removal of native carbonic anhy-
drases, which would otherwise short circuit active uptake
mechanisms and eliminate any stromal pool of bicarbonate (Price
et al., 2013). The next challenge will be to stack key CCM
components, and develop a strategy to retarget stromal RuBisCO
to a chloroplast microcompartment, a predicted requirement for
an algal-type CCM (Badger et al., 1998).

Experimental procedures
Plant material and growth conditions

Mutant and transgenic plants of Arabidopsis (Arabidopsis
thaliana) were in the Col-0 wild-type background. Arabidopsis
seeds were sown on compost, stratified for 3 days at 4 °C and
grown at 20 °C, under ambient CO; (ca. 400 pmol/mol), at 70%
relative humidity and under 100 pmol photons/m?/s in 12-h light/
12-h dark cycles, unless otherwise stated.

For analyses of transgenic lines, homozygous insertion or wild-
type out-segregant lines (T3) were compared. Where wild-type
out-segregants were not available, homozygous insertion lines
were compared with Col-0 plants from seed stocks of the same
age generated under similar conditions. Tobacco plants (Nico-
tiana benthamiana L.) were cultivated under glass house condi-
tions (minimum 20 °C, natural light supplemented to give at least
12-h light). Venus-tagged proteins were expressed in wild-type
Chlamydomonas strain ¢MJO30 (CC-4533)(Zhang et al., 2014).
Cells were maintained in constant low light (~10 pmol photons/
m?/s) at RT on 1.5% (w/v) agar plates containing Tris—acetate—
phosphate (TAP) (Kropat et al., 2011). For imaging, cells were
grown in liquid TAP media to a concentration of 10° cells/mL,
pelleted by centrifugation (1000 g, 4 min), resuspended in Tris—
phosphate (T-P) minimal media (Kropat et al., 2011) and grown
for 24 h in ambient CO, before imaging.

Cloning and expression of CCM components in
Chlamydomonas

The open reading frames (ORFs) of Chlamydomonas genes were
expressed in frame with Venus from the PsaD promoter using the
pLMOO05 vector. ORFs were amplified from genomic DNA using
Phusion Hotstart |l polymerase (Thermo Fisher Scientific,
www.thermofisher.com) with the respective oligos in Table S1.
Hpal-cut pLMO0O05 vector and PCR products were gel purified and
assembled by Gibson assembly (Gibson et al., 2009). Due to the
large gene length of HLA3, it was cloned in two fragments then
assembled in the pLMOO5 vector by Gibson assembly. The
pLMOO05 vector contains the AphVIIl gene for paromomycin
resistance in Chlamydomonas and ampicillin resistance for

bacterial selection. All construct junctions were verified by Sanger
sequencing. Constructs were transformed into Chlamydomonas
by electroporation as in Zhang et al. (2014). Briefly, 250 uL of
2 x 108 cells/mL was transformed with 14.5 ng/kbp of EcoRV-
cut plasmid at 16 °C. Cells were spread on 86 mL TAP agar plates
containing paromomycin (20 pg/mL) and kept in low light
(~10 pmol photons/m?/s) until colonies were ~2—3 mm in diam-
eter. Plates were screened for fluorescent colonies using a
Typhoon TRIO fluorescence scanner (GE Healthcare, www.gelife-
sciences.com) with excitation/emission wavelengths 532 nm/
520-555 nm for Venus and 633 nm/630-670 nm for chlorophyll
autofluorescence.

Cloning and expression of CCM components in tobacco
and Arabidopsis

Genes were cloned from cDNA derived from Chlamydomonas
(strain CC-4886, Chlamydomonas Resource Center). Primers
were designed from sequences available on Phytozome v10.2
(Chlamydomonas reinhardtii v5.5 [Augustus u11.6], http:/phyto-
zome.jgi.doe.gov/pz/portal.html#!info?alias=0rg_Creinhardtii)
(see Table S1 for oligo details). Gene sequences for LCIA and
HLA3 were codon-optimized for expression in higher plants and
synthesized de novo (DNA2.0, CA, USA) (Figure S7), then cloned
into Gateway entry vectors (pCR®8/GW/TOPO®TA Cloning® Kit)
using Platinum® Tagq DNA Polymerase High Fidelity according to
the manufacturer’s instructions (Invitrogen™ Life Technologies,
www . lifetechnologies.com) and subsequently cloned into the
destination binary vectors pK7FWG2,0 (Karimi et al., 2002) or
pGWB5 (Nakagawa et al., 2009). Gibson assembly was used to
generate transit peptide gene fusions. Binary vectors were
transformed into Agrobacterium tumefaciens (AGL1) for transient
gene expression in tobacco leaves (Schob et al., 1997) or stable
insertion in Arabidopsis plants by floral dipping (Clough and Bent,
1998). Co-expression studies were performed with the WAVE131
vector of the ‘wave’ marker set (Geldner et al., 2009) and the mt-
rb vector (Nelson et al., 2007) for plasma membrane and
mitochondria localization, respectively.

DNA extraction, PCR and protein analysis

For screening transgenic Arabidopsis lines, genomic DNA was
extracted from mature, nonflowering rosettes of T1 plants as
described in Li and Chory (Li and Chory, 1998). PCRs were
performed as in McCormick and Kruger (2015). Where possible,
the location of gene inserts was confirmed by TAIL PCR as
described by Liu et al. (1995). Homozygous insertion lines were
identified in the T2 generation either by PCR or by seedling
segregation ratios on kanamycin-containing Murashige and
Skoog (MS) medium (0.5x) plates.

Relative levels of LCIA: GFP and HLA3: GFP proteins in leaves
were confirmed by immunoblot. Approximately 10 ug protein
from whole 28-d-old rosettes (100 mg fresh weight) was
fractionated by SDS-PAGE on a 10% (w/v) acrylamide: bisacry-
lamide (40:1) gel transferred to PVDF membrane, probed with
mouse anti-GFP 1gG,, at 1:1,000 dilution (Santa Cruz, http://
www.scbt.com/) and visualized using an HRP-conjugated goat
anti-mouse 1gG,, at 1:50 000 dilution. HRP activity was detected
using Supersignal Ultra (Pierce, www.piercenet.com) according to
the manufacturer’s instructions.

Oocyte expression and bicarbonate uptake assays

Synthesized gene sequences for mature LCIA (mLCIA) or HLA3
lacking a stop codon were cloned into the expression vector Vivid
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Colors™ pcDNA™ 6.2/EmGFP (Invitrogen™ Life Technologies) to
generate mLCIA- or HLA3-GFP fusions. For LCIA, the N-terminal
transit sequence peptide (73 aa) was removed and replaced with
the sequence ‘GACATG' to add a Kozak sequence and new start
codon. For HLA3, ‘GAC’ was added immediately upstream of the
start codon. To generate equivalent vectors lacking a fluorescent
tag, Gibson assembly was used to add a stop codon to mLCIA or
HLA3 and remove the GFP sequence (720 bp). Plasmids were
linearized by Avrll or Stul (Roche, www.roche.co.uk) and capped
mRNA was synthesized using the mMESSAGE mMACHINE® T7
Transcription Kit (Ambion®; Life Technologies) according to the
manufacturer’s instructions. Mature LCIA or HLA3 mRNA was
expressed in oocytes as described by Feng et al. (2013). Xenopus
oocytes were injected with 50 nL of mRNA (1 pg/ul) or diethyl
pyrocarbonate (DEPC)-treated water as a control. Bicarbonate
uptake assays and confocal imaging were performed 3 d after
injection in a protocol adapted from Mariscal et al. (2006).
Oocytes were incubated in fresh MBS media (88 mm NaCl, 1 mm
KCl, 2.4 mm NaHCOs, 0.71 mm CaCl,, 0.82 mm MgSO,4 and
15 mm HEPES, pH 7.4), containing 0.12 mm NaHCOs (1.85 GBo/
mol NaH'#CO3). After 10 min, the oocytes were washed three
times with ice-cold MBS and lysed in 200 pL SDS (10% [w/v]),
and the radioactivity retained in individual oocytes was measured.

Chlorophyll quantification

Chlorophyll was extracted from powdered leaf discs in ice-cold
80% (v/v) acetone and 10 mm Tris-HCI, and concentration was
measured according to Porra et al. (1989).

Measurement of photosynthetic parameters

Gas exchange rates were determined using a LI-6400 portable
infrared gas analyser (LI-COR Biosciences, http://www.licor.com/)
on either the sixth or seventh leaf of 35- to 45-d-old mature,
nonflowering rosettes grown in large pots to generate leaf area
sufficient for gas exchange measurements (Flexas et al., 2007).
The response of net photosynthetic CO, assimilation (4) to
substomatal CO, concentration (C) was measured by varying the
external CO, concentration from 0 to 1000 umol/mol under a
constant photosynthetic active radiation of 1500 pmol photons/
m?/s (provided by a red-blue light source attached to the leaf
chamber). Gas exchange data were corrected for CO, diffusion as
in Bellasio et al. (2015). Leaf temperature and chamber relative
humidity were maintained at 21 °C and 70%, respectively. To
calculate maximum carboxylation rate (Ve max), maximum electron
transport flow (Jmax) and mesophyll conductance (g.,), the A/Ci
data were fitted to the C3 photosynthesis model (Farquhar et al.,
1980) with modifications to include estimations for g, as
described by Ethier and Livingston (2004).

Confocal laser scanning microscopy

A Leica TCS SP2 laser scanning confocal microscope (Leica
Microsystems) with a water immersion objective lens (HCX IRAPO
25.0x0.95) was used for imaging leaves and oocytes. Excitation/
emission wavelengths were 488 nm/500-530 nm for GFP,
543 nm/590-620 nm for mCherry and 488 nm/680-750 nm
for chlorophyll autofluorescence. Images were acquired using
Leica LAS AF software (http:/Awvww.leica-microsystems.com/).
Prior to imaging Venus-tagged proteins in Chlamydomonas,
15 uL of cells were added to a well of a 96-well optical plate
(Brooks Life Science Systems, http://www.brooks.com) and cov-
ered with 150 plL of 1.5% low melting point agarose containing
T-P (~35 °C). For mitochondria staining, CCP1: Venus- and CCP2:

Introducing an algal CCM into higher plants 1313

Venus-expressing lines were grown in liquid T-P media with
paromomycin (2 pg/mL) to a concentration of 2-4 x 10° cells/
mL. Cultures were incubated with MitoTracker Red CMXRos
(Thermo Fisher Scientific) to a final concentration of 1 pm for
10 min, then spotted on a polylysine-coated slide for imaging.
Cells were imaged using a custom adapted confocal microscope
(Leica DMI6000) with settings at 514 nm/532-555 nm for Venus,
561 nm/573-637 nm for staining by Mitotracker Red CMXRos
and 561 nm/665-705 nm for chlorophyll autofluorescence.
Images were analysed using Fiji software (http://fiji.sc/Fiji).

Statistical analysis

Variations in response between genotypes were assessed by
either analysis of variance (ANOVA) or Student’s t-tests followed
by Tukey's honest significant difference (HSD) post hoc test (SPSS
Statistics 18, http://Awww.ibm.com/). Differences for which
P < 0.05 are considered significant.

Acknowledgements

We thank Livia Scheunemann, Xiaorong Fan, Paloma Menguer
and Anthony Miller (John Innes Centre) for advice and help with
oocyte experiments, Mark Fricker (University of Oxford) for use of
LeafLab software and Fani Ntana (University of Edinburgh) for
technical contributions. AJM, DF and AMS were funded by grants
from the Biotechnology and Biological Sciences Research Council
(BBSRC), UK: BB/1024453/1 and Institute Strategic Programme
Grant BB/J004561/1 to the John Innes Centre. NA was funded by
BBSRC: BB/M006468/1, HG and MM were funded by BBSRC: BB/
M007693/1. LM and MJ were funded by US National Science
Foundation (NSF): 1359682.

Conflict of interest

The authors declare that they have no competing interests.

References

Badger, M.R., Andrews, T.J., Whitney, S.M., Ludwig, M., Yellowlees, D.C.,
Leggat, W. and Price, G.D. (1998) The diversity and coevolution of Rubisco,
plastids, pyrenoids, and chloroplast-based CO,-concentrating mechanisms in
algae. Can. J. Bot. 76, 1052-1071.

Bellasio, C., Beerling, D.J. and Griffiths, H. (2015) An Excel tool for deriving key
photosynthetic parameters from combined gas exchange and chlorophyll
fluorescence: theory and practice. Plant, Cell Environ. doi: 10.1111/
pce.12560.

Blanco-Rivero, A., Shutova, T., Roman, M.J., Villarejo, A. and Martinez, F.
(2012) Phosphorylation controls the localization and activation of the lumenal
carbonic anhydrase in Chlamydomonas reinhardtii. PLoS ONE, 7, e49063.

Brueggeman, A.J., Gangadharaiah, D.S., Cserhati, M.F., Casero, D., Weeks,
D.P. and Ladunga, I. (2012) Activation of the carbon concentrating
mechanism by CO, deprivation coincides with massive transcriptional
restructuring in Chlamydomonas reinhardtii. Plant Cell, 24, 1860-1875.

Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for
Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J.
16, 735-743.

Du, J., Forster, B., Rourke, L., Howitt, S.M. and Price, G.D. (2014)
Characterisation of cyanobacterial bicarbonate transporters in E. coli shows
that SbtA homologs are functional in this heterologous expression system.
PLoS ONE, 9, e115905.

Duanmu, D., Miller, AR., Horken, K.M., Weeks, D.P. and Spalding, M.H.
(2009a) Knockdown of limiting-CO,-induced gene HLA3 decreases HCO3
transport and photosynthetic Ci affinity in Chlamydomonas reinhardftii. Proc.
Natl Acad. Sci. USA, 106, 5990-5995.

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315



1314 Nicky Atkinson et al.

Duanmu, D., Wang, Y. and Spalding, M.H. (2009b) Thylakoid lumen carbonic
anhydrase (CAH3) mutation suppresses air-Dier phenotype of LCIB mutant in
Chlamydomonas reinhardltii. Plant Physiol. 149, 929-937.

Engel, B.D., Schaffer, M., Kuhn Cuellar, L., Villa, E., Plitzko, J.M. and
Baumeister, W. (2015) Native architecture of the Chlamydomonas
chloroplast revealed by in situ cryo-electron tomography. eLife, 4, e04889.

Ethier, G.J. and Livingston, N.J. (2004) On the need to incorporate sensitivity to
CO, transfer conductance into the Farquhar-von Caemmerer-Berry leaf
photosynthesis model. Plant, Cell Environ. 27, 137-153.

Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S.S., Pellegrini, M.,
Ladunga, I. et al. (2012) Transcriptome-wide changes in Chlamydomonas
reinhardtii gene expression regulated by carbon dioxide and the CO,-
concentrating mechanism regulator CIA5/CCM1. Plant Cell, 24, 1876-1893.

Farquhar, G.D., von Caemmerer, S. and Berry, J.A. (1980) A biochemical model
of photosynthetic CO, assimilation in leaves of Cs species. Planta, 149,
78-90.

Feng, H., Xia, X., Fan, X., Xu, G. and Miller, A.J. (2013) Optimizing plant
transporter expression in Xenopus oocytes. Plant Methods, 9, 48.

Flexas, J., Ortuno, M.F., Ribas-Carbo, M., Diaz-Espejo, A., Florez-Sarasa, 1.D.
and Medrano, H. (2007) Mesophyll conductance to CO, in Arabidopsis
thaliana. New Phytol. 175, 501-511.

Fujiwara, S., Fukuzawa, H., Tachiki, A. and Miyachi, S. (1990) Structure and
differential expression of two genes encoding carbonic anhydrase in
Chlamydomonas reinhardltii. Proc. Natl Acad. Sci. USA, 87, 9779-9783.

Gao, H., Wang, Y., Fei, X., Wright, D.A. and Spalding, M.H. (2015) Expression
activation and functional analysis of HLA3, a putative inorganic carbon
transporter in Chlamydomonas reinhardtii. Plant J. 82, 1-11.

Geldner, N., Dénervaud-Tendon, V., Hyman, D.L., Mayer, U., Stierhof, Y.-D.
and Chory, J. (2009) Rapid, combinatorial analysis of membrane
compartments in intact plants with a multicolor marker set. Plant J. 59,
169-178.

Genkov, T., Meyer, M., Griffiths, H. and Spreitzer, R.J. (2010) Functional hybrid
Rubisco enzymes with plant small subunits and algal large subunits:
engineered rbcS ¢cDNA for expression in Chlamydomonas. J. Biol. Chem.
285, 19833-19841.

Geraghty, A.M. and Spalding, M.H. (1996) Molecular and structural changes in
Chlamydomonas under limiting CO, (a possible mitochondrial role in
adaptation). Plant Physiol. 111, 1339-1347.

Gibson, D.G., Young, L., Chuang, R.Y., Venter, J.C., Hutchison, C.A. 3rd and
Smith, H.O. (2009) Enzymatic assembly of DNA molecules up to several
hundred kilobases. Nat. Methods, 6, 343-345.

Griffiths, H. and Helliker, B.R. (2013) Mesophyll conductance: internal insights
of leaf carbon exchange. Plant, Cell Environ. 36, 733-735.

Karimi, M., Inze, D. and Depicker, A. (2002) Gateway vectors for
Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193-195.

Karlsson, J., Clarke, A.K., Chen, Z.Y., Hugghins, S.Y., Park, Y.l., Husic, H.D.,
Moroney, J.V. et al. (1998) A novel alpha-type carbonic anhydrase associated
with the thylakoid membrane in Chlamydomonas reinhardtii is required for
growth at ambient CO,. EMBO J. 17, 1208-1216.

Kimpel, D.L., Togasaki, R.K. and Miyachi, S. (1983) Carbonic anhydrase in
Chlamydomonas reinhardltii . Localization. Plant Cell Physiol. 24, 255-259.
Kropat, J., Hong-Hermesdorf, A., Casero, D., Ent, P., Castruita, M., Pellegrini,
M., Merchant, S.S. et al. (2011) A revised mineral nutrient supplement
increases biomass and growth rate in Chlamydomonas reinhardtii. Plant J. 66,

770-780.

Li, J. and Chory, J. (1998) Preparation of DNA from Arabidopsis. Methods Mol.
Biol. 82, 55-60.

Lieman-Hurwitz, J., Rachmilevitch, S., Mittler, R., Marcus, Y. and Kaplan, A.
(2003) Enhanced photosynthesis and growth of transgenic plants that
express ictB, a gene involved in HCO3™ accumulation in cyanobacteria. Plant
Biotechnol. J. 1, 43-50.

Lin, M.T., Occhialini, A., Andralojc, P.J., Devonshire, J., Hines, K.M., Parry,
M.A.J. and Hanson, M.R. (2014a) B-Carboxysomal proteins assemble into
highly organized structures in Nicotiana chloroplasts. Plant J. 79, 1-12.

Lin, M.T., Occhialini, A., Andralojc, P.J., Parry, M.A.J. and Hanson, M.R. (2014b)
A faster Rubisco with potential to increase photosynthesis in crops. Nature,
513, 547-550.

Liu, Y.-G., Mitsukawa, N., Oosumi, T. and Whittier, R.F. (1995) Efficient
isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by
thermal asymmetric interlaced PCR. Plant J. 8, 457-463.

Long, S.P., Zhu, X.G., Naidu, S.L. and Ort, D.R. (2006) Can improvement in
photosynthesis increase crop vyields? Plant, Cell Environ. 29, 315-330.

Long, S.P., Marshall-Colon, A. and Zhu, X.G. (2015) Meeting the global food
demand of the future by engineering crop photosynthesis and yield potential.
Cell, 161, 56-66.

Mariscal, V., Moulin, P., Orsel, M., Miller, A.J., Fernandez, E. and Galvan, A.
(2006) Differential regulation of the Chlamydomonas Nar1 gene family by
carbon and nitrogen. Protist, 157, 421-433.

Markelova, A.G., Sinetova, M.P., Kupriyanova, E.V. and Pronina, N.A. (2009)
Distribution and functional role of carbonic anhydrase Cah3 associated with
thylakoid membranes in the chloroplast and pyrenoid of Chlamydomonas
reinhardtii. Russ. J. Plant Physiol. 56, 761-768.

Mason, C.B., Manuel, L.J. and Moroney, J.V. (1990) A new chloroplast protein
is induced by growth on low CO, in Chlamydomonas reinhardltii. Plant
Physiol. 93, 833-836.

McCormick, A.J. and Kruger, N.J. (2015) Lack of fructose 2,6-bisphosphate
compromises photosynthesis and growth in Arabidopsis in fluctuating
environments. Plant J. 81, 670-683.

McGrath, J.M. and Long, S.P. (2014) Can the cyanobacterial carbon-
concentrating mechanism increase photosynthesis in crop species?
A theoretical analysis. Plant Physiol. 164, 2247-2261.

Meyer, M. and Griffiths, H. (2013) Origins and diversity of eukaryotic CO,-
concentrating mechanisms: lessons for the future. J. Exp. Bot. 64, 769-786.

Meyer, M.T., Genkov, T., Skepper, J.N., Jouhet, J., Mitchell, M.C., Spreitzer, R.J.
and Griffiths, H. (2012) Rubisco small-subunit alpha-helices control pyrenoid
formation in Chlamydomonas. Proc. Natl Acad. Sci. USA, 109, 19474-19479.

Mitra, M., Lato, S.M., Ynalvez, R.A., Xiao, Y. and Moroney, J.V. (2004)
Identification of a new chloroplast carbonic anhydrase in Chlamydomonas
reinhardtii. Plant Physiol. 135, 173-182.

Miura, K., Yamano, T., Yoshioka, S., Kohinata, T., Inoue, Y., Taniguchi, F.,
Asamizu, E. et al. (2004) Expression profiling-based identification of CO,-
responsive genes regulated by CCM1 controlling a carbon-concentrating
mechanism in Chlamydomonas reinhardtii. Plant Physiol. 135, 1595-1607.

Morita, E., Abe, T., Tsuzuki, M., Fujiwara, S., Sato, N., Hirata, A., Sonoike, K.
et al. (1998) Presence of the CO,-concentrating mechanism in some species
of the pyrenoid-less free-living algal genus Chloromonas (Volvocales,
Chlorophyta). Planta, 204, 269-276.

Moroney, J.V. and Tolbert, N.E. (1985) Inorganic carbon uptake by
Chlamydomonas reinhardtii. Plant Physiol. 77, 253-258.

Nakagawa, T., Ishiguro, S. and Kimura, T. (2009) Gateway vectors for plant
transformation. Plant Biotechnol. 26, 275-284.

Nelson, B.K., Cai, X. and Nebenflhr, A. (2007) A multicolored set of in vivo
organelle markers for co-localization studies in Arabidopsis and other plants.
Plant J. 51, 1126-1136.

Ohnishi, N., Mukherjee, B., Tsujikawa, T., Yanase, M., Nakano, H., Moroney,
J.V. and Fukuzawa, H. (2010) Expression of a low CO,-inducible protein,
LCI1, increases inorganic carbon uptake in the green alga Chlamydomonas
reinhardtii. Plant Cell, 22, 3105-3117.

Parry, M.A., Andralojc, P.J., Scales, J.C., Salvucci, M.E., Carmo-Silva, A.E.,
Alonso, H. and Whitney, S.M. (2013) Rubisco activity and regulation as
targets for crop improvement. J. Exp. Bot. 64, 717-730.

Pengelly, J.J., Forster, B., von Caemmerer, S., Badger, M.R., Price, G.D. and
Whitney, S.M. (2014) Transplastomic integration of a cyanobacterial
bicarbonate transporter into tobacco chloroplasts. J. Exp. Bot. 65, 3071—
3080.

Pollock, S.V., Prout, D.L., Godfrey, A.C., Lemaire, S.D. and Moroney, J.V. (2004)
The Chlamydomonas reinhardltii proteins Ccp1 and Ccp2 are required for
long-term growth, but are not necessary for efficient photosynthesis, in a
low-CO, environment. Plant Mol. Biol. 56, 125-132.

Porra, R.J., Thompson, W.A. and Kriedemann, P.E. (1989) Determination of
accurate extinction coefficients and simultaneous equations for assaying
chlorophylls a and b extracted with four different solvents: verification of the
concentration of chlorophyll standards by atomic absorption spectroscopy.
Biochim. Biophys. Acta, 975, 384-394.

© 2015 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd., 14, 1302-1315



Price, G.D. and Badger, M.R. (1989) Expression of human carbonic anhydrase in
the cyanobacterium Synechococcus PCC7942 creates a high CO,-requiring
phenotype - evidence for a central role for carboxysomes in the CO,
concentrating mechanism. Plant Physiol. 91, 505-513.

Price, G.D., Badger, M.R. and von Caemmerer, S. (2011) The prospect of using
cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3
crop plants. Plant Physiol. 155, 20-26.

Price, G.D., Pengelly, J.J., Forster, B., Du, J., Whitney, S.M., von Caemmerer, S.,
Badger, M.R. et al. (2013) The cyanobacterial CCM as a source of genes for
improving photosynthetic CO2 fixation in crop species. J. Exp. Bot. 64, 753—
768.

Ramazanov, Z., Mason, C.B., Geraghty, A.M., Spalding, M.H. and Moroney,
J.V. (1993) The Low CO,-Inducible 36-kilodalton protein is localized to the
chloroplast envelope of Chlamydomonas reinhardtii. Plant Physiol. 101,
1195-1199.

Roberts, C.S. and Spalding, M.H. (1995) Post-translational processing of the
highly ~ processed, secreted periplasmic  carbonic  anhydrase  of
Chlamydomonas is largely conserved in transgenic tobacco. Plant Mol. Biol.
29, 303-315.

Schob, H., Kunz, C. and Meins, F. Jr. (1997) Silencing of transgenes
introduced into leaves by agroinfiltration: a simple, rapid method for
investigating sequence requirements for gene silencing. Mol. Gen. Genet.
256, 581-585.

Sharkey, T.D. (1988) Estimating the rate of photorespiration in leaves. Physiol.
Plant. 73, 147-152.

Simkin, A.J., McAusland, L., Headland, L.R., Lawson, T. and Raines, C.A. (2015)
Multigene manipulation of photosynthetic carbon assimilation increases CO,
fixation and biomass yield in tobacco. J. Exp. Bot. 66, 4075-4090.

Sinetova, M.A., Kupriyanova, E.V., Markelova, A.G., Allakhverdiev, S.I. and
Pronina, N.A. (2012) Identification and functional role of the carbonic
anhydrase Cah3 in thylakoid membranes of pyrenoid of Chlamydomonas
reinhardtii. Biochim. Biophys. Acta, 1817, 1248-1255.

Spalding, M.H. (2009) The CO,-concentrating mechanism and carbon
assimilation. In The Chlamydomonas Sourcebook: Organellar and
Metabolic Processes (Harris, E.H. and Stern, D.B., eds), pp. 257-301.
Oxford: Academic.

Villarejo, A., Shutova, T., Moskvin, O., Forssen, M., Klimov, V.V. and
Samuelsson, G. (2002) A photosystem ll-associated carbonic anhydrase
regulates the efficiency of photosynthetic oxygen evolution. EMBO J. 21,
1930-1938.

Wang, Y. and Spalding, M.H. (2014a) Acclimation to very low COy:
contribution of limiting CO2 inducible proteins, LCIB and LCIA, to inorganic
carbon uptake in Chlamydomonas reinhardtii. Plant Physiol. 166, 2040-2050.

Wang, Y. and Spalding, M.H. (2014b) LCIB in the Chlamydomonas CO,-
concentrating mechanism. Photosynth. Res. 121, 185-192.

Wang, Y., Stessman, D.J. and Spalding, M.H. (2015) The CO, concentrating
mechanism and photosynthetic carbon assimilation in limiting CO,: how
Chlamydomonas works against the gradient. Plant J. 82, 429-448.

Introducing an algal CCM into higher plants 1315

Whitney, S.M., Houtz, R.L. and Alonso, H. (2011) Advancing our understanding
and capacity to engineer nature’s CO,-sequestering enzyme, Rubisco. Plant
Physiol. 155, 27-35.

Yamano, T., Tsujikawa, T., Hatano, K., Ozawa, S., Takahashi, Y. and Fukuzawa,
H. (2010) Light and low-CO,-dependent LCIB-LCIC complex localization in
the chloroplast supports the carbon-concentrating mechanism in
Chlamydomonas reinhardltii. Plant Cell Physiol. 51, 1453-1468.

Yamano, T., Asada, A., Sato, E. and Fukuzawa, H. (2014) Isolation and
characterization of mutants defective in the localization of LCIB, an essential
factor for the carbon-concentrating mechanism in Chlamydomonas
reinhardtii. Photosynth. Res. 121, 193-200.

Yamano, T., Sato, E., Iguchi, H., Fukuda, Y. and Fukuzawa, H. (2015)
Characterization of cooperative bicarbonate uptake into chloroplast stroma
in the green alga Chlamydomonas reinhardltii. Proc. Natl Acad. Sci. USA, 112,
7315-7320.

Ynalvez, R.A., Xiao, Y., Ward, A.S., Cunnusamy, K. and Moroney, J.V. (2008)
Identification and characterization of two closely related beta-carbonic
anhydrases from Chlamydomonas reinhardtii. Physiol. Plant. 133, 15-26.

Zhang, R., Patena, W., Armbruster, U., Gang, S.S., Blum, S.R. and Jonikas, M.C.
(2014) High-throughput genotyping of green algal mutants reveals random
distribution of mutagenic insertion sites and endonucleolytic cleavage of
transforming DNA. Plant Cell, 26, 1398-1409.

Zhu, X.G., Long, S.P. and Ort, D.R. (2010) Improving photosynthetic efficiency
for greater yield. Annu. Rev. Plant Biol. 61, 235-261.

Supporting information

Additional Supporting information may be found in the online
version of this article:

Figure S1 Expression of fluorescent-tagged CCM components in
Chlamydomonas and tobacco (from Figure 1).

Figure S2 Co-expression of Venus-fused CCM components with
Mitotracker Red CMXRos in Chlamydomonas.

Figure S3 Expression of GFP-fused CCM components carrying
native Arabidopsis chloroplast transit peptides in tobacco (from
Figure 3).

Figure S4 Stable expression of LCIA: GFP and HLA3: GFP in
Arabidopsis (from Figure 5a).

Figure S5 Chlorophyll content of transgenic Arabidopsis plants
expressing LCIA or HLA3.

Figure S6 Specific leaf area (area/DW) of transgenic LCIA or
HLA3 Arabidopsis plants.

Figure S7 DNA sequences of codon-optimized LCIA and HLA3.
Table S1 Sequences of synthetic oligonucleotides used in this
study.
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