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Introduction

The terrestrial mammal fauna of the West Indies once
comprised sloths, primates, rodents, insectivores, and bats
(Morgan and Woods 1986; Davalos 2004). During the
late Pleistocene and early Holocene waves of extinction
nearly obliterated this biota, but the majority of the bats
survived (Davalos and Turvey 2012). Bats were not tradi-
tionally hunted for food in the Caribbean, and many
species have proven resilient in the face of introduced
predators (although see Tejedor et al. 2005). Although
habitat changes (Pregill and Olson 1981) and competition
(Koopman and Williams 1951; Williams 1952) have been
proposed to explain extirpations of Caribbean bats since
the Last Glacial Maximum (LGM), sea-level rise caused
by nonanthropogenic climate change may be a more
important driver of extinction in this fauna (Morgan

2001; Davalos and Turvey 2012).

Abstract

Ecological factors such as changing climate on land and interspecific competi-
tion have been debated as possible causes of postglacial Caribbean extinction.
These hypotheses, however, have not been tested against a null model of cli-
mate-driven postglacial area loss. Here, we use a new Quaternary mammal
database and deep-sea bathymetry to estimate species—area relationships (SARs)
at present and during the Last Glacial Maximum (LGM) for bats of the Carib-
bean, and to model species loss as a function of area loss from rising sea level.
Island area was a significant predictor of species richness in the Bahamas,
Greater Antilles, and Lesser Antilles at all time periods, except for the Lesser
Antilles during the LGM. Parameters of LGM and current SARs were similar in
the Bahamas and Greater Antilles, but not the Lesser Antilles, which had fewer
estimated species during the LGM than expected given their size. Estimated
postglacial species losses in the Bahamas and Greater Antilles were largely
explained by inferred area loss from rising sea level in the Holocene. However,
there were more species in the Bahamas at present, and fewer species in the
smaller Greater Antilles, than expected given island size and the end-Pleisto-
cene/early Holocene SARs. Poor fossil sampling and ecological factors may
explain these departures from the null. Our analyses illustrate the importance
of changes in area in explaining patterns of species richness through time and
emphasize the role of the SAR as a null hypothesis in explorations of the
impact of novel ecological interactions on extinction.

The most drastic climatic change since the late Pleis-
tocene was the shift from the conditions of the LGM —
from ~22,000 to ~19,000 years before present (yBP;
Yokoyama et al. 2000) — to the interglacial climate
prevalent since the mid-Holocene. In the terrestrial
ecosystems of the West Indies, deglaciation replaced
xerophytic environments with mesic habitats (Higuera-
Gundy et al. 1998; White et al. 1998; Pajon et al. 2001;
McFarlane et al. 2002). One key consequence of climate
change was sea-level rise. From 15,000 to 7000 yBP, sea
level rose from 100 to 10 m below current level in three
bursts marking the collapse of ice sheets, the reorganization
of ocean—atmosphere circulation, and the release of glacial
meltwater (Blanchon and Shaw 1995). This period corre-
sponds to the inferred last occurrences of many bats, as
well as birds and lizards, on many islands (Pregill and
Olson 1981; Morgan and Woods 1986; Morgan 1989, 1994,
2001; McFarlane et al. 2002). There are no direct fossil
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dates for extinct bat populations, and the 22,000- to 7000-
yBP interval corresponding to dramatic rises in sea level
overlaps with all indirect radiometric dates for extinct bat
populations (Suarez and Diaz-Franco 2003; Jiménez Vaz-
quez et al. 2005). Here, the considerable island area loss
caused by deglaciation during the end-Pleistocene/early
Holocene serves as an abiotic null hypothesis to explain
extinction patterns in the absence of more recent ecological
changes, including anthropogenic species introductions,
habitat, and climate change.

We combine analyses of bathymetry and estimates of
bat species richness across three Caribbean archipelagos
to estimate land area and species richness at the LGM
(before the end-Pleistocene/early Holocene area loss)
and quantify the impact of area declines on bat species
richness. The bat biota of the Caribbean is uniquely
suited to evaluate the species—area relationship (SAR)
time: the land area experienced significant
changes since the LGM, and numerous bat fossils in
cave sediments enable reasonable estimates of species
richness at the end of the Pleistocene (Fig. 1). In addi-
tion, the Caribbean has experienced the highest level of

across

recent species loss of any mammal fauna in the world
(MacPhee and Flemming 1999; Morgan 2001; MacPhee
2009; Turvey 2009), so we expect these data will retain
considerable power to examine the effects of recent
extinction.

L. M. Davalos and A. L. Russell

Material and Methods

At the LGM, sea levels were 120-135 m below current
level (Hearty 1998; Clark et al. 2003). To estimate the
area of the islands at the LGM, we decreased sea level by
125 m on the global 1-km grid topography and bathy-
metry of Becker and Sandwell (2008) in Lambert cylindri-
cal equal-area projection. We investigated the sensitivity
of the LGM area estimate for the Bahamas to coral accre-
tion by estimating the effect of a linear growth rate of
1 cm/year over the last 20,000 yBP (Johnson and Pérez
2006). The resulting linear change (200 m) was subtracted
from the radius of individual Bahamian banks, and the
corresponding areas were recalculated. Current areas were
calculated based on current sea level, or compiled from
the United Nations Environment Program Earthwatch
Database (http://islands.unep.ch/Tiarea.htm).

To obtain species richness, we used the extant and
extinct mammalian distribution database for the islands
of the Caribbean (Willig et al. 2010; Davalos and Turvey
2012). Species richness at the LGM was calculated as the
sum of current and extinct species richness. Stratigraphic
and indirect radiometric analyses of fossil faunas includ-
ing bats have found Late Wisconsinan or Early Holocene
dates for the remains (Koopman and Williams 1951;
Morgan 2001; McFarlane et al. 2002; Suarez and Diaz-
Franco 2003; Mancina and Garcia-Rivera 2005; Steadman

Figure 1. Representative subfossils (Chiroptera: Mormoopidae) from a cave deposit in the Dominican Republic. From left: Mormoops blainvillei,
Pteronotus parnellii, and P. quadridens. White bar indicates 1 cm. Quaternary fossils and subfossils on many islands of the West Indies enable
estimates of species richness at the Last Glacial Maximum, before sea-level rise drastically reduced the area of most islands.

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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et al. 2007), indicating most fossil populations would
have been extant at the LGM. The ~7000 yBP date for a
Cuban fauna of Jiménez Vazquez et al. (2005) coincides
with the date at which sea level reached ~10 m below
present levels (Blanchon and Shaw 1995). Stratigraphic
and radiometric analyses support end-Pleistocene/early
Holocene dates for included fossil species, and modern
faunal surveys strongly support our designation of species
as extinct. The only species in the current fauna thought
to have immigrated so recently that it may not have been
part of the end-Pleistocene/early Holocene fauna is Artib-
eus jamaicensis (Koopman and Williams 1951; Williams
1952; Morgan 1994), so we estimated SARs with and
without this species to assess its effect on results.

Based on biogeographic and geological similarities, we
subdivided analyses into three archipelagos: the Bahamas,
the Greater Antilles, and the Lesser Antilles (Willig et al.
2010). The fauna of Trinidad, Tobago, Margarita, Aruba,
Bonaire, and Curagao were excluded because these islands
are characterized by a South American bat biota (Morgan
and Woods 1986; Koopman 1989; Morgan 2001) and are
likely subject to fundamentally different biogeographic
processes.

To estimate the parameters of the SARs, we fitted sepa-
rate linear models of species as a function of area for the
LGM and the present. The slope of the SAR is expected
to become steeper with increasing isolation (MacArthur
and Wilson 1967); therefore, higher sea levels since the
LGM may have shifted the slope of the current curve rela-
tive to the past. Comparisons between the predictions
based on the SAR at the LGM and current observations
would not be valid if that were the case. To test for
homogeneity of slopes (z), we fitted analysis of covariance
(ANCOVA) models of species as a function of area (both
log-transformed) with LGM or current islands as the fac-
tor. These models also tested the homogeneity of the
intercept term of SARs — log(c) — through time.

Since:

log(Spresent) = log(c) + z10g(Apresent),

and

log(Stam) = log(c) + zlog(Aram),

assuming ¢ and z remain constant — tested as above —

then:
log <SPresent> —z 10g (APresent>
Stem Aem )
Based on this relationship between changes in richness

and area, we modeled log-transformed ratios of present/

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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LGM richness as a function of the ratio of areas without
an intercept term.

Finally, we compared the predicted species diversity of
each island based on the LGM SAR to the observed cur-
rent species diversity. If the LGM-based SAR correctly
estimated current richness, then islands should fall along
a curve of slope=1 in a plot of predicted versus
observed richness. The area below the expected line would
indicate underestimated species richness at the LGM and/
or more species today than predicted. Conversely, the
area above the line would indicate fewer species observed
today than expected given the LGM SAR. All analyses
were conducted in the R v.1.14.2 statistical environment
(R Development Core Team 2010).

Results

Island area was a significant predictor of species richness for
all archipelagos and time periods, excluding the Lesser Antil-
les at the LGM (Table 1, Fig. 2). Species—area curves for the
Bahamas and the Greater Antilles had similar slopes for the
LGM and present (Table 2). In contrast, the species—area
curves fitted for the two time periods for the Lesser Antilles
had significantly different slopes, with LGM area explaining
a very small portion of the variation in richness at the LGM
compared with the present relationship (Tables 1 and 2).
We excluded this archipelago from estimates of species loss
as a function of area loss, and from comparisons of LGM
SARs to present richness because of the heterogeneity of
slopes of LGM and current SARs (Table 2).

Island size change since the LGM explained most, but
not all, of the decline in species richness on the Bahamas
and Greater Antilles (Table 2, Fig. 3). To examine the
relationship between LGM and current SARs, we used
LGM SARs to predict current species richness from cur-
rent island area (Fig. 4). If SARs have not changed since
the Pleistocene, then LGM SARs should predict observed
species richness, and a plot of observed and predicted

Table 1. Slopes and significance of species-area relationships for
Caribbean archipelagos.

Slope + standard

Archipelago  Period error R? P-value

Bahamas Last Glacial 0.33 £ 0.04 0.88 0.0003
Maximum (LGM)

Present 0.24 + 0.06 0.40 0.0007

Present/LGM 0.27 £ 0.02 0.83 0.0000

Greater LGM 0.32 + 0.06 0.77 0.0012

Antilles Present 0.28 + 0.04 0.69 0.0000

Present/LGM 0.28 £ 0.04 0.85 0.0000

Lesser LGM 0.08 + 0.04 0.15 0.1076

Antilles Present 0.33 £ 0.07 0.44 0.0003
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Figure 2. Species—area curves for three Caribbean archipelagos at the Last Glacial Maximum (LGM) and present. Shaded areas indicate the 95%
confidence interval around the mean of the curves. LGM species—area relationships (SARs) were highly significant for the Bahamas and the
Greater Antilles, but not the Lesser Antilles (Table 1). Current SARs were highly significant for all archipelagos (Table 1). The slopes of the curves
fitted for each time period were not statistically different in the Bahamas or Greater Antilles, but were significantly different in the Lesser Antilles

(Table 2).

Table 2. Analyses of covariance (ANCOVA) testing for the homoge-
neity of intercepts and slopes of species-area relationships at present
and Last Glacial Maximum.

Interaction log

Time period area and time
Archipelago  as factor P-value  period P-value
Bahamas 0.267 £ 0.300 0.381 —0.074 £ 0.094 0.441
Greater 0.093 £ 0.243 0.705 —0.038 £ 0.074 0.611
Antilles
Lesser —0.672 +£0.308 0.037 0.260 £ 0.112 0.027
Antilles

species richness should show islands roughly falling along
an expected line of slope = 1. In the majority of islands
in the Bahamas, the LGM SAR predicted fewer species at
present than have been observed. The opposite was true
for the Greater Antilles, where most of the significant
deviations from the expected relationship involved smaller
islands with lower-than-expected current species richness.

Species richness on all archipelagos may have changed
because of colonization, and island area in the Bahamas
may have increased from coral accretion. Widespread spe-
cies shared with the continent and lacking fossil records are
the most likely recent colonizers. Only Artibeus jamaicensis
meets these criteria: it may be a recent colonizer in the
Bahamas. This species was inferred to be present in every
island bank of the Greater and Lesser Antilles, so its exclusion

cannot change the slope of those SARs. We conducted anal-
yses accounting for coral accretion and excluding Artibeus
jamaicensis from the Bahamas (Supporting information).
The area difference when accounting for coral deposition
in Bahamian banks since the LGM ranged from 0.2% to
5.1% of the estimated LGM area, with a median of 1.3%,
and a mean of 2.0%. Over the timespan considered here,
colonization by new species has had minimal effect on spe-
cies richness. Therefore, analyses presented in the main text
ignored coral accretion and included A. jamaicensis in the
LGM Bahamian fauna.

Discussion

We find that island size change is the greatest single predic-
tor of species loss in the Bahamas and Greater Antilles.
Although this abiotic change in island area explains most of
the observed species loss, there are more species in the Baha-
mas, and fewer in the smaller Greater Antilles, than expected
given current island sizes and predictions from LGM SARs.
In the Lesser Antilles, however, there are fewer species
known from the LGM than were expected given their size.

Species-area relationships in the Lesser
Antilles

Island area was not a significant predictor of species rich-
ness at the LGM in the Lesser Antilles (Table 1). This

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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result could arise by overestimating the LGM richness of
smaller islands that were only recently colonized, or
underestimating the richness of larger islands whose fossil
records may be incomplete, or both. If the high richness
of the smallest island bank (Saba) drove this result, then
removing this point would result in a steeper, significant
relationship, but it does not (recalculated slope
0.04 + 0.06, linear model P-value = 0.5210). Several
island banks larger than 1500 km® share similar richness
estimates of ~10 despite differences of hundreds of km?
in area at the LGM. The expected species richness for
these island banks is at least 16 species based on the
current curve (Fig. 2). Despite their large size at the
LGM, the estimated species richness of these banks is
small, and it is likely underestimated because of the scant
fossil record of this archipelago. Few fossil sites in the
Lesser Antilles have been excavated, and only on Anguilla,
and Antigua and Barbuda (these last two islands are part
of the same bank; Morgan 2001). The small number of

© 2012 The Authors. Published by Blackwell Publishing Ltd.
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documented fossil species explains the independence of
richness from area in LGM estimates for this archipelago.
Our results suggest that more fossil species remain to be
discovered from the late Pleistocene/early Holocene of the
Lesser Antilles.

Area loss explains most of the change in
richness in the Bahamas and Greater
Antilles

Five hypotheses other than overhunting and predators
introduced by humans have been proposed to explain
Caribbean mammal extinction events since the LGM: (1)
postglacial sea-level rise reducing island area (Morgan
2001; Davalos and Turvey 2012); (2) postglacial sea-level
rise flooding caves (Morgan 2001); (3) postglacial climate
change replacing xerophytic environments with mesic
habitats (Pregill and Olson 1981); (4) competition from
new colonizers leading to faunal replacement (Koopman
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and Williams 1951; Williams 1952), and (5) habitat con-
version for human agriculture over the last few thousand
years (Gannon et al. 2005). Our estimates of the impact
of sea-level change on this biota support the first hypoth-
esis: area loss from postglacial sea-level rise was a major
predictor of species loss (Table 1). These results held,
even after accounting for sources of error such as coral
accretion and the possible recent arrival of Artibeus ja-
maicensis onto the islands (Tables S1 and S2). This model
of extinction caused by area loss associated with postgla-
cial sea-level rise has been supported for other Caribbean
mammals, such as the giant hutia Amblyrhiza in the
Sangamonian (McFarlane et al. 1998). We propose
extinction caused by area loss as the null hypothesis in
investigating insular postglacial extinctions.

In most islands of the Bahamas, LGM SARs predict
fewer species at present than are observed. These results
could arise through underestimation of species richness at
the LGM and suggest that our understanding of the fossil
bat biota is incomplete for these banks. A similar analysis
of the Greater Antilles showed that SARs for the most
species-rich islands in this archipelago are largely
unchanged from the LGM (Fig. 4). In smaller islands of
the Greater Antilles, however, LGM SARs predict greater
species richness than observed. This pattern may be caused
by underestimation of current species richness on smaller
banks, or because of drivers of richness beyond island area.
If current richness at smaller banks were underestimated,
then SARs would show a break between smaller and larger
areas, with higher slopes at the lower end of the relation-
ship. To evaluate this prediction, we fitted segmented
regression models with a single breakpoint for each archi-
pelago (Muggeo 2008), but found no significant break-
points in the Greater Antillean SAR (P-value = 0.189).

Because underestimation on smaller Greater Antillean
banks did not explain the lower-than-expected species
richness at present, we suggest that alternative ecological
explanations such as the collapse of specific habitats
(caves), competition, or habitat loss need to be explored.

By accounting for the major effect of area loss on spe-
cies declines across most of the Caribbean, and highlight-
ing departures from SAR arising from a poor
understanding of the fossil bat fauna in the Lesser Antilles
and Bahamas, our analyses illuminate the potential scope
of ecological constraints, species interactions, and anthro-
pogenic change on the regional Caribbean fauna.
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Figure S1. Species-area curves and observed versus pre-
dicted richness for the Bahamas at the LGM and present
after excluding Artibeus jamaicensis and accounting for
coral accretion since the LGM. Shaded areas indicate the
95% confidence interval around the mean of the curves.
Left: SARs fitted to observed current and estimated LGM
values. Right: predicted versus observed species richness.
The curve of slope =1 indicates where the LGM SAR
perfectly predicts current species richness. The LGM SAR
underestimates current species richness in the area below
the curve, and overestimates current richness in the area
above the curve.

Table S1. Caribbean bat species inventory by island and
archipelago.
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Table S3. Analyses of covariance (ANCOVA) testing for the
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Supplementary Table S1. Caribbean bat species inventory by island and archipelago.

Supplementary Table S2. Slopes and significance of SARs for the Bahamas after excluding

Artibeus jamaicensis and accounting for coral accretion since the LGM.

Archipelago Period Slope + standard error R? P-value
Bahamas LGM 0.35+0.06 0.82 0.0011
Present/LGM 0.26 +0.02 0.83 0.0000

Supplementary Table S3. Analyses of covariance (ANCOVA) testing for the homogeneity
of intercepts and slopes of SARs at LGM and present for the Bahamas after excluding

Artibeus jamaicensis and accounting for coral accretion since the LGM.

Archipelago Time period as factor P-value Interaction Log Area & Time P-value

Bahamas 0.412 +0.308 0.1923 -0.113 +£0.097 0.2551




Supplementary Table 1

Endemic to

Extinct in West Crooked Fortune East Middle  North Eleuthera Great Little Long New Great Little Grand
Species Family West Indies  Indies  Acklins Island Island Caicos Caicos Caicos Providenciales Andros Cat Island Darby Island Exuma Exuma Island Providence Inagua Inagua Bahama
Eumops aurip. [
Eumops glaucinus Molossidae
Eumops perotis Molossidae
Molossus molossus Molossidae
Mormopterus minutus Molossidae yes
Nyctinomops laticaudatus Molossidae
Nyctinomops macrotis Molossidae
Tadarida brasiliensis Molossidae extant extant extant extinct extant extant extant extant extinct
Mormoops blainvillei Mormoopidae yes extinct extinct
Mormoops magna Mormoopidae yes yes
Mormoops lophyllc Mor pid: yes extinct
Pteronotus davyi Mormoopidae
Pteronotus macleayii Mormoopidae yes extinct
Pteronotus parnelli parnelliii Mormoopidae yes extinct
Pteronotus parnellii portoricensis Mormoopidae yes
Pteronotus parnellii pusillus Mormoopidae yes
Pteronotus parnellii rubiginosus ~ Mormoopidae
Pteronotus pristinus Mormoopidae yes yes
Pteronotus quadridens Mormoopidae yes extinct extinct
Pteronotus sp. nov. Mormoopidae yes yes
Chilonatalus micropus macer Natalidae yes
Chilonatalus micropus micropus ~ Natalidae yes
Chilonatalus tumidifrons Natalidae yes extant extinct extinct extinct
Natalus jamaicensis Natalidae yes
Natalus major Natalidae yes extinct
Natalus primus yes yes extinct extinct
Natalus stramineus Natalidae yes
Nyctiellus lepidus Natalidae yes extinct extant extant extinct extant extant
Noctilio leporinus Noctlilionidae extant
Ardops nichollsi Phyllostomidae yes
Ariteus flavescens Phyllostomidae yes
Artibeus anthonyi Phyllostomidae yes yes
Artibeus jamaicensis Phyllostomidae extant extant extant
Artibeus lituratus Phyllostomidae
Artibeus planirostris Phyllostomidae
Artibeus schwartzi Phyllostomidae yes
Brachyphylla cavernarum Phyllostomidae yes
Brachyphylla nana nana Phyllostomidae yes extinct extinct
Brachyphylla nana pumila Phyllostomidae yes extant
Chiroderma improvisum Phyllostomidae yes
Cubanycteris silvai Phyllostomidae yes yes
D ] judensi: Phyll i yes yes
Erophylla bombifrons Phyllostomidae yes
Erophylla sezekorni Phyllostomidae yes extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant
Glossophaga longirostris Phyllostomidae
Glossophaga soricina Phyllostomidae
Macrotus waterhousii Phyllostomidae yes extant extant extant extinct extant extant extant extant extant extant extant extant extant extant extant
Monophyllus plethodon Phyllostomidae yes
Monophyllus redmani Phyllostomidae yes extant extant extant extant extant extinct extinct
Phyllonycteris aphylla Phyllostomidae yes
Phyllonycteris major Phyllostomidae yes yes
Phyllonycteris poeyi Phyllostomidae yes extinct
Phyllops falcatus Phyllostomidae yes
Phyllops silvai Phyllostomidae yes yes
Phyllops vetus Phyllostomidae yes yes
Stenoderma rufum Phyllostomidae yes
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Supplementary Table 1

Endemic to
Extinct in West Crooked Fortune East Middle  North Eleuthera Great Little Long New Great Little Grand

Species Family West Indies  Indies  Acklins Island Island Caicos Caicos Caicos Providenciales Andros Cat Island Darby Island Exuma Exuma Island Providence Inagua Inagua Bahama
Sturnira lilium Phyllostomidae
Sturnira thomasi Phyllostomidae yes
Tonatia saurophila Phyllostomidae yes
Antrozous pallidus
Eptesicus fuscus extant extant extant extant extant extant extant
Eptesicus guadeloupensis Vespertilionidae yes
Lasiurus degelidus Vespertilionidae yes
Lasiurus insularis nidae yes
Lasiurus intermedius Vespertilionidae yes
Lasiurus minor Vespertilionidae yes extant extant extant extant extant extant extant
Lasiurus pfeifferi Vespertilionidae yes
Myotis cf. M. austroriparius Vespertilionidac yes yes
Myotis dominicensis Vespertilionidae yes
Myotis martiniquensis yes
Nycticeius cubanus Vespertilionidae yes

Extant #

species 5 5 1 2 3 3 5 5 4 1 4 4 4 6 4 5 1

Extinct #

species 0 0 0 0 3 0 0 6 1 0 0 2 1 0 10 0 0

Total
species 5 5 1 2 6 3 5 11 5 1 4 6 5 6 14 5 1
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Supplementary Table 1

Endemic to
Extinct in West  Great Little East Plana San Cayman Little Isleof Grand lledela lle de la Puerto
Species Family West Indies  Indies  Abaco Abaco Mayaguana Cay Salvador Brac Cayman Cuba Pines Cayman Hispaniola Gonave Tortue Jamaica Mona Navassa Anegada Culebra Guana Rico St. John
Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater

k t k t b Antilles Antilles Antilles Antilles Antilles Antilles  Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles
Eumops aurip. [ extant
Eumops glaucinus Molossidae extant extant
Eumops perotis Molossidae extant
Molossus molossus Molossidae extant extant  extant  extant extant extant extant extant  extant extant  extant
Mormopterus minutus Molossidae yes extant
Nyctinomops laticaudatus Molossidae extant
Nyctinomops macrotis Molossidae extant extant extant
Tadarida brasiliensis Molossidae extant extant extant  extant  extant extant extant extant  extant
Mormoops blainvillei Mormoopidae yes extinct extant extant extinct extant  extant extant
Mormoops magna Mormoopidae yes yes extinct
Mormoops lophyllc Mor pid: yes extinct extinct extinct extinct
Pteronotus davyi Mormoopidae
Pteronotus macleayii Mormoopidae yes extant  extant extant
Pteronotus parnelli parnelliii Mormoopidae yes extinct extant  extinct  extinct extant
Pteronotus parnellii portoricensis Mormoopidae yes extant extant
Pteronotus parnellii pusillus Mormoopidae yes extant extinct
Pteronotus parnellii rubiginosus ~ Mormoopidae
Pteronotus pristinus Mormoopidae yes yes extinct
Pteronotus quadridens Mormoopidae yes extinct extant extant extant extant
Pteronotus sp. nov. Mormoopidae yes yes extinct
Chilonatalus micropus macer Natalidae yes extant  extant  extinct
Chilonatalus micropus micropus ~ Natalidae yes extant extant
Chilonatalus tumidifrons Natalidae yes extant extant
Natalus jamaicensis Natalidae yes extant
Natalus major Natalidae yes extant
Natalus primus yes yes extinct extant  extinct  extinct
Natalus stramineus Natalidae yes
Nyctiellus lepidus Natalidae yes extant  extant
Noctilio leporinus Noctlilionidae extant  extant extant extant  extant extant extant  extant
Ardops nichollsi Phyllostomidae yes
Ariteus flavescens Phyllostomidae yes extant
Artibeus anthonyi Phyllostomidae yes yes extinct
Artibeus jamaicensis Phyllostomidae extant extant  extant extant extant  extant extant extant extant extant extant extant  extant extant
Artibeus lituratus Phyllostomidae
Artibeus planirostris Phyllostomidae
Artibeus schwartzi Phyllostomidae yes
Brachyphylla cavernarum Phyllostomidae yes extant  extant  extant
Brachyphylla nana nana Phyllostomidae yes extinct extant  extant  extant
Brachyphylla nana pumila Phyllostomidae yes extinct extant extinct
Chiroderma improvisum Phyllostomidae yes
Cubanycteris silvai Phyllostomidae yes yes extinct
D d jud Phyll id; yes yes extinct
Erophylla bombifrons Phyllostomidae yes extant extant
Erophylla sezekorni Phyllostomidae yes extant extant extant extant extant extant  extant  extant extant
Glossophaga longirostris Phyllostomidae
Glossophaga soricina Phyllostomidae extant
Macrotus waterhousii Phyllostomidae yes extant extant extant extant  extant extant extant extant extant extinct extant extant extinct
Monophyllus plethodon Phyllostomidae yes extinct
Monophyllus redmani Phyllostomidae yes extinct extinct extant  extant  extinct extant extinct extant extant
Phyllonycteris aphylla Phyllostomidae yes extant
Phyllonycteris major Phyllostomidae yes yes extinct
Phyllonycteris poeyi Phyllostomidae yes extinct extinct extant  extant extant
Phyllops falcatus Phyllostomidae yes extant extant  extinct  extant extant
Phyllops silvai Phyllostomidae yes yes extinct
Phyllops vetus Phyllostomidae yes yes extinct
Stenoderma rufum Phyllostomidae yes extant  extant
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Supplementary Table 1

Endemic to
Extinct in West  Great Little East Plana San Cayman Little Isleof Grand lledela lle de la Puerto
Species Family West Indies  Indies  Abaco Abaco Mayaguana Cay Salvador Brac Cayman Cuba Pines Cayman Hispaniola Gonave Tortue Jamaica Mona Navassa Anegada Culebra Guana Rico St. John
Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater Greater
k t k t b Antilles Antilles Antilles Antilles Antilles Antilles  Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles
Sturnira lilium Phyllostomidae
Sturnira thomasi Phyllostomidae yes
Tonatia saurophila Phyllostomidae yes extinct
Antrozous pallidus i extant
Eptesicus fuscus extant extant extant extant extant extant extant extant extant
Eptesicus guadeloupensis Vespertilionidae yes
Lasiurus degelidus Vespertilionidae yes extant
Lasiurus insularis nidae yes extant
Lasiurus intermedius Vespertilionidae yes extant  extant extinct
Lasiurus minor Vespertilionidae yes extant extant extant
Lasiurus pfeifferi Vespertilionidae yes extant
Myotis cf. M. austroriparius Vespertilionidac yes yes extinct
Myotis dominicensis Vespertilionidae yes
Myotis martiniquensis yes
Nycticeius cubanus Vespertilionidae yes extant
Extant #
species 5 2 4 6 2 28 14 8 18 2 0 21 3 1 3 3 13
Extinct #
species 8 0 0 4 0 8 3 4 3 4 0 3 0 0 0 0 3
Total
species 13 2 4 10 2 36 17 12 21 6 0 24 3 1 3 3 16
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Supplementary Table 1

Endemic to
Extinct in West  St. Virgin St. St. St.
Species Family West Indies  Indies Thomas Tortola Vieques Gorda St.Croix Anguilla Barthelemy Eustatius Martin Tintamarre Antigua Barbuda Barbados Dominica Bequia Carriacou Union del La Desirade
Greater Greater Greater Greater Greater Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser
Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles  Antilles Antilles Antilles Antilles Antilles Antilles  Antilles Antilles Antilles  Antilles Antilles Antilles
Eumops aurip. [
Eumops glaucinus Molossidae
Eumops perotis Molossidae
Molossus molossus Molossidae extant extant extant  extant extant  extant extant extant extant extant  extant extant extant extant extant extant extant
Mormopterus minutus Molossidae yes
Nyctinomops laticaudatus Molossidae
Nyctinomops macrotis Molossidae
Tadarida brasiliensis Molossidae extant extant extant extant extant extant extant extant extant
Mormoops blainvillei Mormoopidae yes extinct extinct extinct
Mormoops magna Mormoopidae yes yes
Mormoops lophyllc Mor pid yes
Pteronotus davyi Mormoopidae extant
Pteronotus macleayii Mormoopidae yes
Pteronotus parnelli parnelliii Mormoopidae yes
Pteronotus parnellii portoricensis Mormoopidae yes extinct
Pteronotus parnellii pusillus Mormoopidae yes
Pteronotus parnellii rubiginosus ~ Mormoopidae
Pteronotus pristinus Mormoopidae yes yes
Pteronotus quadridens Mormoopidae yes
Pteronotus sp. nov. Mormoopidae yes yes
Chilonatalus micropus macer Natalidae yes
Chilonatalus micropus micropus ~ Natalidae yes
Chilonatalus tumidifrons Natalidae yes
Natalus jamaicensis Natalidae yes
Natalus major Natalidae yes
Natalus primus yes yes
Natalus stramineus Natalidae yes extant extant extant  extant extant extant
Nyctiellus lepidus Natalidae yes
Noctilio leporinus Noctlilionidae extant extant extant extant extant extant extant extant extant extant
Ardops nichollsi Phyllostomidae yes extant extant extant extant
Ariteus flavescens Phyllostomidae yes
Artibeus anthonyi Phyllostomidae yes yes
Artibeus jamaicensis Phyllostomidae extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant extant
Artibeus lituratus Phyllostomidae
Artibeus planirostris Phyllostomidae
Artibeus schwartzi Phyllostomidae yes extant
Brachyphylla cavernarum Phyllostomidae yes extant extant  extant extant extant extant extant  extant extant extant extant extant
Brachyphylla nana nana Phyllostomidae yes
Brachyphylla nana pumila Phyllostomidae yes
Chiroderma improvisum Phyllostomidae yes extant
Cubanycteris silvai Phyllostomidae yes yes
D d jud Phyll id; yes yes
Erophylla bombifrons Phyllostomidae yes
Erophylla sezekorni Phyllostomidae yes
Glossophaga longirostris Phyllostomidae extant extant
Glossophaga soricina Phyllostomidae
Macrotus waterhousii Phyllostomidae yes extinct
Monophyllus plethodon Phyllostomidae yes extant extant extant extant extant extant extant extant
Monophyllus redmani Phyllostomidae yes
Phyllonycteris aphylla Phyllostomidae yes
Phyllonycteris major Phyllostomidae yes yes
Phyllonycteris poeyi Phyllostomidae yes
Phyllops falcatus Phyllostomidae yes
Phyllops silvai Phyllostomidae yes yes
Phyllops vetus Phyllostomidae yes yes
Stenoderma rufum Phyllostomidae yes extant extant extant

Page 50f 6



Supplementary Table 1

Endemic to
Extinct in West St. St.
Species Family West Indies  Indies Thomas Tortola Vieques Barthelemy Eustatius Martin Tintamarre Barbados Dominica Bequia Carriacou Union del La Desirade
Greater Greater Greater Greater Greater Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser Lesser
Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles Antilles  Antilles  Antilles Antilles Antilles  Antilles Antilles Antilles
Sturnira lilium Phyllostomidae extant
Sturnira thomasi Phyllostomidae yes extant
Tonatia saurophila Phyllostomidae yes
Antrozous pallidus Vespertilionidae
Eptesicus fuscus Vespertilionidae extant
Eptesicus guadeloupensis Vespertilionidae yes extant
Lasiurus degelidus Vespertilionidae yes
Lasiurus insularis Vespertilionidae yes
Lasiurus intermedius Vespertilionidae yes
Lasiurus minor Vespertilionidae yes
Lasiurus pfeifferi Vespertilionidae yes
Myotis cf. M. austroriparius Vespertilionidac yes yes
Myotis dominicensis Vespertilionidae yes extant extant
Myotis martiniquensis Vespertilionidae yes extant
Nycticeius cubanus Vespertilionidae yes
Extant #
species 5 5 12 1 3 12 4
Extinct #
species 0 0 0 0 0 0 0
Total
species 5 5 12 1 3 12 4
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Supplementary Figure S4. Species-area curves and observed vs. predicted richness for
the Bahamas at the LGM and present after excluding Artibeus jamaicensis and accounting
for coral accretion since the LGM. Shaded areas indicate the 95% confidence interval
around the mean of the curves. Left: SARs fitted to observed current and estimated LGM
values. Right: predicted vs. observed species richness. The curve of slope = 1 indicates
where the LGM SAR perfectly predicts current species richness. The LGM SAR
underestimates current species richness in the area below the curve, and overestimates

current richness in the area above the curve.
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