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Scattering in PT - and RT -symmetric multimode waveguides: Generalized conservation
laws and spontaneous symmetry breaking beyond one dimension
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We extend the generalized conservation law of light propagating in a one-dimensional PT -symmetric system,
i.e., |T − 1| = √

RLRR for the transmittance T and the reflectanc RL,R from the left and right, to a multimode
waveguide with either PT or RT symmetry, in which higher dimensional investigations are necessary. These
conservation laws exist not only in a matrix form for the transmission and reflectio matrices; they also exist in a
scalar form for real-valued quantities by definin generalized transmittance and reflectance We then discuss how
a multimode PT -symmetric waveguide can be used to observe spontaneous symmetry breaking of the scattering
matrix, which typically requires tuning the non-Hermiticity of the system (i.e., the strength of gain and loss).
Here the advantage of using a multimode waveguide is the elimination of tuning any system parameters: the
transverse mode order m plays the role of the symmetry-breaking parameter, and one observes the symmetry
breaking by simply performing a scattering experiment in each waveguide channel at a single frequency and
fi ed strength of gain and loss.
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I. INTRODUCTION

Parity-time (PT ) symmetric optical systems have attracted
growing interest in the past several years [1–21]. These systems
are non-Hermitian due to the presence of gain and loss,
which are delicately balanced to make the refractive index
satisfying n(x) = n∗(−x) with respect to a chosen symmetry
plane at x = 0. The plethora of finding in such systems are
tied to the spontaneous symmetry breaking at an exceptional
point (EP) [22–29]. This spontaneous symmetry breaking was
firs suggested in non-Hermitian quantummechanism [30–32]
and later found in the evolution of waves in the parax-
ial regime [1–4], which takes the system from a regime
of real energy eigenvalues to complex conjugate pairs of
eigenvalues.

Recently it was found that the scattering eigenstates of a
PT -symmetric system also display a spontaneous symmetry
breaking [9], independent of its shape and dimension: the
eigenvalues of the scattering (S) matrix can remain on the unit
circle in the complex plane, conserving optical flu despite
the non-Hermiticity; the symmetry breaking results in pairs
of scattering eigenvalues with inverse moduli [9,11,12]. Using
the symmetry property of the S matrix [9] or equivalently
that of the transfer matrix [10], one can derive a generalized
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conservation law in one dimension [11], i.e.,

|T − 1| =
√

RLRR, (1)

in contrast to the usual conservation relation T + RL(R) = 1
when the system is Hermitian. Here T is the transmittance
from either the left or right side (they are identical due
to optical reciprocity [33–35]) and RL,R are the reflectanc
from the two sides, respectively. At an accidental reflectio
degeneracy where RL = RR ≡ R, the generalized conser-
vation law above indicates two possible scenarios, where
either T + R = 1 or T − R = 1. The former is identical to
the Hermitian conservation law even though the system is
non-Hermitian, and the transmittance in the latter is clearly
superunitary.

In this paper we firs extend the generalized conservation
law above in one dimension to higher dimensions, i.e., in a
multimode waveguide with either PT or rotation-time (RT )
symmetry [13] (see Fig. 1), where R is rotation by π about
a given axis. Using the matrix representation of P and R in
block form, we show that a similar expression exists for the
transmission and reflectio matrices, which holds independent
of the details of the channels, i.e., whether they are sinusoidal
waves in a ridge waveguide or cylindrical waves in an optical
fibe . By further definin the generalized transmittance and
reflectanc suitable for PT - and RT -symmetric systems, we
also reduce these conservation laws to their scalar forms with
only real-valued quantities.
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FIG. 1. (Color online) (a) Schematic of a PT -symmetric multi-
mode waveguide of length L and width d . Incoming and outgoing
channels of transverse order m = 1,2 are illustrated in both the
left and right “leads” of the waveguide. (b) Standing-wave intensity
patterns with transverse order m = 1,2 in the leads. The longitudinal
and transverse wave vectors corresponding to their right-traveling
components are contrasted schematically.

We then discuss how a multimode PT -symmetric waveg-
uide can be used to observe spontaneous symmetry breaking
of the S matrix. It was suggested in Ref. [9] that this symmetry
breaking can be observed in one dimension (i.e., in a single-
mode waveguide) by tuning either the gain and loss strength
τ of the system or the product of the waveguide length L and
the frequency ω of the incident light. Such an approach was
successfully implemented in phononics, where clear regimes
ofPT -symmetric andPT -broken phases were observed [36].
In the optical regime however, this approach was not well
received due to the stringent requirement on maintaining PT
symmetry while tuning across the symmetry-breaking point.
In our current proposal of using a multimode waveguide, the
advantage is the elimination of tuning any system parameters;
the transverse mode orderm = 1,2, . . . ,N plays the role of the
symmetry breaking parameter, as we will show below. Hence
one can observe the symmetry breaking by simply performing
a scattering experiment in each waveguide channel, at a single
frequency and fixe strength of gain and loss.

II. GENERALIZED CONSERVATION LAWS

There are two complexities when extending the generalized
conservation law given by Eq. (1) to a multimode waveguide.
The firs one is that Eq. (1) only includes three quantities,
which are the reflectanc from both left and right sides and the
transmittance. For a multimode waveguide with N channels
however, each of these quantities becomes a N × N matrix
(unless there is no coupling between the channels in the
system), and the increased degrees of freedom prompt us
to look for a conservation law in a matrix form first The
second complexity is that the three quantities in Eq. (1) are
non-negative real numbers, with the phases of the transmission
coefficien t and reflectio coefficient rL,R eliminated through
the definitio T = |t |2 and RL,R = |rL,R|2. In a multimode
waveguide however, it seems difficul to eliminate the phases
of all the transmission and reflectio coefficients Therefore,
the generalized conservation law is hence more likely a
matrix identity for the complex-valued transmission matrix

t and reflectio matrices rL,R , instead of for the real-valued
transmittance matrix and reflectanc matrices. Nevertheless,
we indeed fin a scalar and real-valued form of the generalized
conservation law for both PT -symmetric andRT -symmetric
systems, using generalized definition of transmittance and
reflectanc as we show below.

By denoting the amplitudes of the N incoming (outgoing)
channels in the left lead by ϕL

in (ϕL
out) and those in the right

lead by ϕR
in (ϕR

out), t and rL,R are define by
ϕL
out = tϕR

in, ϕR
out = rRϕR

in (2)
when there are only incident waves in the right lead, and

ϕR
out = tT ϕL

in, ϕL
out = rLϕL

in (3)
when there are only incident waves in the left lead. The
superscript “T ” denotes the matrix transpose in Eq. (3), and
it appears due to optical reciprocity [33–35]: the transmission
coefficien from channel m on the left to channel m′ on the
right is the same as the reversed process. This is also the case
in one dimension, where t reduces to a complex number and
the matrix transpose can be omitted. Here we do not consider
systems that break optical reciprocity, including but not limited
to magneto-optical systems. The S matrix is then define by(

ϕL
out

ϕR
out

)
=

(rL t
tT rR

)(
ϕL
in

ϕR
in

)
≡ S

(
ϕL
in

ϕR
in

)
, (4)

which is a 2N × 2N matrix. Note that we do not include the
channels of evanescent waves, which decays exponentially
away from the waveguide in both leads.

The derivation of Eq. (1) in Ref. [11] is based on the
symmetry relation of the transfer matrix [10]. Here we use
the symmetry relation of the S matrix instead [9], i.e.,

PT SPT = S−1, (5)

which is equivalent but more convenient in the case of a
PT -symmetric multimode waveguide. Here the time-reversal
operator T is simply a complex conjugate and denoted by a
superscript “∗,” and the parity operator P along the longitu-
dinal direction can be represented by a matrix permutation P
satisfying P2 = 12N [9], where 12N is the identity matrix of
rank 2N . Therefore, we can rewrite Eq. (5) as

PS∗P = S−1. (6)

It is important to note that in a multimode waveguide, the
incoming (outgoing) channel m on the left side becomes the
same incoming (outgoing) channelm on the right side after the
parity operation, since the parity operation is only about the
longitudinal coordinate and leaves the transverse coordinate(s)
unchanged. (This is not the case in a RT -symmetric waveg-
uide as we shall see below.) Therefore, the parity operator
here does not change the order of the left channels or the right
channels, and its matrix representation P takes the following
block form:

P =
(
0 1N

1N 0

)
. (7)

This form of P greatly simplifie Eq. (6), the left-hand side of
which becomes

PS∗P =
(
rR tT
t rL

)∗
. (8)
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Using matrix inversion in block form, we fin the following
four relations:

(r∗
R)

−1 = rL − t(rR)−1 tT , (9)

(r∗
L)

−1 = rR − tT (rL)−1 t, (10)

rR t∗ + tT r∗
R = 0, (11)

r∗
L t

T + t∗rL = 0, (12)

by equating the four N × N blocks on the left and right sides
of Eq. (6). Next we combine Eqs. (9) and (11) and Eqs. (10)
and (12) respectively, which leads to

t t∗ − 1N = −rLr∗
R, (13)

t† tT − 1N = −r∗
R rL, (14)

where the superscript “†” denotes the Hermitian conjugate as
usual.

Equation (14) is in fact identical to Eq. (13), oncewe take its
transpose and use the property that rL,R are symmetric, which
comes from optical reciprocity [33–35], i.e., the scattering
coefficien from incoming channel m to outgoing channel m′
on the same side is the same as that of the reversed process, for
both left- and right-side incidence. In addition, we note that
using the properties of matrix trace, i.e., Tr(A∗) = (TrA)∗ and
Tr(AB) = Tr(BA) for two arbitrary square matrices A and B,
we fin that Tr(t t∗) ≡ T̄ is real (see further discussion in the
Appendix), which implies that Tr(rLr∗

R) ≡ R̄ is also real and

T̄ + R̄ = N (15)

by considering Eq. (13). We will refer to T̄ and R̄ as the
generalized transmittance and reflectanc in PT -symmetric
multimode waveguides.

The corresponding relations to Eqs. (13)–(15) in a Hermi-
tian system are given by

t t† − 1N = −rLr†L, (16)

t† t − 1N = −r†R rR, (17)

T + RL = T + RR = N. (18)

The firs two are derived from SS† = 1, and their traces lead
to Eq. (18), where T ≡ Tr(t t†) and RL,R ≡ Tr(rL,R r†L,R) are
both real [37].

We will refer to Eqs. (13) and (15) as the generalized
conservation laws in a PT -symmetric multimode waveguide.
Note that they are valid in general and the details of the
waveguide channels are not specifie in its derivation, which
can be, for example, sinusoidal waves in a ridge waveguide
or cylindrical waves in an optical fibe . Therefore, the
generalized conservation laws given by Eqs. (13) and (15) hold
independent of the transverse geometry of the waveguide, as
long as the waveguide is PT symmetric.

Equation (13) reduces to its one-dimensional (1D) form
given by Eq. (1) once we replace t,rL,R by their scalar form
t,rL,R in one dimension and take the absolute value of both
its left and right sides. In the special case that the waveguide
channels do not couple (which occurs, for example, when the
transverse and longitudinal coordinates are separable), t,rL,R

become diagonal matrices, and we again recover Eq. (1) for

each waveguide channel, which acts as an independent 1D
PT -symmetric system. To exemplify howEq. (1) breaks down
for the diagonal elements of Eq. (13) in the general case,
belowwe study the scattering of transverse electric (TE) waves
in a two-dimensional (2D) waveguide and adopt a Dirichlet
boundary condition on the sidewalls in the transverse (y)
direction. Each channel can be labeled by a transverse mode
number m = 1,2, . . . ,N , and the transverse mode profile
are given by ψ(y) = sin[mπ (y/d + 1/2)](y ∈ [−d/2,d/2]).
Here d is the width of the waveguide, and we have chosen the
center axis of the waveguide as the origin of the y axis and
assumed n = 1 in the leads.

Below we will refer to a system with separable longitudinal
and transverse coordinates simply as a separable system. We
start with such a separable system ofN = 2 [i.e., two channels
for incoming (outgoing) waves in both the left and right leads]
as illustrated in Fig. 1(a), which has a uniform refractive index
n = 3 and length L = 2 μm before gain and loss represented
by Im[n] = ∓0.005 are introduced to its two halves. We then
increase the amplitude b of a stepwise index modulation
in the transverse direction, �n(y) = b (y < 0); −b (y > 0),
which introduces and changes the coupling between the two
waveguide channels and the system becomes nonseparable.
As Fig. 2 shows, the generalized conservation law (13) holds
independent of b, while Eq. (1) for a single channel no longer
holds at a nonzero b and its behavior is correlated with the
resonances of the system.

Next we turn to an RT -symmetric multimode waveguide.
It is straightforward to obtain the symmetry relation of the S

matrix,

RT SRT = S−1, (19)

and its matrix representation,

RS∗R = S−1, (20)

which are similar to Eqs. (5) and (6) in the PT -symmetric
case. As we have mentioned, the π -rotation operator R does
not necessarily transform the incoming (outgoing) channel

FIG. 2. (Color online) Verificatio of generalized conservation
laws in a 2D PT -symmetric waveguide with two channels in both
the left and right leads. (a) Solid line plots the norm of the difference
between the two sides of Eq. (13), confirmin the 2D conservation
relation (13). Dashed line plots the absolute value of the difference
of the two sides of Eq. (1) for the m = 2 channel, showing the
breakdown of the 1D conservation relation (1). Inset: the length L

and width d of the waveguide are both 2 μm, and the wavelength
is 1550 nm. (b) Black and grey lines plot T̄ and R̄. Their mirror
symmetry about 1 (dashed horizontal line) verifie the 2D scalar
conservation relation (15), where N = 2.
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m on the left to the same incoming (outgoing) channel m

on the right. Take the 2D waveguide shown in Fig. 1(a) for
example: if we choose the channel wave functions in the left
lead to be the same as before, i.e., ψ(y) = sin[mπ (y/d +
1/2)], then they become (−)m+1 sin[mπ (y/d + 1/2)] in the
right leads becauseR transforms y → −y in addition to x →
−x. In otherwords, a negative sign is introduced for the even-m
channels (whose mode profile are odd functions of y), and R
takes the following form:

R =
(
0 1̃N

1̃N 0

)
, 1̃N ≡

⎛
⎜⎜⎜⎝
1 0

−1
. . .

0 (−1)N+1

⎞
⎟⎟⎟⎠. (21)

We note that R is symmetric but not symplectic [it sat-
isfie RT �R = −� instead of RT �R = �, where � =
( 0 1N

−1N 0 )]. Using the above block form ofR, we fin that the
generalized conservation law in anRT -symmetric waveguide
is

t 1̃N t∗ − 1̃N = −rL1̃N r∗
R. (22)

By taking the trace of both sides of this conservation law and
slightly re-arranging the result, we fin T̃ + R̃ = δN,2M+1, or
equivalently

Re[T̃ ]+ Re[R̃] =
{
0,N even
1,N odd (23)

Im[T̃ ]+ Im[R̃] = 0. (24)

Here T̃ ≡ Tr(1̃N t∗ t), R̃ ≡ Tr(1̃N r∗
R rL) are complex in gen-

eral, and δN,2M+1 is the Kronecker δ where M represents any
positive integer. If the system has an even number of channels,
then these relations imply in particular that T̃ and R̃ have
the same modulus but are π out of phase. We will refer to
T̃ and R̃ as the generalized transmittance and reflectanc in
RT -symmetric multimode waveguides.

If the incident light is only in a single channel and it does
not couple to other channels, Eq. (22) then reduces to its 1D
form,

|T − 1| =
√

RLRR, (25)

which is identical to that of the PT -symmetric case with T ≡
|tmm|2 and RR,L ≡ |(tR,L)mm|2. This 1D form is independent
of m, i.e., whether the channel is an even or odd function of
y, and more importantly, it does not require the system to be
RT and PT symmetric simultaneously.

In Fig. 3 we again introduce a transverse index modulation
�n to a half-gain–half-loss waveguide with a uniform Re[n],
similar to what we did in Fig. 2 except that �n now depends
on both x and y inside the waveguide, �n(x,y) = b (xy >

0); −b (xy < 0), which satisfie the RT symmetry but not
the PT symmetry. At b = 0 the system is separable and
Eq. (25) holds for both channels. This is no longer the case as
b increases, and Eq. (25) breaks down while the generalized
conservation law (22) always holds.

We end this section by discussing a few properties of a
multimode waveguide that is simultaneously RT and PT
symmetric. In this case both Eqs. (13) and (22) hold, and by
taking their difference we fin that Eq. (25) also holds for each

FIG. 3. (Color online) Verificatio of generalized conservation
laws in a 2D RT -symmetric waveguide with two channels in both
the left and right leads. (a) Solid line plots the norm of the difference
between the two sides of Eq. (22), confirmin the 2D conservation
relation (22). Dashed line plots the absolute value of the difference
of the two sides of Eq. (25) for the m = 2 channel, showing the
breakdown of the 1D conservation relation (25). (b) Black and grey
lines plot Re[T̃ ] and Re[R̃]. Their mirror symmetry about 0 (dashed
horizontal line) verifie the 2D scalar conservation relation (23),
where N = 2. The parameters are the same as in Fig. 2.

channel in a two-channelwaveguide. It then indicates that there
is no coupling between the channels, i.e., t and rL,R are all
diagonal, even though the system is not necessarily separable
(see the 2D example in Fig. 4). We note that this behavior only
holds in the two-channel case: the system is symmetric about
y = 0, which is implied by the simultaneously satisfaction
of RT and PT symmetries (RT PT = RP , i.e., y → −y);
the two channels are even and odd functions about y = 0
respectively, and they cannot couple as a result. If there are
more channels, then the even-m channels couple to each
other and so do the odd-m channels. For example, we plot

FIG. 4. (Color online) Generalized conservation laws in a PT -
andRT -symmetric waveguide that is nonseparable in the longitudi-
nal and transverse direction. This waveguide supports three channels
in both the left and right leads at the chosen frequency. Solid line
shows the norm of the difference between the two sides of Eq. (13)
[and that of Eq. (22) which is also zero]. Dashed line and dots show
the absolute value of the differences of the two sides of Eq. (25) for
the m = 1 and 2 channel respectively. The length L and width d of
the waveguide are both 3 μm, and the index modulation is given
by �n(x,y) = b (|x|,|y| < 0.75 μm). The other parameters are the
same as in Fig. 2.
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the difference of the left- and right-hand sides of Eq. (25)
for the m = 1 and 2 channels in a three-channel waveguide
in Fig. 4(b). It is zero for the m = 2 channel, which is
the only channel of odd parity about y = 0 and hence does
not couple to the other two channels; it is nonzero for the
m = 1 channel, which couples to the other even-parity channel
m = 3. Since now the even-m channels and the odd-m channels
form two uncoupled PT -symmetric systems, we can defin
the generalized transmittance T̄ and reflectanc R̄ in them
respectively (i.e., T̄e,o and R̄e,o), which are real and satisfy
T̄e,o + R̄e,o = Ne,o according to Eq. (15), where Ne,o are the
number of even-m and odd-m channels. This observation
then implies that the other generalized transmittance T̃ and
reflectanc R̃ for the whole (RT -symmetric) system are now
also real valued and given by

T̃ = T̄o − T̄e, (26)

R̃ = R̄o − R̄e, (27)

which is the simplest scenario that leads to the conservation
relations (23) and (24). We emphasize that these two relations
above hold only when the system is simultaneously RT and
PT symmetric.

III. SPONTANEOUS SYMMETRY BREAKING OF THE
SMATRIX

Due to the symmetry relation (19) in a RT -symmetric
system, the S matrix can undergo a spontaneous symmetry
breaking, similar to the PT -symmetric case. If the system
is simultaneously PT and RT symmetric, one may wonder
whether one of these two symmetries can be broken while
the other one is not. This situation does not occur for two
reasons. First, if one symmetry is broken then some or all the
eigenvalues of the S matrix are no longer unimodular, but if
the other symmetry still holds, then all the eigenvalues should
be unimodular, which imposes an obvious contradiction.
The same argument applies to a specifi pair of scattering
eigenstates ϕ1,ϕ2, i.e., they cannot be PT broken but still
RT symmetric (or vice versa). Another way to arrive at this
observation is the following. If ϕ1,ϕ2 are in the PT -broken
phase, thenPT ϕ1 ∝ ϕ2 holds [9]. As wementioned at the end
of the previous section, the system itself has parity symmetry
about y = 0 when it is both PT andRT symmetric, meaning
that ϕ1 and ϕ2 are either even or odd functions of y. We then
fin

RT ϕ1 ∝ ϕ2, (28)

using PyPT = RT , which indicates that ϕ1 and ϕ2 are also
in theRT -broken phase; otherwise we would fin RT ϕ1,2 ∝
ϕ1,2 instead. Here Py is the parity operator about y = 0. Since
this derivation is reversible, it gives the second reason why
the two symmetries either hold or break simultaneously. As
an example, we show in Figs. 5(a) and 5(b) such a pair of
broken-symmetry scattering eigenstates, the intensity profil
of which can be easily checked to satisfy P|ϕ1|2 ∝ |ϕ2|2
and R|ϕ1|2 ∝ |ϕ2|2, as a consequence of PT ϕ1 ∝ ϕ2 and
RT ϕ1 ∝ ϕ2, respectively. Figures 5(c) and 5(d) show a pair
of scattering eigenstates that are both PT andRT symmetric,

x

y

x

y

x

y

x

y

FIG. 5. (Color online) Intensity plot of scattering eigenstates in
the PT - andRT -symmetric multimode waveguide shown in Fig. 4.
(a),(b) A pair of PT - and RT -broken eigenstates. (c),(d) A pair
in the PT - and RT -symmetric phase. All four eigenstates are the
result of the coupling between m = 1,3 channels. Im[n] = ±0.05,
b = 0.8, and the grey vertical lines mark the left and right sides of
the waveguide.

the intensity of which satisfie both P|ϕ1,2|2 ∝ |ϕ1,2|2 and
R|ϕ1,2|2 ∝ |ϕ1,2|2.

The simplest multimode waveguide that is simultaneously
PT and RT symmetric is a separable half-gain–half-loss
system depicted in Fig. 1(a). Below we discuss how sponta-
neous symmetry breaking of the S matrix can be observed
in such a multimode waveguide, without the need to tune
any system parameters. It is based on the observation that
scattering in uncoupled channels of different transverse order
m, at a given frequency, displays different thresholds for
symmetry breaking in terms of the gain and loss strength.
Therefore, if a system possesses PT symmetry at a particular
frequency ω0, the scattering at this frequency will display two
contrasting behaviors depending on the scattering channel:
it can either be in the PT symmetric phase with conserved
flu in the corresponding scattering eigenstates, or in the
broken-symmetry phasewith a pair of amplifie and attenuated
scattering eigenstates. The transverse order m then plays the
role of the symmetry-breaking parameter.

We have chosen the waveguide with uncoupled channels
for a practical consideration: scattering eigenstates that exist
in more than one channel are difficul to measure and tune in
an experiment.

The m-dependent symmetry breaking can be understood in
two ways. First we note that the symmetry breaking threshold
(and the EP) of the S matrix for a 1D half-loss–half-gain
structure is given by the following expression [9]:

ωc

c
L ≈ 1

τ
ln

(
2n0
τ

)
, (29)

where n0 ± iτ is the complex refractive index in the loss and
gain regions and c is the speed of light in vacuum. For a given
n0 and τ , the broken-symmetry phase lies in ω0 > ωc and
the symmetric phase in ω0 < ωc. In the semiclassical regime
where the wavelength is much shorter than the system size,
one can apply the picture of ray optics, and propagating modes
of different transverse order m experience a different length
L → Lm in the scattering region, because they propagate at
different angles with respect to the sidewalls [e.g., see the wave
vectors kx,ky in Fig. 1(b)]. As a result, Eq. (29) shows thatωc at
the symmetry breaking threshold is nowm-dependent (denoted
by ω(m)

c ) for a given n0 and τ . Consequently, scattering in
higher transverse channels (with a larger m, a longer Lm,
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then by taking the complex conjugate of both sides and
multiplying A from left, we fin

AA∗Aψ∗
n = λ∗

nAψ∗
n. (A2)

It indicates that λ∗
n is also an eigenvalue of AA∗, with the

corresponding eigenvector Aψ∗
n. Therefore, λn is real if

Aψ∗
n ∝ ψn, or a pair of complex conjugate eigenvalues λn,λn′

exist when Aψ∗
n ∝ ψn′ (n �= n′).

This property not only guarantees that Tr(AA∗) [and more
specificall Tr(t t∗)] is real, which we have used in the main
text to derive the real-valued conservation law (15), it also
suggests a general form of the effective Hamiltonian for a
PT -symmetric (and RT -symmetric) system. For example,
the toy model of two coupled PT -symmetric resonators can

be written as

H =
(

ω + iτ g

g ω − iτ

)
, (A3)

where ω is the identical resonant frequency of both resonators,
±τ represent the loss and gain strength, and g � ω is the
coupling strength of these two resonators. The decomposition
H = AA∗ exists for multiple choices of A, and one such
choice is

A =
(

g

2b b

b − i τ
b

g

2b

)
, (A4)

where b is a real quantity satisfying b2 = (ω ±
√

ω2 − g2)/2.
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