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SUMMARY

A three-dimensional nonlocal multiscale discrete-continuum model has been developed for modeling
mechanical behavior of granular materials. In the proposed multiscale scheme, we establish an information-
passing coupling between the discrete element method, which explicitly replicates granular motion of
individual particles, and a inite element continuum model, which captures nonlocal overall responses of
the granular assemblies. The resulting multiscale discrete-continuum coupling method retains the simplicity
and eficiency of a continuum-based inite element model, while circumventing mesh pathology in the post-
bifurcation regime by means of staggered nonlocal operator. We demonstrate that the multiscale coupling
scheme is able to capture the plastic dilatancy and pressure-sensitive frictional responses commonly observed
inside dilatant shear bands, without employing a phenomenological plasticity model at a macroscopic level.
In addition, internal variables, such as plastic dilatancy and plastic low direction, are now inferred directly
from granular physics, without introducing unnecessary empirical relations and phenomenology. The simple
shear and the biaxial compression tests are used to analyze the onset and evolution of shear bands in granular
materials and sensitivity to mesh density. The robustness and the accuracy of the proposed multiscale model
are veriied in comparisons with single-scale benchmark discrete element method simulations. Copyright ©
2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

While the macroscopic response of granular materials may appear to be similar to those of continua,

it essentially represents a collective behavior of interacting particles. For example, the rearrange-

ment and crushing of particles, collapse of void space, buckling and splitting of force chains, may

result in path-dependent responses of granular materials at macroscale, such as plastic dilatancy,

nonassociative plastic low and strain localization.

Over the last three decades, computer simulations of granular motion have gained increasing

attention. Several classes of models have been proposed to replicate the behavior of the granular

media including:

(i) discrete approaches that explicitly model the particulate interactions among particle contacts

at the grain scale

(ii) continuum approaches that characterize path-dependent responses with internal variables and

constitutive laws at macroscopic scales, and

(iii) multiscale approaches that concurrently or by means of information-passing that link both (i)

and (ii).
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The continuum approach has been widely used in mining, petroleum, and geotechnical engi-

neering problems to approximate the collective behavior of granular media at the ield scale.

Phenomenological plasticity models that successfully resolve macroscopic behavior of speciic types

of granular materials such as sand, silt, and powder have been extensively reported in the literature

[1–10]. However, if no length scale is introduced in the phenomenological plasticity models, spuri-

ous mesh dependencemay still occur at the post-bifurcation regime. Furthermore, phenomenological

model relies on the usage of internal variables to replicate path-dependent behaviors. It remains a dif-

icult task to directly link or even replicate all different dissipation mechanisms originating from the

grain scales, such as granular vertex and force chain buckling [11–13], by the evolution of internal

variables alone.

The discrete element method (DEM) provides a simple but computationally intensive solution to

resolve the aforementioned deiciencies of continuum approaches for granular materials. In DEM,

motion of grains is explicitly resolved based on contacts and long-range interactive mechanisms

among particles [14–19] Nevertheless, because DEM explicitly models and tracks the motion of

each individual particle in the grain assembly, the computational cost is often too high for practical

engineering problems that are in large spatial and time scales.

To overcome this issue, various concurrent and information-passing multiscale methods have been

proposed to couple grain-scale simulations with macroscopic continuum-scale inite element analy-

ses [20–29]. For instance, Wellmann and Wriggers [20] introduced an Arlequin DEM–FEMmodel

that divides the spatial domain into discrete and continuum subdomains. Parts of the discrete and con-

tinuum subdomains are overlapped with each other to create a handshake region such that spurious

relection can be suppressed. Li and Wan [21] and Regueiro and Yan [22] proposed bridging scale

method, which uses a handshake domain to couple particulate model with higher-order continua.

The homogenization-based multiscale discrete-continuum coupling technique is pioneered by

Miehe and Dettmar [23, 24] in which a micro-macro transition is established by locally attaching

microstructures with macro-continuum at inite strain. Macroscopic stress tensor is then obtained

from the DEM by deforming a periodic Lagrangian frame that contains the granular microstructures.

Miehe et al. [23, 24] extended Hill-Mandel microhomogeneity condition from continuous heteroge-

neous systems to granular materials. These studies reveal that the responses obtained via the linear

displacement and uniform stress boundary conditions represent the upper and lower bounds of the

stiffness, while the periodic boundary condition is the optimal choice at which coarse-scale properties

converges faster with respect to the representative volume element (RVE) size.

Stránský and Jirásek [25], Nguyen et al. [26] and Guo and Zhao [27] proposed a conceptually

similar approach where homogenized stress measures and the tangent operator inferred from peri-

odic discrete element simulations conducted on a RVE are directly used to update an otherwise

conventional small strain implicit inite element model [30–33]. Andrade and Tu [28] proposed a

staggered multiscale constitutive model in which evolutions of the yield surfaces and plastic poten-

tial are governed by DEM simulations or meso-scale experiments. This multiscale constitutive model

is then used to update the Cauchy stress and consistent tangent operator of an implicit small strain

inite element model. These information-passing DEM–FEM coupling approaches have proven to

be stable. Nevertheless, both Nguyen et al. [26] and Guo and Zhao [27] concluded that the implicit

DEM–FEM coupling model suffers two drawbacks – (i) a large number of DEM iteration steps is

required to reach local convergence, and (ii) the post-bifurcation responses obtained from such an

information-passing coupling model may exhibit strong mesh dependence. Furthermore, while the

computational cost of the information-passing DEM–FEM coupling model is substantially lower

than of a single-scale DEM, the Newton–Raphson scheme used to update the inite element solution

often requires multiple DEM simulations to achieve convergences. This can be a signiicant issue

in the post softening regime where stress–strain curves obtained from DEM are typically bumpy

and sensitive to perturbations. According to Guo and Zhao [27], the information-passing multiscale

scheme may require as much as 48 DEM simulations for each quadrature point. Except [23, 24], the

aforementioned hierarchical DEM–FEM coupling methods are all formulated in the geometrically

linear regime and thus may not be suitable for shear-banding problem where signiicant plastic spin

may develop [34].
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In the present manuscript, we develop a nonlocal multiscale discrete-continuum model based on

the Generalized Mathematical Homogenization (GMH) originally developed for linking atomistic-

continuum scales [30–33]. GMHbelongs to the category of information-passingmultiscalemethods,

which evolve a coarse-scale model by advancing a sequence of ine-scale models in small windows

(or RVEs) placed at the quadrature points of the inite element model. Consequently, GMH gives rise

to constitutive law-free coarse-scale equations where the coarse-scale continuum model is directly

driven by discrete element simulations at the grain scales. The primary goal of the present work is

to develop an information-passing DEM–FEM coupling scheme that (i) satisfactorily resolves both

the overall and ine-scale responses of the granular media, (ii) is computationally eficient, and (iii)

overcomes pathological mesh sensitivity in the post-bifurcation regime. The contributions of the

present work are summarized as follows:

(i) Alleviating mesh sensitivity in post-bifurcation regime. Previous hierarchical DEM–FEM

coupling schemes have proven to be mesh dependence in [26, 27] after the onset of strain

localization. The proposed multiscale approach remedies this issue by applying a modiied

staggered nonlocal approach proposed in [35, 36] to deine the unit cell problem for the stress

homogenization.

(ii) Formulating the two-scale discrete-continuum problem via the GMH framework. This treat-

ment allows us to derive the Cauchy stress expression directly from the equilibrium equations

of particles and provide a consistent framework that links the continuum (coarse-scale) and

discrete (ine-scale) representations of the granular assemblies based on the multiscale asymp-

totic analysis. We also establish the connection between the GMH and the Hill–Mandel

condition and prove that the latter is a speciic case of GMH in which coarse and ine scales

are in the same temporal scales [37–39].

The rest of the paper is organized as follows. In Section 2, the governing equations at a

scale of particles are briely reviewed. The theoretical background established via GMH to obtain

constitutive-law free coarse-scale equations is then described, followed by the computational aspects

of the proposed nonlocal multiscale scheme. Numerical examples, including a cyclic simple shear

test, the monotonic simple shear test, and the biaxial compression test, are presented in Section 3 to

verify the model against a single-scale DEM simulation. Observations and conclusions are presented

in Section 4.

2. METHOD

In this section, we provide the theoretical basis for the nonlocal multiscale scheme that couples

the grain-scale discrete mechanics simulations and the macroscopic continuum model via a modi-

ied version of GMH, as depicted in Figure 1. We irst formulate the micro-macro transition for the

granular assemblies via a multiscale asymptotic analysis. This treatment allows one to associate the

macroscopic quadrature point with unit cell consisting of particles. We then provide a brief descrip-

tion of the coarse-scale inite element model that replicates the continuum scale behaviors, and the

unit cell discrete element method that replaces the macroscopic phenomenological internal variables

to provide incremental constitutive update to the macroscopic problem. Because of the usage of

the conditionally stable explicit scheme, we analyze the relations of the coarse-scale and ine-scale

critical time steps. The staggered scheme used to integrate the nonlocal quadrature is also discussed.

2.1. Micro-macro transition for granular assemblies via asymptotic expansion

We consider a unit cell consisting of n particles. With the interior domain of the unit cell, these

particles may exert contact force and torque on their neighboring particles. The initial position of

particle I is denoted as �I , and its displacement is denoted as �I . Thus, the current position of the

Ith particle is as follows:

�I = �I + �I . (1)

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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Figure 1. Information low in the nonlocal two-scale discrete-continuum model.
⟨
Δ�ℜ
⟩
R
is the nonlocal

coarse-scale corotational strain increment; �c is the coarse-scale Cauchy stress.

The distance of two particles I and J in the initial coniguration is as follows:

�IJ = �J − �I , (2)

and in the current coniguration, the distance is as follows:

�IJ = �J − �I = �IJ + �J
(
�J , t
)
− �I
(
�I , t
)

(3)

Given the interaction between particles I and J, the equations of motion for particle I can thus be

expressed by the following:

mI �̈
I =
∑
J≠I

� IJ
(
�IJ
)
+ FI

ext
(4)

where mI is the mass of particle I; �̈I and �̇I are the acceleration and velocity of particle center of

mass, respectively. � IJ is the internal contact force applied to particle I by particle J; FI
ext
is resultant

external force applied to particle I, such as boundary force or body force. The superscript J denotes

the neighboring particles that interact with particle I, such that ||�J − �I|| < rc, with rc being the cutoff

radius. The mass of the I-th particle mI , interval force � IJ , and external force FI
ext

are assumed to be

periodic functions because of local periodicity of the grain assembly.

A particle moves against its neighboring particles by indenting, sliding and/or rolling at contact

points. While the dominant role of sliding was considered in classical theories of strength and dila-

tancy of granular materials [40], previous research, such as Oda and Iwashita [41], suggests that

rolling, rather than sliding, is a dominant micro-deformation mechanism leading to extensive dila-

tancy of granular media . Mühlhaus and Vardoulakis [42] conducted a bifurcation analysis based on a

micropolar theory and successfully predicted the thickness of a shear band, as well as the shear band

direction. Brown and Evans [43] questioned the need to incorporate micropolar terms for granular

media, based on the fact that the coupled stress might be extremely small in most circumstances. In

this paper, we do not incorporate the rolling and torsional resistances. Because rotational stiffness is

not introduced in our DEM model, higher-order kinematic measures, such as particles rotation gra-

dient, are not incorporated in the homogenized responses. The homogenized Cauchy stress tensor

components are assumed to be symmetric, and no couple stress is used to formulate a complete set

of the governing equations.
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In the multiscale discrete-continuum method, two distinct spatial coordinates are employed to

describe the heterogeneity at a grain level as follows: (i) the coarse-scale coordinate, denoted by�, in

the coarse-scale domain �, at which the grain scale features are invisible, and (ii) the grain-scale or

ine-scale coordinate, denoted by�, in the discrete unit cell domain�. Assuming that the dimension

of heterogeneity is signiicantly smaller than the characteristic size of the macroscopic problem, the

macro-scale and micro-scale coordinate systems of the reference coniguration are related by:

� = �∕� (5)

where � is a small positive scaling parameter that 0 < � ≪ 1. The corresponding spatial scales in the

current coniguration are denoted by x and y, respectively, and are related by � = �∕�. We assume

that the coarse-scale coordinate � takes continuous series of values, and displacements � (�,�, t)
are continuous and differentiable in �, while the ine-scale coordinate Y is discrete.

We follow the derivation steps in [30–33] to derive the two-scale formation. However, unlike

atomistic simulations that involve multiple time scales due to atomistic vibrations, a single time scale

is considered. The irst two material time derivatives of the displacement ield are given by:

d�
(
�,�I , t

)
dt

= �̇I
d2�
(
�,�I , t

)
dt2

= �̈I . (6)

Prior to carrying out the multiple scale asymptotic analysis, it is necessary to rescale Equation (4).

We start by considering continuum equations of motion �0�̈ (�, t) −∇� ⋅P = 0 where �0 is the mass

density; P is the irst Piola-Kirchhoff stress tensor and ∇� ⋅P denotes the divergence of stress tensor

P. For homogeneous media, stress derivatives are of order one, whereas for heterogeneous media, for

which certain components of stresses are discontinuous, stress derivatives are of O
(
�−1
)
. Assuming

that the material density is �0 ∼ O(1) and the characteristic size of the unit cell is l ∼ O(�), the

volume of the unit cell is Θ0 ∼ O
(
�3
)
. Thus, the mass m ∼ �0Θ0 ∼ O

(
�3
)
. Dividing Equation (4)

by volume of the unit cell yields the following:

k1�0�̈
I =

1

k2�
3

∑
J≠I

� IJ(�IJ) +
1

k3�
3
FI
ext

(7)

where k1, k2 and k3 are order one constants. Comparing Equation (7) to the continuum equations of

motion, we obtain the following:

� IJ
(
�IJ
)
∼ O
(
�2
)
, Fext ∼ O

(
�2
)
. (8)

Then we introduce the following O (1) normalized quantities

m̄ = m
/
�3 ∼ O(1); �̄

IJ
= � IJ
/
�2 ∼ O(1); �̄ext = Fext

/
�2 ∼ O(1). (9)

Therefore, Equation (4) can be rewritten as:

m̄�̈
I =

1

�

∑
J≠I

�̄
IJ
+

1

�
�̄ext (10)

A multiscale asymptotic expansion is employed to approximate the displacement ield as:

� (�,�, t) = �(0) (�, t) + ��(1) (�,�, t) + ... (11)

where the leading order displacement �(0) is termed the coarse-scale displacement, �c ≡ �(0). It is

assumed to be independent of the ine-scale coordinate. Inserting Equation (11) into Equation (6)

yields the following:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)
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�̇I = �̇c + O(�)

�̈I = �̈
c + O(�).

(12)

We denote the displacement of the I-th particle by uI
i
= ui
(
�,�I , t

)
with � = �I . The displace-

ments of the neighboring particle uJ
i

(
�J ,�

J
, t
)
can be expanded using a Taylor series around point�

as follows:

uJ
i
= ui
(
�,�J , t

)
+

�ui
(
�,�J , t

)
�Xj

XIJ
j
+

1

2

�2ui
(
�,�J , t

)
�Xj�Xk

XIJ
j
XIJ
k
+ ... (13)

From Equation (13), we have:

uJ
i
− uI

i
= ui
(
�,�J , t

)
− ui
(
�,�I , t

)
+

�ui
(
�,�J , t

)
�Xj

XIJ
j
+

+
1

2

�2ui
(
�,�J , t

)
�Xj�Xk

XIJ
j
XIJ
k
+ ....

(14)

Inserting Equation (5) into Equation (14) yields

uJ
i
− uI

i
= ui
(
�,�J , t

)
− ui
(
�,�I , t

)
+ �

�ui
(
�,�J , t

)
�Xj

Y IJ
j

+
1

2
�2
�2ui
(
�,�J , t

)
�Xj�Xk

Y IJ
j
Y IJ
k
+ ....

(15)

Inserting the asymptotic expansion Equation (11) into Equation (15) yields:

uJ
i
− uI

i
= �

(
u
(1)

i

(
�,�J , t

)
− u

(1)

i

(
�,�I , t

)
+

�uc
i
(X, t)

�Xj
Y IJ
j

)

+
1

2
�2

(
�u

(1)

i

(
�,�J , t

)
�Xj

Y IJ
j
+

1

2

�2uc
i
(�, t)

�Xj�Xk
Y IJ
j
Y IJ
k

)
+ ....

(16)

Inserting Equation (16) into Equation (3) yields the following:

�IJ = �IJ + �J − �I = ��IJ + �2�IJ + ...

�IJ = �IJ
/
� = �IJ + ��IJ + ...

(17)

where

φIJ
i
= Fc

ij
(�) Y IJ

j
+ u

(1)

i

(
�,�J , t

)
− u

(1)

i

(
�,�I , t

)

ψIJ
i
=

�u
(1)

i

(
�,�J , t

)
�Xj

Y IJ
j
+

1

2

�2uc
i
(�)

�Xj�Xk
Y IJ
j
Y IJ
k
.

(18)

Herein, Fc
ij
(�, t) denotes the coarse-scale deformation gradient, i.e.,

Fc
ij
(�) = �ij +

�uc
i
(�)

�Xj
. (19)

The contact force � IJ is a function of �IJ so that

f̄ IJ
i

= f̄ IJ
i

(
�yIJ
)
= f̄ IJ

i

(
��IJ + �2�IJ + ...

)

= f̄ IJ
i

(
��IJ
)
+

�f̄ IJ
i

�yIJ
k

�yIJ
k

�xIJ
j

||||||yIJ=�IJ
�2ψIJ

j
+ O
(
�2
)

= ̂̄f IJ
i
+ �

�f̄ IJ
i

�yIJ
j

||||||yIJ=�IJ
ψIJ
j
+ O
(
�2
)

(20)
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where

̂̄f IJ
i

= ̂̄f IJ
i

(
��IJ
)
. (21)

Inserting Equations (12) and (20) into Equation (10) yields the following:

m̄I üc
i
(�, t) =

1

�

∑
J≠I

⎛⎜⎜⎝
̂̄f IJ
i
+ �

�f̄ IJ
i

�yIJ
j

||||||�IJ=�IJ
ψIJ
j

⎞⎟⎟⎠
+

1

�
F̄ext,i
(
�I
)
. (22)

Collecting terms of equal power of � gives the equations of motion at different scales

O
(
�−1
)
∶
∑
J

f̂ IJ
i
+ F̄ext,i

(
�I
)
= 0 (23)

O(1) ∶ müc
i
(�, t) =

∑
J

⎛⎜⎜⎝
�f IJ
i

�yIJ
j

||||||�IJ=�IJ
ψIJ
j

⎞⎟⎟⎠
. (24)

Equation (23) is a quasi-static unit cell problem. We now focus on the coarse-scale problem.

Summation over all the particles and then dividing Equation (24) by the volume of the unit cell||Θ0
|| for the initial coniguration give the following:

1
||Θ0
||
∑
I

mI üc
i
(�, t) =

1
||Θ0
||
∑
I

∑
J

�f IJ
i

�yIJ
j

||||||�IJ=�IJ
ψIJ
j
. (25)

It is noted that the density is deined as:

�c
0
=

1
||Θ0
||
∑
I

mI (26)

so that

�c
0
üc
i
(�, t) =

1
||Θ0
||
∑
I

∑
J

�f IJ
i

�yIJ
j

||||||�IJ=�IJ
ψIJ
j

(27)

Considering Equations (17) and (18), we have the following:

f IJ
i,Xj

=
�f IJ
i

�yIJ
k

�yIJ
k

�Xj
=

�f IJ
i

�yIJ
k

�φIJ
k

�Xj
+ O(�)

=
�f IJ
i

�yIJ
k

(
�2uc

k
(�, t)

�Xm�Xj
Y IJ
m
+

�u
(1)

k

(
�,�J , t

)
�Xj

−
�u

(1)

k

(
�,�I , t

)
�Xj

)
+ O(�).

(28)

In the RHS of Equation (27), we have
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�f IJ
i

�yIJ
j

||||||yIJ=�IJ
ψIJ
j
=

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

1

2

�2uc
j
(�)

�Xm�Xk
Y IJ
k

⎞
⎟⎟⎠
Y IJ
m

=
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
−

�u
(1)

j

(
�,�I , t

)

�Xm
+

�2uc
j
(�)

�Xm�Xk
Y IJ
k

⎞⎟⎟⎠
Y IJ
m

+
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞
⎟⎟⎠
Y IJ
m

=
1

2

�

�Xj

(
f IJ
i
Y IJ
j

)
+

1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞⎟⎟⎠
Y IJ
m

=
1

2�

�

�Xj

(
f IJ
i
XIJ
j

)
+

1

2

�f IJ
i

�yIJ
j

||||||�IJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞
⎟⎟⎠
Y IJ
m
.

(29)

Inserting Equation (29) into Equation (27) yields

�c
0
üc
i
(�, t) =

∑
I

∑
J

1
||Θ0
||
1

2

�

�Xj

(
f IJ
i
XIJ
j

)

+
∑
I

∑
J

1
||Θ0
||
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞
⎟⎟⎠
Y IJ
m
.

(30)

It can be shown that the second term of Equation (30) will vanish. Recalling Equation (3) yields

the following:

�JI = �I − �J = �I − �J + �I − �J = −�IJ = ��JI + �2�JI (�,�, t) + ... (31)

where

φJI
i
= Fc

ij
(�, t) YJI

j
+ u

(1)

i

(
�,�I , t

)
− u

(1)

i

(
�,�J , t

)
= −φIJ

i

ψJI
i
=

�u
(1)

i

(
�,�I , t

)
�Xj

YJI
j
+

1

2

�2uc
i
(�)

�Xj�Xk
YJI
j
YJI
k
= −ψIJ

i
.

(32)

According to Newton’s third law, we have:

� IJ = −� JI (33)

From Equations (32) and (33), we have the relationship

�f IJ
i

�yIJ
j

= −
�f JI
i

�yIJ
j

= −
�f JI
i

�

(
−yJI

j

) =
�f JI
i

�yJI
j

. (34)

The summation of the second term of Equation (30) gives the following:

∑
I

∑
J

1
||Θ0
||
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞
⎟⎟⎠
Y IJ
m

=
∑
I

∑
J

1
||Θ0
||
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛
⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞
⎟⎟⎠
(
YJ
m
− Y I

m

)
.

(35)
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For any pair (I, J), which participates the summation, we have

1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞⎟⎟⎠
(
YJ
m
− Y I

m

)

+
1

2

�f JI
i

�yJI
j

||||||yJI=�JI

⎛⎜⎜⎝
�u

(1)

j

(
�,�I , t

)

�Xm
+

�u
(1)

j

(
�,�J , t

)

�Xm

⎞⎟⎟⎠
(
Y I
m
− YJ

m

)

=
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛⎜⎜⎝
�u

(1)

j

(
�,�J , t

)

�Xm
+

�u
(1)

j

(
�,�I , t

)

�Xm

⎞⎟⎟⎠
(
YJ
m
− Y I

m

)

+
1

2

�f IJ
i

�yIJ
j

||||||yIJ=�IJ

⎛⎜⎜⎝
�u

(1)

j

(
�,�I , t

)

�Xm
+

�u
(1)

j

(
�,�J , t

)

�Xm

⎞⎟⎟⎠
(
Y I
m
− YJ

m

)

=0.

(36)

Finally, the coarse-scale equation of motion is expressed as follows:

�c
0
üc
i
(�, t) =

∑
I

∑
J

1
||Θ0
||
1

2

�

�Xj

(
f IJ
i
XIJ
j

)
. (37)

One can rewrite Equation (37) as

�c
0
üc
i
(�, t) −

�Pij (�, t)

�Xj
= 0

Pij (�, t) =
1

2 ||Θ0
||
∑
I

∑
J

f IJ
i
XIJ
j
.

(38)

Alternatively, we have the following:

Pij (�, t) =
1
||Θ0
||

n∑
I=1

∑
J > I

f IJ
i
XIJ
j

(39)

where n denotes the total number of particles in the unit cell. Equation (39) can be also derived in

the current coniguration. Considering the relationship between the irst Piola-Kirchhoff stress and

Cauchy stress, we have the following:

P = J� ⋅ F−T

� = P ⋅ FT
/
J

(40)

where J is the determinant of deformation gradient. Inserting Equation (39) into Equation (40) yields

the following:

�ij =
1

J
PikFjk =

1

J

1
||Θ0
||

n∑
I=1

∑
J > I

f IJ
i
XIJ
k
Fjk

=
1

|Θ|
n∑
I=1

∑
J > I

f IJ
i

(
FjkX

IJ
k

) (41)

where |Θ| denotes the volume of the unit cell in the current coniguration. From Equations (17) and

(18), we have the following:

�IJ = �

(
Fc ⋅ �

IJ
+ �(1)

(
�,�J , t

)
− �(1)

(
�,�I , t

))
+ O
(
�2
)

= Fc ⋅ �IJ + O(�).
(42)
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Inserting Equation (42) into Equation (41) yields the following:

�ij =
1

|Θ|
n∑
I=1

∑
J > I

f IJ
i

(
FjkX

IJ
k

)
=

1

|Θ|
n∑
I=1

∑
J > I

f IJ
i
xIJ
j
+ O(�). (43)

According to Equations (39) and (41), both the irst Piola-Kirchhoff stress and Cauchy stress

can be derived from the multiscale asymptotic analysis. The coarse-scale problem that gov-

erns macroscopic continuum behavior and the unit cell problem that replaces the macroscopic

phenomenological constitutive laws can be expressed in the current coniguration, which read,

a. Coarse-scale problem

�c�̈
c (�, t) − ∇� ⋅ �

c = 0

�
c (�, t) =

1

|Θ|
n∑
I=1

∑
J > I

� IJ�IJ
(44)

b. Unit cell problem

∑
J

� IJ
i

+ �ext,i
(
�I
)
= 0 (45)

where �̈c denotes the coarse-scale acceleration; �c =
1

|Θ|
∑
I

mI and |Θ| are the coarse-scale density,
and the unit cell volume in the current coniguration, respectively. n is the number of particles in the

unit cell; �c is the coarse-scale Cauchy stress, and �IJ is the vector connecting the centers of two

particles. (∇⋅) denotes the divergence operator, and superscript c denotes the coarse-scale features.

The Cauchy stress obtained in Equation (44)b is identical to the classical homogenized Cauchy stress

obtained using the principle of virtual work [18, 37–39].

Note that the inertia term in Equation (4) only enters the coarse-scale equation of motion, whereas

the unit cell problem remains quasi-static. This is because the coarse-scale wave length is assumed

to be much larger than the RVE size. This approach is commonly used for low rates of loading and

for short observation times [30, 44]. However, in those problems with high rates of loading and long

observation times, particle interfaces in a granular media may cause relection and refraction of stress

waves, giving rise to dispersion and attenuation of waves within material microstructure [45], which

cannot be accounted for by the approach developed in this paper.

2.2. Coarse-scale problem: FEM

In the macroscopic continuum scale, the trajectories of individual particles are not considered.

Instead, we associate each coarse-scale material point with a representative elementary volume or

unit cell in which effective continuum properties can be derived. As a result, the coarse scale dis-

placement ield is interpolated by the inite element basis function and possesses C0 continuity.

The initial and boundary conditions for the coarse-scale problem described by Equation (44) are

given as:

�c (�, 0) = 0; �̇c (�, 0) = 0 (46)

�c (�, t) = �̄ (�, t) on �Ωu; �
c
⋅ � = �̄ on �Ωt (47)

where the essential (displacement) boundary �Ωu and the natural (traction) boundary �Ωt satisfy

�Ωu∪�Ωt = �Ω and �Ωu∩�Ωt = 0, as shown in Figure 2; �̇c is the velocity vector; �̄ and �̄ represent

prescribed displacements and tractions on �Ωu and �Ωt, respectively. And n is the unit outward norm

of the boundary.

By applying theweight-residual method, the weak form corresponding to the coarse-scale problem

in Equation (44)a can be written as follows.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



A NONLOCAL MULTISCALE DISCRETE-CONTINUUM MODEL FOR GRANULAR MATERIALS

Find �c (�, t) ∈ � in Ω such that

∫Ω

(
∇�w

c
)
∶ �

cdΩ = ∫
�Ωt

wc
⋅ t̄dΩ − ∫Ω

�cwc
⋅ ü

cdΩ ∀wc ∈ � (48)

where the trial and test function spaces are deined as follows:

� =
{
�c|�c ∈ ℋ

1, �c = ū
c on �Ωu

}

� =
{
wc|wc ∈ ℋ

1, wc = 0 on �Ωu
} (49)

where �c and �c are the coarse-scale trial and test functions, respectively, and �1 is the Sobolev

space of order one. The Galerkin form is obtained by specifying the inite dimensional space for both

the trial function and interpolated coarse displacement ield. Here, we consider the case in which

both the trial function and the displacement ield are spanned by the same basis function. As a result,

the coarse-scale trial and test functions
h�c (�, t) =

∑
A∈N

�A (x) dc
A
(t)

hwc (�, t) =
∑
A∈N

�A (x)wc
A
(t)

(50)

which yields a semidiscrete momentum equation as follows:

��̈
c
(t)=� ext(t) − � int (dc(t)) (51)

where�Ais the basis function corresponding to nodeA;N represents the set of nodes in the mesh and

dc
A
(t) and wc

A
(t) denote the nodal degrees-of-freedom of trial and test functions, respectively. The

superscript h represents the discretized quantities; dcand �̈c are the coarse-scale nodal displacements

and accelerations, respectively, and M, fint, and � extare the coarse-scale mass matrix, internal force,

and external force vectors, respectively. In the numerical implementation, we employ the Voigt’s

notation such that second-order tensors are stored as column vectors. As a result, the internal and

external force vector and the mass matrix can be written as a function of the shape function N, and

the discrete symmetric gradient operator B, that is as follows,

� = ∫Ω

�c�T�dΩ; � int = ∫Ω

�T
�
cdΩ; � ext = ∫Ω

�T t̄cdΩ (52)

where �c is the coarse-scale Cauchy stress deined by Equation (44b) but stored in the Voigt

form. In the present work, the continuum coarse-scale problem in Equation (51) is integrated using

explicit central difference method [46]. Lumped mass is used in the coarse-scale simulations. Unlike

the conventional macroscopic inite element approach, the constitutive responses are not obtained

from macroscopic constitutive law but rather from homogenized responses of particle assemblies

associated with every quadrature point in the inite element mesh.

Figure 2. Schematics of the coarse-scale boundary value problem (in the initial coniguration).
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2.3. Discrete element unit cell problem

Consider a collection of particles within the interior domain of a cuboidal unit cell. This collection of

particles is surrounded by an exterior layer of one-particle thickness. This exterior layer deforms peri-

odically in space and may interact with the particles inside the unit cell, but its motion is completely

controlled by the prescribed periodic boundary conditions provided by the coarse-scale problem.

The particle-to-particle and particle-to-boundary interactions are both simulated via discrete element

method, and the quasi-static macroscopic responses of the unit cell are subsequently homogenized

from each unit cell and passed to the coarse-scale solver.

The quasi-static solution of the unit cell problem in Equation (45) can be obtained by seeking

the steady-state solution of an explicit dynamic relaxation DEM problem with incremental loading

steps or by directly solving the nonlinear system of equations via an implicit scheme. In practice, the

implicit scheme is rarely used for DEM problems. As the nonlinearity of responses may stem from

both the nonlinear and path dependent contact laws and the changes of topologies of grain contacts, it

is easier to implement and use explicit scheme to obtain the quasi-static solution of DEM assemblies.

The dynamic relaxation problem can be viewed as an iterative process in which pseudo-dynamics

processes are emulated in an artiicial time scale. This iterative process is considered complete when

a deformed coniguration of the granular assembly with all the forces and moment in equilibrium

is found. Using numerical examples to provide evidences, Bardet and Proubet [47] show that both

mass scaling and viscous damping can be used to enhance computational eficiency (by reducing

number of iterative steps) without signiicantly altering the approximated quasi-static conigurations

of the DEM assemblies. In this paper, an explicit central difference leap-frog pseudo-time integrator

and artiicial damping are both employed to obtain the quasi-static solution [15].

2.3.1. Contact models for discrete element simulations in unit cells. A simpliied contact model,

which employs Hertz-Mindlin contact law and Coulomb’s friction lawwith viscous damping, is used

to represent the particle contact mechanism. Cohesive bonding and rolling resistance between the

particles are not considered in this paper. Incremental changes to the normal and tangential contact

forces, f
f
n and f

f
t , at each contact are determined by the particle shear modulus G

f
g, Poisson

′s ratio

� f , radii of the contacting grains R1 and R2, and the ine-scale normal and tangential displacements

at the contact, d� f and dsf [48] as follows,

df f
n
= kf

n
d� f ; kf

n
=

√
2G

f
g

√
Re

1 − �f

(
� f
)1∕2

(53)

df
f
t = k

f
t ds

f ; k
f
t =

2
√
2G

f
g

√
Re

2 − �f

(
� f
)1∕2

(54)

where �f is the indentation at the contact and Re is the effective radius,

Re =
2R1R2

R1 + R2

. (55)

Superscript f denotes ine-scale features. The ine-scale tangential force is governed by the friction

coeficient �f , such that
|||f

f
t

||| ⩽ �f f
f
n . For stabilization, a viscous damping force is employed

f
f

s,vis
= Cf ṡ f (56)

where Cf and ṡf are the viscosity and the tangential sliding velocity at contact. In case of slow,

quasi-static loading conditions, the mass damping cIand contact damping Cfmust be suficient to

dissipate high frequency vibrational modes without impeding particle motion that arise from particle

interactions or the boundary conditions.
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2.3.2. Dynamic relaxation scheme of unit cell problem. For a given unit cell, the stress of the DEM

assemblies depends on the ine-scale material parameters, microstructural attributes, such as parti-

cle size distribution, spatial heterogeneity, and the loading path and history that lead to the current

coniguration [49, 50]. If the wavelength of the traveling signal is signiicantly larger than the dimen-

sions of the particles, then the quasi-static stress homogenized from the forces and branch vectors of

the quasi-static coniguration of unit cell can be used to update stress measures of the macroscopic

dynamics problem without introducing signiicant errors.

Various criteria have been proposed to detect the quasi-static state of DEM dynamic relaxation

problem [49, 50, 51]. In this work, we use the unbalanced force index Iuf introduced by Ng [52],

Iuf =

√√√√√√√√√√

1

np

np∑
1

(unbalanced forces)2

1

nc

nc∑
1

(contact forces)2

(57)

where np and nc denote the number of particles and number of contacts, respectively. The size of the

pseudo-time or load step is calibrated such that the unbalanced force index Iuf is always kept smaller

than a threshold value, for example, 0.01. This treatment ensures that the artiicial damping intro-

duced for dynamics relaxation does not signiicantly affect the simulated friction angle and shear

strength. Mass scaling is also used to enable the usage of larger pseudo-time step and to reduce com-

putational cost. In each pseudo-time step, the incremental displacement is prescribed to the particles

at the boundary of the unit cell such that the unit cell deforms with the strain increment prescribed

by the macroscopic problem. One particular interesting inding from Andrade and Tu [28] is that the

granular assemblies with more particles typically require a small strain increment and more loading

steps to maintain static equilibrium. Notice that if an identical quasi-static boundary value prob-

lem is simulated by both DEM and DEM–FEM models, the pure DEM model will require much

more increment loading steps than the DEM–FEM counterpart [28]. In this sense, the DEM–FEM

model can be considered as a divide-and-conquer tactic tool to coarsen load increments and increase

eficiency of numerical simulations for large scale quasi-static granular mechanics problems.

2.3.3. Numerical algorithms for the nonlocal multiscale discrete-continuum model. The two-scale

problem, consisting of the discrete unit cell problem subjected to periodic boundary conditions and

the coarse-scale equations of motion, is two-way coupled. In this section, we focus on algorith-

mic details. The two-scale problem described by Equations (44) and (45) is solved sequentially

as follows:

(i) Solve the dynamics relaxation problem at coarse scale using a co-rotational inite element

model and compute the coarse-scale strain increment of each local quadrature.

(ii) Obtain the nonlocal coarse-scale strain increment using the staggered nonlocal operator and

evaluate the nonlocal corotational strain increment.

(iii) Prescribing periodic boundary conditions to the unit cells on the nonlocal corotational coarse-

scale strain increment of the corresponding nonlocal quadrature.

(iv) Obtain new static equilibrium states of the granular assemblies compatible to the prescribed

boundary condition via DEM and compute the corotational coarse-scale Cauchy stress by

Equation (44b).

(v) Transform the corotational coarse-scale Cauchy stress to the ixed global frame and compute

residual vector. Go back to (i) for next step.

To account for the geometric nonlinear effect, we employ a corotational formulation [53] where a

local corotational coordinate frame, denoted by, is attached to each inite element quadrature point

and rotated with the deforming material. To preserve the characteristic length scale and eliminate

pathological mesh dependence, we use a staggered nonlocal operator that explicitly introduces an

intrinsic length scale and thus limits the shear band thickness when strain localization occurs. The

interaction radius, denoted by R, is assumed to be an intrinsic material property.
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In step (i), the coarse-scale incremental strain Δ�c
n+1∕2

(�, t) is obtained from the solution of the

coarse-scale problem at each quadrature point, in each time step. Because of strong size dependence

that has been observed in granular materials, we deine a nonlocal coarse-scale strain increment

[35, 36]
⟨
Δ�c

n+1∕2

(
xI
)⟩

R
as follows:

⟨
Δ�c

n+1∕2
(xI)
⟩
R
=
∑
ξJ∈QI

�∗(xI , ξJ)�
∗(ξJ)

�∗(ξJ) =

{
Δ�c

n+1∕2
(ξI) if ξJ = xI

Δ�c
n+�

(ξJ) if ξJ ≠ xI

(58)

where Δ�c
n+�

denotes the coarse-scale strain computed on the ly, that is, � is ± (1∕2), which repre-

sents either previous or current time step. Δ�c
n+1∕2

is the coarse-scale strain at the current time tn+1;

xI denotes the position of the current quadrature point I, and QI is a set of quadrature points ξJ ∈ QI

adjacent to point xI that satisies the following:

{
QI
||||xI − ξJ

|| ⩽ R, ∀ξJ ∈ QI

}
(59)

where R denotes the characteristic radius. �∗(xI , ξJ) is deined in Appendix B.

Prior to exerting
⟨
Δ�c

n+1∕2
(xI)
⟩
R
onto the unit cell, it is rotated to the corotational frame, to yield

the nonlocal corotational coarse-scale strain increment
⟨
Δ�ℜ

n+1∕2
(xI)
⟩
R
as follows:

⟨
Δ�ℜ

n+1∕2
(xI)
⟩
R
=
(
ℜ

c
n+1∕2

(xI)
)T

⋅

⟨
Δ�c

n+1∕2
(xI)
⟩
R
⋅

(
ℜ

c
n+1∕2

(xI)
)

(60)

where ℜ
c
n+1∕2

(xI)denotes the coarse-scale rotation obtained from the polar decomposition of the

coarse-scale deformation gradient �c
n+1∕2

(xI) at a quadrature point xI deined as follows:

�c
n+1∕2

(xI) =
�xn+1∕2

�X
, (61)

and �n+1∕2is the coordinate at the midstep. Instead of directly prescribing the local strain increment

as periodic boundary conditions applied on the boundaries of unit cells, the proposed model employs

the coarse-scale strain increment
⟨
Δ�ℜ

n+1∕2
(xI)
⟩
R
obtained from the macroscopic solver to obtain

the corotational coarse-scale Cauchy stress �ℜ

n+1
(�, t) through Equation (44)b using DEM, which is

then rotated back to the global Cartesian coordinate system as follows.

σc
n+1

=
(
ℜ

c
n+1

)
⋅ σℜ

n+1
⋅
(
ℜ

c
n+1

)T
. (62)

The resulting coarse scale stress σc
n+1

(�, t) is passed back to coarse-scale inite element engine

to continue the iterative process. The aforementioned nonlocal discrete-continuum model is imple-

mented by integrating FOOF [54], a macroscale FEM solver, and OVAL [55], a microscale DEM

solver. The numerical algorithm that links between the macro-scale and micro-scale solvers is shown

in the low chart in Figure 3. At each nonlocal quadrature point in the FEM mesh, the FEM solver

executes the DEM unit cell problem in the corotational frame subjected to the nonlocal coarse-

scale incremental strain
⟨
Δ�ℜ

n+1∕2
(xI)
⟩
R
. The ine-scale DEM solver evolves the discrete unit cell

using explicit time integration to compute the coarse-scale Cauchy stress required to advance the

coarse-scale problem. The particle arrangement, that is, particle positions, velocities, and contact

information, at the end of the coarse-scale time step are stored, to allow the new DEM simulation

to begin from the inal state of the previous time step. Each integration point has its own “restart”

out-of-core ile. The numerical implementation of the corotational formulations is illustrated in

Appendix B.
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Figure 3. The framework integrating FEM and DEM solvers for the two-scale problem.

2.3.4. Temporal Stability of the coupled explicit DEM–FEM problems. The objective of the unit

cell dynamics relaxation problems is to obtain stress measures from the granular conigurations in

the static equilibrium. As a result, both the mass and damping coeficients used in the DEM are not

related to the actual physical quantities but are parameters manipulated by the users to obtain non-

oscillatory overall responses. While the original physical meanings of the mass and damping are lost

in dynamics relaxation problem, both the explicit dynamics and dynamics relaxation problem still

share the same form of governing equations and can be integrated in time by the conditionally stable

explicit scheme. The critical pseudo-time step of the DEM problem therefore takes the same form

as a damped mass-spring system, that is as follows,

Δtf
n
⩽ Δtf

cr
=

2

�
f
max

(√
1 + �f

2
− �f

)
(63)

whereΔt
f
cr denotes the critical time step of themacroscopic problem; �f denotes the fraction of critical

damping corresponding to the highest natural frequency of the granular system �
f
max. Assuming that

there is no rotational stiffness introduced in the DEM contact model, the natural frequencies of the

translational and rotational vibration of each particle read as follows (Oñate and Rojek [56]),

� f
n
=

√
k
f
n

mf
; �� =

√√√√ k
f

�

Isphere
=

√
5k

f
t

2mf
; kf

�
= k

f
t R

2; Isphere =
2

5
m fR2 (64)
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where Isphere is the rotational inertia of the spherical particles and m
f is the mass of the particle. The

critical time step of the DEM simulation can be obtained via Equation (63) where the highest natural

frequency is approximated by �
f
max ≈ max(�

f
n, ��). In practice, the DEM dynamics relaxation

problems are often conducted with a ixed time step, while mass of the particles is tuned to ensure

the stability between two pseudo-time steps.

On the other hand, the stable time step for the coarse-scale system is governed by the highest

frequency (�c
max

) of the course-scale incremental inite element problem as follows:

Δtc
n
⩽ Δtc

cr
=

2

�c
max

(√
1 + (�c)2 − �c

)
(65)

where Δtc
cr
denotes the critical time step of the macroscopic problem; �cdenotes the fraction of crit-

ical damping corresponding to the highest natural frequency of the macro-scale FEM model. The

critical step deined in Equation (65) also applies to the case where mass scaling and damping are

applied to the macroscopic problem to obtain static equilibrium solution. Nevertheless, the criti-

cal macroscopic time step of the dynamic relaxation DEM–FEM problem is larger than that of the

explicit DEM–FEM dynamics problem, as the damping and mass scaling are likely to ilter out high

frequency responses. Note that the critical time step of the ine-scale DEM and coarse-scale FEM

can be related by the following,

Δtc
cr
= �Δtf

cr
; � = ψ

�
f
max

�c
max

; ψ =

√
1 + (�c)2 − �c√
1 + (�f )2 − �f

(66)

where � is the optimal time step ratio between the ine-scale and coarse-scale systems. Notice that

because the highest value frequency of the ine system is typically the higher one, � is usually larger

than one.

3. NUMERICAL EXAMPLES

In this section, four numerical examples are presented to demonstrate the accuracy, eficiency, and

versatility of the proposedmultiscalemethod in predicting themechanical behavior of granular mate-

rials. Examples shown in this section provide evidences that the multiscale DEM–FEM model is

able to replicate the single-scale DEM benchmark results. Reinement study indicates that the thick-

ness of shear bands predicted by the nonlocal multiscale model is not sensitive to the mesh sizes of

the continuum model.

3.1. Unit cell

The initial coniguration of the unit cell is given in Figure 4. The unit cell was compacted into a dense

and isotropic assembly from an initially sparse random arrangement of particles, which contains

4096 spherical grains with diameters ranging from 0.43 to 1.18 mm. The porosity after compaction

was 0.338, with an initial average coordination number of 5.6 contacts per particle. The initial normal

stresses in all directions were nearly equal to the mean stress of 416 kPa. The initial response of the

unit cell is assumed to be macroscopically homogeneous.

Periodic boundaries were employed on all sides of the unit cell in the numerical examples pre-

sented in this paper. Such boundaries impose kinematic constrains on each boundary particle,

allowing grains to pass from the parallelepiped unit cell domain to a ictitious adjacent one and sim-

ulate an ininitely periodic (repeated) system. Period boundaries are computationally advantageous

over the rigid platens for providing a more uniform particle fabric throughout the assembly [24, 57].

Previous work done by [58–60] has found that homogenized responses inferred from periodic cell

are less sensitive to boundary effects.

The micro-model parameters given in Table I were used as input microscopic parameter in the

following numerical examples, where shear modulus and Poisson’s ratio are the parameters for

Hertz-Mindlin contact model. The mechanical properties of the material were obtained from pure
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DEM tests on the unit cell, for example, the uniform compression test was used to get bulk modu-

lus and the simple shear test to get the shear modulus [61]. The measured mechanical properties are

shown in Table II.

Accuracy and eficiency of the proposed multiscale technique rely crucially on the appropriate

selection of the size of the unit cell so that it remains a RVE. In particular, the unit cell size must

be small enough to ensure computational eficiency but large enough to remain representative. One

common approach to estimate the size of the RVE is to vary the sizes of the unit cells and study

the scale of luctuation of the coarse-scale properties [30, 62–65]. Meier et al. [66] and Guo and

Zhao [27] applied this approach to discrete element models. Guo and Zhao [27] generated multi-

ple granular assembles composed of different numbers of particles and studied the least amount of

particles required to maintain the isotropy of the fabric tensor. They concluded that at least 400 par-

ticles required to constitute an RVE composed of particles of poorly graded grain size distribution.

In the numerical examples presented in this paper, the grain assembles used to calculate the Gauss

point responses are composed of at least 4000 particles and have been examined in previous study

to ensure the isotropy of the initial fabric tensor.

All simulations presented in this section are conducted with a three-dimensional eight-node hex-

ahedral inite element integrated via the one-point Gaussian quadrature rule. The hour-glass control

stabilization procedure in [67–69] is used to eliminate spurious zero-energy modes in the macro-

scopic inite element model. While the usage of one-point integration rule is a rather simple and

well-known numerical treatment, the beneits for the DEM–FEM coupling scheme are signii-

cant. It improves both the speed and the accuracy of the multiscale simulations by cutting 87.5%

of the expensive 3D DEM unit cell simulations in [26, 27] that might cause volumetric locking

problems otherwise.

Figure 4. The initial coniguration of the unit cell.

Table I. Model parameters for discrete element method computation.

29.0 Shear modulus Gf
g
(GPa)

0.15 Poisson ratio vf

0.50 Coeficient of friction at particle contacts

0.00 Viscosity coeficient for translational body damping

0.00 Viscosity coeficient for rotational body damping

0.12 (0.00 for Section 3.5) Viscosity coeficient for contact damping
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Table II. Material properties estimated from unit cell tests [54, 55].

Young’s modulus Poisson’s ratio Bulk modulus Shear modulus

E (MPa) v K (MPa) G (MPa)

584 0.2 335 241

Figure 5. The boundary conditions for single element biaxial compression (left) and simple shear (right) tests.

3.2. One element veriication tests

The multiscale model was irst veriied by comparing the global response of a single element (biax-

ial compression test and simple shear test) against the RVE response from pure DEM tests. This

veriication procedure is irst introduced in [27] to test the accuracy and robustness of the developed

information-passing DEM–FEM coupling scheme at the material point level.

The single element and its boundary conditions are depicted in Figure 5. In the simple shear test,

the single element was subjected to a shear loading by keeping the conining pressure on the top to be

constant. In the biaxial compression test, a vertical displacement was applied on the top surface, and

constant conining pressure was exerted on the right surface. In both cases, the constant conining

pressures were 416kPa, which was identical with the initial mean stress of the unit cell.

The comparison of stress-strain curves is shown in Figure 6 for the one-element tests using the

multiscale DEM–FEMmodel and single-scale DEM. It can be observed that the multiscale approach

gives almost identical prediction with those from the DEM simulations. This example veriies that

the proposed multiscale discrete-continuum approach can replicate the elasto-plastic response of

granular material accurately.

3.3. One-dimensional wave propagation in a dry granular column

The modeling of wave propagation in granular materials, such as wave attenuation and dispersion, is

an active research area with implications for seismic soil-structure interaction and foundation vibra-

tion [70–74]. Continuum-based analytical and computational modeling techniques have beenwidely

used to investigate the seismic wave propagation [75, 76]. The path dependent responses of soil are

often captured via macroscopic phenomenological models [7, 73, 74, 77]. While the cost of the con-

tinuum simulations is relatively low, the physical underspin of the phenomenological approach in

the softening regimes is weak. On the other hand, dynamics discrete element simulations are also

utilized by a number of researchers to study the micromechanics of wave propagation in granular

matters [78–81]. The upshot of the discrete element approach is the availability of microstructural

information. However, the high computational cost of DEM often limits the size of the simulations

and thus making DEM not feasible to simulate ield-scale site responses.

This numerical example is designed to demonstrate the potential of using the newly estab-

lished DEM–FEM method to overcome the shortcomings of both continuum and discrete element

approaches. To the best knowledge of the authors, this is the irst time that information-passing
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(a) Biaxial Compression (b) Simple Shear
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Figure 6. The comparison of stress-strain curves between the multiscale simulation and DEM reference in
the one element tests: (a) biaxial compression and (b) simple shear.

DEM–FEM scheme was being used to simulate dynamics responses of granular layers. The

boundary value problem used in this example is commonly used for predicting site responses in

geotechnical earthquake engineering and often referred as the (one-dimensional) soil column prob-

lem [71, 73, 74]. It consists of a stratiied granular layer rests on a bedrock that is assumed to

be rigid at x1 = 0. Assume that the in-place dimensions (x2 and x3) are ininite relative to the

granular layer thickness, body wave emanating from the dynamic excitation of the bedrock will

propagate along the x1axis in a one-dimensional fashion [73, 74]. As a result, we impose kinematic

constraints �22 = �33 = �23 = 0 to enforce the wave propagating only along the x1direction. In the

numerical simulation, we discretize a spatial domain of 100mm ×10mm ×10mm with equal-sized

eight-node trilinear brick element, as shown in Figure 7. The left hand side boundary of the model

was totally ixed, and two pairs of periodic boundaries were applied to the two opposite faces of the

one-dimensional soil column orthogonal to the x2 and x3 directions, while the kinematic constraints

�22 = �33 = �23 = 0 are imposed by enforcing zero in-plane relative displacement on plane original

to the x1axis (cf. [73, 74]). At the macroscopic scale, the geometric domain was discretized by 10

inite elements of equal sizes. The density of the model was � = 1650 kg/m3. The right hand side of

themodel was subjected to a vertically displacement-controlled sinusoidal cyclic loadwith frequency

of f = 10kHz and maximum shearing displacement amplitude of a = 0.1mm. The time duration of

the whole simulation was 1ms, and the coarse-scale time increment was taken as Δt = 1�s.

The homogenized shear and compressive stress–strain responses of the quadrature point of

Element 9 are shown in Figure 8(a). We observe that the hysteresis and the dissipative responses

of non-cohesive frictional granular materials are captured. Unlike previous macroscopic approaches

where microstructural attributes are only taken into account indirectly via the evolution of internal

variables, the multiscale approach is able to provide important microstructural measurements, such

as coordination number and porosity of each unit cell as shown in Figure 8(b). This numerical exper-

iment suggests that the proposed multiscale model is capable of modeling the dynamic responses

of granular materials subjected to cyclic loadings within limited computational resources. This is a

major departure from the previous DEMmodeling efforts, in which particles are enlarged artiicially

for the sake of reducing the computational cost [82].
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Figure 7. The boundary condition andmacroscopicmesh of the sample for wave propagation in a dry granular
column.

(a) Stress-strain curves

(b) Porosity and coordinate number of grain contacts versus time
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Figure 8. Dynamic responses of RVE associated with the Gauss point at Element 9:(a) Stress-strain curves
and (b) Porosity and coordinate number of grain contacts versus time.

3.4. Shear band in a simple shear simulation on a dense grain assembly

In this example, the proposed model was further validated by a simple shear test on a dense grain

assembly. Multiscale simulation results were compared with those from a single-scale DEM simula-

tion conducted in [48]. The geometries and loading conditions are schematically shown in Figure 9.

The model dimensions were 50.6 mm ×118 mm×12.7 mm. It was ixed at its bottom and sheared

horizontally at its top boundary. Periodic boundary conditions were applied to the four surrounding

surfaces in x1 and x3 directions to ensure a shear band develops along the full x1 − x1 width when

passing across the periodic side boundaries. The domain of the numerical specimen was discretized

into a uniform coarse mesh with 12 ×5 ×1 elements. The grain assemblies assigned to all quadrature

points are initially identical, and thus, the numerical specimen is macroscopically homogeneous.

As a result, the shear band in a simple shear test may occur at any height, which makes the loca-

tion of the band unpredictable. The previous DEM simulation results reported in [48] indicate that a

shear band forms along a horizontal plane, which is located at about three-quarters of the assembly

height from its ixed boundary, a result likely to be caused by subtle imperfection within the grain
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assembly. To match the location of shear band in the DEM and DEM–FEM simulations, we artii-

cially imposed an imperfection inside the shear band to break the symmetry and homogeneity of the

sample. The unit cell with imperfection was created by randomly taking out 25 particles from the

original unit cell. It should be noted that the initial state of the unit cell, for example, mean stress,

porosity, and coordination number, needs to be identical with those of the grain assembly in the

single-scale DEM test. To maintain a quasi-static loading condition, the mass-scaling technique was

used in the coarse-scale inite element method for the entire model throughout the simulation.

Figures 10 to 13 show themacroscopicmechanical behavior of the shear band during shear loading

with constant vertical stress p0 = 416 kPa. In the multiscale simulation results, the overall shear

strain was computed from the horizontal displacement u1 measured at the top surface divided by the

initial height h = 118mm while the shear stress was obtained from the reaction force at the ixed

end in the direction of shearing divided by the area of the bottom surface. Good agreements are

observed in these igures between the results predicted by both the multiscale model and the DEM.

For example, Figure 10 shows the shear stress–strain response of the grain assembly. Both shear

stress and mean stress (see Figures 10 and 11) reach their peak value and remaining nearly level until

�12 = 6%, followed by an abrupt softening between the strains �12 = 6% and �12 = 8%. Then at

�12 = 8% to 20%, shear stress and mean stress luctuate at the critical state where porosity remains

constant. Plastic dilatancy is observed in Figure 12 where the porosity of the assembly increases

monotonically even as the compressive mean stress increases. As shear loading proceeds, porosity

converges to a constant level after the shear stress reaches to its residual condition. This increase of

volume is ascribed to the re-arrangement of particles in dense spherical packings and dense sands as

they rise up over neighboring particles [48, 83]. Figure 13 shows the average coordination number

of the entire assembly. By comparing the multiscale and pure DEM simulations, we observe that the

Figure 9. Geometry of the domain and the boundary cor x1 ions for the simple shear test [77].
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Figure 10. Shear stress-strain response during simple shear loading.

Figure 11. Mean stress versus shear strain during simple shear loading.

multiscale model is able to replicate the evolution of coordination number, which decreases rapidly in

early, prepeak stress stage, and eases down to a nearly constant in a gently sloping stretch throughout

the subsequent peak, softening, and residual periods.

The deformed conigurations and averaged porosity along the assembly height at shear strain

�12 = 12% obtained frommulti-scale and single-scale simulations are compared in Figure 14(a). The

porosity curve obtained from the multiscale simulation is composed of 12 discrete points, each of

which is an average of the porosities of a row of macroscopic element. Both the multiscale and DEM

simulations indicate that the shear band thickness is about 13–16 mm, a quantity of great impor-

tance, and will be used as a measure of the characteristic length in the size effect studies in the next

example. The L2 norms of the Euler angles of each particle in the unit cells inside and outside the

shear band are plotted in Figure 14(b) to analyze the evolutions of microstructural attributes inside

the deformation band. Consistent to the inding in the single-scale benchmark, the multiscale model

predicts that particles inside the shear band rotate more than those outside the band. No grain-scale

deformation band was found inside the unit cells of the multiscale model.

Given the same computational resource, the CPU time for the multiscale simulation for the simple

shear test with the current coarse mesh is 22 hours, which is much shorter than the CPU time used

to complete the pure DEM counterpart (about one month). Therefore, it is evident that the proposed

multiscale approach can reduce the computational cost signiicantly while making accurate predic-

tion of the mechanical behaviors for granular materials. This enormous saving in simulation time is

attributed to (1) the eficient bridging of the different spatial scales, (2) the introduction of multiple

time step scheme, which allows the coarse-scale problem to evolve at a much larger time step without
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Figure 12. Porosity versus shear strain during simple shear loading.

Figure 13. Coordination number versus shear strain during simple shear loading.

causing stability issues, and (3) the usage of the reduced integration elements with hourglass con-

trol, which both reduces solution times substantially and eliminates shear locking while maintaining

spatial stability

3.5. Shear band in a plane strain biaxial compression test

Strain localization is of great importance to engineering applications, as it is often a precursor to

progressive failure in granular materials. If no length scale is introduced, the onset of strain localiza-

tion in numerical simulations may cause the loss of ellipticity (for static cases) or hyperbolicity (for

dynamic cases) of the boundary value problem. This undesired ill-posednessmay lead to pathological

mesh dependence. To circumvent this issue in continuum models, various localization limiters have

been introduced. They include (i) nonlocal or gradient models of which the constitutive response is

governed by a gradient or integral of at least one internal variable(s) or strain measure [84–86], (ii)

a ratedependent constitutive law [46], and (iii) formulations that permit displacement discontinuities

[87–91].

Pathological mesh size dependency has also been observed in the previous multiscale DEM–

FEM-coupling simulations [26, 27]. This pathological mesh size dependency is due to the ill-

posedness of the macroscopic inite element model [46].

The proposed multiscale approach remedies this situation via a modiied staggered nonlocal

approach. To test whether this staggered nonlocal operator successfully introduces an intrinsic length

scale and limits the shear band thickness when strain localization occurs, two sets of biaxial com-

pression tests were carried out using the local and nonlocal multiscale model, respectively. The

geometry, boundary conditions, and the macroscopic meshes of the model are shown in Figure 15(a).
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(a) Porosity versus height (b) Deformed configuration of RVEs inside and outside the shear band 

Figure 14. Proiles of (a) porosity and (b) deformed conigurations of the two RVEs inside and outside the
shear band at strain �12 = 12%, with color in each particle indicated the magnitude the rotation measured by

the norms of the rotation tensors.

The dimensions of the specimen were 40mm × 80mm × 5mm. A displacement-controlled vertical

load was monotonically applied on the top surface of the model. The conining pressure applied on

horizontal boundaries remained constantly throughout the loading. The asymmetric boundary con-

dition was used at the bottom surface in order to break symmetry and to initiate the localization.

Three inite element meshes depicted in Figure 15(b) were considered. For the nonlocal multiscale

model, the characteristic length was chosen to be 2R = 13.5mm, which is the same with the unit cell

size and is also consistent with the shear band width observed in the previous example.

In order to examine whether the nonlocal staggered scheme regularizes softening responses, we

remove the potential regularizations attributed from the rate-dependence of the contact laws. In other

words, damping parameters for grain contacts are set to be zero in both the local and nonlocal sim-

ulations, as shown in Table I. The global stress–strain responses predicted by local and nonlocal

multiscale models from three different meshes are shown in Figures 16 and 18, respectively. In both

igures, all three meshes yield almost identical pre-peak stress–strain behaviors and similar peak

stresses. The slight kink shown in the elastic regime is due to the wave relection from the bottom

boundary of the model, which may be removed by reducing the tolerance of the dynamics relaxation

scheme in Equation (57). As loading proceeded, strain localization emerged and inally developed

into a shear band. The constitutive responses obtained from the local multiscale model exhibit obvi-

ous mesh dependence in the post-bifurcation region, as shown in Figure 16. On the other hand, the

post-bifurcation stress–strain responses obtained from the nonlocal multiscale model, as shown in

Figure 18, are nearly mesh independent. The softening responses of the three meshes in the nonlocal

tests are almost identical, and the three curves converge even after shear bands are fully developed.

Figures 17 and 19 compare the contour plots of vertical compressive strain �22 for three meshes using

local and nonlocal multiscale models, respectively. Figure 17 shows that the local multiscale model

leads to different band thickness when varying mesh size and that the iner meshes lead to narrower

shear bands and higher intensity strains when using the local multiscale model. Meanwhile, the non-

local multiscale model produces shear bands of similar widths, provided that enough degrees of

freedom are used to interpolate the tip of the shear band as shown in the last two cases in Figure 19.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



A NONLOCAL MULTISCALE DISCRETE-CONTINUUM MODEL FOR GRANULAR MATERIALS

Figure 15. (a) The spatial domain and boundary conditions; (b) three meshes considered in the biaxial
compression tests.
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Figure 16. Compressive stress versus compressive strain curves for different meshes using local multiscale
model.

By comparing the stress–strain curves and the compressive strain distribution shown in Figures

18–19, one may observe that the nonlocal multiscale scheme is able to deliver more consistent

responses in the reinement study. Notice that the post-peak branch of the inest mesh of the

stress–strain curve not always giving the softest response. This is attributed to the fact that there are

no suficiently material points in the coarse mesh to obtain an accurate integration for the nonlocal

strain. As a result, the length scale of the coarse mesh is slightly larger than the ine mesh counter-

parts. In all numerical simulations, we found no shear band generated in the DEM assemblies. This

absence of grain-scale shear band can be attributed by the particle shapes, the absence of rotational

stiffness, lack of enrichment mode for the macroscopic inite element, and the usage of periodic

boundary condition as opposed to minimal kinematic boundary conditions. Detail examinations of

these factors are out of the scope of the current study but will be considered in the future.
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Figure 17. Contour plots of compressive strain for three meshes at �22 = 6% (local multiscale model)
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Figure 18. Compressive stress versus compressive strain curves for different meshes using nonlocal multi-
scale model.

4. CONCLUSIONS

In this paper, we present a nonlocal multiscale discrete-continuum model for granular materials.

The proposed multiscale model effectively bridges two spatial scales, the coarse (continuum) scale

and the ine (discrete) scale, by an information-passing coupling scheme based on the GMH theory.

Each nonlocal quadrature point in the coarse-scale mesh is associated with a unit cell consisting of

a granular assembly. The nonlocal strain obtained from the FEM solvers is converted into periodic

boundary conditions for the grain-scale simulations occurred in the unit cells, which in return provide

the nonlocal constitutive update at the macroscopic level via upscaling. This proposed model is ver-

iied via four benchmark problems. Good agreement has been observed by comparing the numerical

solutions obtained via the multiscale DEM–FEMmodel with the single-scale DEM benchmark. The

numerical examples demonstrate that the proposed multiscale discrete-continuum model is capable

of reproducing both the dynamic and quasi-static behaviors of granular materials, and simulation

results obtained for bifurcation problems are practically mesh size independent. The multiple spatial

scales and multi-step framework also present a signiicant cost reduction compared with the direct

DEM simulations.
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Figure 19. Contour plots of compressive strain for three meshes at �22 = 6% (nonlocal multiscale model).

APPENDIX A.

In the nonlocal DEM–FEM model, the unit cell is constrained by periodic boundary conditions to

be compatible with a macroscopic nonlocal strain measure. This nonlocal strain ield is obtained

by a nonlocal operator. This nonlocal operator integrates a local ield �(x) over a spherical domain

and returns the corresponding nonlocal ield  (�(x))R as a weighted average over a spatial

neighborhood domain V as follow,

 (�(x))R = ∫V �
′(x, ξ)�(x)dξ (A.1)

where �(x)is some ‘local’ ield in a domain V . The kernel function �′(x, ξ) is deined as follows:

�′(x, ξ) =
� (|x − ξ|)

∫
V
� (|x − ξ|) dξ (A.2)

In Equation (A2), � (r) is a monotonically decreasing nonnegative function of the distance

r= |x − ξ| typically described by Gauss-shaped or Bell-shaped function. In the present model, the

Bell-shaped weight function is employed because of its simplicity as follows:

�(r) =

⎧⎪⎨⎪⎩

(
1 −

r2

R2

)2

if 0 ⩽ r ⩽ R

0 if r ≥ R

(A.3)

where R denotes the interaction radius, which is an intrinsic material parameter measured in

experiments or calibrated from micro-structural simulations.

For convenience, it is convenient to exploit the information at the element quadrature point, and

thus, approximate Equations (A.1) and (A.2) are given by the following:
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Figure A.1. The spatial neighborhood of the gauss point x with a characteristic radius R.

 (�(xI))R =
∑
ξJ∈QI

�∗
(
xI , ξJ
)
�
(
ξJ
)

�∗(xI , ξJ) =
�(xI , ξJ)∑

ξJ∈QI

�(xI , �J)

(A.4)

where xI denotes the position of the quadrature point I; QI is a set of quadrature points ξJ ∈ QI

adjacent to point xI as shown in Figure A.1 that

{
QI
||||xI − ξJ

|| ⩽ R, ∀ξJ ∈ QI

}
(A.5)

where the QI adjacency information for each quadrature point is precomputed in the preprocessing

stage. In the staggered nonlocal algorithm [35], the staggered nonlocal operator ⟨�(xI)⟩R is deined

as follows:

⟨�(xI)⟩R =
∑

ξJ∈QI

�∗(xI , ξJ)�
∗(ξJ)

�∗(ξJ) =

{
�n+1(ξI) �� ξJ = xI
�n+�(ξJ) �� ξJ ≠ xI

(A.6)

where the subscript denotes the time step count, �n+� denotes the local ield computed on the ly,

that is, � is either 0 or 1, which represents either previous or current time step, and �n+1 is a local

ield at the current time step n+1.

APPENDIX B.

The numerical implementation of the co-rotational DEM–FEM scheme for large deformation

problems is as follows:

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



A NONLOCAL MULTISCALE DISCRETE-CONTINUUM MODEL FOR GRANULAR MATERIALS

ACKNOWLEDGEMENTS

This research is supported by the Earth Materials and Processes program at the US Army Research

Ofice under grant contract W911NF-14-1-0658 and W911NF-15-1-0581, as well as the Mechanics

of Material program at National Science Foundation under grant contract CMMI-1462760. These

supports are gratefully acknowledged. We thank the reviewers for their constructive suggestion

and feedback.

REFERENCES

1. de Borst R. A generalisation of J2-low theory for polar continua. Computer Methods in Applied Mechanics and

Engineering 1993; 103(3):347–362.

2. Vermeer PA, de Borst R. Non-associated plasticity for soils, concrete and rock. Heron 1984; 29(3):1–64.

3. Kingston M, Spencer A. General yield conditions in plane deformations of granular media. Journal of the Mechanics

and Physics of Solids 1970; 18(3):233–243.

Copyright © 2015 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (2015)

DOI: 10.1002/nme



Y. LIU ET AL.

4. Pestana JM, Whittle AJ. Formulation of a uniied constitutive model for clays and sands. International Journal for

Numerical and Analytical Methods in Geomechanics 1999; 23(12):1215–1243.

5. Pestana JM, Whittle AJ, Salvati LA. Evaluation of a constitutive model for clays and sands: Part I—sand behaviour.

International Journal for Numerical and Analytical Methods in Geomechanics 2002; 26(11):1097–1121.

6. Assimaki D, Kausel E, Whittle A. Model for dynamic shear modulus and damping for granular soils. Journal of

Geotechnical and Geoenvironmental Engineering 2000; 126(10):859–869.

7. Wang ZL, Dafalias YF, Shen CK. Bounding surface hypoplasticity model for sand. Journal of engineering mechanics

1990; 116(5):983–1001.

8. ManzariMT, Dafalias YF. A critical state two-surface plasticitymodel for sands.Geotechnique 1997; 47(2):255–272.

9. Lade PV, Duncan JM. Elastoplastic stress–strain theory for cohesionless soil. Journal of the Geotechnical Engineer-

ing Division 1975; 101(10):1037–1053.

10. Drucker DC, Prager W. Soil mechanics and plastic analysis or limit design. Quarterly of Applied Mathematics 1952;

10(2):157–165 .

11. Rudnicki JW, Rice J. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal

of the Mechanics and Physics of Solids 1975; 23(6):371–394.

12. de Borst R, Sluys LJ, Muhlhuas H–B, Pamin J. Fundamental issues in inite element analyses of localization of

deformation. Engineering Computations 1993; 10(2):99–121.

13. Rechenmacher A, Abedi S, Chupin O. Evolution of force chains in shear bands in sands. Geotechnique 2010;

60(5):343–351.

14. Cundall PA. A computer model for simulating progressive large scale movements in blocky rock systems. Proc. Symp.

Rock Fracture (ISRM): Nancy, 2013; 2–8.

15. Cundall PA, Strack OD. A discrete numerical model for granular assemblies. Geotechnique 1979; 9(1):47–65.

16. Kouznetsova V, Geers MG, Brekelmans WM. Multi-scale constitutive modelling of heterogeneous materials with

a gradient-enhanced computational homogenization scheme. International Journal for Numerical Methods in Engi-

neering 2002; 54(8):1235–1260.

17. Geers M, Kouznetsova V, BrekelmansW.Multi-scale computational homogenization: trends and challenges. Journal

of computational and applied mathematics 2010; 234(7):2175–2182.

18. Wellmann C, Lillie C, Wriggers P. Homogenization of granular material modeled by a three-dimensional discrete

element method. Computers and Geotechnics 2008; 35(3):394–405.

19. Bardet J., Proubet J. A numerical investigation of the structure of persistent shear bands in granular media.

Geotechnique 1991; 41(4):599–613.

20. Wellmann C, Wriggers P. A two-scale model of granular materials. Computer Methods in Applied Mechanics and

Engineering 2012; 205:46–58.

21. Li X, Wan K. A bridging scale method for granular materials with discrete particle assembly—Cosserat continuum

modeling. Computers and Geotechnics 2011; 38(8):1052–1068.

22. Regueiro RA, Yan B. Concurrent multiscale computational modeling for dense dry granular materials interfacing

deformable solid bodies. Bifurcations, Instabilities and Degradations in Geomaterials, Springer, 2011; 251–273.

23. Miehe C, Dettmar J. A framework for micro–macro transitions in periodic particle aggregates of granular materials.

Computer Methods in Applied Mechanics and Engineering 2004; 193(3):225–256.

24. Miehe C, Dettmar J, Zäh D. Homogenization and two-scale simulations of granular materials for different microstruc-

tural constraints. International Journal for Numerical Methods in Engineering 2010; 83(8 - 9):1206–1236.
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