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1Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, New York, United States of America, 2 The Proteomics Center at

Stony Brook, SUNY Stony Brook Medical Center, Stony Brook, New York, United States of America, 3Division of Hematology, Department of Medicine, SUNY Stony Brook

Medical Center, Stony Brook, New York, United States of America, 4Department of Pharmacological Sciences, SUNY Stony Brook Medical Center, Stony Brook, New York,

United States of America, 5Museo de Arqueologia de Alta Montaña (MAAM), Salta, Argentina, 6Department of Ecology and Evolution and Consortium for Inter-

Disciplinary Environmental Research, SUNY Stony Brook, Stony Brook, New York, United States of America, 7Department of Pathology, SUNY Stony Brook Medical Center,

Stony Brook, New York, United States of America

Abstract

Disease detection in historical samples currently relies on DNA extraction and amplification, or immunoassays. These
techniques only establish pathogen presence rather than active disease. We report the first use of shotgun proteomics to
detect the protein expression profile of buccal swabs and cloth samples from two 500-year-old Andean mummies. The
profile of one of the mummies is consistent with immune system response to severe pulmonary bacterial infection at the
time of death. Presence of a probably pathogenic Mycobacterium sp. in one buccal swab was confirmed by DNA
amplification, sequencing, and phylogenetic analyses. Our study provides positive evidence of active pathogenic infection
in an ancient sample for the first time. The protocol introduced here is less susceptible to contamination than DNA-based or
immunoassay-based studies. In scarce forensic samples, shotgun proteomics narrows the range of pathogens to detect
using DNA assays, reducing cost. This analytical technique can be broadly applied for detecting infection in ancient samples
to answer questions on the historical ecology of specific pathogens, as well as in medico-legal cases when active
pathogenic infection is suspected.
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Introduction

Over the last decade, forensic techniques relying on ancient DNA

extraction and PCR amplification have provided critical evidence to

resolve longstanding historical questions, such as uncovering

pathologies linked to the early death of Tutankhamen [1], or

identifying the presence of the pathogen Yersinia pestis in bodies

excavated from medieval cemeteries [2,3]. Because extraneous

DNA can be easily amplified during PCR, forensic applications rely

on strict controls to avoid false positives [4,5]. When used to infer

infection in historical samples, DNA techniques can confirm

pathogen presence but cannot positively infer disease because a

pathogen could be present without causing infection [6,7,8]. Such

applications are particularly valuable in an archeological context, in

which differentiating between natural and deliberate causes of death

can significantly change the interpretation of a historical event [1,2].

Detection of a pathogen, however, is necessary but not sufficient to

determine disease because the pathogen could be present without

causing infection [6,7,8].

Detecting the immune reaction to the pathogen in the host

provides positive evidence of active pathogenic infection [9].

Existing methods, such as antibody-binding immunoassays, are ill

suited for archeological applications because they require fresh

tissues, use a small number of targeted antibodies, and are prone to

both false positives and false negatives [10,11]. Proteomics

approaches can identify and quantify proteins directly, and offer

three distinct advantages in archeological and forensic research [12].

First, proteins can potentially outlast DNA by thousands to millions

of years [13,14], pushing back the time frame for detection of

responses to infection. Second, protein detection does not rely on

amplification, so there is less susceptibility to contamination than in

PCR [15]. Third, a broad spectrum of proteins can be characterized

from small samples, resulting in a more resolved picture of immune

response than from immunoassays [16]. In this paper, we present

methods for obtaining proteomic-quality samples from 500-year old

Andean mummies, and results documenting immune response in

these ancient human samples. Our results show that shotgun

proteomic applications complement results from forensic DNA

analyses by providing evidence of active infection and pointing to the

pathogens triggering observed immune responses.

Methods

Archaeological Context
In 1999, a team of archaeologists led by Johan Reinhard and

Constanza Ceruti, uncovered the site of three burials 25 m from
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the 6,739-m summit of Llullaillaco, a high elevation volcano in

the province of Salta, Argentina. The expedition recovered the

preserved bodies of two young children (a 7 year-old boy and a

6-year old girl) and one 15-year old adolescent girl known as

‘‘the Maiden’’. The three children had been sacrificed to

Pachamama, the earth goddess, in the ritual of Capacocha

[17,18,19]. The outstanding condition of the mummies (fig. 1)

was the result of the combination of freezing temperature, mild

humidity, anaerobic environment and the presence of natural

disinfectants. The bodies were buried about 50 cm underground,

and the empty space within the tombs was packed with volcanic

ash. The ash inhibited the growth of decomposing bacteria and

fungi, and acted as a barrier to moisture, protecting the bodies

from external humidity while preserving internal moisture. This

atmosphere provided the conditions for the subcutaneous fat of

the bodies to transform into soap in a process called adipocere

[19,20]. Finally, a layer of packed snow rendered the tombs

airtight shortly after their closing. As a result, the bodies were

exceptionally preserved and provided more high-quality physical

evidence for their state at the time of death than comparable

finds from that period anywhere in the world.

Sampling
All three Llullaillaco mummies are preserved at Museum of

High Mountain Archaeology (MAAM) in Salta (Argentina). They

are in airtight, self-contained capsules and maintained at 220uC,

in a mix of liquid nitrogen vapor and 2% oxygen. Sampling took

place in the cold laboratory adjacent to the mummies’ repository,

at 25uC. We sampled a small, blood-soaked piece of cloth from

the boy’s cloak, against which his mouth rested. We took four

contact mouth swabs from the lips of the Maiden and the boy,

since the lips of both presented blood and saliva deposits. The

mummy of the young girl (‘‘La Niña’’) showed signs of having

been struck by lightning (fig. 1) and was not sampled. All samples

were placed dry in individual sterile and sealed vials to prevent

contamination. They were kept dry at room temperature to

avoid any oxidative or hydrolytic lesions to the DNA. The

samples were shipped and maintained dry until analyses.

Proteomic Sample Preparation and Analysis
Three samples were obtained from the mummies: 1) a 3 mm2

piece of fabric from the boy, 2) a cotton swab from the lips of the

boy, and 3) a cotton swab from the lips of the Maiden. All were

processed with the same protocol. The excised tips of the cotton

swabs and the fabric were cut off and placed in separate low-

protein binding 1.5 ml polypropylene microfuge tubes. All sample

tubes received 50 mM NH4HCO3 sufficient to cover the sample

and incubated at 23uC for 10 min followed by 10 min submersion

in a bath sonicator at 23uC. The samples were centrifuged for

5 min at 16,000 G and 23uC, and the supernatant transferred to

fresh tubes. The moist fabric and cotton were transferred to 500-ml

polypropylene tubes perforated with a 22-gauge needle hole in the

bottom. The tubes were place into the original 1.5 ml tubes and

the combined tubes centrifuged for 1 min at 16,000 G. The

passed-through buffer was combined with the removed superna-

tants. The tubes containing the supernatant and pass-through

were centrifuged at 16,000 G for 5 min and the resultant

supernatants (,100 ml) transferred to fresh tubes. The volume of

supernatants was reduced to 20 ml using a Speed-Vac, and each

tube subsequently received 20 ml of ACN. The samples were

reduced by the addition of 1 ml of 0.1 M DTT and incubated

30 min at 23uC. The samples were alkylated by the addition of

1 ml of 0.2 M iodoacetamide and incubated for 30 min at 23uC in

the dark. Each tube then received 10 ml of 5X Invitrosol followed

by 1 ml of trypsin at 1 mg/ml. The samples were incubated

overnight at 37uC. Following incubation, the samples were

centrifuged at 16,000 G for 5 min, the supernatants transferred

to fresh tubes, and the volumes reduced to 20 ml in a Speed-Vac.

Each tube received 5 ml of 0.1% TFA and sufficient volume of 2%

(v/v) acetonitrile, 0.2% formic acid to bring the total volume to

,50 ml. Each sample was divided into 3 , 15-ml aliquots. One

aliquot was subjected to immediate mass spectrometry (MS)

analysis, while the others were quick-frozen in liquid N2 and stored

at 280uC.

Fifteen ml of the peptide mixture from each residual sample was

analyzed by automated microcapillary liquid chromatography-

tandem mass spectrometry on a Thermo LTQ-Orbitrap XL mass

spectrometer. Fused-silica capillaries (100 mm i.d.) were pulled

using a P-2000 CO2 laser puller (Sutter Instruments, Novato, CA)

to a 5-mm i.d. tip and packed with 10 cm of 5-mm Magic C18

material (Agilent, Santa Clara, CA) using a pressure bomb. This

column was then placed in-line with an Eksigent 2D HPLC with

autosampler. The column was equilibrated in buffer A (2%

acetonitrile, 0.1% formic acid), and the peptide mixture was

loaded onto the column using the autosampler. The HPLC

separation at a flow rate of 300 nl/min was provided by a gradient

between Buffer A and Buffer B (98% acetonitrile, 0.1% formic

acid). The HPLC gradient was held constant at 100% buffer A for

5 min after peptide loading, followed by a 30-min gradient from

Figure 1. The children of Llullallaico. a) La Doncella (the Maiden); b) El Niño (the Boy); and c) La Niña (the Girl).
doi:10.1371/journal.pone.0041244.g001
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5% buffer B to 40% buffer B. Then, the gradient was switched

from 40% to 80% buffer B over 5 min and held constant for

3 min. Finally, the gradient was changed from 80% buffer B to

100% buffer A over 1 min, and then held constant at 100% buffer

A for 15 more minutes. The application of a 1.8-kV distal voltage

electro-sprayed the eluted peptides directly into the mass

spectrometer equipped with a custom nanoLC electrospray

ionization source. Full mass spectra (MS) were recorded on the

peptides over a 400–2000 m/z range at 60,000 resolution (at m/z

400), followed by five tandem mass (MS/MS) events sequentially

generated in a data-dependent manner on the first, second, third,

fourth and fifth most intense ions selected from the full MS

spectrum (at 35% collision energy). Mass-spectrometer scan

functions and HPLC solvent gradients were controlled by the

Xcalibur data system (ThermoFinnigan, San Jose, CA).

Tandem mass spectra were extracted from raw files with the

program RawXtract (fields.scripps.edu). The spectra were

searched against a human protein database containing 87,061

protein sequences downloaded as FASTA-formatted sequences

from EBI-IPI (database version 3.68) [21] and 54 common

contaminant proteins, for a total of 87,115 target database

sequences. To calculate confidence levels and false positive rates,

a decoy database containing the reverse sequences of 87,115

proteins appended to the target database [22] and the SEQUEST

algorithm [23] was used to find the best matching sequences from

the combined database. The peptide mass search tolerance was set

to 50 ppm. A static modification on cysteines of 57.02146 Da was

included. No enzymatic cleavage conditions were imposed on the

database search, so the search space included all candidate

peptides whose theoretical mass fell within the mass tolerance

window, despite their tryptic status. DTASelect [24] was used to

filter good peptide matches from the SEQUEST result. Table S1 a

full list of the proteins and peptides detected.

Quantitative Analyses of Proteomic Profiles
A key challenge in analyzing proteomic profiles is identifying

adequate controls to establish correspondence with a particular

response, or departure from a baseline state. This challenge is

magnified for ancient samples, as differential protein degradation

could contribute to generating profiles significantly different from

current healthy or infected samples. To determine that the

expression profile consistent with active infection was not the result

of differential protein degradation, we used the expression profile

of the boy as a control. We used the spectral counts of the cloth

sample from the boy because many more proteins were recovered

from this sample than from the boy’s mouth swab (table S2). We

did not assume the boy’s sample represented a healthy individual

because that mummy showed signs of trauma and bleeding.

However, the boy showed no signs of respiratory disease (see

below), and therefore contrasted with the Maiden in that respect.

To compare the samples we used nonparametric statistics, as

the frequency distributions of spectral counts were highly skewed

and there was no basis for computing expected spectral

frequencies (e.g., [25,26]). We divided the proteins recovered into

two categories: those involved in inflammatory and immune

response, and all others. The spectral counts for the Maiden and

the boy were then compared using the Wilcoxon Mann-Whitney

test [27], with exact computation of the null distribution of the Z

statistic and breaking observed rank ties. The test was implement-

ed in the wilcox_test routine in the coin v.1.0-20 [28] R [29]

package. If the proteomic profile of the Maiden corroborated

respiratory infection, then the spectral counts of inflammatory and

immune response proteins should be significantly elevated relative

to the sample from the boy. A similar comparison of other proteins

should not be significant.

DNA Extraction, Amplification, Sequencing and Analyses
All DNA extractions were conducted in a laboratory that

undergoes regular decontamination with UV-irradiation and

hypochlorite treatment. Each sample extraction was conducted

separately to prevent cross-contamination. All extractions were

performed in a BSL-II cabinet, which was UV-irradiated for 1

hour prior to each sample extraction. All consumables, including

pipettor tips, micro-centrifuge tubes and collection tubes as well as

the small equipment such as pipettors were UV-irradiated in a UV

crosslinker for 20 minutes at 12006100 mJ/cm2. Gloves were also

changed between every step of the extraction to prevent

contamination. Mock DNA extractions and control blank PCRs

were performed for every DNA assay in the laboratory and

screened for contamination.

Swab sample extraction protocol 1: two swab tips, one

each from the Maiden and the boy were placed in 1.2-ml micro-

centrifuge tubes, and DNA was extracted using a modified QIAmp

extraction protocol. The swab tips were lysed at 56uC for 60

minutes in 190 ml of QIAmp micro kit ATL buffer (Qiagen Inc.,

Valencia, CA). We then added 200 ml of AL buffer with 1 ml of

Carrier RNA, and incubated the solution at 95uC for 5 minutes in

a thermal mixer shaking at 900 rpm. All swab tips were then

removed from the micro-centrifuge tubes, and the solution was

purified using the QIAmp micro-columns. The samples were

eluted using PCR-grade water and stored at 4uC prior to

amplification.

Swab sample extraction protocol 2: small subsamples

(1 mm3) of the two swabs from the Maiden and the boy were

processed using the ZyGEM forensicGEM Saliva kit (ZyGEM

corp. ltd., Solana Beach, CA). The subsamples were washed with

DNA-free water, following the forensicGEM saliva kit protocol.

The eluates were then transferred to a 0.2 mL PCR clean tube

with 10 ml of 10x ZyGEM buffer, 69 ml of DNA-free water and

1 ml of forensicGEM gold buffer. The solution was incubated at

75uC for 15 minutes, then at 95uC for 5 minutes. The samples

were then ready for amplification.

A reading of the final DNA concentration for all samples using

the Thermo Scientific NanoDrop 1000 spectrophotometer

(Thermo Fisher Scientific, ltd., Waltham, MA) was performed to

ensure sufficient DNA yield prior amplification.

We used 4 different sets of primers in PCR amplifications from

all swab samples, targeting the 16S rRNA, MTP40 and hsp65

genes of Mycobacterium sp., Mycobacterium avium and Mycobacterium

tuberculosis (see table 1) [30,31]. Amplifications were carried out in

25-ml volumes using the PuReTaq Ready-To-Go PCR Beads (GE

Healthcare Life Sciences, Pittsburgh, PA). A 5-ml sample of the

DNA eluates were added to a solution containing 18 ml of water,

1 ml of each primer and the PuReTaq bead. Three ml of each PCR

was stained with ethidium bromide, electrophoresed in 2%

agarose for 40 minutes at 20 v/cm, and visualized under UV-

light. None of the negative controls amplified (figs. 2–3). All PCR-

products were then purified using ExoSap-IT (Affymetrix Inc.,

Santa Clara, CA). Out of 16 PCR reactions for the Maiden, 8

were positive (see fig. 2). Out of 7 PCR reactions for the boy, all

were negative (see fig. 3). All products were sequenced using the

ABI prism BigDye Terminator Cycle Sequencing kit (Applied

Biosystems, Carlsbad, CA) and analyzed on an ABI 377A

automated sequencer. Of the 8 positive PCR reactions, 2 were

successfully sequenced (PCR samples 6 and 11; see fig. 2). Sample

6 and 11, both from the Maiden, were amplified and successfully

sequenced from two of the ZyGEM-extracted buccal samples.

Pathogen Detection Using Proteomics
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Sample 11 yielded a 275-bp Mycobacterium sp. 65-kDa heat-shock

protein gene sequence, and sample 6 yielded a 440-bp

Bifidobacterium sp. 65-kDa heat-shock protein gene sequence.

We identified these sequences using a phylogenetic approach.

After initial queries to GenBank matched accessions in the phylum

Actinobacteria only, the bidirectional consensus of each of the two

fragments was matched against the NCBI reference genomes of

Actinobacteria (http://www.ncbi.nlm.nih.gov/sutils/

genom_table.cgi) using BLAST [32]. The sequences significantly

matched accessions in each case (e-value #5e-140 for a 440-bp

sequence, and e-value #3e-81 for a 276-bp sequence). DNA

sequences corresponding to the 65-kDa heat-shock protein genes

from the top 50 hits were downloaded and aligned using the linsi

algorithm with 1000 iterations in mafft v6.710b [33,34]. The

inclusion of both sets of 50 top hits resulted in an alignment of 74

sequences across 1,759 nucleotides, including the two fragments

amplified. This alignment was analyzed using the high-perfor-

mance computing maximum likelihood algorithm on RAxML

v7.0.4 [35,36], and applying a general time reversible model of

nucleotide evolution [37] with a discrete approximation to the

shape of a continuous gamma distribution for variable rates of

change across the alignment [38]. The full alignment was

resampled 1000 times to generate bootstrap branch support

values [39]. Many accessions were found to be identical, so the

unique-sequence subset of 63 taxa was resampled 100 times to

generate the phylogeny used in comparisons (fig. 4).

To investigate the probability of misidentifying the sequences,

we compared the likelihood of alternative phylogenies by

examining Bayesian posterior probabilities (BPP) and using the

approximately unbiased and the weighted Shimodaira-Hasegawa

tests [40]. The BPP and significance of tests of alternative

phylogenies were calculated by resampling site log-likelihoods in

consel v1.19 [41]. Site log-likelihoods for alternative phylogenies

were obtained using the baseml algorithm in paml v4.3 [42]. The

phylogenies compared are summarized in fig. 5, and comprise

alternative placements of the sequences obtained to rule out cross-

contamination (sequences group with each other), or to locate the

sequences more precisely in the phylogeny. The complete results

of log-likelihood comparisons are shown in table 2.

Results

Computed tomography (CT) scanning and radiological exam-

inations of the Maiden revealed that all her organs, including the

eyes and the brain, were intact [17]. Both radiological and visual

examination revealed pathologies consistent with a range of

infectious diseases: 1) a radiolucent area in the upper lobe of the

right lung, 2) a mucosal enlargement of the left maxillary sinus

consistent with sinusitis, 3) a zoster-like lesion on the right calf, and

Table 1. Primers used for PCR amplification from DNA extracted from swab samples.

Name Primer sequence Prod. Size (bp) Organism Region References

PANMYCF TGGATCCGACGAAGTCGTAACAAGG 270–400 Genus-wide Mycobacterium 16S rRNA 31

PANMYCR TGGATAGTGGTTGCGAGCAT 270–401 Genus-wide Mycobacterium 16S rRNA 31

MACF CCCTGAGACAACACTCGGTC 144 Mycobacterium avium–
specific

16S rRNA 31

MACR GTTCATCGAAATGTGTAATT 144 Mycobacterium avium–
specific

16S rRNA 31

Tb-A CTCGTCCAGCGCCGCTTCGG 123 Mycobacterium tuberculosis

specific
MTP40 30

Tb-B CCTGCGAGCGTAGGCGTCGG 123 Mycobacterium tuberculosis

specific
MTP41 30

Tb 11 ACCAACGATGGTGTGTCCAT 441 Genus-wide Mycobacterium Heat-shock
protein 65
(hsp65)

30

Tb 12 CTTGTCGAACCGCATACCCT 441 Genus-wide Mycobacterium Heat-shock
protein 65
(hsp65)

30

doi:10.1371/journal.pone.0041244.t001

Figure 2. Gel electrophoresis from the Maiden. Gel electrophoresis (2%) showing the amplification of the Mycobacterium sp. hsp65 gene
fragments in the Maiden’s buccal swab samples 6 and 11, both sequenced successfully. The image was inverted to facilitate detection of bands and
no other image treatment was performed. Sample 16 did not produce a satisfactory sequence. Samples 3 and 4 were positive for primers described
as specific to Mycobacterium avium, but did not produce satisfactory sequences. Sample 1 and 7 were positive for primers described as specific to
Mycobacterium tuberculosis, but did not produce satisfactory sequences. The negative controls are in lanes 17, 18, 19 and 20. Ladders are 100-bp
Fisher exACTgene.
doi:10.1371/journal.pone.0041244.g002

Pathogen Detection Using Proteomics
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4) streaks of mucus under both nostrils [20]. Similar exams on the

boy revealed no lesions, and no mucosal enlargement or other

signs of upper respiratory infection. To identify the proteins on the

lips of both mummies, and assess the presence of pathogens we

collected mouth swabs. Proteomics analyses of the mouth swabs

based on high-resolution mass spectrometry revealed the presence

of proteins expected in nasal secretions: serum proteins (i.e.

albumin, hemoglobin and serotransferrin) in both mummies. The

nasal mucus protein (PLUNC) level was three times higher in the

Maiden’s sample than in the boy’s.

In addition to serum proteins, we found several proteins that are

not normally present in blood or saliva, but are consistent with

host immune response to infectious disease in the Maiden’s sample

(see table 3). Cathepsin G is a specialized neutrophilic polymor-

phonuclear leukocyte serine protease found in the azurophil

granules and its function has been linked to pathogenesis of

diseases associated with inflammation and neutrophil infiltration of

the airways, such as bacterial COPD (Chronic Obstructive

Pulmonary Disease) [43,44,45,46,47,48]. Cathepsin G and neu-

trophil elastase have also been found in neutrophil extracellular

traps (NETs) that degrade virulence factors and kill bacteria [49].

A marker of chronic lung inflammatory diseases, a-1 antitrypsin, is

a strong indicator of mycobacterial infection [50,51,52,53]. It

protects tissues against inflammatory, cytotoxic proteases, such as

those from neutrophils. Neutrophil defensin 1 and 3 are part of the

defensin family of cysteine-rich cationic proteins found in

leukocytes and are specifically associated with macrophages

involved in lung tissue inflammation response [54].

The proteomic analysis of the Maiden sample also uncovered

two groups of proteins consistent with severe inflammation of the

lungs. The first group of proteins included S100 A8/A9,

apolipoprotein A1 and A2, and transthyretin. The second group

of proteins included vitamin-D-binding protein (VDB), serine

protease inhibitor (SERPIN) and transthyretin (TTR). The first

proteins are commonly expressed in chronic and acute lung

inflammations, and have been used as monitoring biomarkers for

pulmonary related diseases [55,56]. The second group of proteins

is also involved in acute lung inflammation, specifically in

mycobacterial infections [57]. The presence of the full comple-

ment of these proteins in the mouth swab of the Maiden provided

strong evidence of response to a severe respiratory bacterial

infection. The external visible symptoms and the gamut of

immune response proteins obtained from the mouth swab

supported the hypothesis of pulmonary infection caused by

Mycobacterium.

The boy did not show signs of upper respiratory or pulmonary

infections based on CT-scans and radiology analyses, despite the

presence of blood in the mouth swab and cloth samples. For

these reasons, we inferred that the boy did not have a respiratory

infection, and the presence of blood was the result of trauma.

Proteomic analysis of the boy’s mouth swab revealed that his a-1

antitrypsin levels were high, and neutrophil defensin levels were

low. These results supported the inference that the boy was not

suffering from a lung infection (see table S2). The comparison of

the spectral counts in the inflammatory/immune category was

highly significant (Z=23.16, P-value = 0.0003), while the com-

parison for all other proteins was not significant (Z=0.3602, P-

value = 0.7206). Inflammatory and immune response proteins

were elevated in the Maiden (median spectral count = 44.00

sd = 27.03) relative to the boy (median spectral count = 0.00

sd = 2.14). Levels of all other proteins detected in the samples

were similar (median spectral count of Maiden= 7.00

sd = 273.33; for the boy = 10.50 sd = 274.16).

To determine the etiology of the disease, we amplified the heat-

shock protein (hsp65) gene using Mycobacteria-specific primers

[30,58] and DNA extracted from the mouth swab taken from

lips of the Maiden. The PCR assay followed by direct sequencing

of PCR products confirmed the presence ofMycobacterium sp. in one

of the mouth swab samples, as well as the presence of non-

pathogenic Bifidobacterium sp. (fig. 2). The presence of Bifidobacterium

sp. on the lips of the Maiden cannot be a result of fluid deposition

during decomposition, since the bodies of the children of

Llullaillaco did not decompose. We interpreted the detection of

Bifidobacterium sp. as an indication of vomit shortly prior to her

death, rather than as a result of postmortem contamination.

The position of the recovered sequence at the base of the

Mycobacterium genus could be caused by the large amounts of

missing data in the sequence (84%) relative to the genomic

sequences (alignment was 1,759-bp long). Based on the best

phylogeny (fig. 4), we compared alternative trees seeking to further

refine the placement of our sequence (fig. 5). These comparisons

ruled out cross-contamination of the Mycobacterium sp. sequence

with DNA from non-pathogenic Bifidobacterium sp. (P#0.002), as

well as the sequence corresponding to the non-pathogenic

Mycobacterium smegmatis complex (Bayesian posterior probability

[BPP] = 0.008, more conservative approximately unbiased [AU]

and weighted Shimodaira-Hasegawa [WSH] tests P$0.117), but

could not rule out the recovered sequence belonging to the

pathogenic Mycobacterium avium-bovis-tuberculosis complex

(BPP= 0.230, AU and WSH P$0.475). The phylogenetic analyses

indicate a higher probability for the hypothesis that the sequence

corresponded to the pathogenicMycobacterium avium-bovis-tuberculosis

than to the non-pathogenic Mycobacterium clade (fig. 5D).

Discussion

Ancient Andean people suffered from mycobacterial infections,

as demonstrated by the presence of these pathogens in several

Inca mummies preserved at the American Museum of Natural

History [30]. However, mycobacteria such as Mycobacterium

tuberculosis have the ability to persist for long periods of time

without causing infection [59,60]. Therefore, detecting the

presence of the pathogen does not always indicate an active

infection. In this study, we provide direct evidence of active anti-

bacterial immune response at the time of death in a 500-year-old

Figure 3. Gel electrophoresis from the boy. Gel electrophoresis
(2%) showing the products of PCR amplification from samples from the
boy. The results were negative: no amplification bands could be
detected. The image was inverted, and contrast was increased to
facilitate detection of bands. No other image treatment was performed.
Lanes 1 and 2 were amplified with M. tuberculosis-specific primers, lanes
3 and 4 with the Mycobacterium-specific primers, and lanes 5, 6 and 7
were negative controls.
doi:10.1371/journal.pone.0041244.g003

Pathogen Detection Using Proteomics

PLoS ONE | www.plosone.org 5 July 2012 | Volume 7 | Issue 7 | e41244



mummy. This response was significantly different from that of a

putatively healthy individual preserved for the same period of

time and under similar conditions. Initial radiological examina-

tion of the Maiden’s lungs showed pathological features such as

over-inflation and trapped air in some areas [20], which are

commonly documented in CT scans of patients affected by

mycobacterial infections, and specifically the Mycobacterium avium

and tuberculosis complexes [61].

The use of shotgun proteomics to detect protein remnants from

ancient body fluids has many potential applications in historical

and criminal sciences. We focused on samples from swabs from an

archaeological specimen, but potential forensic applications

include characterizing the physiological state of the source of

blood in criminal cases. This technique offers a way of ascertaining

whether or not an individual was sick as a result of an infection by

a specific pathogen, rather than just carrying it in a latent form.

Forensic proteomics offers a sensitive but less contamination-prone

alternative to PCR amplification when dealing with ancient or

partially degraded biological samples [4,11,62,63]. Until now,

immunoassays had been the only way to detect active immune

response and infer infection in historical samples, but these were

plagued by low specificity and sensitivity. Shotgun proteomics can

play a critical role in pathological determination of the cause of

disease or death in archeological, medical, and criminal cases.

Figure 4. Maximum likelihood phylogeny. Maximum likelihood phylogeny and bootstrap support values based on 1000 pseudoreplicates of the
alignment of hsp65 gene nucleotide sequences. Sequences generated from the Maiden’s swab samples are shown in bold, larger font, and marked
with an asterisk.
doi:10.1371/journal.pone.0041244.g004
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Figure 5. Alternative phylogenies compared to the best phylogeny. Alternative phylogenies compared to the best phylogeny obtained
through maximum likelihood analyses of DNA sequence data from the Maiden’s swab samples (fig. 4) using Bayesian posterior probabilities,
approximately unbiased, and weighted Shimodaira-Hasegawa tests. See table 2 for description of each alternative and test results.
doi:10.1371/journal.pone.0041244.g005

Table 2. Maximum likelihood, Bayesian posterior probability (BPP), and significance of alternative phylogenies (for numbering, see
fig. 5) using the approximately unbiased (AU) and weighted Shimodaira-Hasegawa (WSH) tests.

Phylogeny Description Maximum likelihood BPP AU WSH

Fig. 4 Best phylogeny 233513.8 0.762 0.652 0.982

Fig. 5A Both sequences at base of Bifidobacterium 233568.1 2E-24 0.001 0.002

Fig. 5B Both sequences at base of Mycobacterium 233560.2 6E-21 3E-04 0.001

Fig. 5C Mycobacterium sp. sequence part of smegmatis complex 233518.3 0.008 0.117 0.574

Fig. 5D Mycobacterium sp. sequence part of avium-bovis-tuberculosis complex 233515.0 0.230 0.475 0.907

Random 247198.4 0.000 3E-78 0.000

doi:10.1371/journal.pone.0041244.t002
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Supporting Information

Table S1 Complete list of proteins in the Maiden lip swab

identified by mass spectrometry. Listed are the proteins with their

respective accession number (the number in parenthesis indicates

that the peptides found in the proteins are also located in other

proteins). Numbers in the last two columns indicate the number of

unique peptides, the number of spectra observed and the sequence

coverage for that particular protein.

(DOCX)

Table S2 Comparative list of proteins list for the cloth and swab

samples of the boy and the swab sample of the Maiden. Proteins

are listed with accession number and description. Numbers in

parentheses indicates that the peptides found in the proteins are

also located in additional proteins. Numbers in the last two

columns indicate the number of spectra observed in each sample.

Proteins in bold are associated with respiratory inflammation/

immune response as described in the text.

(DOCX)
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