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Abstract: Using the correspondence between (saturated) nonlinear and
(unsaturated) linear dielectric constants, we propose a simple and systematic
method to achieve selective excitation of lasing modes that would have
been dwarfed by more dominant ones of lower thresholds. The key element
of this method is incorporating the control of modal interactions into the
spatial pump profile, and it is most valuable in the presence of spatially and
spectrally overlapping modes, where it would be difficult to achieve selective
excitation otherwise.
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and J. Bloch, “Bosonic condensate in a flat energy band,” http://arxiv.org/abs/1505.05652.
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The ability to selectively excite different modes of a given system not only reveals more
information about the system itself but also enables a broad range of applications, such as
magnetic resonance imaging [1], coherent perfect absorption [2–4], and laser power enhancement
[5]. Generally speaking, a target mode can be excited resonantly, using a monochromatic
electromagnetic wave of the same frequency, if it is well separated spectrally from other modes
in the system. This approach can be employed, for example, to excite a cavity mode that couples
strongly to quantum emitters in cavity quantum electrodynamics [6–8]. Also when combined
with time-reversal symmetry and wavefront manipulation [9], even a typically strongly scattering
system can be made scattering-free and a perfect absorber [2–4].

In optical systems where the energy is transferred indirectly via a material system (i.e., the
“gain medium”), a serious problem for selective mode excitation is that the excitation spectrum
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is often too broad to isolate a single optical mode. One solution is to utilize the spatial intensity
pattern of the target optical mode, i.e., by depositing focused energy (i.e., the “pump”) onto
the target mode. This intuitive procedure, known as “selective pumping,” has been applied to
both macro-cavity lasers [10–12] and micro-cavity lasers [13–15], and it is a powerful tool to
explore interesting phenomena such as exceptional points [16] and chaos-assisted tunneling [17],
besides reducing the threshold of a laser [18, 19], controlling its output directionality [20, 21]
and frequency [22–24], and enhancing its output power [5, 12].

This intuitive approach, however, does not work if the target mode has a relatively high loss
(or equivalently, a relatively low quality factor) and strong spatial overlap with lower-loss modes.
Simply focusing the pump onto the target mode still favors those lower-loss modes, whose
thresholds are lower and whose intensities dwarf that of the target mode. Previous efforts based
on numerical optimizations [21–23, 25] have shone some light on overcoming this hurdle, but
they require many iterations of trial and error, and hence are computationally intense and do not
suit applications such as optical switching.

In this work we propose a systematic method for selective mode excitation in lasers and other
nonlinear optical media [26–30], which addresses exactly this problem. The two key elements in
our method are the following. First, we note that at any pump power D0, the saturated nonlinear
dielectric constant ε(~r;D0) in the laser has an unsaturated linear correspondence ε̃(~r). They
lead to the same set of lasing modes, with exactly the same lasing frequencies, spatial intensity
patterns, but different overall intensities. For example, we may find two lasing modes (1 and 2) at
D0 in a given laser cavity with a uniform spatial pump profile. Mode 1 has a lower threshold and
its intensity is higher than mode 2. The saturated dielectric constant ε(~r;D0) is different from
its value at threshold, where gain saturation has just set in. Now by choosing a different pump
profile, we can impose an unsaturated dielectric constant ε̃(~r) that matches exactly ε(~r;D0).
As we shall prove shortly, modes 1 and 2 are now at threshold simultaneously, while other
modes are still below thresholds. In other words, by applying ε̃(~r) using the aforementioned
correspondence between nonlinear and linear dielectric constants, we have lowered the threshold
of mode 2 to be the same as mode 1, which is the first step in our proposal to selectively excite
mode 2. Second, to suppress mode 1 while exciting mode 2, we modify the modal interactions
manifested by ε(~r;D0), by increasing the self-saturation of mode 1 or reducing that of mode 2.
The resulting ε̃(~r) is no longer the same as ε(~r;D0), and it can make the threshold of mode 2
considerably lower than mode 1, leading to a wide range of pump power in which mode 2 is the
only lasing mode.

To further illustrate how this method works, below we discuss it in detail using the Steady-
state Ab-initio Laser Theory (SALT) [31–33], which finds the steady-state solutions of the
semiclassical laser equations [34, 35]. We first briefly review SALT and use it to explain when
the intuitive approach of selective pumping, i.e., focusing the pump onto the target mode, works
and fails.

SALT assumes that the population inversion in the gain medium is stationary (see the dis-
cussion in Ref. [36]), and the accuracy of SALT in this regime has been verified by comparing
with time-dependent simulations [37–39]. In a steady state, the electric field is multi-periodic in
time, i.e.,

E+(~r, t) =
N

∑
µ=1

Ψµ(~r)e−iΩµ t , (1)

where N is the number of lasing modes and only positive frequency components are shown. At a
given pump power D0, measured by the population inversion of the gain medium it creates, the
nonlinear lasing modes Ψµ(~r;D0) and the laser frequencies Ωµ can be obtained by solving the
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following set of coupled Helmholtz equations [32][
∇

2 +[εc(~r)+ εg(~r;D0)]Ω
2
µ

]
Ψµ(~r;D0) = 0, (µ = 1, . . . ,N) (2)

in which we have taken the speed of light in vacuum to be unity. Ψµ(~r;D0) here is dimension-
less, measured in its natural units of ec = h̄√γ‖γ⊥/2g, where γ‖ and γ⊥ are the inversion and
polarization relaxation rates and g is the dipole matrix element between the energy levels of
lasing transition.

The saturated nonlinear dielectric constant ε(~r;D0) mentioned in the introduction is given
by the sum of εc(~r) and εg(~r;D0) in Eq. (2). εc(~r) is the “passive” part of the cavity dielectric
function, given by n2

c(~r) in terms of the cavity refractive index. εg(~r;D0) captures the “active”
part of the dielectric function [32], i.e.,

εg(~r;D0)=
γ⊥

Ωµ−ωa+iγ⊥

D0 f0(~r)
1+∑

N
ν=1 Γν |Ψν(~r;D0)|2

, (3)

which contains the nonlinear spatial hole burning interactions beyond the standard 3rd-order
approximation [37]. ωa here is the atomic transition frequency, Γν ≡ γ2

⊥/[γ
2
⊥+(Ων −ωa)

2] is
the Lorentzian gain curve evaluated at lasing frequency Ων , and f0(~r)≥ 0 is the spatial pump
profile, which is normalized by

∫
cavity f0(~r)d~r = S, where S =

∫
cavity d~r is the length (area) of the

cavity in one (two) dimension(s).
To select a certain higher-loss mode µ , we search for a pump profile f0(~r) that makes

its threshold the lowest among all possible lasing modes. Instead of comparing their actual
thresholds D(µ)

0,int that depend on the spatial hole burning interactions, it is more convenient to

work with the noninteracting thresholds D(µ)
0 , defined by[

∇
2+

(
εc(~r)+

γ⊥D(µ)
0 f0(~r)

Ωµ−ωa+iγ⊥

)
Ω

2
µ

]
Ψµ(~r;D(µ)

0 ) = 0. (4)

We note that Ψν = 0 for all modes at the lowest threshold (i.e., D0 = D(1)
0,int) and the modal

interactions vanish. In this case Eq. (2) is identical to Eq. (4) and D(1)
0,int = D(1)

0 . In other words,

if D(µ)
0 is the lowest noninteracting threshold, then mode µ also has the lowest threshold when

spatial hole burning interactions are considered. Therefore, we can judge whether the target
mode has the lowest actual threshold by comparing all noninteracting thresholds D(ν)

0 .
Unless a mode is very lossy, the reduction of its threshold by selective pumping is given

approximately by the pump overlapping factor [5]

rµ =

∫
cavity f0(~r)|Ψµ(~r;D0)|2d~r∫

cavity |Ψµ(~r;D0)|2d~r
, (5)

which becomes 1 for uniform pumping by definition (i.e., rµ = 1 for f0(~r) = 1). Suppose
that there are two modes (1 and 2) with distinct spatial profiles and that mode 2 has a higher
threshold with uniform pumping. By focusing the pump spatially onto mode 2 (for example,
with f0(~r) ∝ |Ψ2(~r;D0)|2), r2 can become much larger than 1 while r1 unavoidably becomes
much less than 1 (due to its distinct spatial profile from mode 2 and f0(~r)), which then makes
D(2)

0 < D(1)
0 and inverts the order of these two lasing modes, leading to the selective excitation

of the higher-loss mode 2. When modes 1 and 2 overlap strongly in space however, one finds
that r2 ∼ r1 when focusing the pump onto mode 2, meaning that the thresholds of modes 1 and 2
are reduced by a similar factor, and mode 1 remains the mode with the lowest threshold. In this
case, the intuitive approach to selective excitation fails.

#250456 Received 21 Sep 2015; accepted 5 Nov 2015; published 9 Nov 2015 
© 2015 OSA 16 Nov 2015 | Vol. 23, No. 23 | DOI:10.1364/OE.23.030049 | OPTICS EXPRESS 30052 



Having explained when focusing the pump onto the target mode works and fails to achieve
selective excitation, below we show how the two-step approach outlined in the introduction
works for our benefit. We first note that at any pump power D0 above threshold, the nonlinear
equation (2) and the linear equation (4) are no longer identical due to the non-zero spatial hole
burning interactions in the former. However, with a new pump profile

f̃0(~r) =
C f0(~r)

1+∑
N
ν=1 Γν |Ψν(~r;D0)|2

, (6)

the unsaturated linear dielectric constant ε̃(~r) = εc(~r) + (γ⊥D̃(µ)
0 f̃0(~r))/(Ωµ −ωa + iγ⊥) in

Eq. (4) becomes the same as the saturated nonlinear dielectric constant ε(~r;D0) = εc(~r;D0)+
εg(~r;D0) in Eq. (2) with the original pump profile f0(~r), where

D̃(µ)
0 =

D0

C
(7)

and C is a normalization constant such that
∫

cavity f̃0(~r)d~r = S. Since Eq. (2) holds for all lasing
modes at D0, the correspondence described above implies that with the new pump profile f̃0(~r),
these modes have the same noninteracting threshold given by Eq. (7), and they are the lowest
among all D̃(ν)

0 . This is the first step in our method, which levels up the threshold of the target
mode with all the lower-loss modes, and hence eliminates its disadvantage due to its higher loss.

In the second step, we modify f̃0(~r) given by Eq. (6) such that it favors the target mode µ .
We will refer to the resulting pump profile as f̃µ(~r), and it can be chosen, as mentioned in the
introduction, by increasing the overall intensity of |Ψν 6=µ(~r;D0)|2 and hence the self saturation
of the non-targeted modes in Eq. (6), which further suppresses these modes (“approach 1”).
Another option is to reduce the overall intensity of |Ψµ(~r;D0)|2 and hence the self saturation of
the target mode µ (“approach 2”). It can be even made negative as long as the pump profile f̃µ(~r)
is still non-negative everywhere. One may also combine approaches 1 and 2 when necessary.

Below we exemplify the effectiveness of our method in a one-dimensional (1D) slab laser and
a two-dimensional (2D) random laser. With uniform pumping, the slab laser of length L shown
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Fig. 1. Thresholds in a 1D cavity with uniform pumping and selective pumping using the
two-step method described in the main text. Open and filled dots show the actual thresholds
of modes 1 and 2 with uniform pumping. Dashed and solid lines in both (a) and (b) show
the noninteracting thresholds of mode 1 and mode 2, respectively. Their intersection on
the vertical axis shows their identical threshold with the pump profile given by Eq. (6) at
D0 = 1.88D(1)

0 . In (a) we suppress mode 1 by multiplying its intensity in the original spatial
hole burning interactions by a factor α ∈ [1,3]. In (b) we favor mode 2 by multiplying its
intensity (which is about 1/17 of that of mode 1) by a factor β ∈ [−28,1]. Inset in (a): The
cavity has refractive index nc = 3 and a perfect mirror on the left side. The gain medium is
characterized by ωaL = 20 and γ⊥L = 2.
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in Fig. 1 first exhibits a lasing mode of frequency Ω1L � 20.5 at its threshold D(1)
0 , and we aim

to selectively excite the second mode of frequency Ω2L � 18.9 and actual threshold 1.78D(1)
0 . If

we focus the pump onto the second mode using f0(�r) ∝ |Ψ2(�r;D(2)
0 )|2, we find that the threshold

of mode 2 is still higher than that of mode 1, even though it is reduced by 32% from its value

with uniform pumping. The result is much more promising when the pump profile is chosen

according to the two-step method described above. By solving Eq. (2) at D0 = 1.88D(1)
0 with

uniform pumping, we find the lasing modes Ψ1(�r;D0),Ψ2(�r;D0) and subsequently f̃0(�r) using

Eq. (6). Indeed this f̃0(�r) levels up the thresholds of modes 2 and 1 [D̃(2)
0 = D̃(1)

0 = 1.29D(1)
0 ;

see the intersection of the solid and dashed lines in both panels of Fig. 1]. We then modify this

f̃0 by gradually increasing the intensity of mode 1 [see Fig. 1(a)] or decreasing the intensity of

mode 2 [see Fig. 1(b)]. Both approaches can create a considerable difference between D̃(2)
0 and

D̃(1)
0 , which is required for single-mode excitation of the target mode 2 in a wide range of pump

power. We find that approach 2 is more favorable, since it leads to a threshold that is even lower

than the lowest threshold with uniform pumping (i.e., D(1)
0 ).

To confirm these observations which are based on the noninteracting thresholds of modes 1

and 2, we solve for the nonlinear lasing solutions with f̃2(�r) that corresponds the rightmost data

in Fig. 1(b) [see Fig. 2(a)]. In comparison with uniform pumping, not only is the threshold of

Fig. 2. Reduced threshold and single-mode lasing using the two-step selective excitation

described in the main text. (a) Pump profile f̃2(�r) (purple thin solid line) that corresponds to

the rightmost data in Fig. 1(b). Also shown are the normalized mode profiles |Ψ1(�r)|2 (red

dashed line) and |Ψ2(�r)|2 (thick black solid line) at D0 = 1.88D(0)
1 with uniform pumping.

(b) Intensities at the right end of the cavity. With f̃2(�r) in (a), the target mode 2 (black solid

line) is the only lasing mode in the pump range shown. Red dashed line and black squares

show the intensities of modes 1 and 2 with uniform pumping, respectively. The same legends

are used in (c), which shows the frequencies of the lasing modes in (b). The left end of each

line marks the threshold of the corresponding mode. (d) Modal gain of the first four modes

with f̃2(�r) in (a).



the target mode 2 reduced to 0.77D(1)
0 with this f̃2(�r), mode 2 is also the only lasing mode in the

whole pump range shown in Fig. 2(b). The latter observation can be confirmed by calculating

the modal gain [32]: a mode becomes lasing if its modal gain reaches 1 from below, which then

stays at 1 unless the mode is killed [16, 31]. Indeed all the non-targeted modes have a modal

gain below 1 in this pump range, as shown in Fig. 2(d). We also note that the intensity of mode 2

with f̃2(�r) has a steeper slope than both modes 1 and 2 with uniform pumping [see Fig. 2(b)],

indicating an improved utilization of the pump energy.

Having exemplified our method of selective excitation in the simple 1D slab laser, next we

tackle a more complicated laser, a 2D diffusive random laser [31, 41], in which the lasing modes

are strongly overlapping in space. In the example shown in Fig. 3 there are six modes lasing at

D0 = 1.6D(1)
0 . As a challenge to our method, we target the 6th mode with the highest threshold

and lowest intensity. We carry out the nonlinear-linear correspondence using Eq. (6) at this pump

power, after which all the six lasing modes have the same threshold [see the intersection point on

the vertical axis in Fig. 3(b)]. Next we follow approach 2 when modifying f̃0(�r), by decreasing

the intensity of mode 6 in the spatial hole burning interactions to −10 times. As a result, the

threshold of the target mode 6 is reduced to below D(1)
0 and significantly lower than the other

five modes. If we choose f̃6(�r) that corresponds to the rightmost data points in Fig. 3(b), the

target mode 6 becomes the only lasing mode until the pump power is 35% above D(1)
0 [Fig. 3(c)],

Fig. 3. Selective excitation in a 2D diffusive random laser. (a) Intracavity intensity for the

first six modes with uniform pumping. The black line shows the 6th mode to be selected.

Inset: The system is modeled as a disk region of radius R containing random scatterers of

refractive index n = 1.2 and a background index n = 1. The gain medium is characterized

by ωaR = 30 and γ⊥R = 2. (b) Noninteracting thresholds of the six modes in (a) but with a

new pump profile given by Eq. (6) (the leftmost data points) and then gradually decreasing

the intensity of the target mode 6 in the spatial hole burning interactions. Inset: False-color

intensity plot of mode 6. (c) Same as (a) but with the pump profile f̃6(�r) shown in the inset

[the rightmost data points in (b)]. (d) Spectra at D0 = 1.6D(1)
0 with uniform pumping (upper

panel) and with f̃6(�r) in (c) (lower panel).



with slightly shifted frequency and more than ten-fold power increase [Fig. 3(d)]. We note that
mode 1 is suppressed in the pump range shown.

The same procedure has been applied to select modes 2 to 5, one at a time. In each case a
significant pump range of single-mode operation is found for the target mode. These results
highlight the generality of selective excitation based on the correspondence between (saturated)
nonlinear and (unsaturated) linear dielectric constants, which applies to all nonlinear optical
media in their steady states, including but not limited to lasers and exciton-polariton condensates
[26–30]. We note that the first step in our method can be viewed as a special case of the second
step, in which not only the self saturation of the non-targeted modes but also that of the target
mode are increased from zero. Although the latter does not seem ideal and can be reversed in
step 2, the very fact that different thresholds of all lasing modes with the original pump profile
f0(~r) level up after the first step is already a confirmation of the effectiveness of our method, the
key element of which is incorporating the control of modal interactions into the pump profile.
For experimental realizations of our proposal, the pump profile can be shaped via a spatial light
modulator [21–23, 40] for optically pumping and a pixelated contact for electrically pumping.
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