A Source Transformation via Operator Overloading Method for the
Automatic Differentiation of Mathematical Functions in MATLAB

Matthew J. Weinstein!
Anil V. Rao?

University of Florida
Gainesville, FL 32611

A source transformation via operator overloading method is presented for computing derivatives of math-
ematical functions defined by MATLAB computer programs. The transformed derivative code that results
from the method of this paper computes a sparse representation of the derivative of the function defined in
the original code. As in all source transformation automatic differentiation techniques, an important feature
of the method is that any flow control in the original function code is preserved in the derivative code.
Furthermore, the resulting derivative code relies solely upon the native MATLAB library. The method is
useful in applications where it is required to repeatedly evaluate the derivative of the original function. The
approach is demonstrated on several examples and is found to be highly efficient when compared with well
known MATLAB automatic differentiation programs.

Categories and Subject Descriptors: G.1.4 [Numerical Analysis]: Automatic Differentiation
General Terms: Automatic Differentiation, Numerical Methods, MATLAB.
Additional Key Words and Phrases: Scientific Computation, Applied Mathematics.

ACM Reference Format:

Weinstein, M. J. and Rao, A. V. 2014. A Combined Source Transformation and Operator Overloaded Method
for Generating Derivative Programs of Mathematical Functions in MATLAB. ACM Trans. Math. Soft. V, N,
Article A (January YYYY), 46 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Automatic differentiation, or as it has more recently been termed, algorithmic differ-
entiation, (AD) is the process of determining accurate derivatives of a function defined
by computer programs [Griewank 2008] using the rules of differential calculus. The
objective of AD is to employ the rules of differential calculus in an algorithmic manner
in order to efficiently obtain a derivative that is accurate to machine precision. AD
exploits the fact that a computer program that contains an implementation of a math-
ematical function y = f(x) can be decomposed into a sequence of elementary function

The authors gratefully acknowledge support for this research from the U.S. Office of Naval Research (ONR)
under Grant N00014-11-1-0068 and from the U.S. Defense Advanced Research Projects Agency (DARPA)
Under Contract HR0011-12-0011. Disclaimer: The views expressed are those of the authors and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

Author’s addresses: M. J. Weinstein and A. V. Rao, Department of Mechanical and Aerospace Engineering,
P.O. Box 116250, University of Florida, Gainesville, FL. 32611-6250; e-mail: {mweinstein,anilvrao}@ufl.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

©YYYY ACM 1539-9087/YYYY/01-ARTA $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 M. J. Weinstein, and A. V. Rao

operations. The derivative is then obtained by applying the standard differentiation
rules (e.g., product, quotient, and chain rules).

The most well known methods for automatic differentiation are forward and reverse
mode. In either forward or reverse mode, each link in the calculus chain rule is im-
plemented until the derivative of the dependent output(s) with respect to the indepen-
dent input(s) is encountered. The fundamental difference between forward and reverse
modes is the direction in which the derivative calculations are performed. In the for-
ward mode, the derivative calculations are performed from the dependent input vari-
ables of differentiation to the output independent variables of the program, while in
reverse mode the derivative calculations are performed from the independent output
variables of the program back to the dependent input variables.

Forward and reverse mode automatic differentiation methods are classically imple-
mented using either operator overloading or source transformation. In an operator-
overloaded approach, a custom class is constructed and all standard arithmetic op-
erations and mathematical functions are defined to operate on objects of the class.
Any object of the custom class typically contains properties that include the function
value and derivatives of the object at a particular numerical value of the input. Fur-
thermore, when any operation is performed on an object of the class, both function and
derivative calculations are executed from within the overloaded operation. Well known
implementations of forward and reverse mode AD that utilize operator overloading in-
clude MXYZPTLK [Michelotti 1991], ADOL-C [Griewank et al. 1996], COSY INFIN-
ITY [Berz et al. 1996], ADOL-F [Shiriaev and Griewank 1996], FADBAD [Bendtsen
and Stauning 1996], IMAS [Rhodin 1997], ADOI [Pryce and Reid 19981, ADMIT-1
[Coleman and Verma 1998b]l, ADMAT [Coleman and Verma 1998a], INTLAB [Rump
1999], FAD [Aubert et al. 2001], MAD [Forth 2006], and CADA [Patterson et al. 2013]

In a source transformation approach, a function source code is transformed into a
derivative source code, where, when evaluated, the derivative source code computes a
desired derivative. An AD tool based on source transformation may be thought of as an
AD preprocessor, consisting of both a compiler and a library of differentiation rules. As
with any preprocessor, source transformation is achieved via four fundamental steps:
parsing of the original source code, transformation of the program, optimization of
the new program, and the printing of the optimized program. In the parsing phase,
the original source code is read and transformed into a set of data structures which
define the procedures and variable dependencies of the code. This information may
then be used to determine which operations require a derivative computation, and the
specific derivative computation may be found by means of the mentioned library. In
doing so, the data representing the original program is augmented to include informa-
tion on new derivative variables and the procedures required to compute them. This
transformed information then represents a new derivative program, which, after an
optimization phase, may be printed to a new derivative source code. While the imple-
mentation of a source transformation AD tool is much more complex than that of an
operator overloaded tool, it usually leads to faster run-time speeds. Moreover, due to
the fact that a source transformation tool produces source code, it may, in theory, be ap-
plied recursively to produce n'"-order derivative files, though Hessian symmetry may
not be exploited. Well known implementations of forward and reverse mode AD that
utilize source transformation include DAFOR [Berz 1987], GRESS [Horwedel 1991],
PADRE?2 [Kubota 1991], Odysée [Rostaing-Schmidt 1993], TAF [Giering and Kamin-
ski 1996], ADIFOR [Bischof et al. 1992; Bischof et al. 1996], PCOMP [Dobmann et al.
1995], ADiMat [Bischof et al. 2002], TAPENADE [Hascoét and Pascual 2004], ELIAD
[Tadjouddine et al. 2003] and MSAD [Kharche and Forth 2006].

In recent years, MATLAB [Mathworks 2010] has become extremely popular as a
platform for developing automatic differentiation tools. ADMAT/ADMIT [Coleman and

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:3

Verma 1998a; 1998b] was the first automatic differentiation program written in MAT-
LAB. The ADMAT /ADMIT package utilizes operator overloading to implement both
the forward and reverse modes to compute either sparse or dense Jacobians and Hes-
sians. The next operator overloading approach was developed as a part of the INTLAB
toolbox [Rump 1999], which implements the sparse forward mode to compute first and
second derivatives. More recently, the package MAD [Forth 2006] has been developed.
While MAD also employs operator overloading, unlike previously developed MATLAB
AD tools, MAD utlizes the derivvec class to store directional derivatives within in-
stances of the fmad class. In addition to operator overloaded methods that evaluate
derivatives at a numeric value of the input argument, the hybrid source transfoma-
tion and operator overloaded package ADiMat [Bischof et al. 2003] has been devel-
oped. ADiMat employs source transformation to create a derivative source code. The
derivative code may then be evaluated in a few different ways. If only a single di-
rectional derivative is desired, then the generated derivative code may be evaluated
independently on numeric inputs in order to compute the derivative; this is referred
to as the scalar mode. Thus, a Jacobian may be computed by a process known as strip
mining, where each column of the Jacobian matrix is computed separately. In order to
compute the entire Jacobian in a single evaluation of the derivative file, it is required
to use either an overloaded derivative class or a collection of ADiMat specific run-
time functions. Here it is noted that the derivative code used for both the scalar and
overloaded modes is the same, but the generated code required to evaluate the entire
Jacobian without overloading is slightly different as it requires that different ADiMat
function calls be printed. The most recent MATLAB source transformation AD tool to
be developed is MSAD, which was designed to test the benefits of using source trans-
formation together with MAD’s efficient data structures. The first implementation of
MSAD [Kharche and Forth 2006] was similar to the overloaded mode of ADiMat in
that it utilized source transformation to generate derivative source code which could
then be evaluated using the derivvec class developed for MAD. The current version of
MSAD [Kharche 2012], however, does not depend upon operator overloading but still
maintains the efficiencies of the derivvec class.

While the interpreted nature of MATLAB makes programming intuitive and easy,
it also makes source transformation AD quite difficult. For example, the operation ¢ =
axb takes on different meanings depending upon whether a or b is a scalar, vector, or
matrix, and the differentiation rule is different in each case. ADiMat deals with such
ambiguities differently depending upon which ADiMat specific run-time environment
is being used. In both the scalar and overloaded modes, a derivative rule along the lines
of dc = da*b + a*db is produced. Then, if evaluating in the scalar mode, da and db are
numeric arrays of the same dimensions as a and b, respectively, and the expression
dc = da*b + a*db may be evaluated verbatim. In the overloaded vector mode, da and
db are overloaded objects, thus allowing the overloaded version of mtimes to determine
the meaning of the * operator. In its non-overloaded vector mode, ADiMat instead
produces a derivative rule along the lines of dc = adimat_mtimes(da,a,db,b), where
adimat_mtimes is a run-time function which distinguishes the proper derivative rule.
Different from the vector modes of AdiMat, the most recent implementation of MSAD
does not rely on an overloaded class or a separate run-time function to determine
the meaning the * operator. Instead, MSAD utilizes shape and size propagation rules
to attempt to determine the dimensions of a and b. In the event that the dimensions
cannot be determined, MSAD places conditional statements on the dimensions of a and
b directly within the derivative code, where each branch of the conditional statement
contains the proper differentiation rule given the dimension information.

In this research a new method is described for automatic differentiation in MAT-
LAB. The method performs source transformation via operator overloading and source

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A4 M. J. Weinstein, and A. V. Rao

reading techniques such that the resulting derivative source code can be evaluated us-
ing commands from only the native MATLAB library. The approach developed in this
paper utilizes the recently developed operator overloaded method described in Patter-
son et al. [2013]. Different from traditional operator overloading in MATLAB where
the derivative is obtained at a particular numeric value of the input, the method of
Patterson et al. [2013] uses the forward mode of automatic differentiation to print to a
file a derivative function, which, when evaluated, computes a sparse representation of
the derivative of the original function. Thus, by evaluating a function program on the
overloaded class, a reusable derivative program that depends solely upon the native
MATLAB library is created. Different from a traditional source transformation tool,
the method of [Patterson et al. 2013] requires that all object sizes be known, thus such
ambiguities as the meaning of the * operator are eliminated as the sizes of all variables
are known at the time of code generation. This approach was shown to be particularly
appealing for problems where the same user program is to be differentiated at a set
of different numeric inputs, where the overhead associated with the initial overloaded
evaluation becomes less significant with each required numerical evaluation of the
derivative program.

The method of Patterson et al. [2013] is limited in that it cannot transform MATLAB
function programs that contain flow control (that is, conditional, or iterative state-
ments) into derivative programs containing the same flow control statements. Indeed,
a key issue that arises in any source code generation technique is the ability to handle
flow control statements that may be present in the originating program. In a typical
operator overloaded approach, flow is dealt with during execution of the program on
the particular instance of the class. That is, because any typical overloaded objects
contain numeric function information, any flow control statements are evaluated in
the same manner as if the input argument had been numeric. In a typical forward
mode source transformation approach, flow control statements are simply copied over
from the original program to the derivative program. In the method of Patterson et al.
[2013], however, the differentiation routine has no knowledge of flow control nor is any
numeric function information known at the time the overloaded operations are per-
formed. Thus, a function code that contains conditional statements that depend upon
the numeric values of the input cannot be evaluated on instances of the class. Fur-
thermore, if an iterative statement exists in the original program, all iterations will
be evaluated on overloaded objects and separate calculations corresponding to each
iteration will be printed to the derivative file.

In this paper a new approach for generating derivative source code in MATLAB is
described. The approach of this paper combines the previously developed overloaded
cada class of Patterson et al. [2013] with source-to-source transformation in such a
manner that any flow control in the original MATLAB source code is preserved in the
derivative code. Two key aspects of the method are developed in order to allow for
differentiation of programs that contain flow control. First, because the method of Pat-
terson et al. [2013] is not cognizant of any flow control statements which may exist in
a function program, it is neither possible to evaluate conditional statements nor is it
possible to differentiate the iterations of a loop without unrolling the loop and printing
each iteration of the loop to the resulting derivative file. In this paper, however, an
intermediate source program is created where flow control statements are replaced by
transformation routines. These transformation routines act as a pseudo-overloading of
the flow control statements which they replace, thus enabling evaluation of the inter-
mediate source program on instances of the cada class, where the control of the flow of
the program is given to the transformation routines. Second, due to the sparse nature
of the cada class, the result of any overloaded operation is limited to a single derivative
sparsity pattern, where different sparsity patterns may arise depending upon condi-

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A5

tional branches or loop iterations. This second issue is similar to the issues experienced
when applying the vertex elimination tool ELIAD to Fortran programs containing con-
ditional branches. The solution using ELIAD was to determine the union of derivative
sparsity patterns across each conditional branch [Tadjouddine et al. 2003]. Similarly,
in this paper, an overloaded union operator is developed which is used to determine the
union of the derivative sparsity patterns that are generated by all possible conditional
branches and/or loop iterations in the original source code, thus making it possible to
print derivative calculations that are valid for all possible branches/loop iterations.

This paper is organized as follows. In Section 2 the notation and conventions used
throughout the paper are described. In Section 3 brief reviews are provided of the
previously developed CADA differentiation method and cada class. In Section 4 the
concepts of overloaded unions and overmapped objects are described. In Section 5 a de-
tailed explanation is provided of the method used to perform user source to derivative
source transformation of user functions via the cada class. In Section 6 four examples
are given to demonstrate the capabilities of the proposed method and to compare the
method against other well known MATLAB AD tools. In Section 7 a discussion is given
of the results obtained in Section 6. Finally, in Section 8 conclusions on our work are
given.

2. NOTATION AND CONVENTIONS

In this paper we employ the following notation. First, without loss of generality, con-
sider a vector function of a vector f(x) where f : R* — R™, where a vector is denoted
by a lower-case bold letter. Thus, if x € R”, then x and f(x) are column vectors with
the following forms, respectively:

€

)
x=| . e R", (@h)]

Ty
Consequently, f(x) has the form

f1(x)
£(x) = PO g @)

fm (%)
where z;, (i =1,...,n) and f;(x), (j = 1,...,m) are, respectively, the elements of x

and f(x). The Jacobian of the vector function f(x), denoted Jf(x), is then an m x n
matrix

dx1 Ox2 oz,
Ofs Ofx .. . Of
0, Ox: Oy,
JE(x) = | P Pe2 T Bon | gmxa 3)
0fi Ofm ... Ofm
0x,, Oxo Oxy

Assuming the Jacobian Jf(x) contains N,,. non-zero elements, we denote if ¢ Zf’“,

it e Zf"z, to be the row and column locations of the non-zero elements of Jf(x). Fur-
thermore, we denote df € R+ to be the non-zero elements of Jf(x) such that

~ OJug)

df (k) =
<) 05 (k)

(k=1...Ny.), (4)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 M. J. Weinstein, and A. V. Rao

where df (k), if (k), and j£(k) refer to the k' elements of the vectors df, if, and jf,
respectively.

Because the method described in this paper performs both the analysis and over-
loaded evaluation of source code, it is necessary to develop conventions and nota-
tion for these processes. First, MATLAB variables will be denoted using typewriter
text (for example, y). Next, when referring to a MATLAB source code fragment, an
upper-case non-bold face text will be used (for example, A), where a subscript may
be added in order to distinguish between multiple similar code fragments (for exam-
ple, A;, A; ;). Then, given a MATLAB source code fragment A of a program P, the
fragments of code that are evaluated before and after the evaluation of A are de-
noted Pred(A) and Succ(A), respectively, where Pred(A), A, and Succ(A) are mu-
tually disjoint sets such that Pred (A)NA = AN Succ (A) = Pred (A)NSuce (A) = () and
Pred (A)U AU Succ (A) = P. Next, any overloaded object will be denoted using a calli-
graphic character (for example,))). Furthermore, an overloaded object that is assigned
to a variable is referred to as an assignment object, while an overloaded object that
results from an overloaded operation but is not assigned to a variable is referred to
as an intermediate object. It is noted that an intermediate object is not necessarily the
same as an intermediate variable as defined in Griewank [2008]. Instead, intermedi-
ate objects as defined in this paper are the equivalent of statement-level intermediate
variables. To clarify, consider the evaluation of the line of MATLAB code y = sin(x) +
x evaluated on the overloaded object X. This evaluation will first result in the creation
of the intermediate object ¥V = sin(X’) followed by the assignment object Y = V + X,
where) is then assigned to the variable y.

3. REVIEW OF THE CADA DIFFERENTIATION METHOD

Patterson et al. [2013] describes a forward mode operator overloading method for
transforming a mathematical MATLAB program into a new MATLAB program, which,
when evaluated, computes the non-zero derivatives of the original program. The
method of Patterson et al. [2013] relies upon a MATLAB class called cada. Unlike
conventional operator overloading methods that operate on numerical values of the
input argument, the CADA differentiation method does not store numeric function
and derivative values. Instead, instances of the cada class store only the size of the
function, non-zero derivative locations, and symbolic identifiers. When an overloaded
operation is called on an instance of the cada class, the proper function and non-zero
derivative calculations are printed to a file. It is noted that the method of Patterson
et al. [2013] was developed for MATLAB functions that contain no flow control state-
ments and whose derivative sparsity pattern is fixed (that is, the nonzero elements of
the Jacobian of the function are the same on each call to the function). In other words,
given a MATLAB program containing only a single basic block and with fixed input
sizes and derivative sparsity patterns, the method of Patterson et al. [2013] can gener-
ate a MATLAB code that contains the statements that compute the non-zero derivative
of the original function. In this section we provide a brief description of a slightly mod-
ified version of the cada class and the method used by overloaded operations to print
derivative calculations to a file.

3.1. The cada Class

During the evaluation of a user program on cada objects, a derivative file is simultane-
ously being generated by storing only sizes, symbolic identifiers, and sparsity patterns
within the objects themselves and writing the computational steps required to com-
pute derivatives to a file. Without loss of generality, we consider an overloaded object
Y, where it is assumed that there is a single independent variable of differentiation,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A7

x. The properties of such an object are given in Table I. Assuming that the overloaded
object) has been created, then the proper calculations will have been printed to a file
to compute both the value of y and the non-zero derivatives d¥ (if any) of the Jacobian
Jy(x). In this paper we refer to the printed variable which is assigned the value of y
as a function variable and the printed variable which is assigned the value of d¥ as
a derivative variable. We also make the distinction between strictly symbolic and not
strictly symbolic function variables, where, if a function variable is strictly symbolic, at
least one element of the function variable is unknown at the time of code generation.
Thus, a function variable which is not strictly symbolic is considered to be a constant
with no associated derivative (where constants are propagated within overloaded oper-
ations and calculations are still printed to file). Furthermore, it is noted that the value
assigned to any derivative variable may be mapped into a two-dimensional Jacobian
using the row and column indices stored in the deriv.nzlocs field of the corresponding
overloaded object.

Table I: Properties of an Overloaded Object). Each overloaded object has the fields id,
func and deriv. The func field contains information of the function variable which is
assigned the value of y in the generated program, and the deriv field contains infor-
mation on the derivative variable which is assigned the value of d¥ in the generated
program (where x is the independent variable of differentiation).

id unique integer value that identifies the object

func | structure containing the following information on the function
variable associated with this object:

name string representation of function variable

size 1 x 2 array containing the dimensions of y
zerolocs | N, x 1 array containing the linear index of any
known zero locations of y, where N, is the number
of known zero elements - this field is only used if
the function variable is strictly symbolic.

value if the function variable is not strictly symbolic,
then this field contains the values of each element
ofy

deriv | structure array containing the following information on the
derivative variable associated with this object:

name string representation of what the derivative vari-
able is called
nzlocs N,.. X 2 array containing the row and column in-

dices, i¥ € Zf"z and j¥ € Zf"z, of any possible
non-zero entries of the Jacobian Jy(x)

3.2. Example of the CADA Differentiation Method

The cada class utilizes forward-mode algorithmic differentiation to propagate deriva-
tive sparsity patterns while performing overloaded evaluations on a section of user
written code. All standard unary mathematical functions (for example, polynomial,
trigonometric, exponential, etc.), binary mathematical functions (for example, plus,
minus, times, etc.), and organizational functions (for example, reference, assignment,
concatenation, transpose, etc.) are overloaded. These overloaded functions result in the
appropriate function and non-zero derivative calculations being printed to a file while
simultaneously determining the associated sparsity pattern of the derivative function.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 M. J. Weinstein, and A. V. Rao

In this section the CADA differentiation method is explained by considering a MAT-
LAB function such that x € R" is the input and is the variable of differentiation. Let
v(x) € R™ contain N,,, < m X n non-zero elements in the Jacobian, Jv(x), and let
iy € R¥» and j¥ € R"»: be the row and column indices, respectively, correspond-
ing to the non-zero elements of Jv(x). Furthermore, let dY € R¥»= be a vector of the
non-zero elements of Jv(x). Assuming no zero function locations are known in v, the
cada instance, V, would posses the following relevant properties: (i) func.name=’v.f’;
(ii) func.size=[m 1]; (iii) deriv.name=’v.dx’; and (iv) deriv.nzlocs=[i} jY]. It is as-
sumed that, since the object V has been created, the function variable, v.£f, and the
derivative variable, v.dx, have been printed to a file in such a manner that, upon eval-
uation, v.f and v.dx will be assigned the numeric values of v and dY, respectively.
Suppose now that the unary array operation g : R™ — R™ (for example, sin, sqrt, etc.)
is encountered during the evaluation of the MATLAB function code. If we consider the
function w = g(v(x)), it can easily be seen that Jw(x) and Jv(x) will contain possible
non-zero elements in the same locations. Additionally, the non-zero derivative values
d¥ may be calculated as

¥ (k) = g' (Vg oy))dx(k), (K =1... Npz), (5)

where ¢'(-) is the derivative of g(-) with respect to the argument of the function g. In
the file that is being created, the derivative variable, w.dx, would be written as follows.
Assume that the index iy is printed to a file such that it will be assigned to the vari-
able findex within the derivative program. Then the derivative computation would
be written as w.dx = dg(v.f(findex)).*v.dx, and the function computation would
simply be written as w.f = g(v.f), where dg(-) and g(-) represent the MATLAB op-
erations corresponding to ¢'(-) and ¢(-), respectively. The resulting overloaded object,
W, would then have the same properties as V with the exception of id, func.name, and
deriv.name. Here we emphasize that, in the above example, the derivative calculation
is only valid for a vector, v, whose non-zero elements of Jv(x) lie in the row locations
defined by iY, and that the values of i} and m are known at the time of the overloaded
operation.

3.3. Motivation for a New Method to Generate Derivative Source Code

The aforementioned discussion identifies the fact that the CADA method as developed
in Patterson et al. [2013] may be used to transform a mathematical program contain-
ing a simple basic block into a derivative program, which, when executed in MATLAB,
will compute the non-zero derivatives of a fixed input size version of the original pro-
gram. The method may also be applied to programs containing unrollable loops, where,
if evaluated on cada objects, the resulting derivative code would contain an unrolled
representation of the loop. Function programs containing indeterminable conditional
statements (that is, conditional statements which are dependent upon strictly sym-
bolic objects), however, cannot be evaluated on instances of the cada class as multiple
branches may be possible. The remainder of this paper is focused on developing the
methods to allow for the application of the cada class to differentiate function pro-
grams containing indeterminable conditional statements and loops, where the flow
control of the originating program is preserved in the derivative program.

4. OVERMAPS AND UNIONS

Before proceeding to the description of the method, it is important to describe an
overmap and a union, both which are integral parts of the method itself. Specifically,
due to the nature of conditional blocks and loop statements, it is often the case that
different assignment objects may be written to the same variable, where the deter-
mination of which object is assigned depends upon which conditional branch is taken

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:9

Table II: Overloaded Variable Properties for Overloaded Union Example.

Object Property U 1% W=Uuuy
function size: My, My My
possible function non-zero locations: it iv iv
possible derivative non-zero locations: [i%,j%] [i¥,jY] [i¥,¥]

or which iteration of the loop is being evaluated. The issue is that any overloaded
operation performed on such a variable may print different derivative calculations de-
pending upon which object is assigned to the variable. In order to print calculations
that are valid for all objects which may be assigned to the variable (that is, all of the
variable’s immediate predecessors), a cada overmap is assigned to the variable, where
an overmap has the following properties:

e Function Size: The function row/column size is the maximum row/column size of all
possible row/column sizes.

e Function Sparsity: The function is only considered to have a known zero element if
every possible function is known to have same known zero element.

e Derivative Sparsity: The Jacobian is only considered to have a known zero element
if every possible Jacobian has the same known zero element.

Furthermore, the overmap is defined as the union of all possible objects that may be
assigned to the variable.

Example of an Overloaded Union. In order to illustrate the concept of the union of two
overloaded objects, consider two configurations of the same variable, y = u(x) € R™«
ory = v(x) € R™, where x € R". Suppose further that I/ and V are cada instances
that possess the properties shown in Table II, and that W = U/ U V is the union of U/
and V. Then the size property of W will be m,, = max(m,,, m,). The non-zero function
locations of W are then determined as follows. Let @ and v be vectors of length m,,,

where
1, iei
Y =90, otherwise,
T=1,..., M. (6)

- _J1ietv,
Vi = 0, otherwise,
The possible non-zero function locations of W, iV, are then defined by the non-zero
locations of w = @ + V.
Next, the locations of all possible non-zero derivatives of W can be determined in a

manner similar to the approach used to determine the non-zero function locations of
W. Specifically, let U*, V* be m,, X m, matrices whose elements are given as

UAxA — 17 (Zaj) € [1;7.];]7
] 0, otherwise, .
1=1,..., My,
= ¢
. v v j=1,... my.
Vx_ — 17 (Za.]) € .[lxa.]x]a
i,J 0, otherwise,

Finally, suppose we let W* = U* + V*. Then the possible non-zero derivative locations

of W, [i¥,,j%], are defined to be the row and column indices corresponding to the non-
zero locations of the matrix W*.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 M. J. Weinstein, and A. V. Rao

5. SOURCE TRANSFORMATION VIA THE OVERLOADED CADA CLASS

A new method is now described for generating derivative files of mathematical func-
tions implemented in MATLAB, where the function source code may contain flow con-
trol statements. Source transformation on such function programs is performed using
the overloaded cada class together with unions and overmaps as described in Section
4. That is, all function/derivative computations are printed to the derivative file as de-
scribed in Section 3 while flow control is preserved by performing overloaded unions
where code fragments join, for example, on the output of conditional fragments, on
the input of loops, etc. The method thus has the feature that the resulting derivative
code depends solely on the functions from the native MATLAB library (that is, deriva-
tive source code generated by the method does not depend upon overloaded statements
or separate run-time functions). Furthermore, the structure of the flow control state-
ments is transcribed to the derivative source code. In this section we describe in detail
the various processes that are used to carry out the source transformation. An outline
of the source transformation method is shown in Fig. 1.

user program > User Source to — Source Code

Intermediate Source --- Data

user program Transformation
: - >
input data

intermediate

program

! ! !

Empty Parsing Overmapping Printing
. . stored .

Evaluation R »| Evaluation }-------3 -»{ Evaluation
1 objects
' 1
! 1

T : T 1
e e
OFS/CFS : OFS/CFS/OMS ! loop : ref fasqn i

' :
' [
]

Create Mapping
Scheme Lt e e eceemeaaa r

indices Output
.m file
_____ Output
.mat file

index matrices (for organizational operations within loops)

&

]
]
Analyze Loop '
Orgamzatlonal index matric :
Operation Data| names

Fig. 1: Source Transformation via Operator Overloading Process

From Fig. 1 it is seen that the inputs to the transformation process are the user
program to be differentiated together with the information required to create cada
instances of the inputs to the user program. Using Fig. 1 as a guide, the source trans-
formation process starts by performing a transformation of the original source code to
an intermediate source code (process @). This initial transformation then results in
a source code on which an overloaded analysis may be performed. Automatic differ-
entiation is then effected by performing three overloaded evaluations of the interme-
diate source code. During the first evaluation (process @), a record of all objects and
locations relative to flow control statements is built to form an object flow structure
(OFS) and a control flow structure (CFS), but no derivative calculations are performed.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:11

Next, an object mapping scheme (OMS) is created (process ®) using the DFS and CFS
obtained from the first evaluation, where the OMS defines where overloaded unions
must be performed and where overloaded objects must be saved. During the second
evaluation (process @), the intermediate source code is evaluated on cada instances,
where each overloaded cada operation does not print any calculations to a file. During
this second evaluation, overmaps are built and are stored in global memory (shown as
stored objects output of process @) while data is collected regarding any organizational
operations contained within loops (shown as loop data output of process @®). The orga-
nizational operation data is then analyzed to produce special derivative mapping rules
for each operation (process ®). During the third evaluation of the intermediate source
program (process ®), all of the data produced from processes @—® is used to print
the final derivative program to a file. In addition, a MATLAB binary file is written
that contains the reference and assignment indices required for use in the derivative
source code. The details of the steps required to transform a function program con-
taining no function/sub-function calls into a derivative program are given in Sections
5.1-5.6 and correspond to the processes @-®, respectively, shown in Fig. 1. Section 5.7
then shows how the methods developed in Sections 5.1-5.6 are applied to programs
containing multiple function calls.

5.1. User Source-to-Intermediate-Source Transformation

The first step in generating derivative source code is to perform source-to-source trans-
formation on the original program to create an intermediate source code, where the
intermediate source code is an augmented version of the original source code that con-
tains calls to transformation routines. The resulting intermediate source code may
then be evaluated on overloaded objects to effectively analyze and apply AD to the
program defined by the original user code. This initial transformation is performed via
a purely lexical analysis within MATLAB, where first the user code is parsed line by
line to determine the location of any flow control keywords (that is, if, elseif, else,
for, end). The code is then read again, line by line, and the intermediate program is
printed by copying sections of the user code and applying different augmentations at
the statement and flow control levels.

Figure 2 shows the transformation of a basic block in the original program, A, into
the basic block of the intermediate program, A’. At the basic block level, it is seen
that each user assignment is copied exactly from the user program to the interme-
diate program, but is followed by a call to the transformation routine Vardnalyzer.
It is also seen that, after any object is written to a variable, the variable analyzer is
provided the assignment object, the string of code whose evaluation resulted in the
assignment object, the name of the variable to which the object was written, and a
flag stating whether or not the assignment was an array subscript assignment. After
each assignment object is sent to the Vardnalyzer, the corresponding variable is im-
mediately rewritten on the output of the Vardnalyzer routine. By sending all assigned
variables to the variable analyzer it is possible to distinguish between assignment ob-
jects and intermediate objects and determine the names of the variables to which each
assignment object is written. Additionally, by rewriting the variables on the output of
the variable analyzer, full control over the overloaded workspace (that is, the collection
of all variables active in the intermediate program) is given to the source transforma-
tion algorithm. Consequently, all variables (and any operations performed on them)
are forced to be overloaded.

Figure 3 shows the transformation of the k' conditional fragment encountered in
the original program to a transformed conditional fragment in the intermediate pro-
gram. In the original conditional fragment, C}, each branch contains the code fragment
By (i = 1,...,Ny), where the determination of which branch is evaluated depends

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 M. J. Weinstein, and A. V. Rao

Pred (A)
Pred (A) v Al
A i yl =s1;
V1= s1; y1 = Vardnalyzer(‘yl = s1’,y1,‘y1°,0);
¢ y2 = Vardnalyzer(‘y2(i) =s2’,y2,‘y2’,1);
Suce (A) !
Succ (A)
(a) Original Basic Block (b) Transformed Basic Block

Fig. 2: Transformation of User Source Basic Block A to Intermediate Source Basic
Block A’. The quantities s1 and s2 represent generic MATLAB expressions.

upon the logical values of the statements s1,s2, - -,sNk-1. In the transformed condi-
tional fragment, it is seen that no flow control surrounds any of the branches. Instead,
all conditional variables are evaluated and sent to the IfInitialize transformation
routine. Then the transformed branch fragments B; |, -+, B} y, are evaluated in a
linear manner, with a call to the transformation routines IfIterStart and IfIterEnd
before and after the evaluation of each branch fragment. By replacing all conditional
statements with transformation routines, the control of the flow is given to the trans-
formation routines. When the intermediate program is evaluated, the IfInitialize
routine can determine whether each conditional variable returns true, false, or inde-
terminate, and then the IfIterStart routine can set different global flags prior to
the evaluation of each branch in order to emulate the conditional statements. As the
overloaded analysis of each branch B ; is performed in a linear manner, it is impor-
tant to ensure that each branch is analyzed independent of the others. Thus, prior
to any elseif/else branch the overloaded workspace may be modified using the out-
puts, IfEvalStr and IfEvalVar, of the IfIterStart transformation routine. Further-
more, following the overloaded evaluation and analysis of the conditional fragment
(., it is often the case that overmapped outputs must be brought into the overloaded
workspace. Thus, the final IfIterEnd routine has the ability to modify the workspace
via its outputs, IfEvalStr and IfEvalVar.

Figure 4 shows an original loop fragment, L, and the corresponding transformed
loop fragment L), where k is the k'" loop encountered in the original program. Sim-
ilar to the approach used for conditional statements, Fig. 4 shows that control over
the flow of the loop is given to the transformation routines. Transferring control to the
transformation routines is achieved by first evaluating the loop index expression and
feeding the result to the ForInitialize routine. The loop is then run on the output,
adigatorForVar_k, of the ForInitialize routine, with the loop variable being calcu-
lated as a reference on each iteration. Thus the ForInitialize routine has the ability
to unroll the loop for the purposes of analysis, or to evaluate the loop for only a sin-
gle iteration. Furthermore, the source transformation algorithm is given the ability to
modify the inputs and outputs of the loop. This modification is achieved via the out-
puts, ForEvalStr and ForEvalVar, of the transformation routines ForInitialize and
ForIterEnd.

It is important to note that the code fragments By, ; of Fig. 3 and I, of Fig. 4 do not
necessarily represent basic blocks, but may themselves contain conditional fragments

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:13

Pred (Cy)
Ck
R y LT o s
p [if st |——>elseif 2 p> - - :
: T T :
1 1
: By 1 B2 By N, E
: : 1
1 . 1
! < e Ye '
' |end [€ < < ':
A
>{ Suce (Cy) l
(a) Original Conditional Fragment
ot

Lemmmmmmmmsmsmmme—-o-oeo e bbb bbbl

/| cadacond1
cadacondl

s1;
Vardnalyzer(‘sl’,cadacondl, ‘cadacondl’,0);

cadacondNk-1 = sNk-1;
cadacondNk-1 = Vardnalyzer(‘sNk-1’,cadacondNk-1, ‘cadacondNk-1’,0);

IflterStart(k,1);

IfIterEnd(k,1);

[IfEvalStr,IfEvalVar] = IflterStart(k,2);

if not(isempty(IfEvalStr))
cellfun(@eval,IfEvalStr);

end

IfIterEnd(k,2);

[IfEvalStr,IfEvalVar] = IflterStart(k,3);

if not(isempty(IfEvalStr))
cellfun(@eval,IfEvalStr);

end

[IfEvalStr,IfEvalVar] = [fIterfnd(k,Nk);
if not(isempty(IfEvalStr))
cellfun(@eval,IfEvalStr);

g gy A SR

.
[}
=]
[

:: Suce (C,;)'

Fig. 3: Transformation of User Source Conditional Fragment C) to Intermediate
Source Conditional Fragment Cj. Here, Cj, is the k'" conditional fragment encoun-
tered in the user program, By ; (i = 1,...,N;) are the fragments of code contained
within each branch of the conditional fragment C}, and the quantities s1, s2, sNk-1
represent MATLAB logical expressions.

(b) Transformed Conditional Fragment

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 M. J. Weinstein, and A. V. Rao

B il B i

cadaLloopVar_k = sf;
cadaLoopVar_k = ...
Vardnalyzer(‘sf’,cadaloopVar_k, ‘cadaLoopVar_k’,0) ;
[adigatorForVar_k, ForEvalStr, ForEvalVar] = ...
ForInitialize(k,cadaloopVar_k) ;
if not(isempty(ForEvalStr))
cellfun(@eval,ForEvalStr)

end

v

—>| for adigatorForVar_k_i = adigatorForVar_k;
cadaForCount_k = ForlterStart(k,adigatorForVar_k_i);
i = cadaLoopVar_k(:,cadaForCount_k);

i = Vardnalyzer(‘cadaLoopVar_k(:,cadaForCount_k)’,i,‘i’,0);

I

[ForEvalStr, ForEvalVar] = ForlterEnd(k,adigatorForVar_k_i);

v

| end

if not(isempty(ForEvalStr))
cellfun(@eval,ForEvalStr)

gy g gy g S

...

(a) Original Loop (b) Transformed Loop Fragment
Fragment

Fig. 4: Transformation of User Source Loop Fragment L; to Intermediate Source Loop
Fragment L) . The quantity L, refers to the k" loop fragment encountered in the user
program, I is the fragment of code contained within the loop, and the quantity sf
denotes an arbitrary loop index expression.

and/or loop fragments. In order to account for nested flow control, the user source to in-
termediate source transformation is performed in a recursive process. Consequently, if
the fragments By, ; and/or I;, contain loop/conditional fragments, then the transformed
fragments B, ; and/or I; are made to contain transformed loop/conditional fragments.

5.2. Parsing of the Intermediate Program

After generating the intermediate program, the next step is to build a record of all
objects encountered in the intermediate program as well as the locations of any flow
control statements. Building this record results in an object flow structure (OFS) and
control flow structure (CFS). In this paper, the OFS and CFS are analogous to the data
flow graphs and control flow graphs of conventional compilers. Unlike conventional
data flow graphs and control flow graphs, however, the OFS and the CFS are based
on the locations and dependencies of all overloaded objects encountered in the inter-
mediate program, where each overloaded object is assigned a unique integer value.
The labeling of overloaded objects is achieved by using the global integer variable

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:15

OBJECTCOUNT, where OBJECTCOUNT is set to unity prior to the evaluation of the interme-
diate program. Then, as the intermediate program is evaluated on overloaded objects,
each time an object is created the id field of the created object is assigned the value
of OBJECTCOUNT, and OBJECTCOUNT is incremented. As control flow has been removed
from the intermediate program, there exists only a single path which it may take and
thus if an object takes on the id field equal to i on one evaluation of the intermediate
program, then that object will take on the id field equal to i on any evaluation of the
intermediate program. Furthermore, if a loop is to be evaluated for multiple iterations,
then the value of 0BJECTCOUNT prior to the first iteration is saved, and 0BJECTCOUNT is
set to the saved value prior to the evaluation of any iteration of the loop. By resetting
OBJECTCOUNT at the start of each loop iteration, we ensure that the id assigned to all
objects within a loop are iteration independent.

Because it is required to know the OFS and CF'S prior to performing any derivative
operations, the OFS and CFS are built by evaluating the intermediate program on
a set of empty overloaded objects. During this evaluation, no function or derivative
properties are built. Instead, only the id field of each object is assigned and the OFS
and CFS are built. Using the unique id assigned to each object, the OFS is built as
follows:

e Whenever an operation is performed on an object O to create a new object, P, we
record that the 0.id*" object was last used to create the P.id"" object. Thus, after the
entire program has been evaluated, the location (relative to all other created objects)
of the last operation performed on O is known.

o If an object O is written to a variable, v, it is recorded that the ©.id*" object was
written to a variable with the name ‘v’. Furthermore, it is noted if the object O was
the result of an array subscript assignment or not.

Similarly, the CF'S is built based off of the 0BJECTCOUNT in the following manner:

e Before and immediately after the evaluation of each branch of each conditional frag-
ment, the value of 0BJECTCOUNT is recorded. Using these two values, it can be deter-
mined which objects are created within each branch (and subsequently which vari-
ables are written, given the OFS).

e Before and immediately after the evaluation of a single iteration of each for loop,
the value of OBJECTCOUNT is recorded. Using the two recorded values it can then be
determined which objects are created within the loop.

The OFS and CF'S then contain most of the information contained in conventional data
flow graphs and control flow graphs, but are more suitable to the recursive manner in
which flow control is handled in this paper.

5.3. Creating an Object Overmapping Scheme

Using the OFS and CFS obtained from the empty evaluation, it is then required that
an object mapping scheme (OMS) be built, where the OMS will be used in both the
overmapping and printing evaluations. The OMS is used to tell the various transfor-
mation routines when an overloaded union must be performed to build an overmap,
where the overmapped object is being stored, and when the overmapped object must
be written to a variable in the overloaded workspace. The determination of where
unions must be performed is based off of where, in the original user code, the program
joins. That is, unions must be performed at the exit of conditional fragments and at the
entrance of loops. Similarly, the OMS must also tell the transformation routines when
an object must be saved, to where it will be saved, and when the saved object must be
written to a variable in the overloaded workspace. We now look at how the OMS must
be built in order to deal with both conditional branches and loop statements.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 M. J. Weinstein, and A. V. Rao

5.3.1. Conditional Statement Mapping Scheme. It is required to print conditional frag-
ments to the derivative program such that different branches may be taken depending
upon numerical input values. The difficulty that arises using the cada class is that,
given a conditional fragment, different branches can write different assignment objects
to the same output variable, and each of these assignment objects can contain differ-
ing function and/or derivative properties. To ensure that any operations performed on
these variables after the conditional block are valid for any of the conditional branches,
a conditional overmap must be assigned to all variables defined within a conditional
fragment and used later in the program (that is, the outputs of the conditional frag-
ment). Given a conditional fragment Cj, containing N; branches, where each branch
contains the fragment B,Q . (as shown in Fig. 3), the following rules are defined:

Mapping Rule 1. If a variable y is written within C} and read within Succ (C}),
then a single conditional overmap, Y., ,, must be created and assigned to the variable
y prior to the execution of Succ (CY}).
Mapping Rule 1.1. For each branch fragment B, , (i =1, ..., N;) within which
y is written, the last object assigned to y within B; ; must belong to). ,. See Fig.
5a for illustrative example.
Mapping Rule 1.2. If there exists a branch fragment Bk within which y is
not written, or there exists no else branch, then the last obJect which is written
to y within Pred (Cy.) must belong to). ,. See Fig. 5b for illustrative example.

if x(1) > 1

x + 1;

a y = cos(x);

y = cos(a) s
/ S if x(1) > 0
1se \

y = x(2) .*x;

\y sin(x);
d
y + x(1); o

Z = X.*¥y;

end
Z = X.Xy;

(a) Example of Mapping Rule 1.1. (b) Example of Mapping Rule 1.2.
The marked variables belong to the The marked variables belong to the
conditional overmap)., as a result conditional overmap)., as a result
of Mapping Rule 1.1. Since the un- of Mapping Rule 1.2.

marked variables are not outputs of
the conditional fragment, they do not
belong to a conditional overmap.

Fig. 5: Illustrative Examples of Mapping Rule 1.

Using Mapping Rule 1, it is determined for each conditional fragment which vari-
ables require a conditional overmap and which assignment objects belong to which
conditional overmaps. By adhering to Mapping Rule 1, it is the case that each con-
ditional fragment is analyzed independently of the others. For instance, if a program
contains two successive conditional fragments C; and Cy, Cy ¢ C1, containing N; and
N branches, respectively, then the program contains N; N, possible branches (assum-
ing both C; and C5 contain else branches). Rather than analyzing all N;N; possible

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:17

branches, the proposed mapping rule states to first analyze the N; branches of C; and
to then use the overmapped outputs to analyze the N, branches of Cs. Similarly, if a
program contains a nested conditional fragment Cy C C1, then the inner fragment Cs
is first analyzed and the overmapped outputs are used for the analysis of the outer
fragment C4.

The second issue with evaluating transformed conditional fragments of the form
shown in Fig. 3b stems from the fact that flow control is removed in the intermedi-
ate program. Thus, each branch is analyzed via overloaded evaluation in a successive
order. To properly emulate the flow control and force each transformed conditional
branch to be analyzed independently, the following mapping rule is defined for each
transformed conditional fragment C}:

Mapping Rule 2. If a variable y is written within Pred (C},), rewritten within a
branch fragment B; ; and read within a branch fragment B; ; (i < j), then the last
object written to y within Pred (C},) must be saved. Furthermore, the saved object
must be assigned to the variable y prior to the evaluation of the fragment B;, ;- See
Fig. 6 for illustrative example.

In order to adhere to Mapping Rule 2, we use the OFS and CFS to determine the
id of all objects which must be saved, where they will be saved to, and the id of the
assignment objects who must be replaced with the saved objects.

—>y =1;
if x(1) > 0
—y = x(1);
z=x+y;

else ¢
Z = X.¥y;

end

Fig. 6: Illustrative Example of Mapping Rule 2. The variable y is an input to the else
branch, but rewritten in the if branch. Since both branches are analyzed successively,
the input version of y (y = 1) must be saved prior to the overloaded evaluation of the
if branch and brought back into the overloaded workspace prior to the overloaded
evaluation of the else branch.

5.3.2. Loop Mapping Scheme. In order to print derivative calculations within loops in
the derivative program, a single loop iteration must be evaluated on a set of overloaded
inputs to the loop, where the input function sizes and/or derivative sparsity patterns
may change with each loop iteration. In order to print calculations which are valid for
all possible loop inputs, a set of loop overmapped inputs are found by analyzing all
possible loop iterations (that is, unrolling for the purpose of analysis) in the overmap-
ping evaluation phase. The loop may then be printed as a rolled loop to the derivative
program by evaluating on the set of overmapped loop inputs. The first mapping rule is
now given for a transformed loop L), of the form shown in Fig. 4.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 M. J. Weinstein, and A. V. Rao

Mapping Rule 3. If a variable is written within I;, then it must belong to a loop
overmap. Moreover, during the printing evaluation of I, the overloaded workspace
must only contain loop overmaps.
Mapping Rule 3.1. If a variable y is written within Pred (L},), read within I,
and then rewritten within I; (that is, y is an iteration dependent input to I}),
then the last objects written to y within Pred (L},) and I, must share the same
loop overmap. Furthermore, during the printing evaluation, the loop overmap
must be written to the variable y prior to the evaluation of I;. See Fig. 7a for
illustrative example.
Mapping Rule 3.2. Any assignment object which results from an array sub-
script assignment belongs to the same loop overmap as the last object which
was written to the same variable. See Fig. 7b for illustrative example.
Mapping Rule 3.3. If an assignment object is created within multiple nested
loops, then it still only belongs to one loop overmap. See Fig. 7c for illustrative
example.
Mapping Rule 3.4. Any object belonging to a conditional overmap within a
loop must share the same loop overmap as all objects which belong to the con-
ditional overmap. See Fig. 7d for illustrative example.

Using this set of rules together with the developed OFS and CFS, it is determined,
for each loop Lj,, which assignment objects belong to which loop overmaps. Unlike the
handling of conditional fragments, outer loops are made to dominate the overloaded
analysis as a result of Mapping Rule 3. While this rule may result in the collection of
unnecessary data, it simplifies the analysis of any flow control nested within the loop.
For instance, in the case of a conditional fragment nested within a loop (such as that
shown in Fig. 7d), the loop overmap is always made to contain the iteration dependent
conditional overmap. In the overmapping evaluation of such a code fragment, the it-
eration dependent conditional overmaps would be built on each iteration in order to
properly propagate sparsity patterns. In the printing evaluation, however, conditional
overmaps are unnecessary as it is ensured that all possible conditional overmaps be-
long to the loop overmap. Additionally, this provides a measure of safety for the print-
ing evaluation by ensuring that all assignment objects created within loops are in the
overmapped form.

The second mapping rule associated with loops results from the fact that the
overmapped outputs of a loop are not necessarily the same as the ¢rue outputs of a
loop. Loop overmaps are eliminated from the overloaded workspace by replacing them
with assignment objects that result from the overloaded evaluation of all iterations of
the loop. This final mapping rule is stated as follows:

Mapping Rule 4:. For any outer loop L; (that is, there does not exist L’ such that
Lj, C L), if a variable y is written within I}, and read within Succ(L;), then the
last object written to y within the loop during the overmapping evaluation must
be saved. Furthermore, the saved object must be written to y prior to the evalua-
tion of Succ (L)) in both the overmapping and printing evaluations. See Fig. 8 for
illustrative example.

The id field of any assignment objects subject to Mapping Rule 4 are marked so that
the assignment objects may be saved at the time of their creation and accessed at a
later time.

It is noted that the presented mapping rules do not address cases of loops contain-
ing break or continue statements. We now briefly introduce how the proposed method
handles such cases. For the sake of conciseness, however, they will neither be discussed
in detail nor addressed in the remaining sections. In the presence of break/continue

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB

/y=0;

: for i = 1:3

o

Vi

y = sin(y+x(i));

end

(a) Example of Mapping Rule 3.1. The
variable y is an iteration dependent in-
put to the loop, thus the objects assigned
to the marked variables must be joined to
create the corresponding overmapped in-
put. During the overmapping evaluation
phase, this is achieved by joining the four
different objects assigned to y: the original
input, together with the result of sin(y +
x(1)) for the three values of i.

z = zeros(3,1);

z = zeros(5,1);
for i = 1:4
y = zeros(5,1);

Q

< — y(i) = x(i)*i;
\y(i+1) = sqrt(x(i+1));
z = z+y;

end

(b) Example of Mapping Rule 3.2. Since the
variable y is initialized to zero then assigned
to via subscript index assignment twice, the ob-
jects which result from all three assignments are
made to belong to the loop overmap) ,. Thus,
the loop overmap) , is built by joining 12 over-
loaded objects, three for each loop iteration.

for i = 1:3 y =1;
\/y=X(i,i); /for1=15
N for j = 1:4 >)3 —>y =__x_(.1)*y,
y = yorx(d, 4+ ify <0 Tl
end y‘=—_);(—6‘)“1,
z(i) = y+x(i+1,i+1); end
end end

(¢c) Example of Mapping Rule 3.3. In this (d) Example of Mapping Rule 3.4. As a
example, the variable y is written within a result of Mapping Rule 1.2, the condi-
nested loop and is also an iteration depen- tional overmap)., is made to contain
dent input to the nested loop. As a result of the objects assigned to y at both places
Mapping Rules 3.1 and 3.3, the correspond- within the loop, where a new conditional
ing loop overmap is made to contain the 15 overmap is built on each iteration of the
different objects written to y: three from the loop in the overmapping evaluation. As
outer loop assignment and 12 from the nested a result of Mapping Rule 3.4, the loop

loop assignment.

overmap), , is made to contain the ob-
ject assigned to y prior to the loop, as
well as the objects assigned to y across
all overloaded evaluations of the loop.

Fig. 7: Illustrative Examples of Mapping Rule 3.

A:19

statements, the ¢rue outputs of the loop (as addressed in Mapping Rule 4) are consid-
ered to be the union between all possible outputs of the loop (that is, the outputs which
result from any break statement firing across all iterations, the outputs which result
from any continue statement firing on the final iteration, and the outputs which result
from no break statements firing on any iteration and no continue statements firing on

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 M. J. Weinstein, and A. V. Rao

----»z = zeros(5,1);
for i = 1:5

< —>y=x{);

______ > z(i) = sqrt(y)*i;

Fig. 8: Illustrative Example of Mapping Rule 4. In this example, both the variables y
and z are outputs of the loop. Thus, the objects assigned to the variables y and z on the
fifth and final iteration of the loop must be stored in the overmapping evaluation phase
and returned as outputs in both the overmapping evaluation and printing evaluation of
the loop. Here it can be seen that the derivative sparsity pattern of the ¢true overloaded
output corresponding to y will contain less non-zeros than the loop overmap) ,, while
the true overloaded output corresponding to z is equal to the loop overmap Z .

the final iteration). In the presence of continue statements, the overmapped loop in-
puts (as addressed in Mapping Rule 3.1) must be made to contain all possible inputs to
the loop (that is, any initial inputs together with any iteration dependent inputs which
result from a continue statement firing, or no continue statements firing).

5.4. Overmapping Evaluation

The purpose of the overmapping evaluation is to build the aforementioned conditional
overmaps and loop overmaps, as well as to collect data regarding organizational op-
erations within loop statements. This overmapping evaluation is performed by eval-
uating the intermediate program on overloaded cada objects, where no calculations
are printed to file, but rather only data is collected. Recall now from Mapping Rules
1 and 3 that any object belonging to a conditional and/or loop overmap must be an
assignment object. Additionally, all assignment objects are sent to the Vardnalyzer
routine immediately after they are created. Thus, building the conditional and loop
overmaps may be achieved by performing overloaded unions within the variable an-
alyzer routine immediately after the assignment objects are created. The remaining
transformation routines must then control the flow of the program and manipulate
the overloaded workspace such that the proper overmaps are built. We now describe
the tasks performed by the transformation routines during the overmapping evalua-
tion of conditional and loop fragments.

5.4.1. Overmapping Evaluation of Conditional Fragments. During the overmapping eval-
uation of a conditional fragment, it is required to emulate the corresponding
conditional statements of the original program. First, those branches on which
overmapping evaluations are performed must be determined. This determination
is made by analyzing the conditional variables given to the IfInitialize routine
(cadacondl,...,cadacondn-1 of Fig. 3), where each of these variables may take on a
value of true, false, or indeterminate. Any value of indeterminate implies that the vari-
able may take on the value of either true or false within the derivative program. Using
this information, it can be determined if overmapping evaluations are not to be per-
formed within any of the branches. For any such branches within which overmapping
evaluations are not to be performed, empty evaluations are performed in a manner
similar to those performed in the parsing evaluation. Next, it is required that all
branches of the conditional fragment be evaluated independently (that is, we must

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:21

adhere to Mapping Rule 2). Thus, for a conditional fragment C, if a variable is writ-
ten within Pred (C}), rewritten within B ;, and then read within B) ; (i < j), then
the variable analyzer will use the developed OMS to save the last assignment object
written to the variable within Pred (C},). The saved object may then be written to the
overloaded workspace prior to the evaluation of any dependent branches using the out-
puts of the IfIterStart routines corresponding to the dependent branches. Finally, in
order to ensure that any overmaps built after the conditional fragment are valid for all
branches of the conditional fragment, all conditional overmaps associated with the con-
ditional fragment must be assigned to the overloaded workspace. For some conditional
overmap, these assignments are achieved ideally within the Vardnalyzer at the time
which the last assignment object belonging to the conditional overmap is assigned. If,
however, such assignments are not possible (due to the variable being read prior to the
end of the conditional fragment), then the conditional overmap may be assigned to the
overloaded workspace via the outputs of the last IfIterEnd routine.

5.4.2. Overmapping Evaluation of Loops. As seen from Fig. 4, all loops in the intermediate
program are preceded by a call to the ForInitialize routine. In the overmapping
evaluation, this routine determines the size of the second dimension of the object to
be looped upon, and returns adigatorForVar_k such that all loop iterations will be
analyzed successively. During these loop iterations, the loop overmaps are built and
organizational operation data is collected. Here we stress that at no time during the
overmapping evaluation are any loop overmaps active in the overloaded workspace.
Thus, after the loop has been evaluated for all iterations, the objects which result
from the evaluation of the last iteration of the loop will be active in the overloaded
workspace. Furthermore, on this last iteration, the Vardnalyzer routine saves any
objects subject to Mapping Rule 4 for use in the printing evaluation.

5.5. Organizational Operations within For Loops

Consider that all organizational operations may be written as one or more references
or assignments: horizontal or vertical concatenation can be written as multiple sub-
script index assignments, reshapes can be written as either a reference or a subscript
index assignment, etc. Consider now that the derivative operation corresponding to a
function reference/assignment is given by performing the same reference/assignment
on the first dimension of the Jacobian. In the method of this paper, however, derivative
variables are written as vectors of non-zeros. Thus, the derivative procedures corre-
sponding to function references/assignments cannot be written in terms of function
reference/assignment indices. Moreover, when dealing with loops, it is often the case
that function reference/assignment indices change on loop iterations, and thus the
corresponding derivative procedures must be made to be iteration dependent. In this
section we describe how organizational operations are handled within loops.

Example of an Organizational Operation within a Loop. Consider the following example that
illustrates the method used to deal with organizational operations within loops. Sup-
pose that, within a loop, there exists an organizational operation

W; = f(vivjz",ajzv)v (8)

where, on iteration i € [1,..., N], the elements j¥ of v; are assigned to the elements
j7¥ of w;. Let the overmapped versions of V; and W;, across all calls to the overloaded
organizational operation, F, be denoted by V and W with associated overmapped Ja-
cobians, Jv(x) and Jw(x), respectively. Further, let the non-zeros of the overmapped
Jacobians be defined by the vectors dj € R"* and df} € R™*w.

Now, given the overmapped sparsity patterns of V and W, together with the ref-
erence and assignment indices, jY and j¥, the derivative reference and assignment

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 M. J. Weinstein, and A. V. Rao

indices k;, ki € Z™: are found such that, on iteration i, the elements k} of dy are
assigned to the elements k" of d¥. That is, on iteration i, the valid derivative rule for
the operation F is given as

By = gy 1=1o oo ©

In order to write these calculations to file as concisely and efficiently as possible, a
sparse index matrix, K € Z"***N is defined such that, in the i** column of K, the
elements of k' lie in the row locations defined by the elements of k. The following
derivative rule may then be written to a file:

w.dx(logical(K(:,i))) = v.dx(nonzeros(X(:,i))); (10)

Where K corresponds to the index matrix K, i is the loop iteration, and w.dx,v.dx are
the derivative variables associated with W, V.

5.5.1. Collecting and Analyzing Organizational Operation Data. As seen in the example
above, derivative rules for organizational operations within loops rely on index ma-
trices to print valid derivative variable references and assignments. Here it is empha-
sized that, given the proper index matrix, valid derivative calculations are printed to
file in the manner shown in Eq. 10 for any organizational operation contained within
a loop. The aforementioned example also demonstrates that the index matrices may
be built given the overmapped inputs and outputs (for example, VW and V), together
with the iteration dependent function reference and assignment indices (for example,
jY and jY¥). While there exists no single operation in MATLAB which is of the form of
Eq. (8), it is noted that the function reference and assignment indices may be easily de-
termined for any organizational operation by collecting certain data at each call to the
operation within a loop. Namely, for any single call to an organizational operation, any
input reference/assignment indices and function sizes of all inputs and outputs are col-
lected for each iteration of a loop within which the operation is contained. Given this
information, the function reference and assignment indices are then determined for
each iteration to rewrite the operation to one of the form presented in Eq. (8). In order
to collect this data, each overloaded organizational operation must have a special rou-
tine written to store the required data when it is called from within a loop during the
overmapping evaluations. Additionally, in the case of multiple nested loops, the data
from each child loop must be neatly collected on each iteration of the parent loop’s
ForIterEnd routine. Furthermore, because it is required to obtain the overmapped
versions of all inputs and outputs and it is sometimes the case that an input and/or
output does not belong to a loop overmap, it is also sometimes the case that unions
must be performed within the organizational operations themselves in order to build
the required overmaps.

After having collected all of this information in the overmapping evaluation, it is
then required that it be analyzed and derivative references and/or assignments be
created prior to the printing of the derivative file. This analysis is done by first elim-
inating any redundant indices/sizes by determining which loops the indices/sizes are
dependent upon. Index matrices are then built according to the rules of differentia-
tion of the particular operation. These index matrices are then stored to memory and
the proper string references/assignments are stored to be accessed by the overloaded
operations. Additionally, for operations embedded within multiple loops it is often the
case that the index matrix is built to span multiple loops and that, prior to an inner
loop, a reference and/or reshape must be printed in order for the inner loop to have
an index matrix of the form given in the presented example. For example, consider an
object ¥V which results from an organizational operation embedded within two loops,
where the overmapped object VV contains n possible non-zero derivatives. If the outer

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:23

loop runs for i, = 1,...,m; iterations, the inner loop runs for i = 1,...,my iterations,
and the function reference/assignment indices are dependent upon both loops, then an
index matrix K; € Z""2*"™ will be built. Then, prior to the printing of the inner loop,
a statement such as

K2 = reshape(K1(:,i1),n,m2); (11

must be printed, where K1 is the outer index matrix, i1 is the outer loop iteration, and
n and m2 are the dimensions of the inner index matrix X2. The strings which must be
printed to allow for such references/reshapes are then also stored into memory to be
accessed prior to the printing of the nested for loop statements.

5.6. Printing Evaluation

During the printing evaluation we finally print the derivative code to a file by evalu-
ating the intermediate program on instances of the cada class, where each overloaded
operation prints calculations to the file in the manner presented in Section 3. In order
to print if statements and for loops to the file that contains the derivative program,
the transformation routines must both print flow control statements and ensure the
proper overloaded objects exist in the overloaded workspace. Manipulating the over-
loaded workspace in this manner enables all overloaded operations to print calcula-
tions that are valid for the given flow control statements. Unlike in the overmapping
evaluations, if the overloaded workspace is changed, then the proper re-mapping cal-
culations must be printed to the derivative file such that all function variables and
derivative variables within the printed file reflect the properties of the objects within
the active overloaded workspace. We now introduce the concept of an overloaded re-
map and explore the various tasks performed by the transformation routines to print
derivative programs containing both conditional and loop fragments.

5.6.1. Re-Mapping of Overloaded Objects. During the printing of the derivative program,
it is often the case that an overloaded object must be written to a variable in the in-
termediate program by means of the transformation routines, where the variable was
previously written by the overloaded evaluation of a statement copied from the user
program. Because the derivative program is simultaneously being printed as the in-
termediate program is being evaluated, any time a variable is rewritten by means of
a transformation routine, the printed function and derivative variable must be made
to reflect the properties of the new object being written to the overloaded workspace.
If an object O is currently assigned to a variable in the intermediate program, and a
transformation routine is to assign a different object, P, to the same variable, then
the overloaded operation which prints calculations to transform the function variable
and derivative variable(s) which reflect the properties of O to those which reflect the
properties of P is referred to as the re-map of O to P. To describe this process, con-
sider the case where both O and P contain derivative information with respect to an
input object X'. Furthermore, let o.f and o.dx be the function variable and derivative
variable which reflect the properties of O. Here it can be assumed that, because O is
active in the overloaded workspace, the proper calculations have been printed to the
derivative file to compute o.f and o.dx. If it is desired to re-map O to P such that the
variables o.f and o.dx are used to create the function variable, p.f, and derivative
variable, p.dx, which reflect the properties of P, the following steps are executed:

e Build the function variable, p. f:
Re-Mapping Case 1.A:. If p.£ is to have a greater row and/or column dimension
than those of o.f, then p.f is created by appending zeros to the rows and/or
columns of o. f.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 M. J. Weinstein, and A. V. Rao

Re-Mapping Case 1.B:. If p.£f is to have a lesser row and/or column dimension
than those of 0. £, then p. f is created by removing rows and/or columns from o. f.
Re-Mapping Case 1.C:. If p. £ is to have the same dimensions as those of 0. f, then
p.-fissetequal too.f.

¢ Build the derivative variable, p.dx:
Re-Mapping Case 2.A:. If P has more possible non-zero derivatives than O, then
p.dx is first set equal to a zero vector and then o.dx is assigned to elements of
p.dx, where the assignment index is determined by the mapping of the derivative
locations defined by O.deriv.nzlocs into those defined by P.deriv.nzlocs.
Re-Mapping Case 2.B:. If P has less possible non-zero derivatives than O, then
p.dx is created by referencing off elements of o.dx, where the reference index is
determined by the mapping of the derivative locations defined by P.deriv.nzlocs
into those defined by O.deriv.nzlocs.
Re-Mapping Case 2.C.. If P has the same number of possible non-zero derivatives
as O, then p.dx is set equal to o.dx.

It is noted that, in the 1.A and 2.A cases, the object O is being re-mapped to the
overmapped object P, where O belongs to P. In the 1.B and 2.B cases, the overmapped
object, O, is being re-mapped to an object P, where P belongs to O. Furthermore, the
re-mapping operation is only used to either map an object to an overmapped object
which it belongs, or to map an overmapped object to an object which belongs to the
overmap.

5.6.2. Printing Evaluation of Conditional Fragments. Printing a valid conditional fragment
to the derivative program requires that the following tasks must be performed. First,
it is necessary to print the conditional statements, that is, print the statements if,
elseif, else, and end. Second, it is required that each conditional branch is evaluated
independently (as was the case with the overmapping evaluation). Third, after the
conditional fragment has been evaluated in the intermediate program (and printed
to the derivative file), all associated conditional overmaps must be assigned to the
proper variables in the intermediate program. In addition, all of the proper re-mapping
calculations must be printed to the derivative file such that when each branch of the
derivative conditional fragment is evaluated it will calculate derivative variables and
function variables that reflect the properties of the active conditional overmaps in the
intermediate program. These three aforementioned tasks are now explained in further
detail.

The printing of the conditional branch headings is fairly straightforward due to
the manner in which all expressions following the if/elseif statements in the user
program are written to a conditional variable in the intermediate program (as seen
in Fig. 3). Thus, each IfIterStart routine may simply print the branch heading as:
if cadacondl, elseif cadacond2, else and so on. As each branch of the conditional
fragment is then evaluated the overloaded cada operations will print derivative and
function calculations to the derivative file in the manner described in Section 3. As
was the case with the overmapping evaluations, each of the branch fragments must be
evaluated independently, where this evaluation is performed in the same manner as
described in Section 5.4.1. Likewise, it is ensured that the overloaded workspace will
contain all associated conditional overmaps in the same manner as in the overmap-
ping evaluation. Unlike the overmapping evaluation, however, conditional overmaps
are not built during the printing evaluations. Instead, the conditional overmaps are
stored within memory and may be accessed by the transformation routines in order
to print the proper re-mapping calculations to the derivative file. For some conditional
fragment C}, within which the variable y has been written, the following calculations

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:25

are required to print the function variable and derivative variable that reflect the
properties of the conditional overmap . ,3

o If an object Y belongs to). , as a result of Mapping Rule 1.1 and is not to be operated
on from within the branch it is created, then) is re-mapped to Y., from within the
Vardnalyzer routine at the time of which) is assigned to y.

o If an object) belongs to), , as a result of Mapping Rule 1.1 and is to be operated on
from within the branch it is created, then) is stored from within the Vardnalyzer
and the IfIterEnd routine corresponding to the branch performs the re-map of) to
yc,o-

e For each branch within which y is not written, the IfIterEnd routine accesses both
V..o and the last object written to y within Pred (C},) (wWhere this will have been saved
previously by the Vardnalyzer routine). The IfIterEnd routine then re-maps the
previously saved object to the overmap.

o If the fragment C; contains no else branch, an else branch is imposed and the last
IfIterEnd routine again accesses both)., and the last object written to y within
Pred (Cj). This routine then re-maps the previously saved object to the overmap
within the imposed else branch.

Finally, the last IfIterEnd routine prints the end statement.

5.6.3. Printing Evaluation of Loops. In order to print a valid loop fragment to the deriva-
tive program an overloaded evaluation of a single iteration of the transformed loop
is performed in the intermediate program. To ensure that all printed calculations are
valid for each iteration of the loop in the derivative program, these overloaded evalu-
ations are performed only on loop overmaps. The printing evaluation of loops is then
completed as follows. When an outermost loop is encountered in the printing evaluation
of the intermediate program, the ForInitialize routine must first use the OMS to de-
termine which, if any, objects belong to loop overmaps but are created prior to the loop,
that is, loop inputs which are loop iteration dependent. Any of these previously created
objects will have been saved within the Vardnalyzer routine, and the ForInitialize
routine may then access both the previously saved objects and the loop overmaps to
which they belong and then re-map the saved objects to their overmapped form. As it is
required that the overmapped inputs to the loop be active in the overloaded workspace,
the ForInitialize then uses its outputs, ForEvalStr and ForEvalVar, to assign the
overmapped objects to the proper variables in the overloaded workspace. Next, the
ForIterStart routine must print out the outermost for statement. Here we note that
all outer loops must evaluate for a fixed number of iterations, so if the loop is to be
run for 10 iterations, then the for statement would be printed as for cadaforcount
= 1:10. The cadaforcount variable will then be used in the derivative program to ref-
erence columns off of the index matrices presented in Section 5.5 and to reference the
user defined loop variable. As the loop is then evaluated on loop overmaps, all over-
loaded operations will print function and derivative calculations to file in the manner
presented in Section 3, with the exception being the organizational operations. The
organizational operations will instead use stored global data to print derivative refer-
ences and assignments using the index matrices as described in Section 5.5. Moreover,
during the evaluation of the loop, only organizational operations are cognizant of the
fact that the evaluations are being performed within the loop. Thus, when operations
are performed on loop overmaps, the resulting assignment objects can sometimes be

3This is assuming that the conditional fragment is not nested within a loop. In the case of a conditional
fragment nested within a loop, Mapping Rule 3 takes precedence over Mapping Rule 1 in the printing
evaluation.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 M. J. Weinstein, and A. V. Rao

computed to be different from their overmapped form. In order to adhere to Mapping
Rule 3,after each variable assignment within the loop, the assignment object is sent
to the Vardnalyzer routine which then re-maps the assigned object to the stored loop
overmap to which it belongs.

Nested loops are handled different from non-nested loops. When a nested loop is
reached during the printing evaluation, the active overloaded workspace will only con-
tain loop overmaps, thus it is not required to re-map any nested loop inputs to their
overmapped form. What is required though, is that the ForInitialize routine check to
see if any index matrix references and/or reshapes must be printed, where if this is the
case, the proper references and/or reshapes are stored during the organizational oper-
ation data analysis. These references/reshapes are then accessed and printed to file.
The printing of the actual nested loop statements is then handled by the ForIterStart
routine, where, unlike outer loops, nested loops may run for a number of iterations
which is dependent upon a parent loop. If it is the case that a nested loop changes
size depending upon a parent loop’s iteration, then the loop statement is printed as:
for cadaforcount2 = 1:K(cadaforcountl), where cadaforcount2 takes on the nested
loop iteration, cadaforcount1 is the parent loop iteration, and K is a vector containing
the sizes of the nested loop. Any evaluations performed within the nested loop are then
handled exactly as if they were within an outer loop, and when the ForIterEnd routine
of the nested loop is encountered it prints the end statement.

After the outer loop has been evaluated, the outermost ForIterEnd routine then
prints the end statement and must check to see if it needs to perform any re-maps
as a result of Mapping Rule 4. In other words, the OMS is used to determine which
variables defined within the loop will be read after the loop (that is, which variables
are outputs of the loop). The objects that were written to these variables as a result
of the last iteration of the loop in the overmapping evaluation are saved and are now
accessible by the ForIterEnd routine. The loop overmaps are then re-mapped to the
saved objects, and the outputs of ForIterEnd, ForEvalStr and ForEvalVar, are used to
assign the saved objects to the overloaded workspace. Printing loops in this manner
ensures that all calculations printed within the loop are valid for all iterations of the
loop. Furthermore, this printing process ensures that any calculations printed after
the loop are valid only for the result of the evaluation of all iterations of the loops
(thus maintaining sparsity).

5.6.4. Storage of Global Data Required to Evaluate Derivative File. Because the method pre-
sented in this paper is geared towards applications in which the derivative is required
at a number of different values, it is most efficient to determine all references and
assignment indices required to evaluate the derivative file only once prior to all eval-
uations of the derivative file for a particular application. Thus, unlike the method
of Patterson et al. [2013], where all reference and assignment indices are embedded
within the derivative program itself, in the method of this paper these reference and
assignment indices are written as variable names to a MATLAB binary file (which is
an output of the process shown in Fig. 1). These variable names are then used within
the derivative program itself and are recalled from global MATLAB memory. Further-
more, in the case where the associated global structure is cleared, it is restored on an
ensuing call to the derivative program by loading the aforementioned MATLAB binary
file associated with the derivative program. Using this aforementioned approach to
keeping track of reference and assignment indices, the overhead associated with read-
ing the indices is incurred only once. Furthermore, the derivative program is printed
much more concisely than it would have been had the indices themselves been printed
to the derivative file.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:27

function [adigatorFunInfo,adigatorOutputs] = ...
adigatortempfun_k(adigatorFunInfo,adigatorInputs)

[adigatorFlag,adigatorFunInfo,adigatorInputs] = ...
FunctionInit(k,adigatorFunInfo,aidgatorInputs);

1
!]
1]
! [
] 1
: :
' '
_qu _______________________ i | if adigatorFlag :
. BN adigatorOutputs = adigatorInputs; '
i | function [outl,---,outN] ... - return !
]]
' = myfun_k(inl,---,inM) ! E end :
! . inl = adigatorInputs{1};---; inN = adigatorInputs{N}; E
1 : 1 '
; i =
: P Gl ;
1 [:
' |end I ! 1
. P 1
A G T PP PP 1| |adigatorOutputs = {outd;--- ;outN}; '
! | [adigatorFunInfo,adigatorQutputs] = ... :
' FunctionEnd(k,adigatorFunInfo,adigatorOutputs) ; '
i |end :
\‘ L
(a) Original Function (b) Transformed Function
/
ki
K cadainputl = s1i;---cadainputN = sMi;
ki adigatorInputs = {cadainputl;---cadainputM};
- - [adigatorFunInfo,adigatorOutputs] = ...
lali,---,aNi] = ... adigatortempfun_k(adigatorFunInfo,adigatorInputs)
myfun_k(sli S, sMi) cadaOutputl = adigatorQutputs{1}; ali = cadaOutputl;
cadaOutputM = adigatorOutputs{N}; aNi = cadaOutputN;
(c) Original Function Call (d) Transformed Function Call

Fig. 9: Transformation of Original Function Fj, to Transformed Function F} and Trans-
formation of the i*" Call to Function Fy, K}, to the i*" Call to Function Fy, K, ;.

5.7. Multiple User Functions

At this point, the methods have been described that transform a program containing
only a single function into a derivative program containing only a single function. It
is often the case, however, that a user program consists of multiple functions and/or
sub-functions. The method of this paper handles both the cases of called functions and
sub-functions in the same manner. In order to deal with programs containing mul-
tiple function calls, the transformations of Fig. 9 are applied during the user source
to intermediate source transformation phase. In the parsing phase, it is then deter-
mined which functions Fj are called more than a single time. If a function is called
only once, then the input and output objects are saved during the overmapping evalu-
ation phase. Then, in the printing evaluation phase, when the function Fj, is called, the
FunctionInit routine returns the saved outputs and sets the adigatorFlag true, re-
turning the outputs to the calling function. After the calling function has been printed,
the function Fj is then evaluated in the manner discussed in Section 5.6.

In the case that a function Fj is called multiple times, it is required to build
a set of overmapped inputs and overmapped outputs of the function. The building

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 M. J. Weinstein, and A. V. Rao

of overmapped inputs and outputs is performed during the overmapping evaluation
phase by joining the inputs across each function call, evaluating the called function
on each unique set of inputs, and joining all possible outputs. Moreover, the out-
puts of each call are stored in memory for use in the printing evaluation phase. In
order to allow for function-call-dependent organizational operations, each call is as-
signed an iteration count and organizational operations are then handled in the man-
ner presented in Section 5.5. During the printing phase, when the function Fj is
called, the FunctionInit routine re-maps the given inputs for the particular call to
the overmapped inputs, prints the function call, re-maps the overmapped outputs to
the stored outputs, and then returns the stored outputs. The function is then not eval-
uated by setting the adigatorFlag to true. After the calling function has finished print-
ing, the function F}, is then evaluated on the set of stored overmapped inputs and all
organizational operations are treated as if they were being called from within a loop.

6. EXAMPLES

The method described in Section 5 (which is implemented in the software ADiGator)
now is applied to four examples. The first example provides a detailed examination of
the process that ADiGator uses to handle conditional statements. The second example
is the well known Speelpenning problem of Speelpenning [1980] and demonstrates the
ability of ADiGator to handle a for loop while simultaneously providing a comparison
between a rolled loop and an unrolled loop. The third example is a polynomial data
fitting example which contains a for loop and provides a comparison between the effi-
ciency of ADiGator with the previously developed operator overloaded tool MAD [Forth
2006] and the combination source transformation and operator overloading tool ADi-
Mat [Bischof et al. 2003]. The fourth example is a large scale nonlinear programming
problem (NLP) whose constraint function contains multiple levels of flow control. This
fourth example is used to compare the efficiency of the first- and second-order deriva-
tive code generated by ADiGator against the previously developed software tools INT-
LAB [Rump 19991, MAD [Forth 20061, and ADiMat [Bischof et al. 2003]. Comparisons
were performed against INTLAB version 6, MAD version 1.4, and ADiMat version
0.5.9. All computations were performed on an Apple Mac Pro with Mac OS-X 10.9.2
(Mavericks) and a 2 x 2.4 GHz Quad-Core Intel Xeon processor with 24 GB 1066 MHz
DDR3 RAM using MATLAB version R2014a.

Example 1: Conditional Statement

In this example we investigate the transformation of a user program containing a con-
ditional statement into a derivative program containing the same conditional state-
ment. The original user program and the transformed intermediate program is shown
in Figure 10, where it is seen that the variable y is written within both the if branch
and the else branch. Furthermore, because the variable y is read after the conditional
fragment, a conditional overmap,). ,, is required to print derivative calculations that
are valid for both the if and else branches.

Now let Vi and V5. be the overloaded objects written to y as a result of the over-
loaded evaluation of the if and else branches, respectively, in the intermediate pro-
gram. Using this notation, the required conditional overmap is V. , = Vit U)e1se, Where
this conditional overmap is built during the overmapping evaluation of the interme-
diate program shown in Figure 10. Fixing the input to be a vector of length five, the
sparsity patterns of the Jacobians defined by Vi, Veise, and Y., are shown in Fig-
ure 11, and the final transformed derivative program is seen in Figure 12. From Fig-
ure 12, it is seen that re-mapping calculations are required from within both the if
and else branches, where these re-mapping calculations represent the mapping of the
non-zero elements of the Jacobians shown in Figures 11a and 11b into those shown

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:29

User Program Intermediate Program

function z = myfun(x)| function [adigatorFunInfo, adigatorQutputs] = ...
adigatortempfunci(adigatorFunInfo,adigatorInputs)

N =5; [adigatorFlag, adigatorFunlInfo, adigatorInputs] = ...
x1 = x(1); FunctionInit (1,adigatorFunInfo,adigatorInputs);
xN = x(N); if adigatorFlag; adigatorOutputs = adigatorInputs; return; end;
x = adigatorInputs{1};
if x1 > xN
y = x*x1; N =5;
else N = Vardnalyzer (‘N = 5;7 ,N,‘N’,0);
y = x*xN; x1 = x(1);
end x1 = Vardnalyzer (‘x1 = x(1);’,x1,‘x1°,0);
xN = x(N);
z = sin(y); xN = Vardnalyzer (‘xN = x(N);’,xN, ‘xN’,0);

% ADiGator IF Statement #1: START
cadacondl = x1 > xN;
cadacondl = Vardnalyzer (‘cadacondl = x1 > xN’,cadacondl, ‘cadacondl’,0);
IfInitialize (1,cadacondl, []);
IfIterStart (1,1);
y = x*x1;
y = Vardnalyzer (‘y = x*xx1;°,y,‘y’,0);
IfIterEnd (1,1);
[IfEvalStr, IfEvalVar] = IflterStart (1,2);
if not(isempty(IfEvalStr)); cellfun(@eval,IfEvalStr); end
y = x*xN;
y = Vardnalyzer (‘y = x*xN;’,y,‘y’,0);
[IfEvalStr, IfEvalVar] = Iflterknd(1,2);
if not(isempty(IfEvalStr)); cellfun(@eval,IfEvalStr); end
% ADiGator IF Statement #1: END

z = sin(y);
z = Vardnalyzer (‘z = sin(y);’,z,‘z?,0);

adigatorOutputs = {z};
[adigatorFunInfo, adigatorOutputs] = ...
FunctionEnd (1,adigatorFunInfo,adigatorOutputs);

Fig. 10: User Source-to-Intermediate Source Transformation for Example 1.

in Figure 11c. More precisely, in the if branch of the derivative program, the assign-
ment indices GatoriIndices.Index4 maps the derivative variable of);; into elements
[1,2,3,4,5,6,7,8,13] of the derivative variable of). ,. Similarly, in the else branch of
the derivative program, the assignment index GatoriIndices.Index8 maps the deriva-
tive variable of V... into the [1,6,7,8,9,10,11,12,13] elements of the derivative vari-
able of V. ,. Thus, the evaluation of the derivative program shown in Figure 12 always
produces a 13 element derivative variable, z.dx, which is mapped into a Jacobian of
the form shown in Figure 11c using the mapping index written to z.dx_location. Due
to the nature of the if and else branches of the derivative program, at least 4 elements
of the derivative variable z.dx will always be identically zero, where the locations of
the zero elements will depend upon which branch of the conditional block is taken.

Example 2: Speelpenning Problem

This example demonstrates the transformation of a function program containing a for
loop into a derivative program containing the same for loop. The function program to

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 M. J. Weinstein, and A. V. Rao

do 0 0 0 O di 0 0 0 ds di 0 0 0 dg
dy dg 0 0 O 0 do 0 0 dg do dg 0 0 dyp
d3 0 d7y 0 O 0 0 d3 0 dy ds 0 d7 0 diq
ds 0 0 dg O 0 0 0 dy dg ds 0 0 dg dio
ds 0 0 0 dy 0 0 0 0 dgy ds 0 0 0 dis
(a) struct(Yis.deriv) (b) struct(YVe1se.deriv) (c) struct(Ye,0.deriv)

Fig. 11: Derivative Sparsity Patterns of iz, Veise, and Ve o = Viz U Veise.

be transformed computes the Speelpenning function [Speelpenning 1980] given as
N
y=]] (12)
=1

where Eq. (12) is implemented using a for loop as shown in Fig. 13. From Fig. 13,
two major challenges of transforming the loop are identified. First, it is seen that the
variable y is an input to the loop, rewritten within the loop, and read after the loop
(as the output of the function), thus a loop overmap,)., must be built to print valid
derivative calculations within the loop. Second, it is seen that the reference x(I) de-
pends upon the loop iteration, where the object assigned to x has possible non-zero
derivatives. Thus, an index matrix, K, and an overmapped subsref output, R,, must
be built to allow for the iteration dependent derivative reference corresponding to the
function reference x(I). To further investigate, let); be the object written to y after
the evaluation of the i*" iteration of the loop from within the intermediate program.
Furthermore, we allow R; to be the intermediate object created as a result of the over-
loaded evaluation of x(I) within the intermediate program. The overmapped objects
V1.0 and R, are now defined as

N
Vio=J¥i (13)
=0
and
N
Ro=JR:, (14)

i=1
where) represents the object written to y prior to the evaluation of the loop in the
intermediate program. Now, as the input object, X, has a Jacobian with a diagonal
sparsity pattern (which does not change), then each object R; will have a 1 x N gradient
where the i*" element is a possible non-zero. Thus, the union of all such gradients over
i results in all NV elements being possibly non-zero, that is, a full gradient. Within the
derivative program, the reference operation must then result in a derivative variable of
length N, where on iteration i, the i*” element of the derivative variable corresponding
to X must be assigned to the i'" element of the derivative variable corresponding to
R,. This reference and assignment is done as described in Section 5.5 using the index
matrix K € ZV*N where

 fii=j i=1,...N
K”_{O,iyéj i=1,.. .. N" (15)

Now, because R; contains a possible non-zero derivative in the i*" location of the gra-
dient and V; = V;_1 * R;,); will contain i possible non-zero derivatives in the first ¢
locations. Furthermore, the union of); over i = 0,..., N results in an object }; , con-
taining N possible non-zero derivatives (that is, a full gradient). Thus, in the derivative

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB

A:31

FunctionInit

Overloaded

Operations

IfIterStart

Overloaded
Operation

Re-Mapping
Operation

IfIterStart

Overloaded

Operations

Re-Mapping
Operation

IfIterEnd

Overloaded
Operations

FuncttonEnd

function z = myderiv(x)

global ADiGator_myderiv

if isempty(ADiGator_myderiv); ADiGator_LoadData(); end
GatorlIndices = ADiGator_myderiv.myderiv.GatorlIndices;
GatorlData = ADiGator_myderiv.myderiv.GatoriData;

% ADiGator Start Derivative Computations

N.f = 5; %User Line: N = 5;

x1.dx = x.dx(1); x1.f = x.f(1); %User Line: x1 = x(1);

xN.dx = x.dx(5); xN.f = x.f(N.f); %User Line: xN = x(N);
cadacondl = gt(x1.f,xN.f); %User Line: cadacondl = x1 > xN

if cadacondl

cadaltempdx = x1.dx(GatorlIndices.Indexl);

cadaltdl = zeros(9,1);

cadaltdl(GatorlIndices.Index2) = x1.f.*x.dx;

cadaltdl(GatoriIndices.Index3) .
cadaltdl(GatoriIndices.Index3) + x.f(:).*cadaltempdx;

y.dx = cadaltdl;

y.f = x.f.xx1.£; #%User Line: y = x*x1;

cadaltempdx = y.dx;
y.dx = zeros(13,1);
y.dx(GatoriIndices.Index4,1) = cadaltempdx;

else

cadaltempdx = xN.dx(GatorlIndices.Index5);

cadaltdl = zeros(9,1);

cadaltdl(GatoriIndices.Index6)

cadaltdl(GatoriIndices.Index7) = ..
cadaltdl(GatoriIndices.Index7) + x.f(:).*cadaltempdx;

y.dx = cadaltdl;

y.f = x.f.*xN.f; %User Line: y = x*xN;

xN.f.*x.dx;

cadaltempdx = y.dx;
y.dx = zeros(13,1);
y.dx(GatoriIndices.Index8,1) = cadaltempdx;

end

cadaltfl = y.f(GatorlIndices.Index9);
z.dx = cos(cadaltf1(:)).*y.dx;
z.f = sin(y.f); %User Line: z = sin(y);

z.dx_size = [5,5];
z.dx_location = GatorlIndices.Index10;
end

function ADiGator_LoadData()

global ADiGator_myderiv
ADiGator_myderiv = load(‘myderiv.mat’);
return

end

Fig. 12: Transformed Derivative Program for Example 1 Showing from where Each

Line is Printed.

program, the object)y must be re-mapped to the object), , prior to the printing evalu-
ation of the loop in the intermediate program. The result of the printing evaluation of
the intermediate program for NV = 10 is seen in Fig. 14. In particular, Fig. 14 shows the
re-mapping of the object), to), , immediately prior to the loop. Additionally, it is seen

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 M. J. Weinstein, and A. V. Rao

User Program Intermediate Program

function y = SpeelFun(x) function [adigatorFunInfo, adigatorOutputs] = ...
adigatortempfun_1(adigatorFunInfo,adigatorInputs)

y=1; [flag, adigatorFunInfo, adigatorInputs] =
FunctionInit (1,adigatorFunInfo,adigatorInputs);
for I = 1:length(x) if flag; adigatorOutputs = adigatorInputs; return; end;
x = adigatorInputs{1};
y = y*x(I);
y=1
end y = Vardnalyzer (‘y = 1;°,y,‘y’,0);

% ADiGator FOR Statement #1: START
cadaLoopVar_1 = 1:length(x);
cadalLoopVar_1 = ..
Vardnalyzer (¢ cadaLoopVar k = 1:length(x);’,cadaLoopVar_k, ‘cadaloopVar_k’,0);
[adigatorForVar_1, ForEvalStr, ForEvalVar] = Forinitialize (1,cadaLoopVar_1);
if not(isempty(ForEvalStr)); cellfun(@eval,ForEvalStr); end
for adigatorForVar_1_i = adigatorForVar_1
cadaForCount_1 = ForlterStart (1,adigatorForVar_1_i);
I cadaLoopVar_1(:,cadaForCount_1) ;
I Vardnalyzer (‘I = cadaLoopVar_1(:,cadaForCount_1);’,I,¢I%,0);

y y*x(I);
Vardnalyzer (‘y = y*x(I);°,y,‘y’,0);
[ForEvalStr, ForEvalVar]= Fcr[teTEnd(l adigatorForVar_1_i);

end
if not(isempty(ForEvalStr)); cellfun(@eval,ForEvalStr); end
% ADiGator FOR Statement #1: END

adigatorOutputs = {y};
[adigatorFunInfo, adigatorQOutputs] =
FunctionEnd (1,adigatorFunInfo,adigatorQutputs) ;

Fig. 13: User Source-to-Intermediate-Source Transformation for Speelpenning Prob-
lem.

that the derivative variable cadalf1dx (which results from the aforementioned refer-
ence within the loop) is of length 10, where the reference and assignment of cada1fidx
depends upon the loop iteration. This reference and assignment is made possible by
the index matrix K who is assigned to the variable GatoriIndices.Index1 within the
derivative program.

Rolled vs. Unrolled Loops for Speelpenning Problem. The following important issue arises
in this example due to the fact that the loop remains rolled in the derivative code.
Specifically, by imposing the overmapping scheme and maintaining a rolled loop in the
derivative code, all derivative computations are forced to be dense on vectors of length
N. If, on the other hand, the loop had been unrolled, all derivative computations on
iteration ¢ would have been performed sparsely on vectors of length i. Unrolling the
loop, however, increases the size of the derivative program. To investigate the trade-off
between between a rolled and an unrolled loop, consider for this example the Jacobian-
to-function evaluation ratio, CPU(Jf)/CPU(f), for different values of N using a deriva-
tive code generated with a function code that contains a rolled version of the loop and a
second derivative code generated using a function code that contains an unrolled ver-
sion of the loop. The values of CPU(Jf)/CPU(f) for both the rolled and unrolled cases
are shown in Table III for N = (10, 100, 1000, 10000). It is seen that unrolling the loops
results in a more efficient derivative code, but this increase in computational efficiency
comes at the expense of generating a significantly larger derivative file. On the other
hand, it is seen that, in the worst case (N = 100), the evaluation of the rolled loop is
only about four times slower than that of the unrolled loop.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:33

function y = SpeelDer (x)

global ADiGator_SpeelDer

if isempty(ADiGator_SpeelDer); ADiGator_LoadData(); end
GatorlIndices = ADiGator_SpeelDer.SpeelDer.GatorlIndices;
GatorlData = ADiGator_SpeelDer.SpeelDer.GatoriData;

% ADiGator Start Derivative Computations

FunctionInit

%User Line: y = 1;
cadalfl = length(x.f);
cadaforvarl.f = l:cadalfl;

Overloaded y-£= 13
Operations
Re-Mapping

%User Line: cadaforvarl = 1:length(x);

y.dx = zeros(10,1);

Operation

ForInitialize for cadaforcountl = 1:10
Overloaded I.f = cadaforvarl.f(:,cadaforcountl);

()peratiorl %User Line: I = cadaforvarl(:,cadaforcountl);
. . cadaltdl = zeros(10,1);

()rgaluzatlonal cadaltdl(logical(GatoriIndices.Index1(:,cadaforcountl))) =...
Overloaded x.dx(nonzeros(GatoriIndices.Index1(:,cadaforcountl)));
0 ti cadalfldx = cadaltdl;

peration cadalfl = x.£(I.1);
cadaltdl = cadalflx*y.dx;
Overloaded cadaltdl = cadaltdl + y.fxcadalfildx;
. y.dx = cadaltdl;
Operation y.f = y.fxcadalfl;
YUser Line: y = y*x(I);
ForIterEnd end
y.dx_sizy.dx_size = 10;
y.dx_location = GatorlIndices.Index2;
end
FunctionEnd function GatorAD_LoadData()

global GatorAD_mymax2D_deriv

GatorAD_mymax2D_deriv = load(‘GatorAD_mymaX?D_deriv.mat’);
return

end

Fig. 14: Derivative Program for Speelpenning Problem for N = 10 Showing Origin of
Each Printed Line of Code.

Table III: Sizes of GatorAD Generated Derivative Programs and Ratios of Jacobian-to-
Function Computation time, CPU(Jf)/CPU(f), for the Rolled and Unrolled Speelpen-
ning Function. File sizes were computed as the sum of the sizes of the produced .m
and.mat files, and CPU(Jf)/CPU(f) were obtained by averaging the values obtained
over 1000 Jacobian and function evaluations.

CPUJf)/CPU(f) | CPU(JF)/CPU(f) | Program Sizes (kB) | Program Sizes (kB)
N Ratio with Ratio with with with
Rolled Loop Unrolled Loop Rolled Loop Unrolled Loop
10 223 65 1.5 2.9
100 1255 297 1.9 23.3
1000 2522 780 6.3 370.8
10000 5960 3831 60.4 82170.3

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 M. J. Weinstein, and A. V. Rao

Example 3: Polynomial Data Fitting

Consider the problem of determining the coefficients of the m-degree polynomial p(z) =
p1 + paz + p3x? + - + pra™ ! that best fits the points (z;,d;), (i =1,...,n), (n >m),
in the least squares sense. This polynomial data fitting problem leads to an overdeter-
mined linear system Vp = d, where V is the Vandermonde matrix,

1ay o2 - gt
—1
1 xg 23 - 2
v=|_) . (16)
2 m—1
1z x5, -+)

The problem of computing the Jacobian Jp(x) was presented by [Bischof et al. 2002]
as a way of demonstrating both the AD tool ADiMat and powerful MATLAB operators
(particularly, mldivide). This same example was considered by [Forth 2006] to demon-
strate the effectiveness of the MAD sparse forward mode AD class fmad. In this exam-
ple ADiGator is compared with the forward sparse mode of MAD and the overloaded
vector forward mode of ADiMat. The code which computes p as well as the ADiGator
transformed derivative code for this problem may be seen in Fig. 15.

Table IV shows the Jacobian-to-function evaluation times for the ADiGator, MAD,
and ADiMat methods. Because the Jacobian Jp(x) is full, MAD was found to be
most efficient in the sparse forward mode and ADiMat was found to be most effi-
cient when evaluating the forward mode generated code on derivative objects of the
opt_derivclass. Furthermore, it is seen that, for all chosen values of n, the derivative
program generated by ADiGator is evaluated in less time than the time required to
evaluate the original function file on sparse fmad objects or the time required to eval-
uate the derivative file generated by ADiMat on opt_derivclass objects. It is noted,
however, that all three AD tools compute the derivative of the backslash operator in
a different manner. As seen in Fig. 15, the method employed by the ADiGator tool in-
volves squaring the Vandermonde matrix. This approach produces efficient derivative
files, however, the accuracy of the computed derivatives deteriorates as the condition
number of the Vandermonde matrix increases. In order to analyze the efficiency of the
source transformation for this problem, the average function evaluation time as well
as the average ADiGator source transformation times are also given in Table IV. It is
then seen that as the problem increases in size the ADiGator source transformation
times do not increase significantly, where the increase in times is only due to the in-
crease in non-zero derivative locations which must be propagated via the cada class.
While perhaps not the ideal comparison,* it is noted that the average time required to
perform the source transformation using ADiMat was 0.936 s, while the source trans-
formation time using AdiGator took a maximum of 0.474 s (at n = 2560).

An alternative approach for evaluating the efficiency of the ADiGator transforma-
tion process is to determine the number of Jacobian evaluations required in order
to overcome the overhead associated with the source transformation. Specifically, Ta-
ble IV shows that, for n = 10 and n = 2560, the Jacobian would need to be evaluated,
at least 26 and four times, respectively, before ADiGator consumes less time when
compared with MAD.

4In order to perform source transformation using ADiMat, the original source code must be sent to a trans-
formation server which performs the transformation and then sends back the derivative code. Thus, there
are a few unknown factors which may not be accounted for in the direct comparison of ADiMat code gener-
ation times to ADiGator code generation times.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB

A:35

Function Program

ADiGator Generated Program

function p= fit(x, d, m)

% FIT -- Given x and d, fit() returns p
% such that norm(V+p-d) = min, where
%V=1I1, x, x.72, ... x."(m-1)].

dim_x = size(x, 1);
if dim_x < m
error(‘x must have at least m entries’);

end
V = zeros(dim_x,m);
for i = 1:m

V(:,i) = x.7(i-1);
end
p=V\d;

function p = fit_x(x,d,m)

global ADiGator_fit_x

if isempty(ADiGator_fit_x); ADiGator_LoadData(); end
GatorlIndices = ADiGator_fit_x.fit_x.GatorlIndices;
GatoriData = ADiGator_fit_x.fit_x.Gator1Data;

% ADiGator Start Derivative Computations

%User Line: % FIT -- Given x and d, fit() returns p

%User Line: % such that norm(V*p-d) = min, where
%User Line: % V = [1, x, x.72, ... x."(m-1)].
dim_x.f = size(x.f,1);

%User Line: dim_x = size(x, 1);

cadaconditionall = lt(dim_x.f,m);

%User Line: cadaconditionall = dim_x < m

V.f = zeros(dim_x.f,m);
JUser Line: V = zeros(dim_x,m);
cadaforvarl.f = 1:m;
%User Line: cadaforvarl =
V.dx = zeros(30,1);
for cadaforcountl = 1:4
i.f = cadaforvarl.f(:,cadaforcountl);
JUser Line: i = cadaforvari(:,cadaforcounti);
cadalfl = i.f - 1;
cadaconditionall =
if cadaconditionall
cadalf2dx = cadalfl.*x.f(:). (cadalfi-1).*x.dx;
else
cadalf2dx =

1:m;

cadalfl;

zeros(10,1);

end

cadalf2 = x.f. cadalfl;

V.dx(logical(GatoriIndices.Index1(:,cadaforcountl))) = ...
cadalf2dx (nonzeros (GatoriIndices.Index1(:,cadaforcount1)));

V.f(:,i.f) = cadalf2;
%User Line: V(:,i) = x.~(i-1);
end
cadaltf3 = V.f\ d;
cadaltdl = sparse(GatoriIndices.Index2,GatorlIndices.Index3,V.dx,4,100);

cadaltdl = cadaltf3.’*cadaltdl;

cadaltdl = cadaltd1(:);

cadaltd3 = full(cadaltdl(GatorlIndices.Index4));
cadaltf4 = V.f.’;

cadaltdl = zeros(10,10);

cadaltdl(GatoriIndices.Index5) = cadaltd3;

cadaltdl = cadaltfé4xcadaltdl;

cadaltdl = cadaltd1(:);

cadaltd4 = cadaltdl(GatorlIndices.Index6);

cadaltf4 = (V.f*cadaltf3 - d).’;

cadaltdl = sparse(GatoriIndices.Index7,GatorlIndices.Index8,V.dx,10,40);
cadaltdl = cadaltfé4xcadaltdl;

cadaltdl = cadaltdi(:);

cadaltd5 = full(cadaltdl(GatorlIndices.Index9));

cadaltd3 = cadaltd4;

cadaltd3(GatoriIndices.Index10) =
cadaltfd = -(V.f.’*V.£);

cadaltdl = zeros(4,10);
cadaltdl(GatoriIndices.Index11) =

cadaltd3(GatoriIndices.Index10) + cadaltd5;

cadaltd3;

cadaltdl = cadaltf4\ cadaltdi;
cadaltdl = cadaltdi(:);
p.dx = cadaltdi(GatoriIndices.Index12);

p.f = cadaltf3;

%User Line: p =V \ d

p.dx_size = [4,10];

p.dx_location = GatorlIndices.Index13;
end

function ADiGator_LoadData()
global ADiGator_fit_x
ADiGator_fit_x = load(‘fit_x.mat’);
return

end

Fig. 15: Function Program and GatorAD Generated Derivative Program (m = 4,n = 10,
fixed) for Polynomial Data Fitting Example.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 M. J. Weinstein, and A. V. Rao

Table IV: Ratio of Jacobian-to-Function Computation Time, CPU(Jp(x))/CPU(p(x)),
for Example 4 (m = 4) Using ADiGator, MAD, and ADiMat, Together with ADiGator
Code Generation Times and Function Evaluation Times. MAD was used in the sparse
forward mode and ADiMat was used in the vector forward mode with the derivative
class opt_derivclass. All times CPU(Jp(x)) and CPU(p(x)) were obtained by averag-
ing over 100 trials and ADiGator file generation times were obtained by averaging over
10 trials. It is noted that the entries for ADiMat are omitted at n = 1280 and n = 2560
due to large Jacobian CPU times.

Problem Size CPU(Jp(x))/CPU(p(x)) ADiGator File || CPU(p(x))
n ADiGator | MAD | ADiMat Gen. Time (s) (ms)
10 5 49 849 0.114 0.102
20 7 50 1031 0.116 0.110
40 7 48 1887 0.120 0.117
80 7 44 4115 0.118 0.131
160 9 48 23231 0.120 0.130
320 11 46 103882 0.124 0.162
640 17 52 604633 0.140 0.241
1280 53 139 - 0.227 0.398
2560 109 300 - 0.474 0.675

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:37

Example 4: Sparse Non-Linear Programming

Consider the following nonlinear programming problem (NLP) that arises from the
discretization of a scaled version of the optimal control problem described in [Darby
et al. 2011] using a multiple-interval formulation of the Legendre-Gauss-Radau (LGR)
orthogonal collocation method as described in Patterson et al. [2013]. The NLP decision
vector z € R*N+4 is given as

z = [X17X27X37ua/6]7 (17)

where N is a parameter that defines the number of collocation points [Garg et al. 2011;
Garg et al. 2010; Garg et al. 2011; Patterson and Rao 2012], x; € RV*! x, € RN+,
x3 € RVt u e RV, and 8 € R. Furthermore, let f : R*V+* — R3N be defined as

TN+1 5
fi(z) = ;; D; rx1x — 5 T2 SiHﬂE&‘] , (@=1,...,N),
TN1
-0
fnyi(z) = kzz:l D; pwop — g (Ccl —c Sin$3i)] , (i=1,...,N), (18)
N1 8 e
Joni(z) = ’; D; px3r — 5?;(% - COSIC&‘)] , (@i=1,...,N),
where
¢ = {(T(h),h,v),
0 = 0(T(h), p(h). h,v), (19)

and the functions ¢, 6, T, and p, are evaluated at values h = z1; and v = x;, where zy;
and z,; are the i" elements of the vectors x; and x», respectively. Furthermore, the
quantity [D;,] € RV*V+1) in Eq. (18) is the LGR differentiation matrix [Garg et al.
2011; Garg et al. 2010; Garg et al. 2011; Patterson and Rao 2012]. It is noted that
N = NipK, where K is the number of mesh intervals that the problem is divided via
using the multiple-interval LGR collocation method. The objective of the NLP which
arises from the discretization is to minimize the cost function

J=p (20)
subject to the nonlinear algebraic constraints
f(x)=0 (21)
and the simple bounds on the decision variables
Zmin < Z < Zimax, (22)
where
Ty =b1, TNy1 = by,
Tnt2 = by, wany2 = bs (23)
Tants = bs , T3aN+3 = be.

A key aspect of this example is the modification of the functions T'(h) and p(h) from
smooth functions (as used in Darby et al. [2011]) to the following piecewise continuous
functions taken from Ref. NOAA [1976]:

(24)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 M. J. Weinstein, and A. V. Rao
Table V: Constants and Parameters for Example 4.
c1 3.9240 x 10? Co 1.6818 x 10% c3 8.6138 x 10?
Cq 2.8814 x 102 Cs 6.4900 x 10° Cg 4.0519 x 10°
cr 2.8808 x 10?2 cs 5.2560 x 109 Co 2.1664 x 10?
c1o | 9.0600 x 108 ci1 | 1.7300 x 10° c12 | 1.5700 x 1071
c13 | 6.0000 x 107> || c14 | 4.00936 x 10° || ¢15 | 2.2000 x 10°
by 0 b 2.0000 x 10 b3 2.6000 x 10
b4 5.9000 x 100 b5 0 b6 0
where

<C4 — cs5h, cq [T(h)rg) , h <11,

cr

(T'(h),p(h)) = (25)

(co, cr0ec11 —12h) , otherwise.

In the implementation considered in this example, Eq. (25) is represented by a con-
ditional statement nested within a for loop. Figure 16 shows the MATLAB code that
computes the function f(z), where it is seen that the source code contains multiple
loops, an indeterminate conditional statement (nested within a loop) and a loop iter-
ation dependent conditional statement. Table V shows the constants and parameters
used in this example.

In order to solve the NLP of Eqs. (20)-(22), typically either a first-derivative (quasi-
Newton) or a second-derivative (Newton) NLP solver is used. In a first-derivative
solver the objective gradient and constraint Jacobian, Jf(z), are used together with a
dense quasi-Newton approximation of the Lagrangian Hessian. In a second-derivative
solver, the objective gradient and constraint Jacobian are used together with the Hes-
sian of the NLP Lagrangian, where in this case the Lagrangian is given by

L=38+X"f(z). (26)
In this example we now concern ourselves with the computation of both the constraint
Jacobian, Jf(z), and the Lagrangian Hessian, HL(z). Moreover, the efficiencies with
which the method of this paper generates the constraint Jacobian and Lagrangian Hes-
sian source code is presented along with the computational efficiency of the resulting
derivative code. In order to analyze the performance of the method as the aforemen-
tioned NLP increases in size, the number of LGR points in each mesh interval is set
to four (that is, N, = 4) and the number of mesh intervals, K, is varied. Thus, in this
example, the total number of LGR points is always N = 4K. Finally, the comparative
performance of the method developed in this paper against the well known MATLAB
automatic differentiation tools INTLAB, MAD, and ADiMat is provided.

Table VI shows the ratio of the constraint Jacobian evaluation time to constraint
function evaluation time, CPU(Jf)/CPU(f), using the derivative code generated by
ADiGator alongside the values of CPU(Jf)/CPU(f) using ADiMat, INTLAB, and MAD,
where ADiMat is used in both of its non-overloaded (scalar and vector) modes while
being supplied the compressed seed matrix S € R(4N+t9%5 while MAD was used in
the compressed mode with the same seed matrix. Also, it is noted that the compressed
seed matrix, S, has a column dimension 1 + max(Ny) = 5, for any K used in this ex-
ample. From Table VI it is seen that the Jacobian is computed in a smaller amount of
time using the ADiGator generated code than any of the other methods. Moreover, it
is seen that, for all values of K used, the time required to evaluate the derivative code
generated by ADiGator (and produce the entire Jacobian) is slightly greater than the

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB

Constraint Function f(z)

Dynamics Function

global probinfo

nLGR = probinfo.
D = probinfo.

X = z(probinfo.
U = z(probinfo.
tf = z(probinfo.

Defects = D*X -

C = Defects(:);

function C = Constraints(z)

LGR.nLGR;
LGR.Dmatrix;

map.state) ;
map.control) ;
map.tf);

F = Dynamics(X(1:nLGR,:),U);

t£/24F;

Lagrangian Function L(z)

global probinfo
tf = z(probinfo.
C = Constraints

L = tf + lambda

function L = Lagrangian(lambda,z)

map.tf);
(2);

. 7%C;

function daeout = Dynamics(x,u)
global probinfo

CONSTANTS = probinfo.CONSTANTS;
CoF = CONSTANTS.CoF;

h=x(:,1); v =x(:,2); fpa = x(:,3);

cl = 392.4; c2 = 16818; c3 = 86.138;
c4 = 288.14; c5 = 6.49; c6 = 4.0519e9;
c7 = 288.08; <c8 = 5.256; c9 = 216.64;
cl10 = 9.06e8; cll1 = 1.73; cl12 = 0.157;
c13 = 6e-5; cl4 = 4.00936; cl5 = 2.2;

zerosdover = hx0;

rho = zerosdover; T = zerosédover;
for i = 1:length(h)
hi = h(i);
if hi < 11
Ti = c4 - cb*hi;
P = c6*%(Ti./c7)."c8;
else
Ti = c9;
P = c10* exp(cll - c12%hi);
end
rho(i) = c3*p./Ti;
T(i) = Ti;
end

q = 0.5.*rho.*v.*v.*cl13;

a = cld*xsqrt(T); M=v./a;
Mp = cell(1,6);
for i = 1:6
Mp{i} = M.~ (i-1);
end

numeratorCDO = zeros4over; denominatorCDO = zeros4over;

numeratork = zerosédover; denominatorK = zerosédover;
for i = 1:6
Mpi = Mp{i};
if i <6
numeratorCDO = numeratorCDO + CoF(1,i).*Mpi;
denominatorCDO = denominatorCDO + CoF(2,i).*Mpi;
numeratork = numeratorkK + CoF(3,1) .*Mpi;
end

denominatorK = denominatorK + CoF(4,i).*Mpij;
end
CdO = numeratorCDO./denominatorCDO;
K = numeratorK./denominatorK;
FD = q.*(CdO+K.*((c272).%(c172)./(q."2)).*x(u."2));

FT = zerosdover;

for i = 1:6
ei = zerosdover;
for j = 1:6
ei = ei + CoF(4+j,1i).*Mpj;
end
FT = FT + ei.*h."(i-1);
end

FT = FT.*cl1/c15;

hdot = v.*sin(fpa);
vdot = (FT-FD)/c2 - clx*sin(fpa);
fpadot = c1*(u-cos(fpa))./v;

daeout = [hdot vdot fpadot];
end

Fig. 16: Function Program for the NLP in Example 4.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:39

A:40 M. J. Weinstein, and A. V. Rao

time required to evaluate the derivative code generated by ADiMat in the scalar mode
(and produce a single column of the compressed Jacobian).

Table VI: Ratio of Jacobian-to-Function Computation Time, CPU(Jf)/CPU(f), for Ex-
ample 4 Using ADiGator, ADiMat, INTLAB and MAD. ADiMat was supplied the com-
pressed seed matrix in both the scalar forward and non-overloaded vector forward
modes and MAD was used in the compressed forward mode and the sparse forward
mode. All times CPU(Jf) and CPU(f) were obtained by taking the average over 100
Jacobian and function evaluations.

NLP Size CPUJf(z))/CPU(f(z))
ADiGator | ADiMat | ADiMat | INTLAB | MAD MAD
K | N=4K (scalar) (vector) (comp) | (sparse)
4 16 17 79 142 149 188 186
8 32 21 93 210 220 275 276
16 64 29 116 322 332 417 421
32 128 41 151 502 511 636 650

Table VII now shows the ratio of Lagrangian Hessian evaluation time to Lagrangian
function evalaution, CPU(HL)/CPU(L), using the derivative code generated by ADi-
Gator alongside the values of CPUHL)/CPU(L) using ADiMat, INTLAB and MAD.
Unlike the constraint Jacobian, the Lagrangian Hessian is incompressible and as such
MAD is only used in the sparse forward over forward mode. The non-overloaded modes
of ADiMat may not be used to compute the Lagrangian Hessian as only the diagonal
elements of Hessians may be computed via strip-mining and, currently, source trans-
formation may not be recursively called on ADiMat generated code produced for the
non-overloaded vector mode (as it is written in terms of ADiMat specific run-time func-
tions). The computation of the Lagrangian Hessian using ADiMat was thus found to
be most efficient when evaluating a Lagrangian gradient code generated in the re-
verse mode on a set of overloaded objects (the default mode of the ADiMat function
admHessian). From Table VII it is again seen that the ADiGator generated code is more
efficient than the other methods. It is also seen, however, that this efficiency appears
to dissipate (when compared to INTLAB) as the NLP grows in size.

Table VII: Ratio of Hessian-to-Function Computation Time, CPU(HL(z))/CPU(f(z)),
for Example 4 Using ADiGator, ADiMat, INTLAB and MAD. MAD was used in the
sparse forward over forward mode and ADiMat was used in the forward operator
overloading over reverse source transformation mode. All times CPU(HL(z)) and
CPU(L(z)) were obtained by taking the average over 100 Jacobian and function eval-
uations.

NLP Size CPU(HL(z))/CPU(L(z))
K | N=4K | ADiGator | INTLAB | MAD | ADiMat
4 16 32 198 708 | 5202
8 32 48 270 1132 | 9590
16 64 93 382 2287 | 21206
32 128 330 573 6879 | 55697

To this point in the example it has been shown that the Jacobian and Hessian pro-
grams generated by the method of this paper are efficient when compared with other
MATLAB AD tools. The expense of the code generation then comes into question. The
time required to generate the constraint Jacobian and Lagrangian Hessian derivative

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:41

files using ADiGator are now given in Table VIII as well as the constraint and La-
grangian function evaluation times. Unlike the previous example, there are two rea-
sons for the increase in derivative file generation times seen in Table VIII. Namely,
the increase in time is both due to an increase in the number of propagated non-zero
derivative locations, together with an increase in the number of required overloaded
operations. That is, since the dimension N is looped upon in the dynamics function of
Fig. 16, as N increases the number of required overloaded operations also increases.
In an attempt to quantify the efficiency of the transformation process, we first com-
pare the generation times of Table VIII to similar ADiMat source transformations. In
order to do so, we computed the average time to generate constraint Jacobian and La-
grangian Hessian derivative files using the forward mode of ADiMat. These times are
now given as 1.40s and 3.42s, respectively, and are thus less than those required by
ADiGator.

Table VIII: ADiGator Constraint Jacobian and Lagrangian Hessian Code Generation
Times with Constraint and Lagrangian Function Evaluation Times. The times taken
to generate the constraint Jacobian and Lagrangian Hessian files were averaged over
10 trials, where the Lagrangian Hessian generation time is the time taken to perform
two successive source transformations, once on the Lagrangian file and once on the re-
sulting derivative file. The constraint and Lagrangian function evaluation times were
averaged over 100 trials.

ADiGator Code Function
NLP Size Generation Times (s) | Evaluation Times (ms)
K | N=4K | Jf | HL] L
4 16 1.70 6.87 0.381 0.418
8 32 2.02 8.44 0.400 0.435
16 64 2.72 11.54 0.480 0.482
32 128 4.17 17.90 0.537 0.571

In order to further quantify the efficiency of the method of this paper applied to this
example, we solved the NLP of Egs. (20)—(22) using the NLP solver IPOPT [Biegler and
Zavala 2008; Waechter and Biegler 2006]. IPOPT was used in both the quasi-Newton
and Newton modes with the following initial guess of the NLP decision vector:

x; = linspace(by,bo, N +1)

X3 = linspace(bs, by, N + 1)

x3 = linspace(bs,bg, N + 1) 27
u = linspace(0,0,N)

3 = 175,

where the function linspace(a, b, M) provides a set of M linearly equally-spaced points
between a and b. The number of constraint Jacobian evaluations required to solve the
problem in the quasi-Newton mode and the number of constraint Jacobian and La-
grangian Hessian evaluations required to solve the problem in the Newton mode were
then recorded. The recorded values were then used to predict the amount of derivative
computation time that would be required when supplying IPOPT with derivatives us-
ing the ADiGator, ADiMat, INTLAB, and MAD tools. The results are now given in Ta-
bles IX and X, respectively, where the total derivative computation time was computed
as the time to evaluate the Jacobian/Hessian the required amount of times (using the
average evaluation times of Tables VI-VII) plus any required source transformation
overhead. Moreover, it is also noted that the total ADiGator time of Table X does not
reflect the time required to generate the constraint Jacobian file since the constraint

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A42 M. J. Weinstein, and A. V. Rao
Jacobian file is produced in the process of generating the Lagrangian Hessian file.
From Table IX it may be seen that, even though the majority of the computation time
required by ADiGator is spent in the file generation, that the expense of the file gener-
ation is worth the time saved in the solving of the NLP. From Table X it may be seen
that, for the values of K = 4 and K = 8, the overhead required to generate the La-
grangian Hessian file using ADiGator outweighs the time savings at NLP solve time,
and thus INTLAB is the most efficient. At the values of K = 16 and K = 32, how-
ever, due to a larger number of required Jacobian and Hessian evaluations, ADiGator
becomes the more efficient tool.

Table IX: Total Derivative Computation Time to Solve NLP of Example 4 Using IPOPT
in First-Derivative Mode. Derivative computation times were computed as the esti-
mated total time to perform the number of required Jacobian evaluations plus any
source transformation overhead. The transformation overhead of ADiGator is the Ja-
cobian code generation time shown in Table VIII and the transformation overhead
of ADiMat is the time required to generate the forward mode Jacobian code (1.40s).
Estimated Jacobian evaluation times of ADiMat and MAD were computed by using
the average times of the scalar compressed and compressed modes, respectively, from
Table VI.

NLP Size Jacobian Derivative Computation Time (s)
K | N=4K Evaluations || ADiGator | ADiMat | INTLAB | MAD
4 16 62 2.1 3.3 3.5 4.4
8 32 98 2.8 5.1 8.6 10.8
16 64 132 44 8.2 19.6 24.6
32 128 170 7.9 15.1 46.7 58.1

Table X: Total Derivative Computation Time to Solve NLP of Example 4 Using IPOPT
in Second-Derivative Mode. Derivative computation times were computed as the total
time to perform the number of required Jacobian and Hessian evaluations plus any
source transformation overhead. The transformation overhead of ADiGator is the av-
erage Hessian code generation time shown in Table VIII and the transformation over-
head of ADiMat is the average time required to generate the forward mode constraint
Jacobian code (1.40s) together with the average time required to generate the reverse
mode Lagrangian gradient code (5.75s). Estimated Jacobian evaluation times of ADi-
Mat and MAD were computed by using the average times of the scalar compressed and
compressed modes, respectively, from Table VI.

NLP Size Jacobian Hessian Derivative Computation Time (s)
K | N=4K Evaluations Evaluations || ADiGator | ADiMat | INTLAB | MAD
4 16 31 30 7.5 73.3 4.2 11.1
8 32 39 38 9.6 167.3 7.9 23.0
16 64 53 52 14.5 541.6 17.5 67.2
32 128 152 150 49.5 4790.8 90.8 641.2
7. DISCUSSION

The four examples given in Section 6 demonstrate both the utility and the efficiency
of the method presented in this paper. The first example showed the ability of the
method to perform source transformation on a user program containing a conditional
statement and gave an in depth look at the processes which must take place to do so.
The second example demonstrated the manner in which a user program that contains

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:43

a loop can be transformed into a derivative program that contains the same loop. The
second example also provided a discussion of the trade-offs between using a rolled and
an unrolled loop. In particular, it was seen in the second example that using an un-
rolled loop led to a more efficient derivative code at the expense of generating a much
larger size derivative file, while using a rolled loop led to slightly less efficient but
much more aesthetically pleasing derivative code and a significantly smaller deriva-
tive file. The third example showed the efficiency of the method when applied to a
large dense problem and compared to the tools of MAD and ADiMat. It is also seen
that the method of this paper is not the most preferred choice if it is required to com-
pute the derivative only a smaller number of times. On the other hand, in applications
where a large number of function evaluations is required, the method of this paper is
more efficient than other well known automatic differentiation tools. The fourth ex-
ample shows the performance of the method on a large sparse nonlinear programming
problem where the constraint function contains multiple levels of flow control. From
this fourth example it is seen that the method can be used to generate efficient first-
and second-order derivative code of programs containing loops and conditional state-
ments. Furthermore, it is shown that the presented method is particularly appealing
for problems requiring a large number of derivative evaluations.

One aspect of the CADA method which was emphasized in [Patterson et al. 2013]
was its ability to be repeatably applied to a program, thus creating second- and higher
order derivative files. It is noted that, similar to CADA, the method of this paper gener-
ates standalone derivative code and is, thus, repeatable if higher-order derivatives are
desired. Unlike the method of Patterson et al. [2013], however, ADiGator has the abil-
ity to recognize when it is performing source transformation on a file that was created
by ADiGator and has the ability to recognize the naming scheme used in the previ-
ously generated file. This awareness enables the method to eliminate any redundant
1%* through (n — 1)** derivative calculations in the n'* derivative file. For example, if
source transformation were performed twice on a function y = sin(x) such that the
second transformation is done without knowledge of the first derivative transforma-
tion, the source transformation would be performed as follows:

ddy = -sin(x)

dy = cos(x) dy = cos(x)

(28)

y = sin(x) dy = cos(x)

y = sin(x) v = sin(x)
It is seen that, in the second derivative file, the first derivative would be printed twice,
once as a function variable and once as a derivative variable. On the other hand, the
method of this paper would have knowledge of the naming scheme used in the first
derivative file, and would thus eliminate this redundant line of code in the file that
contains the second derivative.

7.1. Limitations of the Approach

The method of this paper utilizes fixed input sizes and sparsity patterns to exploit
sparsity at each required derivative computation and to reduce the required compu-
tations at run-time. The exact reasons which allow for the proposed method to gen-
erate efficient stand-alone derivative code also add limitations to the approach. The
primary limitation being that derivative files may only be created for a fixed input
size and sparsity pattern. Thus, if one wishes to change the input size, a new deriva-
tive file must be created. Moreover, the times required to generate derivative files are
largely based upon the number of required overloaded evaluations in the intermediate
program. Thus, if a loop is to run for many iterations (as was the case in the fourth

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:44 M. J. Weinstein, and A. V. Rao

example), the time required to generate the derivative files can become quite large.
Requiring that all cada objects have a fixed size also limits the functions used in the
user program to those which result in objects of a fixed size, thus, in general, logical
referencing cannot be used. Another limitation comes from the fact that all objects
in the intermediate program are forced to be overloaded, even if they are simply nu-
meric values. Thus, any operation which the intermediate program is dependent upon
must be overloaded, even if they are never used to operate on objects which contain
derivative information.

8. CONCLUSIONS

A method has been described for generating derivatives of mathematical functions in
MATLAB. Given a user program to be differentiated together with the information re-
quired to create cada instances of the inputs, the developed method may be used to
generate derivative source code. The method employs a source transformation via op-
erator overloading approach such that the resulting derivative code computes a sparse
representation of the derivative of the user function whose input is a fixed size. A key
aspect of the method is that it allows for the differentiation of MATLAB code where
the function contains flow control statements. Moreover, the generated derivative code
relies solely on the native MATLAB library and thus the process may be repeated to
obtain nt"-order derivative files. The approach has been demonstrated on four exam-
ples and is found to be highly efficient at run-time when compared with well known
MATLAB AD programs. Furthermore, while there does exist an inherent overhead as-
sociated with generating the derivative files, the overhead becomes less of a factor as
the number of required derivative evaluations is increased.

REFERENCES

AUBERT, P., DI CESARE, N., AND PIRONNEAU, O. 2001. Automatic differentiation in C++ using expression
templates and application to a flow control problem. Computing and Visualization in Science 3, 197-208.

BENDTSEN, C. AND STAUNING, O. 1996. FADBAD, a flexible C++ package for automatic differentiation.
Technical Report IMM-REP-1996—-17, Department of Mathematical Modelling, Technical University of
Denmark, Lyngby, Denmark. aug.

BERZ, M. 1987. The differential algebra Fortran precompiler DAFOR. Tech. Report AT-3: TN-87-32, Los
Alamos National Laboratory, Los Alamos, N.M.

BERZ, M., MAKINO, K., SHAMSEDDINE, K., HOFFSTATTER, G. H., AND WAN, W. 1996. COSY INFINITY
and its applications in nonlinear dynamics. In Computational Differentiation: Techniques, Applications,
and Tools, M. Berz, C. Bischof, G. Corliss, and A. Griewank, Eds. STAM, Philadelphia, PA, 363-365.

BIEGLER, L. T. AND ZAVALA, V. M. 2008. Large-scale nonlinear programming using IPOPT: An integrating
framework for enterprise-wide optimization. Computers and Chemical Engineering 33, 3 (March), 575—
582.

BISCHOF, C., LANG, B., AND VEHRESCHILD, A. 2003. Automatic differentiation for MATLAB programs.
Proceedings in Applied Mathematics and Mechanics 2, 1 Joh Wiley, 50-53.

BiscHOF, C. H., BUCKER, H. M., LANG, B., RASCH, A., AND VEHRESCHILD, A. 2002. Combining source
transformation and operator overloading techniques to compute derivatives for MATLAB programs. In
Proceedings of the Second IEEE International Workshop on Source Code Analysis and Manipulation
(SCAM 2002). IEEE Computer Society, Los Alamitos, CA, USA, 65-72.

BISCHOF, C. H., CARLE, A., CORLISS, G. F., GRIEWANK, A., AND HOVLAND, P. D. 1992. ADIFOR: Gener-
ating derivative codes from Fortran programs. Scientific Programming 1, 1, 11-29.

BISCHOF, C. H., CARLE, A., KHADEMI, P., AND MAUER, A. 1996. ADIFOR 2.0: Automatic differentiation
of Fortran 77 programs. IEEE Computational Science & Engineering 3, 3, 18-32.

COLEMAN, T. F. AND VERMA, A. 1998a. ADMAT: An Automatic Differentiation Toolbox for MATLAB. Tech-
nical Report. Computer Science Department, Cornell University.

COLEMAN, T. F. AND VERMA, A. 1998b. ADMIT-1: Automatic differentiation and MATLAB interface tool-
box. ACM Transactions on Mathematical Software 26, 1 (March), 150-175.

DARBY, C. L., HAGER, W. W., AND RAO, A. V. 2011. Direct trajectory optimization using a variable low-
order adaptive pseudospectral method. Journal of Spacecraft and Rockets 48, 3 (May—June), 433-445.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A Source Transformation via Operator Overloading Method for Generating Derivatives in MATLAB A:45

DOBMANN, M., LIEPELT, M., AND SCHITTKOWSKI, K. 1995. Algorithm 746: Pcomp—a fortran code for
automatic differentiation. ACM Transactions on Mathematical Software 21, 3, 233—-266.

FORTH, S. A. 2006. An efficient overloaded implementation of forward mode automatic differentiation in
MATLAB. ACM Transactions on Mathematical Software 32, 2 (April-June), 195-222.

GARG, D., HAGER, W. W., AND RAO, A. V. 2011. Pseudospectral methods for solving infinite-horizon optimal
control problems. Automatica 47, 4 (April), 829-837.

GARG, D., PATTERSON, M. A., DARBY, C. L., FRANCOLIN, C., HUNTINGTON, G. T., HAGER, W. W., AND
RAO, A. V. 2011. Direct trajectory optimization and costate estimation of finite-horizon and infinite-
horizon optimal control problems via a radau pseudospectral method. Computational Optimization and
Applications 49, 2 (June), 335-358.

GARG, D., PATTERSON, M. A., HAGER, W. W, RAO, A. V., BENSON, D. A., AND HUNTINGTON, G. T. 2010. A
unified framework for the numerical solution of optimal control problems using pseudospectral methods.
Automatica 46, 11 (November), 1843-1851.

GIERING, R. AND KAMINSKI, T. 1996. Recipes for adjoint code construction. Tech. Rep. 212, Max-Planck-
Institut fiir Meteorologie.

GRIEWANK, A. 2008. Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation.
Frontiers in Appl. Mathematics. SIAM Press, Philadelphia, Pennsylvania.

GRIEWANK, A., JUEDES, D., AND UTKE, J. 1996. Algorithm 755: ADOL-C, a package for the automatic
differentiation of algorithms written in ¢/c++. ACM Transactions on Mathematical Software 22, 2 (April—
June), 131-167.

HASCOET, L. AND PASCUAL, V. 2004. TAPENADE 2.1 user’s guide. Rapport Technique 300, INRIA, Sophia
Antipolis.

HORWEDEL, J. E. 1991. GRESS, a preprocessor for sensitivity studies of Fortran programs. In Automatic
Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and G. F. Corliss,
Eds. SIAM, Philadelphia, PA, 243-250.

KHARCHE, R. V. 2012. Matlab automatic differentiation using source transformation.

KHARCHE, R. V. AND FORTH, S. A. 2006. Source transformation for MATLAB automatic differentiation. In
Computational Science — ICCS, Lecture Notes in Computer Science, V. N. Alexandrov, G. D. van Albada,
P. M. A. Sloot, and J. Dongarra, Eds. Vol. 3994. Springer, Heidelberg, Germany, 558-565.

KuBoTA, K. 1991. PADRE2, a Fortran precompiler yielding error estimates and second derivatives. In
Automatic Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and
G. F. Corliss, Eds. SIAM, Philadelphia, PA, 251-262.

MATHWORKS. 2010. Version R2010b. The MathWorks Inc., Natick, Massachusetts.

MICHELOTTI, L. 1991. MXYZPTLK: A C++ hacker’s implementation of automatic differentiation. In Auto-
matic Differentiation of Algorithms: Theory, Implementation, and Application, A. Griewank and G. F.
Corliss, Eds. SIAM, Philadelphia, PA, 218-227.

NOAA. 1976. U. S. standard atmosphere, 1976. National Oceanic and Amospheric [sic] Administration : for
sale by the Supt. of Docs., U.S. Govt. Print. Off.

PATTERSON, M. A. AND RAO, A. V. 2012. Exploiting sparsity in direct collocation pseudospectral methods
for solving continuous-time optimal control problems. Journal of Spacecraft and Rockets, 49, 2 (March—
April), 364-377.

PATTERSON, M. A., WEINSTEIN, M. J., AND RAO, A. V. 2013. An efficient overloaded method for computing
derivatives of mathematical functions in matlab. ACM Transactions on Mathematical Software, 39, 3
(July), 17:1-17:36.

PRYCE, J. D. AND REID, J. K. 1998. ADO1, a Fortran 90 code for automatic differentiation. Tech. Rep. RAL-
TR-1998-057, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 OQX, England.
RHODIN, A. 1997. {IMAS} integrated modeling and analysis system for the solution of optimal control prob-

lems. Computer Physics Communications 107, 1?3, 21 — 38.

ROSTAING-SCHMIDT, N. 1993. Différentiation automatique: Application a un probléme d’optimisation en
météorologie. Ph.D. thesis, Université de Nice-Sophia Antipolis.

RuMmpP, S. M. 1999. Intlab — interval laboratory. In Developments in Reliable Computing, T. Csendes, Ed.
Kluwer Academic Publishers, Dordrecht, Germany, 77-104.

SHIRIAEV, D. AND GRIEWANK, A. 1996. Adol-f automatic differentiation of fortran codes. In Computational
Differentiation: Techniques, Applications, and Tools. SIAM, 375-384.

SPEELPENNING, B. 1980. Compiling fast partial derivatives of functions given by algorithms. Ph.D. thesis,
University of Illinois at Urbana-Champaign.

TADJOUDDINE, M., FORTH, S. A., AND PRYCE, J. D. 2003. Hierarchical automatic differentiation by vertex
elimination and source transformation. In Computational Science and Its Applications — ICCSA 2003,

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:46 M. J. Weinstein, and A. V. Rao

Proceedings of the International Conference on Computational Science and its Applications, Montreal,
Canada, May 18-21, 2003. Part II, V. Kumar, M. L. Gavrilova, C. J. K. Tan, and P. UEcuyer, Eds. Lecture
Notes in Computer Science, vol. 2668. Springer, 115-124.

WAECHTER, A. AND BIEGLER, L. T. 2006. On the implementation of a primal-dual interior-point filter line
search algorithm for large-scale nonlinear programming. Mathematical Programming 106, 1 (March),
575-582.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

