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Abstract

An adaptive mesh refinement method for solving optimal control problems is developed.
The method employs orthogonal collocation at Legendre-Gauss-Radau points, and adjusts
both the mesh size and the degree of the approximating polynomials in the refinement pro-
cess. A previously derived convergence rate is used to guide the refinement process. The
method brackets discontinuities and improves solution accuracy by checking for large in-
creases in higher-order derivatives of the state. In regions between discontinuities, where the
solution is smooth, the error in the approximation is reduced by increasing the degree of the
approximating polynomial. On mesh intervals where the error tolerance has been met, mesh
density may be reduced either by merging adjacent mesh intervals or lowering the degree of
the approximating polynomial. Finally, the method is demonstrated on two examples from
the open literature and its performance is compared against a previously developed adaptive
method.

1 Introduction

Over the past two decades, direct collocation methods have become popular in the numerical
solution of nonlinear optimal control problems. In a direct collocation method, the state and
control are discretized at a set of appropriately chosen points in the time interval of interest. The

continuous-time optimal control problem is then transcribed to a finite-dimensional nonlinear
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programming problem (NLP) and the NLP is solved using well known software [1,2]. Originally,
direct collocation methods were developed as h methods (for example, Euler or Runge-Kutta
methods) where the time interval is divided into a mesh and the state is approximated using
the same fixed-degree polynomial in each mesh interval. Convergence in an h method is then
achieved by increasing the number and placement of the mesh points [3-5]. More recently, a
great deal of research as been done in the class of direct Gaussian quadrature orthogonal collocation
methods [6-23]. In a Gaussian quadrature collocation method, the state is typically approxi-
mated using a Lagrange polynomial where the support points of the Lagrange polynomial are
chosen to be points associated with a Gaussian quadrature. Originally, Gaussian quadrature col-
location methods were implemented as p methods using a single interval. Convergence of the p
method was then achieved by increasing the degree of the polynomial approximation. For prob-
lems whose solutions are smooth and well-behaved, a Gaussian quadrature collocation method
has a simple structure and converges at an exponential rate [24-26]. The most well developed
Gaussian quadrature methods are those that employ either Legendre-Gauss (LG) points [10,15],
Legendre-Gauss-Radau (LGR) points [16,17,19], or Legendre-Gauss-Lobatto (LGL) points [6].
Many mesh refinement methods employing h or p direct collocation methods have been de-
veloped previously. Reference [27] describes what is essentially a p method where a differentia-
tion matrix is used to identify switches, kinks, corners, and other discontinuities in the solution.
References [28] and [29] locally refine the grids by splitting selected intervals according to some
splitting criterion. Reference [5] develops a fixed-order method that uses a density function to
generate a sequence of non-decreasing size meshes on which to solve the optimal control prob-
lem. References [30] and [31] (and the references therein) describe a dual weighted residual
(DWR) method for mesh refinement and goal-oriented model reduction. The DWR method uses
estimates of a dual multiplier together with local estimates of the residuals to adaptively refine
a mesh and control the error in problems governed by partial differential equations. Finally, in
Ref. [3] an error estimate is developed by integrating the difference between an interpolation
of the time derivative of the state and the right-hand side of the dynamics. The error estimate
developed in Ref. [3] is predicated on the use of a fixed-order method (for example, trapezoid,
Hermite-Simpson, Runge-Kutta) and computes a low-order approximation of the integral of the
aforementioned difference. Different from all of this previous research where the order of the

method is fixed and the mesh can only increase in size, in the method of this paper varies the
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degree of the polynomial approximation is varied and the mesh size can be be reduced.

While ~ methods have a long history and p methods have shown promise in certain types
of problems, both the i and p approaches have limitations. Specifically, achieving a desired
accuracy tolerance may require an extremely fine mesh (in the case of an & method) or may
require the use of an unreasonably large degree polynomial approximation (in the case of a
p method). In order to reduce significantly the size of the finite-dimensional approximation,
and thus improve computational efficiency of solving the NLP, hp collocation methods have
been developed. In an hp method, both the number of mesh intervals and the degree of the
approximating polynomial within each mesh interval is allowed to vary. Originally, hp methods
were developed as finite-element methods for solving partial differential equations [32-36]. In
the past few years the problem of developing hp methods for solving optimal control problems
has been of interest [20,21,23]. References [20] and [21] describe hp adaptive methods where
the error estimate is based on the difference between an approximation of the time derivative of
the state and the right-hand side of the dynamics midway between the collocation points. It is
noted that the approach of Refs. [20] and [21] creates a great deal of noise in the error estimate,
thereby making these approaches computationally intractable when a high-accuracy solution is
desired. Furthermore, the error estimate of Refs. [20] and [21] does not take advantage of the
exponential convergence rate of a Gaussian quadrature collocation method. On the other hand,
Ref. [23] develops an error estimate based on the difference between the state interpolated on an
increased number of Legendre-Gauss-Radau points in each mesh interval and the state obtained
by integrating the dynamics on the solution using the interpolated state and control. Similar to
the methods of Refs. [20] and [21], however,the method of Ref. [23] can only increase the size of
the mesh.

As stated above, two key limitations of previous mesh refinement methods for optimal con-
trol is that the mesh can neither be decreased in size nor does the method attempt to detect dis-
continuities in the solution as the mesh refinement progresses. As a result, these previous meth-
ods may either create an unnecessarily large mesh. In addition, such methods place a larger
than required number of mesh intervals near discontinuities or rapid changes in the solution.
Both of these limitations are addressed by the adaptive hp mesh refinement method described
in this paper. The method of this paper is fundamentally different from any of these previously

developed methods because it detects points where smoothness in the solution is lost and allows



for reducing the size of the mesh. First, motivated by the approach similar to that of Ref. [37],
nonsmoothness in the solution is determined by examining local maxima in the magnitude of
the second derivative of the state within mesh intervals. Specifically, if a local maximum of the
magnitude of the second derivative of the state is a user-specified factor greater than this second
derivative at the same point on the previous mesh, then the mesh interval where this local max-
imum occurs is deemed to be a nonsmooth interval and the interval is divided. Mesh interval
division in this manner then brackets the discontinuity within a narrow mesh interval. Outside
of these intervals where the solution may be nonsmooth, the accuracy of the solution is improved
by increasing the degree of the approximating polynomial. The method can reduce the size of
the mesh either by combining mesh intervals or by reducing the degree of the approximating
polynomial within a mesh interval. On mesh intervals where the error tolerance is satisfied, the
degree of the approximating polynomial can be reduced when the high order terms in a power
series expansion of the solution are sufficiently small. Similarly, adjacent mesh intervals can be
combined into a single mesh interval when the degree of the polynomial approximation in these
adjacent mesh intervals is essentially the same. The procedure for determining the intervals of
nonsmoothness or for determining the mesh width is based on the solution of the collocated
control problem on two meshes, one finer than the other, and an upper bound for the error in
the collocation approximation given in Ref. [38]. Finally, it is noted that a preliminary version of
the approach developed in this paper is given in Ref. [39].

This paper is organized as follows. In Section 2 the Bolza optimal control problem of interest
in this research is described. In Section 3 the Legendre-Gauss-Radau collocation method used
as the basis of the method of this paper is described. In Section 4 the mesh refinement method
is described in detail. In Section 5 the method developed in Section 4 is demonstrated on two
examples taken from the open literature. In Section 6 we provide a discussion of the method and
the results obtained in the numerical examples. Finally, in Section 7 we provide conclusions on

our research.

2 Bolza Optimal Control Problem

Without loss of generality, consider the following general optimal control problem in Bolza form.

Determine the state y(7) € R™ and the control u(7) € R™ on the domain 7 € [—1, +1], the initial
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time, ¢y, and the terminal time ¢; that minimize the cost functional

te—t +1
T = MOy(-1).to,y( 1)) + L5 % [ L) ule). Ut ty) dr )
—1
subject to the dynamic constraints
dy tr—t
o= aly(n). (), i(r . 1)), 2)

the inequality path constraints

Cmin < (y(7),u(7), (7, to,tf)) < Cmax, 3)

and the boundary conditions

bmin S b(Y(_1>7t07y(+1)7 tf) S bmax- (4)

It is noted that the time interval 7 € [—1, +1] can be transformed to the time interval ¢ € [to, ]
via the affine transformation

tr—1t ty+1
! 07'+ ! 0.

E=H(rto,ty) = = :

(5)

In the hp discretization, the domain 7 € [—1, +1] is partitioned into a mesh consisting of K
mesh intervals Sy, = [Tj_1,Tk], k = 1,..., K, where —1 =Ty, < T} < ... < Tk = +1. The mesh
intervals have the property that U S = [~1,+1]. Let y®)(7) and u*) () be the state and control

in S;,. The Bolza optimal control problem of Egs. (1)—(4) can then rewritten as follows. Minimize

the cost functional

7= M1ty W (41, ) + L [ e o i ©
1 7 Ti—1
subject to the dynamic constraints
B Uy ), u o). et t). (k=1 K), )
the path constraints
Conin < c(y P (1), u® (1), t(7, t0,tf)) < oy, (k=1,..., K), (8)
and the boundary conditions
buin < by (=1), 0,y (+1), 1) < bupas. ©)

Because the state must be continuous at each interior mesh point, it is required that the condition

y(T;) =y(T;}), (k=1,..., K — 1) be satisfied at the interior mesh points (T1,...,Tx_1).

5



3 Legendre-Gauss-Radau Collocation

The multiple-interval form of the continuous-time Bolza optimal control problem in Section 2
is discretized using collocation at Legendre-Gauss-Radau (LGR) points [16-19,23]. In the LGR
collocation method, the state of the continuous-time Bolza optimal control problem is approxi-

mated in Sy, k€ [1,..., K], as

™ 09,0 Wy~ 1T 71"
B) () ~o V) () — k) p(k k() = -1
yPm = YO = 3 Y0, 0 = 1] e 10)
j=1 =1 Tj Ty
1]
where 7 € [—1, +1], 4’“)(7), j=1,..., N, +1,is a basis of Lagrange polynomials, <7’1(k), . ,T](\i)>

are the Legendre-Gauss-Radau (LGR) [40] collocation points in Sy, = [T;—1, 7)), and T](\Z ) 1 =T} is
a noncollocated point. Differentiating Y*)(7) in Eq. (10) with respect to T gives

Ny+1 (k)
dY®(r) Z* 0467 ()
dr Toodr

j=1

(11)

The dynamics are then approximated at the N, LGR points in mesh interval k£ € [1,..., K] as

gl t—t
> 0PV = L 2ay® UM P o, 1)), (=1 V), (12)
j=1
where o
de.”’ (T
DZ(]’?)ZM, (i=1,...,Ny, j=1,...,Ny+1)
dr

are the elements of the N, x (N + 1) Legendre-Gauss-Radau differentiation matrix [16] in mesh
interval S, k € [1,...,K]. The LGR discretization then leads to the following nonlinear pro-

gramming problem (NLP). Minimize the LGR quadrature approximation to the cost functional

K N
1 K ty —to (k k k k
T~ MY 0, YE ot + 303 . wP LY ™ W (7 10, 15)) (13)
k=1 j=1
subject to the collocation equations
Ni+1 " "
K~k Lr —to k) p1(k k .
> DPY® - 5 a(Y® UM ¢z ot =0, (i=1,...,Np), (14)
j=1
the discretized path constraints
Cuin < (Y, UM (7 10,14)) < s (i = 1,0, Np), (15)
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and the discretized boundary conditions

bmin S b(Ygl)a tO7Y](VIQ+1a tf) S bmax- (16)
It is noted that the continuity in the state at the interior mesh points (71, ...,7x_1) is enforced
via the condition

Y§\l;13+1 = ngﬂ), (k = 17 s ’K - 1) (17)

Computationally, the constraint of Eq. (17) is eliminated from the problem by using the same

variable for both YE\IZE 41 and Y§k+1).

4 Adaptive Mesh Refinement Method

In this section the adaptive mesh refinement method of this paper is described. The description
of the method is divided into five parts. First a review is provided of the approach of Ref. [23]
for estimating the relative error in the solution on a given mesh. Next, the methods for both
mesh interval division and polynomial degree increase are described. Finally, two approaches

are described for reducing the size of the mesh.

4.1 Approximation of Solution Error

In this section the approach of Ref. [23] for estimating the relative error in the solution on a given
mesh is reviewed. The relative error approximation derived in Ref. [23] is obtained by comparing
two approximations to the state, one with higher accuracy. The key idea is that for a problem
whose solution is smooth, an increase in the number of LGR points should yield a state that more
accurately satisfies the dynamics. Hence, the difference between the solution associated with the
original set of LGR points, and the approximation associated with the increased number of LGR
points should yield an approximation of the error in the state.

Assume that the NLP of Egs. (13)—(16) corresponding to the discretized Bolza optimal con-
trol problem has been solved on a mesh S, = [T,_1,7%], k¥ = 1,..., K, with N, LGR points in
mesh interval S;. Suppose that the objective is to approximate the error in the state at a set of
M, = N; + 1 LGR points (%fk), . ,%ﬁi), where f'l(k) = Tl(k) = Tj._1, and that %JEZH = T}. Sup-

pose further that the values of the state approximation at the points (%1(1‘7), . ,%](\2) are denoted
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<y(%1(k)), e y(T](\/[ )> Next, let the control be approximated in S, using the Lagrange interpolat-

ing polynomial

Ny Ni
5 — 7k
D)y =3 Ui ), i H S a— (18)
J=1 =1 7T
1£5
and let the control approximation at T ) be denoted u(7, k )) 1 < i < M. The value of the
right-hand side of the dynamics at (Y (7, (k)), U(r, -(k)) (K )) is used to construct an improved ap-
proximation of the state. Let Y*) be a polynomial of degree at most M;, that is defined on the

interval Sj. If the derivative of Y*) matches the dynamics at each of the Radau quadrature

points %i(k), 1 < i < M, we then have

M,

o tp—t . ) ) )

Y (%) (Tj(k)) _ Y(’“)(Tk,l) + f . 0 Zj;f)a <Y(k) (Tl(k))’ U(k)<7'l(k)), t(’i’l(k), to,tf)> 7 )
=1

J=2.. M, +1,
where [ j(f), g, l=1,..., My, is the M}, x M), LGR integration matrix corresponding to the LGR
points defined by (%fk),. T](\l/; > Using the values y(Tl( ) and y(@(’“) I =1,...,M, + 1, the
absolute and relative errors in the i component of the state at (%fk), . T](V];) 1) are then defined,

respectively, as

k) (A (k k) ~(k k) (K
Ez( )<Tz( )) Yi( )< z( )) _Yi( )( l( )> )
k) ~(k l=1,..., My +1,
R (k) _ EP Y . (20)
e (1) = ’ '
1+ max Y(k)(T(k))’ v=1 sy,
FEML, .. Ny +1] J
kell,...,K]

The maximum relative error in Sy, is then defined as

el(fix = max el(-k) (%l(k) ). (21)
i€[1,...,ny]

le[l,...,My+1]
4.2 LGR Collocation Error Bound for Use in Mesh Refinement

It has been shown in Ref. [38] that, under suitable assumptions, the maximum difference be-
tween the LGR approximation (y, u) generated on a uniform mesh and the true solution (y*, u*)

evaluated on the same mesh satisfies an estimate of the form

[y =¥l + [0 =0 < N (22)
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where c is a constant, NV is the number of LGR collocation points on each interval, & is the width
of the mesh interval, ¢ is the minimum of N and number of continuous derivatives in the solu-
tion, and || - ||« denotes the sup-norm over the mesh points. Although Eq. (22) is an inequality
that provides an upper bound for the error in the domain [—1, +1], it is useful in developing a
variable-order mesh refinement method that allows for changes in the width of each mesh inter-
val, changes in the number of mesh intervals, and changes in the number of collocation points

in each mesh interval.

4.3 Refining the Mesh

After solving the NLP of Egs. (13)—=(16) on a given mesh, the maximum relative error estimate is
computed in each mesh interval using Eq. (21). If in any mesh interval the estimated maximum
relative error exceeds the mesh refinement accuracy tolerance ¢, then the mesh interval is modi-
tied either by dividing it into smaller intervals or by increasing the degree of the approximating
polynomial. As described earlier, a mesh interval is divided into subintervals when the solution
is not sufficiently smooth in the mesh interval, while the polynomial degree in a mesh interval
is increased when the solution is estimated to be sufficiently smooth in the mesh interval. The
criterion for determining if a mesh interval is smooth or nonsmooth is based on whether the
magnitude of the maximum second derivative of the state has increased by a specified factor
from the previous mesh to the current mesh. In Section 4.3.1 an approach is developed for lo-
cating mesh intervals where the solution is nonsmooth, while Sections 4.3.2 and 4.3.3 provide
methods for dividing a mesh interval (if the solution in the mesh interval is determined to be
nonsmooth) or increasing the degree of the polynomial approximation (if the solution in the

mesh interval is determined to be smooth).

4.3.1 Method for Locating Mesh Intervals Where Solution is Nonsmooth

Assume now that an optimal control problem has been solved on a mesh M using the previ-
ously described Radau collocation method and that Y (7) = D/l(M)<T> - Yn(jv 2 (7)] is the state
approximation that results from the solution on mesh M. Let7;;, (i =1,...,n,, j=1,...,L;) be
the values of 7 € [—1, +1] corresponding to the local maxima of \Yi(M) (7)| that lie on the interior

of mesh intervals. [thatis, 7;;, (i =1,...,n,, j =1,...,L;) are the interior local maxima of the



absolute value of the i"* component of the state, i € [1,...,n,], on mesh M]. For compactness,
let IDi(JM) = D'};-(]V[)<Tij)|, (i=1,...,ny, j=1,...,L;). Similarly, let Pi(JMfl) be the biggest interior

(M_l)(7)| in the mesh interval on mesh M — 1 that contains a

local maximum of the function |V;
particular value 7;; from mesh M. The solution in the mesh interval Sy, & € [1,..., K| on mesh

M 1is considered to be nonsmooth if the condition

pA)
_ i P
ij
is satisfied for some i € [1,...,n,] and for some j € [1,...,L;] with 7,; € S;, where R is a

user-specified ratio.

The motivation for Eq. (23) is Ref. [37] where the function values on two uniform meshes,
a fine mesh and a coarse mesh, are used to estimate low order derivatives of a function. If a
maximum in the magnitude of the (k + 1) derivative on the fine mesh is much greater than
corresponding (k + 1) derivative on the coarse mesh, then it is predicted that the k™ derivative
is discontinuous in an interval near the maximum. In the context of optimal control, the optimal
control can be discontinuous at one or more switch point which often implies that the state has
a discontinuous derivative. Thus, in a manner similar to that of Ref. [37], in the mesh refine-
ment method of this paper the growth condition of Eq. (23) in the second derivative is used to

determine if the solution in a mesh interval is nonsmooth.

4.3.2 Method for Dividing a Mesh Interval

Assume now that the condition in Eq. (23) is satisfied, that is, PI(M) / Pl(Mfl) > Rinamesh interval
Sk, on the current mesh, and that the mesh interval needs to be divided. Treating Eq. (22) as an

equality gives the relationship
o]
(M)
]
Furthermore, assume for the ensuing mesh M +1 that it is desired to achieve a maximum relative

error accuracy e. Again, treating Eq. (22) as an equality gives

¢ [hiMﬂ)} g

q—5/2"°
[N/E;MH)}

(25)

€ =
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MAD — N (that is, the number

Since the mesh interval S, is being divided, assume that N, ,E,
of collocation points in each subinterval of S; on mesh M + 1 is the same as the number of

collocation points in S, on mesh M). Equations (24) and 25 can then be solved for the ratio

H = hM p M) g
1/q
B o)
H= ez : (26)

k

To obtain an estimate for ¢, consider the relative error on the mesh M — 1, which is assumed to

contain mesh M:
c [h,(CM_l)] !
(M—1)
e = . 27
ST 7

The constant c is eliminated by forming the ratio of (24) and (27), and then solve for g. The ratio

H given in Eq. (26) is then used to determine the number of subintervals into which S;, should
be divided. Specifically, the number of newly created subintervals must be at least [H ], the
next largest integer greater than or equal to . Now, because H can become large for certain
problems, it is necessary to limit the growth in the number of subintervals. In this research the
maximum number of subintervals into which S, divided is based on the ratio of the relative

error in the solution and the mesh refinement accuracy tolerance and is given as

Hypa = [log (e /€)1, (28)

where [-] is the next largest integer of the argument. The upper limit on the number of subin-
tervals given in Eq. (28) is given as follows. First, when e*) >> ¢ (say 10°) the value of H,,,, will
typically in the range of 15 to 25. Next, it is seen that H,,,x will decrease to zero as e®) — ¢. Thus,
it will always be the case that H,,,x will provide a reasonable upper limit on allowable number
of subintervals. Using Eq. (28) together with Eq. (27), the number of subintervals, denoted .5,

into which §;, is divided is given as

S =min([H, Hmax)- (29)

4.3.3 Method for Increasing the Degree of the Polynomial Approximation

Suppose now that the error tolerance in a given mesh interval S; has not been met and that the

condition in Eq. (23) is not satisfied. In this case the solution in the mesh interval is regarded as
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smooth in S;, and, if possible, the degree of the polynomial approximation used on mesh M + 1

is increased in order to reduce the solution error. Let e,(€ )

denote the error on interval S;, of mesh
M. If the width of the mesh interval is the same on meshes M and M + 1, then h,gM) = h,(CMH) and

Egs. (24) and (25), together with the value of ¢ computed in Section 4.3.2, can be used to solve

for N,EMH) as
e(M) 1/(q—5/2)
NIMD — p) (k—) . (30)
€

Now, in order to obtain a strict increase in the number of collocation points in S, on mesh M + 1,

the result of Eq. (30) is replaced with

(31)

(M) 1/(¢—5/2)
6 )

NIEM—H) _ NIEM) (ek

Finally, to ensure that the polynomial degree does not grow to an unreasonably large value, an

M+ Nyax, then

upper limit N, is set for the maximum allowable polynomial degree. If IV ,g
the mesh interval is divided into equally spaced subintervals with ,gM) collocation points in

each subinterval using the procedure of Section 4.3.2.

4.3.4 Reducing the Number of Collocation Points in a Mesh Interval

In addition to the two approaches for increasing the size of the mesh as described in Sections 4.3.2
and 4.3.3, the mesh size can be decreased either by reducing the number of collocation points or
by reducing the number of mesh intervals. Both of these methods for mesh size reduction are
now described.

Consider any mesh interval Sy, = [T};_1, T};] where the accuracy tolerance ¢ has been satisfied.
Suppose further that it is desired to determine if it is possible to reduce the degree of the poly-
nomial approximation of the state in S;, while retaining the same accuracy as has been attained
using the current polynomial degree. The determination as to whether or not the polynomial
degree can be reduced is based on the following power series representation of the polynomial
approximation of the state in S,.! Let y, = (Th1 + T3)/2, hi = (Tyy — Tp—1)/2, and Y®)(7) be

the midpoint of the mesh interval, the mesh interval half-width, and the state approximation,

Tt is noted that Ref. 41 also employs a polynomial reduction procedure when approximating a function using
Chebyshev polynomials. Specifically, in Ref. 41 if the coefficients of the highest terms in a Chebyshev polynomial

expansion are negligible, then the grid is reduced by the number of negligible terms in the expansion.
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respectively, in mesh interval S;. Then the Lagrange polynomial representation of the i*" com-

ponent of the state approximation, Yi(k) (1), is given as

Nj+1 Nitl o
o Z ( ),fj(s): 11 <S_S) (32)

where —1 = 51 < 55 < ... < sy, < 1 are the LGR points on the interval [-1,+1] and sy, +1 = +1.

The polynomial /;(s) can then written in the form

Ng
s) = Zaljsl, (33)
1=0

where q;; are coefficients that depend only on the LGR points and are computed as follows. First,

suppose that );(s) is a power series whose roots are the same as those of /;(s), thatis, Q;(s) has

roots {s;}"*" and has the form
75] N
k
s) = ZQljsl. (34)
1=0
Then, because ¢;(s;) =1,
Ny,
1 Ql‘ 1
li(s) = 57—=Qj(s) = s, (35)
o Qj(s;) 7 ) ; Q;(s;)
which implies that
Qyy
ay; = : (36)
Y Q)

It is noted that the coefficients a;; depend only on N, and, thus, only need to be computed once
for each value of N, after which they can be stored for future use on other intervals and meshes.

Next, combining (32) and (33) gives

Ny, _— Ni+1
Z < Mk) ) 'Ll - Z al] (37)
=0

Now, it follows from the definitions of mesh interval midpoint and the mesh interval half-width

that |7 — p|/he, < 1 for 7 € S;. Therefore, if the N/ degree term in Eq. (37) is dropped, the
pointwise absolute error in mesh interval Sy is at most |b;x, |. In order to obtain a error estimate
in mesh interval S, that can be compared with the mesh refinement accuracy tolerance, however,

it is necessary to normalize the coefficients b;. The quantities used to normalize the coefficients
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by for each component of the state i € [1,...,n,| are similar to the manner in which the relative

error estimate in the solution from Eq. (21) is obtained and is given as

= (k) =1
Bi=1+ ker[???fK] max Y5 (), (t=1,...,ny). (38)

Then, starting with the highest power, all terms in Eq. (37) can continue to be removed (thus
lowering the degree of the polynomial) until a coefficient b;/5; is found such that |b;|/5; > e.
The aforementioned process of polynomial degree reduction is repeated for all components of
the state i € [1,...,n,], resulting in reduced polynomial degrees N® N,SLIZ). Then, the degree
of the polynomial used for Y*)(7) in mesh interval S; on the ensuing mesh is the one that
corresponds to maximum of (V- ® .., Ny;)). In other words, the reduced polynomial degree in
mesh interval S;, is the one that corresponds to the largest of the reduced polynomial degrees
over all components of the state. Finally, because the Radau collocation method requires at least
one collocation point in each mesh interval, the polynomial approximation cannot be reduced to

a constant but can only be reduced to a linear function in each mesh interval.

4.3.5 Merging Mesh Intervals

The second manner in which the mesh size can be reduced is by merging two adjacent mesh
intervals into a single mesh interval. Before testing whether two subintervals can be merged, the
highest powers in the polynomial approximation are eliminated when possible using the process
described in Section 4.3.4. Next, two mesh intervals are joined into a single interval when the
polynomials on the adjacent subintervals are roughly the same. First note that if N, # Nj, then
mesh intervals Sy1 = [T}, Ti+1] and Sy, = [T}—1, T;] cannot be merged because the degree of the
polynomials in each mesh interval are different. The test for deciding when two intervals can
be merged is the following: If the polynomial on the larger interval is extended into the smaller
interval and if the pointwise difference between the original polynomial on the small interval
and the extension from the large interval is at most ¢, the state accuracy tolerance, then the mesh
intervals S;, and Sy41 are merged to form a single interval.

By continuity, the polynomials on S, and Sy, are equal at 7}, the point where the intervals
join. Typically, the difference between the original polynomial on the small interval and the
extension from the large interval is largest at the end point, either T},_; or Tj,. If this difference is

greater than ¢, then the intervals should not be joined. On the other hand, if the difference is less
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than ¢, then it is necessary to examine the polynomial difference over the entire smaller interval.
It is possible to approximate the pointwise difference between the polynomials by evaluating
the polynomials at more points on the smaller interval. An alternative to this approach, which
is now described, is to derive an upper bound for this difference that is valid over the entire
interval.

From Eq. (37) it is seen that the midpoint and mesh half-width of mesh interval S, are dif-
ferent from the midpoint and mesh half-width of mesh interval S;1;. Consequently, using the
representation in Eq. (37), it is difficult to bound the difference between the polynomial approx-
imations in Sy and Sj11. In order to bound the difference between these two polynomials, it is
convenient to expand these two polynomials about the junction, 7}, between the mesh intervals
S and Sj;11. These expansions are obtained by expressing the Lagrange basis in Eq. (32) in terms

of the following two power series using the points 41 and —1:

Ny,

(s) = (s = 1)a?, (39)
.

G(s) =D (s+1) Lty (40)

1=0
The representations of the Lagrange polynomials given in Egs. (39) and (40) can then be evalu-
ated in an analogous manner to the approach used to compute the coefficients in Eq. (33). Fur-
thermore, combining Eq. (32) with Eq. (39) in mesh interval S, and with Eq. (40) in mesh interval
Sk11, the i'" component of the state approximations Y*)(7) and Y**+Y(7) in mesh intervals S,

and Sy, are given, respectively, as

Ny, - T Ni+1
k — 1k
YO = P ( ) =3 vyal, (41)
=0 j=1

l

Ny, _— T Ni+1
Yi(k+l)(7) _ chlk—l-l ( k}) ’ k+1 Z }/w l‘;c—‘rl ) (42)

h
I—0 k+1

The representations of Yi(k) (1) and Y;(kH)(T) in Egs. (41) and (42) now differ only in that A
appears in the denominator of Eq. (41) while h;, appears in the denominator of Eq. (42). In
order to unify Egs. (41) and (42) into a form such that the denominators are the same, let i, =

min{hy, hi41}. The representations of the state approximation in mesh intervals S and Sj+1 can
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then be written, respectively, as

T =1 i_l !
y¥(r) = Zb ( ) L = H , @3)

=4l
Y;(k+1)(7_) _ Zb(k+1 ( ) 7 bglkﬂ) :Cl(lkﬂ) [ D, } ‘ (44)

P

Because the powers in both expansions are the same, the difference between the polynomials

Yi(k) (1) and }/i(k—H)(T) is

V) - ¥ Z( ) ()

o k
Then, because |7 — Tj|/hy, < 2 for 7 in the smaller interval, it follows from the triangle inequality

that the polynomial difference has the pointwise bound
max{|Y;?(r) = ,*™(7)|} < Z 2 p — Y| e S, (45)

where S, is the smaller of S; and S;,;. Now the result of Eq. (45) provides an upper bound on
the maximum absolute difference between Y;(k) (1) and Yi(kﬂ) (7). In order to obtain a difference
that can be compared with the mesh refinement accuracy tolerance, however, it is necessary
to scale Eq. (45) appropriately to obtain an upper bound on the maximum relative difference
between the polynomials Y;(k)(T) and Y;(k+1)(7'). The quantities used to normalize each of the
absolute differences ]Yi(k) (1) — Y;(k—l—l)(T” are the values 3;, (: = 1,...,n,) given in Eq. (38) and
which were used in the approach for polynomial reduction as described in Section 4.3.4. Scaling

Eq. (45) by f3; gives the following relative difference between Y, () and Y;**"(7):

1 _
— max{|V;" (r) = ;" (r)]} < — Zle(k) b e S, (i=1,....n,).  (46)

)

Then, if
1 & :
EZQl’bz(lk)_bglk+l)’ <€ TES (i:17"'7ny)7 (47)
L =0
for all components of the state i € [1, ..., n,| (Where we recall that € is the mesh refinement accu-

racy tolerance), the mesh intervals S;, and Sy4; are merged into a single mesh interval. Finally;, it
is noted that §;, and ;11 cannot be merged if Eq. (47) is violated for any component of the state

ie[l,...,nyl.
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4.3.6 Mesh Refinement Method

The mesh refinement method described in this paper is summarized in the following steps
shown below.

I. Supply an initial mesh that consists of K mesh intervals Sy, = [T}—1,T%), k = 1,..., K, with
N}, collocation points on each interval.

II. Solve the NLP of Egs. (13)-(16) on the initial mesh.

III. If the maximum relative error in all mesh intervals is less than the mesh refinement accuracy
tolerance, ¢, then terminate.

IV. Generate a second mesh as follows:

(i) Compute the maximum relative error given by Eq. (21).

(ii) In every mesh interval where the maximum relative error of Eq. (21) is greater than
the mesh refinement accuracy tolerance, ¢, add three collocation points in the mesh
interval.

(iii) In every mesh interval where the maximum relative error of Eq. (21) is less than than
the mesh refinement accuracy tolerance, ¢, use the mesh size reduction approaches
given in Sections 4.3.4 and 4.3.5 to decrease the degree of the approximating polyno-
mial or merge mesh intervals where possible.

For every mesh after the second mesh, employ the following steps.

V. Repeat the following steps until the mesh refinement accuracy tolerance ¢ is satisfied in
every mesh interval S;, (k =1,..., K) or a specified maximum number of mesh refinement
iterations is reached:

(i) Solve the problem on the current mesh and estimate the maximum relative error e

in each mesh interval.

(ii) Increase or decrease the size of the mesh using steps (a)—(c) below.

(a) For every mesh interval k € [1,..., K| where elnle > ¢, estimate the ratio R;; for ev-

ery component of the state using the approach in Section 4.3.1. If R;; > R (where R
is a threshold of significance of the ratio of second derivatives) for any component
of the state, then divide the mesh interval into subintervals using the approach in
Section 4.3.2. Otherwise, increase the degree of the polynomial approximation in

mesh interval k € [1,. .., K] using the approach in Section 4.3.3.

(b) For every mesh interval k € [1,..., K] where et < ¢, determine if the number of

collocation points in the mesh interval can be reduced using the the approach of
Section 4.3.4.
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(c) For every pair of adjacent mesh intervals £ € [1,...,K]and k+ 1 € [1,..., K]
where egfgx < e and eI(I’f;;l) < ¢, determine if these mesh intervals can be combined
using the approach of Section 4.3.5.

(iii) Construct the new mesh, interpolate the solution from the previous mesh to this new
mesh, and go to Step IV(i).

A schematic of the method is shown in Fig. 1.
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Figure 1: Schematic of hp Mesh Refinement Method.
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5 Examples

In this section the mesh refinement method described in Section 4 is applied to two examples
taken from the open literature. The first example is the robot arm optimal control problem taken
from Ref. [42]. This example demonstrates the ability of the mesh refinement method to accu-
rately determine regions of nonsmoothness in the problem on a problem whose solution con-
tains multiple control discontinuities. The second example is the hyper-sensitive optimal con-
trol problem taken from Ref. [43]. This second example demonstrates the ability of the mesh
refinement method to reduce the size of the mesh by eliminating unneeded mesh points and
collocation points.

The following terminology is used in the examples. First, the method developed in this
paper is called an hp method while the method of Ref. [23] (used for comparison) is called a ph
method. Next, the notation ph-(NVyin, Nmax) refers to a variant of the aforementioned ph method
where the number of collocation points in a mesh interval is allowed to vary between N,,;, and
Nmax. Furthermore, the quantity M denotes the number of the mesh refinement, where M = 0
corresponds to the initial mesh, and the quantities N and K denote the total number of LGR
collocation points and the number of mesh intervals, respectively. Finally, it is noted that the Ap
method will maintain at least two collocation points in a mesh interval and does not require that
an upper limit on the number of collocation points be specified.

All results shown in this paper were obtained using the MATLAB optimal control software
GPOPS — II [44] using the NLP solver SNOPT [1] using an optimality tolerance of 107*° and a
feasibility tolerance of 2 x 107°. All first derivatives for the NLP solver were obtained using
the MATLAB automatic differentiation tool AdiGator [45]. In all results a mesh refinement accu-
racy tolerance e = 10~° was used with an initial mesh consisting of ten uniformly-spaced mesh
intervals and the four collocation points per mesh interval, a second derivative ratio threshold
R = 1.2 (which is the same value used in Ref. 46), and a maximum number of collocation points
Nax = 14 for the hp method. Furthermore, the initial guess for all examples is a straight line
for variables with boundary conditions at both endpoints and is a constant for variables with
boundary conditions at only one endpoint. All computations were performed on a 2.5 GHz Intel
Core i7 MacBook Pro running MAC OS-X version 10.8.5 (Mountain Lion) with 16GB 1333MHz
DDR3 of RAM and MATLAB Version R2012b (build 8.0.0.783). The central processing unit (CPU)
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times reported in this paper are ten-run averages of the execution time and exclude the time re-
quired to solve the NLP on the first mesh (because for any example the CPU time required to
solve the problem on the initial guess is the same for any method and, thus, adds a constant to

the total CPU time).

Example 1

Consider the following minimum time reorientation of a robot arm taken from Ref. [42]. The

objective is to minimize the cost functional
J =1 (48)
subject to the dynamic constraints

ho= Y, Y = w/L,
Us = Yo , Yo = ug/ly, (49)
Us = Y6 , Yo = Us/[@

the control inequality constraints

—1<u(t) <1, (i=1,2,3), (50)
and the boundary conditions
v1(0) =vi0 , w(ty) =iy,
yg(()) =%Y20 y?(tf) = Yaf,
O = 5 t = )
y3(0) = ys0 ys( f) Yaf (51)
ys(0) = yao , yalty) = vay,
y5(0) =Ys0 ?J5(tf) = Ysf,
¥6(0) =yeo , Ys(ty) = yer,
where
I — 3 3 I — 3 3
o o) ) o () ) -
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and
o = 9/2 , wmy = 9/2,

Yoo = 0 y Yof = 07

=0 , = 2m/3,
Y30 Ysf / (53)
Yo = 0 y Yap = 07

yso = T4, ysp = T/4,

Yo = 0 . Yer = O.
It is known for this problem that the optimal control has five discontinuities at ¢ ~ (2.286, 2.827,
4.570, 6.385, 6.855). Figures. 2a—2c show the three components of the optimal control obtained
by solving the optimal control problem of Egs. (48)—(51) where these control discontinuities are
clearly seen. Next, Fig. 3a shows the evolution of the mesh points for this example where it is
seen that the second derivative ratio, R, is greater than the threshold R =12in segments that
contain four of the five control discontinuities, while the fifth (middle) discontinuity is already
accurately located due to the fact that a mesh point is located at ¢ ~ 4.570. Furthermore, it is seen
that the mesh continues to be refined only in neighborhoods of the discontinuities because the
solution is smooth outside of these small segments. Thus, the error outside of the neighborhoods
of the discontinuities is reduced by increasing the degree of the polynomial approximation and
not by dividing mesh intervals. Moreover, it is seen that the mesh quickly progresses to a point
where the accuracy tolerance is satisfied and stops after three () = 3) mesh refinements.

Now, in order to demonstrate that the hp method correctly identifies all of the discontinuities
even when none of the initial mesh points lie close to a discontinuity, consider now the hp mesh
refinement using an initial mesh that consists of nine equally spaced mesh intervals. The mesh
history for this initial mesh is shown in Fig. 3e. As alluded to earlier, this alternate initial mesh
does contain a mesh point that lies close to a discontinuity. As the mesh refinement progresses
from this initial mesh it is seen in Fig. 3e that the mesh interval S = [4, 5] is found to be nons-
mooth (R > R) on the second mesh (M = 1) and the hp method divides this mesh interval into
two equally spaced mesh intervals in order to meet the accuracy tolerance. Furthermore, as with
the initial ten-interval mesh, it is seen for the initial nine-interval mesh that the hp method adds
mesh intervals that either closely surround or lie at the location of the five discontinuities and
adds very few mesh points anywhere else on the interval [0, ¢;].

The hp mesh refinement method is now compared against various 2 methods and the pre-
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viously developed ph mesh refinement method of Ref. [23]. First, it is seen from Fig. 3f that
the CPU time required to solve the problem grows as the product of the number of collocation
points and the number of mesh refinements, N A/. In other words, as one might expect, the CPU
time increases due to an increase in either the size of the mesh or an increase in the number of
mesh refinement iterations required to meet the mesh refinement accuracy tolerance. An alter-
nate view of this same trend in the CPU time is reflected in Table 1. Comparing Fig. 3f and Table
1, it is seen that the CPU time required by the hp method lies in the lower left-hand corner of the
data shown in Fig. 3f. Next, Figs. 3c-3d show the mesh refinement history for both the hp and
the ph — (3, 8) method (where the ph — (3, 8) method is the best performing of the ph methods on
this example). First, it is seen that the ph — (3, 8) method introduces more mesh intervals during
the first few mesh refinements when compared with the ~p method. Furthermore, the ph — (3, 8)
method takes one more mesh refinement to meet the accuracy tolerance and the mesh points
are less concentrated near the discontinuities when compared with the hp method. Finally, Ta-
ble 1 that, while the total number of collocation points using the hp method is slightly larger
using the hp method than it is for most of the ph methods, the hp method meets the mesh re-
finement accuracy tolerance in many fewer mesh refinements when compared with most of the
ph methods. Finally, it is seen that the number of collocation points required by the hp method
is significantly less than the number of collocation points required by either the h —2 or h — 3
methods and is comparable in size to the mesh produced by the i — 4 method. It is noted, how-
ever, that the i — 4 method is still less computationally efficient than the hp method. In addition,
the hp mesh refinement method of this paper is compared with the mesh refinement method
used in the Sparse Optimization Suite (SOS) [47]. It is noted that 128 grid points and six mesh
refinement iterations were required to solve the problem using (SOS) to meet a relative error
accuracy tolerance e = 107%. Thus, the final SOS grid is approximately 1.5 times larger than the
final mesh obtained using the method of this paper while SOS required approximately twice the
number mesh iterations when compared with the method of this paper. Finally, it is noted that
the SOS computation times are not compared with those obtained in this research because the
SOS NLP solver is different from SNOPT (used in this research), SOS is written in FORTRAN 95
(whereas the work of this research was performed using MATLAB), and the machine on which
SOS was used to perform the computations is completely different from the machine on which

the computations in this research were performed.
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Table 1: Mesh Refinement Results for Example 1 Using hp and Various ph—(Npin, Nimax) Methods.

| Method | Nuin | Nmax | CPUTime(s) [ N [ K | M |

[ | - ] 14 ] 0.15 | 87 [15] 3 |
h 2 2 0.29 170 | 81 | 3
h 3 3 0.26 100 | 32 | 4
h 4 4 0.24 80 |20 | 4
ph 3 8 0.19 78 |18 | 4
ph 3 10 0.42 76 |19 | 6
ph 3 12 0.57 88 22| 7
ph 3 14 0.58 84 | 18 | 9
ph 4 8 0.27 8 |18 | 4
oh i [ 10 0.50 82 16| 6
ph 4 12 0.42 84 |19 | 6
ph 4 14 0.52 82 |16 | 8
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Example 2

Consider the following hyper-sensitive optimal control problem taken from Refs. [23] and [43].

Minimize the cost functional

ty
J = %/ (y? + u®)dt (54)
0
subject to the dynamic constraint
y=-ytu (55)
and the boundary conditions
0) = 1.5,
y(0) (56)
yty) = 1,

where ¢ is fixed. The exact solution to the optimal control problem of Egs. (54)—(56) is

- , - . (57)

y*(t) 1 1 eV ¢ 1 1.5e V2 — 1
u*(t) 1+v2 1-v2 e~tV2¢, Co e V2 —elsV2 | 1.5¢trV2

The exact solution for ¢; = 10000 is shown in Figs. 4a and 4b, while Figs. 4c and4d shows the
state in the initial decay segment ¢ € [0, 50] and in the terminal growth segment ¢ € [9950, 10000].
It is seen that the solution has an initial rapid decay segment followed by a long constant middle
segment and a rapid terminal growth segment. Next, Fig. 5a shows the mesh point history along
with the regions where R > R. Two key features of the hp method emerge from this example.
First, on the early meshes it is found that the hp method correctly assesses that the solution
is much less smooth (R > R) near the initial and terminal time, while the solution is smooth
(R < R) in the long constant middle segment. Next, the mesh interval merging procedure
works well in that the hp method drastically reduces the size of the mesh in the middle constant
segment while retaining the mesh points in the initial and terminal segments. Specifically, it is
seen from Fig. 5a that, upon reaching the 5" mesh refinement (that is, M = 5), the collocation
points are concentrated in extremely small segments near t = 0 and ¢ = ¢;.

The hp mesh refinement method is now compared against various h methods and the pre-
viously developed ph mesh refinement method of Ref. [23]. Figures 5a-5d show the mesh re-
tinement history for both the hp and the h — 3 method (where the i — 3 is the best performing
of the methods other than the hp method on this example). It is seen from Figs. 5c and 5d that

the h — 3 improves accuracy by increasing significantly the number of collocation points and
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Figure 4: State Solution Near ¢ = 0 and ¢t = t; for Example 2 with ¢; = 10000 Using the hp
Method.
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the number of mesh intervals in the initial decay segment whereas the hp method improves ac-
curacy by reducing the mesh size in these segments and concentrating the mesh points only in
small segments near ¢t = 0 and ¢ = ¢;. Next, Tables 2a—2c provides a comparison between the hp
and h methods for increasing values of t;. First, it is seen that the mesh size using the hp method
is much smaller than either the h or the ph methods for all values of ¢;. Next, it is seen that the
hp mesh size remains the same as ¢; increases, while the h and ph mesh sizes grow significantly
as ty increases. In fact, the difference in the computation times for different values of ¢; using
the hp method is due mostly to the increase in the number of mesh refinement iterations (where
M = (5,6,7) for t; = (10000, 100000, 1000000), respectively). More importantly, the gap between
the hp computation time and the (ph, h) computation time grows significantly as ¢, increases.
The slow growth in computation time using the ~Ap method is also seen in Tables 2a-2c and in
Fig. 5e where the hp computation times are (4.92,12.84,18.68) s for ¢; = (10000, 100000, 1000000),
respectively. The computation times using using the i and ph methods, however, change by
almost two orders of magnitude as ¢ increases from 10000 to 1000000. Finally, Table 2d provides
a comparison between the hp mesh refinement method of this paper and the mesh refinement
used in the optimal control software Sparse Optimization Suite (SOS). It is seen for ¢; = 10000 that
the final SOS mesh is three times as large as the mesh obtained using the hp method. Further-
more, for t; = 100000 and ¢t = 1000000 the SOS meshes are approximately 5 and 22 times larger
than the hp meshes.
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Table 2: Mesh Refinement Results for Example 2 Using hp and Various ph—(Npin, Nimax) Methods.

(a) t; = 10000.

(b) ¢ = 100000.

| Method | Nuin | Nmax | CPUTime(s) [ N [ K [ M | | Method | Nuin | Nmax | CPUTime(s) [ N [ K [ M |
] hp \ - \ 14 \ 492 \ 91 \ 15 \ 5 \ ] hp \ - \ 14 \ 12.84 \ 91 \ 17 \ 6 \
h 2 2 7.69 638 | 315 | 5 h 2 2 58.10 732 1 362 | 6
h 3 3 7.55 421 | 139 | 6 h 3 3 42.07 508 | 168 | 8
h 4 4 10.85 380 | 95 | 7 h 4 4 26.34 452 | 113 | 9
ph 3 8 12.98 371 | 94 | 6 ph 3 8 46.03 456 | 121 | 7
ph 3 10 11.32 348 | 77 | 5 ph 3 10 37.49 431 | 101 | 7
ph 3 12 10.33 343 | 59 | 5 ph 3 12 34.95 418 | 80 | 6
ph 3 14 10.09 294 | 39 | 4 ph 3 14 46.66 385 | 56 | 6
ph 4 8 8.85 324 | 66 | 6 ph 4 8 32.77 397 | 83 | 8
ph 4 10 9.30 311 | 56 | 6 ph 4 10 34.79 371 | 69 | 7
ph 4 12 7.92 200 | 43 | 5 ph 4 12 27.59 356 | 49 | 8
ph 4 14 10.44 304 | 39 | 7 ph 4 14 26.53 357 | 48 | 8
(c) ty = 1000000. (d) SOS Mesh Refinement Summary.
[ Method | Nuin | Nmax | CPUTime(s) [ N [ K | M | [ty [ Noin | Nmax | CPUTime(s) | N [ K [ M|
] hp \ - \ 14 \ 18.68 \ 92 \ 17 \ 7 \ 10000 - - - 313 | - | 11
h 2 2 260.31 814 [ 401 [ 7 100000 - - - 609 | - |13
h 3 3 95.02 593 [ 196 | 10 1000000 | - - - 2284 | - | 15
h 4 4 109.37 568 | 142 | 10
ph 3 8 115.56 532 | 144 | 8
ph 3 10 103.54 517 | 129 | 9
ph 3 12 77.63 492 | 106 | 7
ph 3 14 67.04 450 | 70 | 7
ph 4 8 106.30 476 | 102 | 9
ph 4 10 79.74 461 | 90 | 9
ph 4 12 76.42 436 | 67 | 8
ph 4 14 82.06 416 | 57 | 9
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6 Discussion

Each of the examples illustrates different features of the hp mesh refinement method. The first
example demonstrates the ability of the method to accurately determine locations of disconti-
nuities in the solution by predicting correctly the segments where the solution is not smooth.
The second example highlights the ability of the hp method to significantly reduce the size of
the mesh by eliminating collocation points and merging mesh intervals in regions where the
solution does not change appreciably and shows that the method concentrates the collocation
points in the region where the solution changes rapidly. In contrast, the ph method of Ref. [23]
does not allow for mesh size reduction and the mesh can only grow to satisfy the accuracy crite-
rion. It is important to note that the performance of the ph method depends upon the choice of
the parameters N, and Ny« while the performance of the hp method depends more strongly
upon the choice of R and more weakly upon the choice of N, (because the maximum number
of collocation points is attained only in rare cases). Furthermore, the numerical results indicate
that, for an appropriate choice of R, the hp method can be more computationally efficient than
the ph method for almost any choice of N, and N,.«. Finally, it is noted that, as with any mesh

refinement method, the performance of the ~p method depends upon the initial mesh.

7 Conclusions

A variable-order adaptive mesh refinement method for solving optimal control problems has
been developed. The method has the ability to both increase and decrease the mesh size. The
mesh refinement is guided by a previously derived convergence rate. Mesh interval refinement
is performed in regions where the solution is nonsmooth, while the polynomial degree is in-
creased in regions where the solution is smooth. Furthermore, the size of the mesh can be de-
creased either by dropping the negligible terms in a power series representation of the state or
by combining mesh intervals that share the same polynomial approximation. The method is
described in detail and applied successfully to two examples from the open literature. The re-
sults obtained in this research show that the method outperforms fixed-order methods and a

previously developed variable-order method.
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