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Abstract

A state-defect constraint pairing graph coarsening method is described for improving compu-

tational efficiency during the numerical factorization of large sparse Karush-Kuhn-Tucker matri-

ces that arise from the discretization of optimal control problems via an Legendre-Gauss-Radau

orthogonal collocation method. The method takes advantage of the particular sparse struc-

ture of the Karush-Kuhn-Tucker matrix that arises from the orthogonal collocation method.

The state-defect constraint pairing graph coarsening method pairs each component of the state

with its corresponding defect constraint and forces paired rows to be adjacent in the reordered

Karush-Kuhn-Tucker matrix. Aggregate state-defect constraint pairing results are presented

using a wide variety of benchmark optimal control problems where it is found that the proposed

state-defect constraint pairing graph coarsening method significantly reduces both the number

of delayed pivots and the number of floating point operations and increases the computational

efficiency by performing more floating point operations per unit time. It is then shown that the

state-defect constraint pairing graph coarsening method is less effective on Karush-Kuhn-Tucker

matrices arising from Legendre-Gauss-Radau collocation when the optimal control problem con-

tains state and control equality path constraints because such matrices may have delayed pivots

that correspond to both defect and path constraints. An alternate graph coarsening method

that employs maximal matching is then used to attempt to further reduce the number of delayed

pivots. It is found, however, that this alternate graph coarsening method provides no further

advantage over the state-defect constraint pairing graph coarsening method.

1 Introduction

Over the past two decades, direct collocation methods have become popular in the numerical solution

of nonlinear optimal control problems. In a direct collocation method, the state and control are
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discretized at a set of appropriately chosen points in the interval of interest. The continuous-

time optimal control problem is then transcribed to a large sparse finite-dimensional nonlinear

programming problem (NLP) and the NLP is solved using a well known NLP solver.1,2 While all

NLPs arising from direct collocation are sparse, every discretization method has a unique sparse

structure that can differ significantly from other discretization methods. In particular, this sparse

structure manifests itself in a sparse symmetric indefinite Karush-Kuhn-Tucker (KKT) linear system

that needs to be solved repeatedly as the NLP is being solved. Because the largest portion of time

required to solve the NLP is the time required to solve the KKT system, it is essential that the KKT

system be solved as efficiently as possible to reduce the computation time required to solve the NLP.

Consequently, a great deal of work has been done on the development of robust and efficient sparse

symmetric indefinite linear solvers and has led to well-known solvers including MA47,3 MA57,4

Mumps,5 and Pardiso.6

In recent years a particular class of direct collocation methods that has received a great deal

of attention is the class of Gaussian quadrature orthogonal collocation methods.7–25 In a Gaussian

quadrature collocation method, the time domain is divided into a mesh and the state is approxi-

mated in each mesh interval using Lagrange polynomials where the support points of the Lagrange

polynomials are chosen to be points associated with a Gaussian quadrature and a noncollocated

end point. The order of the approximation in each interval can then be different from the order in

every other interval, thus leading to a variable-order method. As it turns out, Gaussian quadrature

orthogonal collocation methods have a great deal of structure that can be exploited to improve the

computational efficiency with which the NLP is solved. A key aspect of the structure of a Gaussian

quadrature method is the structure of the KKT matrix itself. In this paper the previously developed

Legendre-Gauss-Radau (LGR) orthogonal collocation method19–22,24,25 is used as the basis for solv-

ing a continuous optimal control problem. While the aforementioned linear solvers take advantage

of the more generic fact that all KKT matrices are symmetric, none of these linear solvers take

advantage of the particular sparse structure of the KKT matrices that arise from LGR orthogonal

collocation.

The objective of this research is to develop a method that improves the computational efficiency

during the solution of KKT systems arising from the LGR collocation method. As it turns out,

this objective can be achieved by performing a graph coarsening method that utilizes the unique

sparsity pattern of the KKT systems that arise from LGR collocation. Because graph coarsening

methods in the literature are performed as a step in graph partitioning, graph coarsening methods

are discussed after a brief description of graph partitioning methods. It is noted that, with minor
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modifications, an approach similar to state-defect constraint pairing graph coarsening can be applied

to any collocation method that has a similar block structure (for example, the Legendre-Gauss11

collocation method).

Graph partitioning methods compute a fill reducing ordering which leads to a high degree of

concurrency in the factorization phase of parallel direct methods or decompose matrices into smaller

systems of approximately the same size and solve these smaller systems in parallel. There are three

approaches to graph partitioning:26 spectral partitioning27,28 (where the eigenvectors of the graphs

are used to find the partitioning ), geometric partitioning29,30 (where the geometrical character-

ization of the graphs is used to find a small subset of vertices whose removal divides the rest of

the graph into two disconnected pieces of approximately equal size), and multilevel (k-way) parti-

tioning31–34 (where a sequence of successively smaller hypergraphs is used to find the partitioning).

One of the steps of a multilevel (k-way) partitioning method is graph coarsening. Graph coarsening

methods fall into two categories: algebraic multigrid (AMG)-based and matching-based coarsen-

ing methods.The AMG-based graph coarsening method is beyond the scope of this research. For

a detailed explanation of AMG-based coarsening methods see Ref. 35. In matching-based graph

coarsening coarser graphs are obtained by collapsing pair of vertices and their edges. The goal of the

matching-based graph coarsening is obtaining the coarsest graph possible by matching (collapsing)

as many vertices as possible. This goal can be achieved by performing a maximal matching algo-

rithm. There are various maximal matching algorithms with different matching criteria. Random

matching, heavy edge matching, and light edge matching are some examples of maximal matching

algorithms.26

While the solution of general large-sparse KKT systems has received a great deal of attention,

significantly less attention has been paid to the development of tailored solution methods for KKT

systems arising from LGR collocation. One particular study of KKT systems arising from LGR

collocation is that found in Ref. 36 where a decomposition strategy is presented that exploits the

structure of the KKT systems in order to compute the necessary linear algebra operations on

multiple processors. In Ref. 36 it is shown that the proposed method has the potential for significant

speedup for problems with few states and many algebraics. Although both this paper and Ref. 36

focus on increasing computational efficiency during the solution of KKT systems arising from LGR

collocation, the method that is developed in this paper increases the computational efficiency by

decreasing the number of delayed pivots, while the method that is developed in Ref. 36 increases

computational efficiency by solving KKT systems in parallel.

In this paper a new state-defect constraint pairing graph coarsening method is described for im-
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proving computational efficiency during the numerical factorization of large sparse KKT matrices

that arise from the discretization of optimal control problems via LGR collocation. The purpose

of this graph coarsening is to find a pivot pre-ordering that reduces the number of delayed pivots

that occur during numerical factorization. In this new method, each state row is paired with its

corresponding defect constraint row and paired rows are forced to be adjacent in the reordered KKT

matrix. Aggregate state-defect constraint pairing results are presented using a wide variety of bench-

mark optimal control problems where it is found that the proposed state-defect constraint pairing

method significantly reduces both the number of delayed pivots and the number of floating point

operations and increases the computational efficiency by performing more floating point operations

per unit time. Furthermore, it is found that the state-defect constraint pairing graph coarsening

method is less effective when the continuous optimal control problem contains state and control

equality path constraints because the corresponding KKT matrices of the LGR collocation method

may have delayed pivots due to both defect and path constraints. In order to attempt further

reduce the number of delayed pivots beyond that of the state-defect constraint pairing graph coars-

ening method, an alternate graph coarsening method is described. It is found, however, that this

alternate graph coarsening method provides no further advantage over the state-defect constraint

pairing graph coarsening method.

This paper is organized as follows. In Section 2 a general single-phase optimal control problem

is described. In Section 3 this optimal control problem is transcribed to an NLP using the afore-

mentioned LGR collocation method. In Section 4 the phases of a general purpose sparse linear

solver are described and details are provided on the analysis and numerical factorization phases

of an off-the-shelf sparse linear solver MA57.4 In Section 5 the properties of the KKT matrices

arising from LGR collocation and general trends in delayed pivots that arise during the numerical

factorization of KKT matrices arising from LGR collocation are discussed. In Section 6 the state-

defect constraint pairing graph coarsening method is described. In Section 7 the benefits of the

state-defect constraint graph coarsening method are demonstrated on a wide variety of benchmark

optimal control problems. Additionally, in Section 8 a discussion is given on problems with state

and control equality path constraints and an attempt is made to improve upon the state-defect

constraint pairing graph coarsening method via an alternate graph coarsening method. Finally, in

Section 9 conclusions are provided on the research.
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2 Continuous Optimal Control Problem

Without loss of generality, consider the following one-phase continuous optimal control problem

stated in a form similar to that given in Ref. 23 as follows. Determine the state, y(τ) ∈ R
ny , and

the control, u(τ) ∈ R
nu , on τ ∈ [−1,+1] that minimize the cost functional

J = φ(y(−1), t0,y(+1), tf ,q) (1)

subject to dynamic constraints

ẏ(t)−
tf − t0

2
a(y(τ),u(τ)) = 0, (2)

the algebraic path constraints

cmin ≤ c(y(τ),u(τ)) ≤ cmax, (3)

the integral constraints

qi −
tf − t0

2

∫ 1

−1
Qi(y(τ),u(τ), t)dτ = 0, (i = 1, . . . , nq), (4)

and the event constraints

bmin ≤ b(y(−1), t0,y(1), tf ,q) ≤ bmax. (5)

While Eqs. (1)–(5) describe a one-phase optimal control problem, the optimal control problem of

Eqs. (1)–(5) can be extended to multiple phases with minor modifications (see Ref. 23 for details).

Suppose now that the interval τ ∈ [−1,+1] is divided into a mesh consisting of K mesh intervals

[Tk−1, Tk], k = 1, . . . ,K, where (T0, . . . , TK) are the mesh points. The mesh points have the property

that −1 = T0 < T1 < T2 < · · · < TK = Tf = +1. Next, let y(k)(τ) and u(k)(τ) be the state and

control in mesh interval k. The optimal control problem of Eqs. (1)–(5) can then be written as

follows. First, the cost functional of Eq. (1) can be written as

J = φ(y(1)(−1), t0,y
(K)(+1), tf ,q), (6)

Next, the dynamic constraints of Eq. (2) in mesh interval k can be written as

dy(k)(τ (k))

dτ (k)
=

tf − t0
2

a(y(k)(τ (k)),u(k)(τ (k)), τ (k); t0, tf ), (k = 1, . . . ,K). (7)

Furthermore, the path constraints of Eq. (3) in interval k are given as

cmin ≤ c(y(k)(τ (k)),u(k)(τ (k)), τ (k); t0, tf ) ≤ cmax, (k = 1, . . . ,K). (8)
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the integral constraints of Eq. (4) are given as

qj −
tf − t0

2

K
∑

k=1

∫ Tk

Tk−1

Qj(y
(k)(τ (k)),u(k)(τ (k)), τ (k); t0, tf ) dτ = 0, (j = 1, . . . , nq, k = 1 . . . ,K).

(9)

Finally, the event constraints of Eq. (5) are given as

bmin ≤ b(y(1)(−1), t0,y
(K)(+1), tf ,q) ≤ bmax, (10)

where

q =











q1
...

qnq











.

Because the state must be continuous at each interior mesh point, it is required that the condition

y(k)(Tk) = y(k+1)(Tk) is satisfied at the interior mesh points (T1, . . . , TK−1).

3 Legendre-Gauss-Radau Orthogonal Collocation Method

In this section, the continuous optimal control problem given in Section 2 is approximated by a

finite-dimensional nonlinear programming problem (NLP) using the previously developed Legendre-

Gauss-Radau (LGR) orthogonal collocation method.19–22,24,25 In the LGR collocation method the

state of continuous optimal control problem is approximated in each mesh interval k ∈ [1, ...,K] as

y(k)(τ) ≈ Y(k)(τ) =

Nk+1
∑

j=1

YjLj(τ), L
(k)
j (τ) =

Nk+1
∏

l=1,l 6=j

τ − τ
(k)
l

τ
(k)
j − τ

(k)
l

, (11)

where L
(k)
j (τ), (j = 1, . . . , Nk+1) is a basis of Lagrange polynomials, Nk is the number of Legendre-

Gauss-Radau collocation points in mesh interval k, Nk +1 is a noncollocated point. The derivative

of the state approximation is then given as

dY(k)(τ)

dτ
=

Nk+1
∑

j=1

Y
(k)
j

dL
(k)
j (τ)

dτ
. (12)

Furthermore, the cost functional of Eq. (6) is approximated by the following cost function:

J ≈ J = φ(Y
(1)
1 , t0,Y

(K)
NK+1, tf ,q), (13)

where Y
(1)
1 is the approximation of y(T0 = −1), and Y

(K)
NK+1 is the approximation of y(TK =

+1). Next, the dynamic constraints of Eq. (7) are approximated by the following algebraic defect
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constraints that are enforced at the Nk LGR points in mesh interval k,

∆
(k)
i =

Nk+1
∑

j=1

D
(k)
ij Y

(k)
j −

tf − t0
2

a(Y
(k)
i ,U

(k)
i , τ

(k)
i ; t0, tf ) = 0, (i = 1, . . . , Nk), (14)

where

D
(k)
ij =

[

dL
(k)
k (τ)

dτ

]

τ
(k)
i

, (i = 1, . . . , Nk, j = 1, · · · , Nk + 1) (15)

is the Nk × (Nk + 1) Legendre-Gauss-Radau differentiation matrix in mesh interval k ∈ [1, ...,K].

The structure of the LGR differentiation matrix D is shown in Fig. 1. Furthermore, the path
B

lo
c
k

1
B

lo
c
k

2
B

lo
c
k

3
B

lo
c
k

k

Figure 1: Legendre-Gauss-Radau differentiation matrix.

constraints given in Eq. (8) are approximated as

cmin ≤ c(Y
(k)
i ,U

(k)
i , τ

(k)
i ; t0, tf ) ≤ cmax, (i = 1, ..., Nk). (16)

The integral constraints of Eq. (9) are then approximated as

qj −
K
∑

k=1

Nk
∑

i=1

tf − t0
2

w
(k)
i Qj(Y

(k)
i ,U

(k)
i , τ

(k)
i ; t0, tf ) = 0, (i = 1, ..., Nk, j = 1, ..., nq) (17)

where w
(k)
i is the weight that corresponds to ith collocation point in the kth mesh interval. Finally,

the event constraints of Eq. (10) are approximated as

bmin ≤ b(Y
(1)
1 , t0,YNk+1, tf ,q) ≤ bmax, (18)

where continuity in the state at the interior mesh points is enforced with the constraint Y
(k)
Nk+1 =

Y
(k+1)
1 .

The cost function given in Eq. (13) together with the algebraic constraints of Eqs. (14), (16),

(17), and (18) form a nonlinear programming problem (NLP) of the following form. Determine the
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decision vector x ∈ R
n that minimizes the cost function

f(x) (19)

subject to the algebraic constraints

xmin ≤ x ≤ xmax,

gmin ≤ g (x) ≤ gmax.
(20)

The constraint Jacobian and Lagrangian Hessian of the NLP given in Eqs. (19) and (20) are defined,

respectively, as

J =
∂g (x)

∂x
, H =

∂2L

∂x2
, (21)

where L = σf(x) + λ
Tg (x) is the Lagrangian, σ ∈ R and λ ∈ R

m are the Lagrange multipliers

associated with the cost function and the constraints, respectively. The sparsity pattern of the

constraint Jacobian and the Lagrangian Hessian that arise from the NLP associated with the LGR

collocation method are shown in Figs. 2 and 3, respectively. This sparse structure is obtained by

mapping the derivatives of the optimal control problem to the first and second derivatives of the

NLP functions as described in Ref. 37.

Throughout this study, optimal control problems are transcribed into an NLP by a general

purpose MATLAB software GPOPS-II.23 The NLP can then be solved using a wide variety of well

established NLP solvers (for example, SNOPT1 or IPOPT2). While all Newton-based NLP solvers

solve a large KKT system at each NLP iteration, the focus of this paper is on solving a KKT system

arising from a full-Newton NLP solver where the constraint Jacobian and the Lagrangian Hessian

are sparse. The KKT matrix at the iteration k of an NLP is given as follows:

K =





H(k)
[

J(k)
]T

J(k) 0



 (22)

where J(k) and H(k) are the constraint Jacobian and the Lagrangian Hessian at iteration k, re-

spectively. In order to guarantee a descent direction at every NLP iteration, H(k) must be positive

definite on the null space of the constraint Jacobian and the constraint Jacobian has to be full

rank.38 A KKT matrix that satisfies these conditions must have exactly as many positive eigenval-

ues as the number of variables and as many negative eigenvalues as the constraints. Fortunately, it

is not necessary to find eigenvalues of the KKT matrix at every iteration; instead, only the inertia39

of the KKT matrix needs to be monitored. If the inertia of the KKT matrix is not correct in an

iteration, the KKT matrix is modified using a Levenberg parameter.40 The modified KKT matrix
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Figure 2: One-phase differential LGR collocation NLP constraint Jacobian.

is given as follows:

K̃ =





H(k) + τI
[

J(k)
]T

J(k) 0



 , (23)

where I is the identity matrix of proper size and τ is the Levenberg parameter that guarantees a

positive definite reduced modified Lagrangian Hessian, H(k) + τI. The only necessary condition

for the successful state-defect constraint pairing graph coarsening method is a Lagrangian Hessian

with nonzero diagonals. This condition is always satisfied for all second-order Newton-based NLP

methods. Without loss of generality, the NLPs are solved using the open-source NLP solver IPOPT,2

where IPOPT uses an interior-point method with a filter-based line search (details found Ref. 41),

in full Newton (second derivative) mode. At every iteration of IPOPT a large sparse symmetric

indefinite KKT system is solved using the sparse symmetric indefinite linear solver MA574 which is

the default linear solver for IPOPT.
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Figure 3: One-phase differential LGR collocation NLP Lagrangian Hessian.

4 Solution of Sparse Symmetric Indefinite Linear Systems

In this section, the phases of a general-purpose sparse linear solver are given and the multifrontal

methods are described. The first phase of a general-purpose sparse linear solver is the analysis phase.

In this phase, the linear solver permutes the given sparse matrix using a fill-reducing algorithm and

determines the elimination tree structure of the permuted sparse matrix. Moreover, it postorders

the elimination tree to reduce the working storage. Finally, it forecasts the storage needs for the

second phase called numerical factorization phase. In the numerical factorization phase, the linear

solver factorizes the permuted matrix as follows:

PAPT = LDLT, (24)

where P is a permutation matrix and L is a lower triangular matrix. The last phase of a general-

purpose sparse linear solver is the solution phase. In this phase the linear solver solves the factorized

sparse matrix using forward and/or backward substitutions. As stated earlier, in this research,

sparse symmetric indefinite linear systems are solved using the multifrontal linear solver MA57.4

MA57 was chosen for use in this research because it is widely-used (for example, it is the built-
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in solver in MATLAB for the backslash operation x = A\b when A is symmetric, sparse, and

indefinite). While a detailed description of the methods used in MA57 is beyond the scope of

this paper (see Refs. 42–44), the MA57 analysis and numerical factorization phases are briefly

described. In addition to the analysis phase steps of a general-purpose sparse linear solver, MA57

finds frontal matrices using the number of nonzeros in the L matrix given in Eq. (24) together with

the structure of the elimination tree found in the earlier stages of the analysis phase. The basic

idea behind the numerical factorization phase of MA57 is Gaussian elimination, but MA57 does not

perform Gaussian elimination on a large sparse matrix at once. Instead, MA57 performs Gaussian

elimination on small dense frontal matrices. A frontal matrix, F, is given as follows:

F =





F11 F12

FT

12 F22



 , (25)

where the rows and the columns of F11 block correspond to the fully summed entries4 where an

entry is called fully summed when contributions on this entry from every pivot is summed.

The main difference between the solution methods of definite and indefinite systems occurs in

the numerical factorization phase. If the linear system is symmetric indefinite, a pivoting strategy

that preserves the symmetry and prevents the element growth caused by the propagation of the

round-off errors has to be performed during the numerical factorization phase. MA57 examines

the numerical stability of pivots in a frontal matrix using the following pivot threshold test. The

diagonal entry of the row k, akk, is accepted as the 1× 1 pivot if

|a−1
kk |αk ≤ u−1 (26)

is satisfied or Bkk is accepted as the 2× 2 pivot if

|B−1
kk |





βk

βk+i



 ≤





u−1

u−1



 , i > 1 (27)

is satisfied (0 < u < 0.5). The quantities αk, βk and Bkk are given as follows:

αk = max
j≥k+1

|akj |, (28)

βk = max
j≥k+2

|akj | (29)

and

Bkk =





akk ak,k+i

ak+i,k ak+i,k+i



 , i > 1. (30)
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MA57 provides accurate 2× 2 pivoting, with arbitrary interchanges to improve numerical stability.

As a result, MA57 can handle ill-conditioned matrices that other solvers cannot handle (for example,

PARDISO (in the Intel library) only allows for static 2×2 pivoting, which means that it can fail for

very ill-conditioned matrices).

A pivot that does not satisfy the 1 × 1 or the 2 × 2 pivot criteria is called a delayed pivot. A

delayed pivot is passed to its father node to be eliminated later in the factorization phase and the

pivot search moves on to the next diagonal. Delayed pivots increase the fill-in (number of nonzeros

in L), the storage needs of the factorization phase, and number of floating point operations. When

the MA57 analysis phase predicts the storage needs of the numerical factorization phase, it does

not take into account the delayed pivots. Therefore, if there is a large number of delayed pivots,

MA57 may fail due to insufficient memory allocation. In that case, MA57 stops the numerical

factorization phase and reallocates a larger memory. Additionally, MA57 analysis phase forecasts
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Figure 4: Ratio of the number of floating point operations in MA57 numerical factorization phase
to forecast of the number of floating point operations that is obtained in MA57 symbolic analysis
phase, f/f̂ , vs. ratio of the number of delayed pivots to size of matrices, δ/n.

the number of floating point operations that are required in numerical factorization phase, f̂ , without

taking into account the delayed pivots that may occur during the numerical factorization phase.

Figure 4 shows the ratio of actual number of floating point operations that are performed during

the numerical factorization phase, f to f̂ vs. the ratio of the number of delayed pivots, δ, to the size

of the Karush-Kuhn-Tucker matrices that are solved, n. As seen in Fig. 4 when δ/n increases, f/f̂

increases which shows that delayed pivots increase the number of floating point operations. Because
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delayed pivots may cause insufficient memory allocation and increase the number of floating point

operations this research focuses on developing a method that is tailored to decrease the number of

delayed pivots during the numerical factorization of KKT matrices arising from LGR collocation.

5 KKT Matrices Arising from LGR Collocation

In this section, properties of KKT matrices arising from LGR collocation are explained. Then,

general trends in delayed pivots that occur during the numerical factorization of these KKT matrices

are given and possible reasons for these general trends are discussed. Finally, a way to decrease the

number of delayed pivots is proposed.

5.1 Properties of LGR Collocation KKT Matrices

The KKT matrices arising from LGR collocation have a known sparse structure based on the

Lagrangian Hessian and the constraint Jacobian as described in Section 3. Figure 5 shows an

example of the sparsity pattern of a KKT matrix arising from LGR collocation. As seen in Fig. 5, the
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Figure 5: Sparsity pattern of KKT matrices arising from LGR collocation.

Lagrangian Hessian and the off-diagonal part of the constraint Jacobian consist of purely diagonal

blocks. In addition, due to discretization separability,45 computing the constraint Jacobian of the

NLP can be reduced to computing the first derivatives of the continuous optimal control problem

constraints with respect to the continuous optimal control problem variables, while computing

the Lagrangian Hessian of the NLP can be reduced to computing the second derivatives of the
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continuous optimal control problem functions with respect to the continuous optimal control problem

variables.37 As a result of discretization separability each optimal control problem derivative that

is equal to zero corresponds to a zero block in the KKT matrix. Although, Fig. 5 provides an

overestimate of the actual sparsity pattern of a KKT matrix, dense blocks in J and J
T

and the

main diagonal blocks in H [see Eq. (22)], which are represented by black squares in Fig. 5, always

consist of nonzeros in the KKT matrices because of the nonzero differentiation matrix arising from

the differential form of LGR collocation and the Levenberg parameter that guarantees a positive

definite H, respectively. In addition, because KKT matrices arising from LGR collocation method

has discretization separability, throughout this paper the Lagrangian Hessian rows are referred

as the continuous optimal control problem variable rows (such as state or control rows) and the

constraint Jacobian rows are referred as the continuous optimal control problem constraint rows

(such as defect constraint or path constraint rows).

5.2 Properties of Delayed Pivots in LGR Collocation

In this paper, KKT systems of various sizes are solved where the KKT systems arise from the NLP

associated with LGR collocation of optimal control problems that are given in Refs. 45–51. The

following three general trends are observed in most of the delayed pivots that occur during the

numerical factorization of these KKT matrices: (1) most of the delayed pivots correspond to the

defect constraint rows; (2) most of the delayed defect constraint pivots reside in a frontal matrix

with one fully summed row and column; and (3) most of the delayed defect constraints satisfy the

MA57 pivot threshold test when they reside in the same frontal matrix as their corresponding state.

Each of these trends is described in more detail below.

Most Delayed Pivots Correspond to Defect Constraint Rows. As shown in Fig. 6, the ratio of the

delayed pivots that correspond to the defect constraints, δd, to the total number of delayed pivots,

δ, is larger than 0.5 for almost all of the continuous optimal control problems studied. As mentioned

before, delayed pivots do not satisfy either the 1× 1 or the 2× 2 pivot criterion. Because the defect

constraint rows always have zero diagonals, these rows do not satisfy the 1× 1 pivot criterion given

in Eq. (26) unless the fill-in caused by the state and/or control rows is large enough. Although not

every nonzero diagonal is guaranteed to satisfy the 1× 1 pivot criterion, the defect constraint rows

are more likely to fail the 1 × 1 pivot criterion than the state and control rows. Even if a defect

constraint row does not satisfy the 1× 1 pivot criterion, it may form a 2× 2 pivot with the state or

control rows. The second general trend in delayed pivots explains why most of the defect constraint

rows do not satisfy the 2× 2 pivot criterion.
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Figure 6: Base two logarithm of size of KKT matrices, log2(n), vs. ratio of the delayed defect
constraint pivots to the total number of delayed pivots, δd/δ.

Most Delayed Pivots Reside in a Frontal Matrix with One Fully Summed Row and Column. Figure 7

shows base two logarithm of size of KKT matrices, log2(n), vs. the ratio of delayed defect constraint

pivots that belong to a frontal matrix with a single fully summed row and column, δd(single)/δd. As

seen in Fig. 7, the ratio δd(single)/δd is larger than 0.5 for most of the continuous optimal control

problems. For a defect constraint row to be able form a 2× 2 pivot, a frontal matrix must contain

at least two pivots. Therefore a defect constraint row that belongs to a frontal matrix with a single

fully summed row and column cannot form a 2× 2 pivot.

Most Delayed Defect Constraints Satisfy MA57 Pivot Threshold Test When Residing in Same Frontal

Matrix as Corresponding State. Figure 8 compares the ratios of the state-defect constraint pairs that

are in the same frontal matrix during the symbolic factorization, µ̂, and numerical factorization, µ,

to the total number of state-defect constraint pairs, µtotal. Figure 8(a) shows that µ̂/µtotal changes

from 0 to 0.3. On the other hand, Figs. 8(b) shows that µ/µtotal is much larger than µ̂/µtotal which

means that if the state and its corresponding defect constraint are not in the same frontal matrix

during the symbolic factorization, defect constraints get delayed and ultimately satisfy the MA57

pivot threshold test when they are in the same frontal matrix as their corresponding state.

The observations on delayed pivots lead to the conclusion that forcing a state or a control pivot

to be in the same frontal matrix with a defect constraint may increase the possibility of this defect

constraint satisfying the 1 × 1 or the 2 × 2 pivot criterion. The state is a better pair for defect

constraints as compared with the control because the number of defect constraint rows are equal to
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Figure 7: Base two logarithm of size of the KKT matrices, log2(n), vs. ratio of delayed defect
constraint pivots that belong to a frontal matrix with a single fully summed row and column to the
delayed defect constraint pivots, δd(single)/δd.

the number of state rows so there is a state row pair for each defect constraint row. On the other

hand, the number of control rows is not necessarily equal to the number of defect constraint rows.

If the number of control rows is less than the number of defect constraint rows, some of the defect

constraint rows remain without a pair. Additionally, it is not guaranteed that every state or control

row that is in the same frontal matrix with a defect constraint row increases the possibility of this

defect constraint row satisfying the 1 × 1 pivot criterion by filling in its diagonal. As mentioned

before, if the derivative of a dynamic constraint [Eq. (2)] with respect to a continuous optimal

control problem variable is equal to zero, this zero derivative corresponds to a zero block in the

defect constraint Jacobian. Because of this zero block the variable row cannot cause fill-in on the

defect constraint row. Moreover, it is not guaranteed that every defect constraint row can form a

nonsingular 2×2 pivot with every state and control row. On the other hand, because of the nonzero

dense blocks in J and main diagonal blocks in H, every state row causes fill-in on its corresponding

defect constraint row (if the state row is eliminated before its corresponding defect constraint) and

a defect constraint row, together with its corresponding state row, may form a nonsingular 2 × 2

pivot of the following form:




× ×

× 0



 .

Additionally, Fig. 8 shows that most of the delayed defect constraint rows satisfy the MA57 pivot

threshold test while they are in the same frontal matrix with their corresponding state row. Thus, if
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Figure 8: Base two logarithm of size of the KKT matrices, log2(n), vs. ratio of the state-defect
constraint pairs that are in the same frontal matrix during the MA57 symbolic factorization phase
to the total number of state-defect constraint pairs, µ̂/µtotal, and ratio of the state-defect constraint
pairs that are in the same frontal matrix during the MA57 numerical factorization phase to the
total number of state-defect constraint pairs, µ/µtotal.

a defect constraint and its corresponding state are in the same frontal matrix, that defect constraint

is less likely to be delayed. In Section 6 we describe a graph coarsening method that forces state-

defect constraint pairs to be adjacent in the reordered KKT matrix. Although two consecutive

rows are not guaranteed to be in the same frontal matrix during the numerical factorization phase,

forcing state-defect constraint pairs to be consecutive increases the possibility of these pairs being

in the same frontal matrix.

6 State-Defect Constraint Pairing Graph Coarsening

In this section, a state-defect constraint pairing graph coarsening method, SGC method, that is

tailored for KKT matrices arising from LGR collocation is described. The method consists of

four steps: (1) finding the state-defect constraint pairs; (2) obtaining the coarsened matrix by

collapsing the vertices of the state-defect constraint pairs into a multinode; (3) performing a fill-

reducing ordering on the coarsened matrix; and (4) uncoarsening the reordered coarsened matrix.

The state-defect constraint pairs are found using the properties of the continuous optimal control

problem, the number of collocation points, and the known sparsity pattern of KKT matrices resulting

from LGR collocation. The coarsened matrix is obtained by collapsing the vertices of the state-
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defect constraint pairs and representing each pair with a multinode in the coarsened matrix. Each

multinode is the union of the sparsity pattern of the state and defect constraint nodes. It is noted

that the coarsened matrix is smaller and denser than the original matrix. For example, consider a

KKT matrix of size n× n that has k state-defect constraint pairs. The coarsened matrix is then

size of (n− k)× (n− k). The third step is to perform a fill-reducing ordering on the coarsened

matrix. Fill-reducing orderings52–56 improve computational efficiency by maintaining the sparsity

of a matrix after numerical factorization. In this paper, we employ the approximate minimum

degree algorithm of Ref. 57 (one of the most widely used fill-reducing orderings) on the coarsened

matrix. In the uncoarsening step each multinode that consists of a state-defect constraint pair in

the coarsened matrix is projected back to the separate state and defect constraint nodes. As a result

of these four steps, paired rows are forced to be adjacent in the reordered KKT matrix.

(a) Schematic of original matrix (b) Schematic of coarsened matrix

Figure 9: Schematics of original and coarsened matrices.

In order to visualize the graph coarsening step, consider the following example as shown in

Figs. 9 and 10. Figure 9 illustrates the state-defect constraint pairing graph coarsening in matrix

form. In Fig. 9(a), without loss of generality, thick solid vertical lines and horizontal lines show the

columns and rows of a state-defect constraint pair in the original matrix, respectively. As seen in

Fig. 9(b), the state-defect constraint pair in the original matrix is collapsed into one row and one

column in the coarsened matrix. Furthermore, the sparsity pattern of the row and the column in

the coarsened matrix is equal to the the union of the sparsity pattern of the state-defect constraint
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(a) Schematic of original graph
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(b) Schematic of coarsened graph

Figure 10: Schematic of original and coarsened graphs.

pair in the original matrix. Figure 10(a) illustrates the state-defect constraint pair that is shown

in Fig 9(a) in the graph form, while Fig. 10(b) illustrates the multinode that consists of the union

of the state and defect constraint nodes (where the symbols S, C, D, and P represent the state,

control, defect constraint, and path constraint, respectively and the subscripts i, j refer to the ith

component of a variable or constraint at jth collocation point).

7 State-Defect Constraint Pairing Graph Coarsening Results

In this section, the performance of the MA57 numerical factorization phase before and after applying

the state-defect constraint pairing graph coarsening method (SGC method) are compared for sparse

KKT matrices of various sizes that arise from the following ten benchmark optimal control problems.

The first eight of these optimal control problems are taken from Ref. 45 and are given as follows:

the maximum ascent of a one-dimensional sounding rocket (on page 213), the space shuttle reentry

problem (on page 247), the low-thrust orbit transfer problem (on page 265), the range maximization

of a hang glider (on page 282), the space station attitude reorientation problem (on page 293), the

reorientation of an asymmetric rigid body (on page 299), the free flying robot (on page 326), the

tumor anti-angiogenesis problem (on page 348). The ninth of these optimal control problems is the

dynamic soaring problem taken from Ref. 46. The tenth of these optimal control problems is the

orbit-raising problem taken from Ref. 37. KKT matrices that correspond to these ten benchmark

optimal control problems can be found at the University of Florida Matrix Collection58 under the

group name UF-VDOL.

Table 1 provides the terminology used throughout the analysis. Additionally, the KKT matrices
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Table 1: Terminology used to describe results of state-defect constraint pairing graph coarsening
(SGC) method.

µ̂ = Number of state-defect constraint pairs that are in the same frontal matrix
during MA57 symbolic factorization

µtotal = Total number of state-defect constraint pairs
n = Matrix size
δ = Number of delayed pivots
f = Number of floating point operations in MA57 numerical factorization phase
t = Duration of MA57 numerical factorization phase
r = Number of floating point operations per unit time in MA57 numerical factorization phase

nnz(A) = Number of nonzeros in KKT matrices
nnz(L) = Number of nonzeros in L

that are factorized without a graph coarsening method are referred to as the original matrices

and the KKT matrices that are factorized after employing the SGC method are referred to as

the coarsened matrices. The subscript “s” is added to quantities used to denote matrices that

are coarsened via the SGC method in order to distinguish these quantities from the quantities

corresponding to the original matrices. Figure 11 shows the ratio µ̂s/µtotal as a function of n.

Although the SGC method aims to decrease δ by increasing the number of state-defect constraint

pairs that are in the same frontal matrix (thereby increasing µ̂s/µtotal), this method does not

guarantee that every state-defect constraint pair will be in the same frontal matrix. As observed in

Fig. 11, however, the SGC method places almost all of the state-defect constraint pairs in the same

frontal matrix during the symbolic factorization. Figure 12 compares δ with δs. Figure 12(a) shows

that δ varies from 400 to 4000 (without loss of generality, Fig. 12(a) shows the matrices with more

than 400 delayed pivots) and almost all of the delayed pivots correspond to the defect constraint

rows. As seen in Fig. 12(b), the SGC method significantly decreases the number of delayed pivots.

Figure 13 compares the MA57 numerical factorization phase performance of the coarsened matrices

with the MA57 numerical factorization phase performance of the original matrices in terms of f , t,

and r = f/t. Figure 13(a) shows the ratio fs/f as a function of nnz(A)/δ. As seen in Fig. 13(a)

when nnz(A)/δ is less than 50, employing the SGC method almost always decreases f . Next,

Fig. 13(b) shows the ratio ts/t as a function of nnz(A)/δ where, consistent with the flop ratios

shown in Fig. 13(a), employing the SGC method decreases t if nnz(A)/δ < 50. Additionally, the

method decreases t even if fs is greater than f (that is, when nnz(A)/δ > 50 and ts/t < 1). The

reason for the decrease in t is the increase in the computational efficiency (that is, an increase in the

number of floating point operations per unit time that can be performed). Finally, Fig. 13(c) shows
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Figure 11: Base two logarithm of size of KKT matrices, log2(n), vs. ratio of the number of state-
defect constraint pairs that are in the same frontal matrix during the MA57 symbolic factorization
phase to the total number of state-defect constraint pairs, µ̂s/µtotal, after applying the state-defect
constraint pairing graph coarsening method.

rs/r as a function of nnz(A)/δ where performing the method increases r by up to a factor of five.

As a result, the SGC method increases the computational efficiency of the numerical factorization

phase.

8 Problems with State and Control Equality Path Constraints

All of the optimal control problems that were analyzed in Section 7 in terms of the MA57 numerical

factorization phase performance have either no equality path constraints or have only control equal-

ity path constraints. Therefore, KKT matrices arising from these problems have delayed pivots

due primarily to the delayed defect constraints. In this section a discussion is provided regarding

the application of the SGC method to problems with state and control equality path constraints.

Instead of providing a general discussion on how the method applies to problems that have state

and control equality path constraints, in Section 8.1 the performance of the SGC applied is shown

on the kinetic batch reactor problem given on pages 331-336 of Ref. 45. This problem contains six

state components, five control components, and five state and control equality path constraints in

each three phases. In order to meet the specified accuracy tolerance of 10−6, eleven mesh refine-
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Figure 12: Comparison of total delayed pivots, δ, and delayed pivots that correspond to defect
constraints, δd, before applying the state-defect constraint pairing graph coarsening method with
the total delayed pivots, δs, after applying the state-defect constraint pairing graph coarsening
method.

ment iterations were required by GPOPS-II. As the mesh refinement proceeds, the size of the KKT

matrices increases from 2000 to 9000. After describing the performance of the SGC method on this

example, in Section 8.2 an alternate graph coarsening method is described to further reduce the

number of delayed pivots over the SGC method.

8.1 Application of SGC Method

Consider the numerical factorization of KKT matrices arising from the kinetic batch reactor problem

given on pages 331-336 of Ref. 45 after performing the SGC method. Figure 14 shows three key

properties: the nature of the delayed pivots, a comparison of the number of delayed pivots with and

without repetition, and a comparison of number of delayed pivots before and after employing the

SGC method. First, Fig. 14 shows that the delayed pivots correspond to both defect and equality

path constraints. Second, the total number of delayed pivots with and without repetition are shown

in Figs. 14(a) and 14(c). Delayed pivots with repetition gives the number of delayed pivots that

is given as an output in MA57. Every time a delayed pivot (that is, a fully-summed variable that

is passed to its father node in the elimination tree because of pivoting considerations) is passed

further up the elimination tree, MA57 adds that variable to the total number of delayed pivots

again. Furthermore, Figs. 14(a) and 14(c) show that the number of repetitions in the original

matrices is greater than the number of repetitions in the coarsened matrices. Third, Fig. 14 shows
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Figure 13: Ratio of number of nonzeros in KKT matrices to delayed pivots, nnz(A)/δ, vs. ratio of
average floating point operations, fs/f , ratio of average time, ts/t, ratio of average floating point
operations per unit time, rs/r, before and after applying the state-defect constraint pairing graph
coarsening method.

that employing the SGC method decreases δ, but even with this decrease, δ still varies between

approximately 300 and 1200.

Figure 15 compares the MA57 numerical factorization phase performance of the coarsened ma-

trices with the MA57 numerical factorization phase performance of the original matrices in terms

of f , t, and r = f/t. Recall that in Section 7 the same comparison was made on the matrices

that arise from the optimal control problems without any equality path constraints or with only

control equality path constraints. The two main results of this comparison were as follows: when

nnz(A)/δ < 50, employing the SGC method almost always decreases f and the SGC method de-

creases t even if fs is greater than f because the method increases r. The ratio nnz(A)/δ of the

matrices that correspond to the kinetic batch reactor problem varies between 14 and 17, where both
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are less than 50. Therefore, as expected, employing the SGC method decreases f [Fig. 15(a)] and

decreases t [Fig. 15(b)], but interestingly employing the SGC method decreases r [Fig. 15(c)]. In the

kinetic batch reactor example, r decreases because the number of repetitions in the original matrices

is greater than the number of repetitions in the coarsened matrices that also means that the original

matrices pass more delayed pivots further up the tree compared to the coarsened matrices.

8.2 Alternate Graph Coarsening Method

Consider again the numerical factorization of KKT matrices arising from the kinetic batch reactor

problem given on pages 331-336 of Ref. 45. In this section it is attempted to further reduce the

number of delayed pivots that occur during the numerical factorization of KKT matrices for this

problem using an alternate graph coarsening method (AGC method), where the AGC method pairs

defect and equality path constraints with the state and control components via a maximal matching

algorithm.59 In order to distinguish between the SGC and AGC methods, the subscript “a” is used

to denote the AGC method. As shown in Fig. 16, the AGC method significantly decreases δ.

Figure 17(a) shows nnz(La)/nnz(Ls) as a function of nnz(A)/δ. Although employing the AGC

method decreases nnz(L) by decreasing the number of delayed pivots, it increases nnz(L) by altering

the ordering that is chosen by the approximate minimum degree algorithm.57 As seen in Fig. 17(a),

performing the AGC method does not change nnz(L) significantly because trade-off exists between

decreasing the number of delayed pivots and altering the approximate minimum degree ordering.

Figures 17(b)-17(d) compare the MA57 numerical factorization phase performance of the matrices

that are coarsened using the AGC method with the MA57 numerical factorization phase performance

of the matrices that are coarsened using the SGC method in terms of f , t, and r = f/t. As seen

in Figs. 17(b)-17(d), employing the AGC method does not change f , t or r significantly because it

does not change nnz(L) significantly.
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25



n
n
z
(A

)/
δ

fs/f
0.8 1

14

14.5

15

15.5

16

16.5

17

0.75 0.85 0.9 0.95

(a) nnz(A)/δ vs. fs/f

n
n
z
(A

)/
δ

ts/t
0.8 1

14

14.5

15

15.5

16

16.5

17

0.85 0.9 0.95 1.05

(b) nnz(A)/δ vs. ts/t

n
n
z
(A

)/
δ

rs/r

14

14.5

15

15.5

16

16.5

17

0.90.84 0.86 0.88 0.92 0.94 0.96 0.98

(c) nnz(A)/δ vs. rs/r

Figure 15: Ratio of number of nonzeros in KKT matrices to delayed pivots, nnz(A)/δ, vs. ratio of
average floating point operations, fs/f , ratio of average time, ts/t, ratio of average floating point
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coarsening method to example on pages 331-336 of Ref. 45.
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Figure 17: Ratio of number of nonzeros in KKT matrices to delayed pivots, nnz(A)/δ, vs. ratio
of number of nonzeros in L, nnz(La)/nnz(Ls), ratio of average floating point operations, fa/fs,
ratio of average time, ta/ts, ratio of average floating point operations per unit time, ra/rs, after the
alternate graph coarsening method and after the state-defect constraint pairing graph coarsening
method applied to example on pages 331-336 of Ref. 45.
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9 Conclusions

A state-defect constraint pairing graph coarsening method has been described for large sparse KKT

matrices that arise from the discretization of optimal control problems via a Legendre-Gauss-Radau

collocation method. Aggregate results for a wide set of benchmark optimal control problems have

been presented. The results obtained in this study show that the state-defect constraint pairing

graph coarsening method significantly reduces both the number of delayed pivots and the number

of floating point operations and increases the computational efficiency by performing more floating

point operations per unit time. It was also shown that the state-defect constraint pairing graph

coarsening method is less effective when the continuous optimal control problem contains state and

control equality path constraints because such matrices may have delayed pivots that correspond to

both defect and path constraints. In order to further reduce the number of delayed pivots that occur

during the numerical factorization of KKT matrices arising from optimal control problems with state

and control equality path constraints, an alternate graph coarsening method was introduced that

employed a maximal matching algorithm. It was shown that the alternate method significantly

decreases the number of delayed pivots, but this decrease in the number of delayed pivots is offset

by an increase in the number of nonzeros in the factorized matrix that is caused by altering the

ordering that arises from the approximate minimum degree algorithm. Thus, the alternate graph

coarsening method provides no further advantage over the state-defect constraint pairing graph

coarsening method.
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