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This work presents a new staggered multilevel material identification procedure for phe-
nomenological critical state plasticity models. The emphasis is placed on cases in which
available experimental data and constraints are insufficient for calibration. The key idea
is to create a secondary virtual experimental database from high-fidelity models, such as
discrete element simulations, then merge both the actual experimental data and second-
ary database as an extended digital database (EDD) to determine material parameters
for the phenomenological macroscopic critical state plasticity model. The calibration
procedure therefore consists of two steps. First, the material parameters of the discrete
(distinct) element method (DEM) simulations are identified via the standard optimization
procedure. Then, the calibrated DEM simulations are used to expand the experimental
database with new simulated loading histories. This expansion of database provides addi-
tional constraints necessary for calibration of the phenomenological critical state plastic-
ity models. The robustness of the proposed material identification framework is
demonstrated in the context of the Dafalias–Manzari plasticity model.
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1 Introduction

Due to the complexity of granular material behaviors,
phenomenological constitutive models must strike a balance
between simplicity and predictability. While more comprehensive
phenomenological models may be more robust and accurate for a
given situation, the calibration of material parameters for such
models are typically more complicated. Due to the larger set of
internal variables required to describe the path-dependent behav-
ior more accurate, comprehensive constitutive models often
require a sizable datasets composed of multiple stress paths, load-
ing and drainage conditions in order to generate sufficient con-
straints for calibrations. Nevertheless, the demand to generate,
measure, store, and track the sufficient data through physical
experiments can be costly and time consuming, and therefore,
make the comprehensive models less appealing or even deemed to
be impractical. The goal of this research is to accelerate the use
of comprehensive constitutive models by means of an extended
material database.

Over the past four decades, numerous constitutive models have
been developed to describe the characteristic behavior of granular
materials. The framework of elastoplastic modeling is well suited
to simulate the path-dependent responses of granular materials,
i.e., plastic strain, shear-dilatancy effects, stress-path dependency,
pressure sensitivity, rotation of principal stress axes, fabric anisot-
ropy, liquefaction and cyclic mobility, localization and shear
banding [1–13]. The critical state concept in combination with the

elastoplasticity theory has been rather successful for constructing
simple and pertinent constitutive models for sand and other cohe-
sionless granular materials [14–17]. Recently, these critical state
models have been modified to incorporate stress anisotropy due to
the evolution of fabric, and the anisotropic kinematic hardening
responses for cyclic loading [18–22]. The improved accuracy,
nevertheless, comes with the price of increased material parameter
set. Consequently, it becomes no longer feasible to identify mate-
rial parameters by visual inspection. Instead, one must constitute a
constrained optimization problem designed to identify material
parameters that minimizes the errors of numerical simulations
characterized by an objective function and a set of constraints
through an iterative process [23]. The discrepancy between exper-
imental data and numerical simulations in a least square sense
comprises the objective function, which depends on constitutive
law parameters. An optimization algorithm, such as the gradient-
based methods [24,25], swarm intelligence-based algorithms
[26,27], and neural networks [28], is employed to seek material
parameters that minimize the error defined by the objective func-
tion. There have been a number of attempts to calibrate constitu-
tive model parameters for sands (e.g., Toyoura sand [29,30],
Nevada sand [25,31,32], and pea-gravels [33]). Various material
identification schemes [34,35] adopted finite element based
inverse analysis to account for spatial heterogeneity. By utilizing
a spatially dependent objective function, these algorithms exploit
information from measured inhomogeneous deformation fields in
comparison to the finite element solution to identify material
parameters. This approach [36] has been recently employed to
identify material parameters for granular materials by utilizing
full-field displacement measurements. Spatially varying constitu-
tive model parameters can be obtained from such a calibration
process.
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The identification of material parameters for phenomenological
constitutive laws relies heavily on experimental data obtained
from laboratory tests or field studies. Since the cost and time
involved to conduct physical tests required for calibration of
material parameters is quite prohibitive, a widespread adoption of
comprehensive models in practice is quite limited. For instance, to
identify the shape and size of a yield surface, one may need to
record the yield stress for multiple stress paths with different
confining pressures. Such an extensive experimental data is rarely
justifiable in practice due to considerable cost involved. A more
cost-efficient alternative is to conduct only a limited numbers of
tests and replace the rest of tests with virtual high-fidelity simula-
tions. For instance, a small-scale physics-based high-fidelity
model can be used to generate the required computational
(virtual) data, which is then merged with an available limited
experimental data to form so-called an EDD. Experiments (both
laboratory and virtual) housed in the EDD are then used to explore
the new features of the comprehensive phenomenological consti-
tutive material models and to identify their parameters. Such a
framework is one of the key components of the integrated compu-
tational material engineering [37], with a wide variety of engi-
neering applications ranging from informatics-based material
design to comprehensive data mining tools [38,39] and wing
design optimization in aerodynamics [40,41].

In this study, we propose a staggered multilevel approach to
identify material parameters for macroscopic phenomenological
model with limited or insufficient available experimental data.
The key idea is to use high-resolution or other detailed simula-
tions to supplement the missing experimental data essential for
material identifications. To supplement the experimental data, a
high-fidelity model is first calibrated with the available experi-
mental data, then employed to run additional simulations to create
a secondary virtual experimental data, which supplements the true
experimental data. With the extended database consisting of both
true and virtual experimental data, the optimal material parameter
set can be identified via a constrained optimization algorithm.

In this work, our focus is on applying the EDD concept to gran-
ular materials. As a result, we use the grain-scale DEM as the tool
to obtain high-fidelity simulated data and extend the digital data-
base, while a macroscopic critical state plasticity model proposed
by Dafalias and Manzari [30] (referred as DaMa model herein) is
calibrated via the EDD and served as the low-fidelity model cali-
brated for forward predictions made with limited computational
costs. The details of the calibration procedure are described in the
following steps:

(i) The high-fidelity model (DEM) is first calibrated with the
available laboratory experimental database to find material

parameters of the DEM model that minimizes the discrep-
ancy between the experimental data and responses simu-
lated by the high-fidelity model.

(ii) The EDD is formed by supplementing the experimental
data with the simulated responses obtained from the DEM
models to provide essential additional constraints for the
low-fidelity DaMa model.

(iii) The material parameters of the low-fidelity DaMa model
are identified using an optimization algorithm that mini-
mizes the discrepancy between the responses from the
EDD database and those simulated by the DaMa model.

(iv) Once calibrated, the DaMa model is ready for forward
predictions.

The DEM simulations of monotonic and cyclic torsion, direc-
tional shear, and various triaxial loads are used to expand the
experimental database. The critical state two-surface plasticity
model pioneered by Dafalias and Manzari [30], which incorpo-
rates the fabric-dilatancy effect, is used for proof of concept as a
low-fidelity model in comparison to the DEM. The present manu-
script focuses on the Nevada sand for which experimental data is
available.

The rest of the paper is organized as follows. The proposed
material identification framework and the salient features of the
EDD-based material identification procedure are introduced in
Sec. 2, followed by the formulations of the variable-fidelity
models, including the DEM and Dafalias–Manzari critical state
plasticity model. By using Nevada sand as the test bed, the step-
by-step implementation of the proposed multilevel material
identification procedure is demonstrated in Secs. 3 and 4. In par-
ticular, Sec. 3 presents the calibration of the DEM assemblies
and the formation of the EDD. Numerical experiments that cali-
brate the DaMa model to the EDD are then presented in Sec. 4.
To investigate the robustness and effectiveness of the proposed
approach, an assessment of forward prediction of calibrated
DaMa model is conducted in Sec. 5. Finally, conclusions are
drawn in Sec. 6.

2 The Variable Fidelity Model Framework

2.1 Description of the Proposed Algorithm. The proposed
multilevel calibration approach synthesizes both microscale
and macroscale analyses, as is shown in Fig. 1. In the microscale
analysis, a calibration of the geometric and micromechanical
parameters of the DEM assemblies based on the experimental
data is carried out. The calibrated DEM assemblies are subse-
quently used to expand the experimental database with new simu-
lated loading histories, creating an extended database that

Fig. 1 The flowchart of the proposed multilevel material identification procedure using EDD
and optimization
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combines the virtual and physical experimental data. This com-
bined dataset is then used to calibrate phenomenological constitu-
tive model by solving the inverse problem with digital and
experimental database that comprise the EDD as constraints.

To test whether the calibrated phenomenological model is predic-
tive, experimental data in the EDD is split into two sets: (1) the
training set, which is used for inverse calibration of the phenomeno-
logical constitutive model, and (2) the verification (test) set, which
compares experimental data not included in the first set with the
simulated response to assess the accuracy and robustness of forward
predictions. The EDD provides the necessary dataset for calibration
of multiparameter phenomenological model, such as DaMa.

2.2 High-Fidelity Micromechanics Model: DEM. In the
proposed calibration framework, we use DEM as the high-fidelity
model to expand the experimental data. First proposed by Cundall
and Strack [42], the DEM has been widely used to investigate
micromechanical features of the granular assemblies. In a DEM
assembly, the translational and rotational motions of each particle
are obtained by the force and momentum equilibrium equations

mJ€uJ ¼
X

ðf IJ þ DIJÞ � Cg _u
J

IJ€hJ ¼
X

MIJ � C�
g
_h
J (1)

where mJ and IJ are mass and moment of inertia of particle J,

respectively; €uJ and €h
J
are translational and rotational accelera-

tions, f IJ and MIJ are interparticle force and moment, respec-

tively, exerted on particle J from particle I at contact, DIJ is

contact damping force comprising of normal, DIJ
n , and tangential,

DIJ
s , components at the contacts, defined as

DIJ
n ¼ cn _n; DIJ

t ¼ cs _s (2)

where _n and _s are normal and tangential components of the rela-
tive velocities between particles I and J; here, cn and cs are the
corresponding contact damping coefficients. Cg and C�

g are the

coefficients of global damping operating on particle velocities _uJ

and _h
J
, respectively [42]. The contact and global damping in the

DEM simulations are chosen to adequately damp the higher fre-
quency modes without excessively delay particle motions [43].

The DEM simulation explicitly models the kinetics of individ-
ual grains via interparticle contact laws. In our implementation,
we adopt the J€ager contact model [44–46] with a general contact
profile in which the sphere is assumed to have a specific local
irregularity of the form Aar

a at the contact region, as shown in
Fig. 2(a).

In the J€ager contact model, the normal force between an asper-
ity of a general form and a hard flat surface is defined as

f n ¼ Caf
1þa�1ð Þ

; Ca ¼
4aGs

1� �sð Þ 1þ að Þ
C 1þ að Þ=2
� �

ffiffiffi

p
p

AaC 1þ a=2ð Þ

 !a�1

(3)

where f denotes the indentation at contact (half of the contact
overlap); Gs and �s are shear modulus and Poisson’s ratio of the
grains, respectively; and C is the gamma function; a is a variable
that describes the local irregularity of contact. Equation (3) yields
the standard Hertz solution if a ¼ 2 and A2 ¼ 1=ð2RÞ, represent-
ing Hertzian contact along ideally smooth spherical surfaces
(Fig. 2(a)). With a conical asperity with a ¼ 1, A1 corresponds to
the outer slope of the cone (Fig. 2(b)).

The tangential force between two contacting particles is com-
puted with an extension of the Hertz–Mindlin–Deresiewicz
theory, which accounts for three-dimensional arbitrary normal and
tangential contact movements. The detailed theoretical argument
and numerical implementation are presented in Refs. [45] and
[46]. The equations of motion in Eq. (1) are solved via an explicit
central difference algorithm. Within each incremental updates
for the displacement and rotation of each particle, scaled time
parameter and unit mass are used to obtain quasi-static responses
via dynamics relaxation [47].

For a unit cell composed of a collection of particles, the macro-
scopic Cauchy stress tensor of the particle assemblies can be
recovered vis spatial homogenization [48], virtual work principle
[49], or generalized mathematical homogenization [47], which all
lead to

rij ¼
1

V

X

Nc

n¼1

lni f
n
j (4)

where f nj is the contact force at contact point n; lni is the branch
vector connecting the centers of two contacting particles at n, and
Nc the total number of contacting particle pairs in the volume V of
the unit cell.

To expand the material database using DEM, one must first cali-
brate the material parameter of the particle and generate granular
assemblies using the physical experimental data. Following this cali-
bration step, the DEM is employed to expand the material database
for a specific type of granular materials, such as sand and slit.

2.3 Low-Fidelity PhenomenologicalModel: Dafalias–Manzari
Critical State Plasticity. In this study, we adopt the model pro-
posed by Dafalias and Manzari in Ref. [30] as the low-fidelity
phenomenological model and calibrate it with the expanded data-
base. Notice that the multilevel calibration framework proposed in
this study is also applicable to other critical state plasticity models
for granular materials (e.g., Refs. [50–53]). The Dafalias–Manzari
model is selected, as the test bed, because it is relatively easy to

Fig. 2 Contours of contact asperities (a) general power-form surface contour z 5Aar
a [44];

(b) surface contour with different asperities used in DEM simulations (Reproduced with per-
mission from Kuhn et al. [71]. Copyright 2014 by Matthew R. Kuhn, Professor, Dept. of Civil En-
gineering, Donald P. Shiley School of Engineering, Univ. of Portland, Portland, OR).
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implement and has been widely adopted. To enhance the accuracy
and predictability of the phenomenological model, a larger set of
material parameters is typically required to govern the evolutions
of internal variables. For comprehensive phenomenological mod-
els for granular materials, such as the critical state plasticity
model of Dafalias and Manzari [30] considered in this study, con-
siderable experimental database is required to identify the loci of
yield surface and the size and shape of the limited surfaces.

Dafalias and Manzari [30] model (DaMa) is a comprehensive
critical state plasticity model employing state parameters for mod-
eling mechanical behavior at various densities and confining pres-
sures under monotonic and cyclic loading conditions. It combines
the concepts of bounding surface model and critical state general-
ized plasticity concept to form an elegant model that accounts for
fabric-dilatancy quantity and the effect of fabric changes to pre-
dict stress–strain relations under various drainage and loading
conditions. For completeness, the multi-axial formulation of the
DaMa model is briefly described in this section. Interested readers
are referred to the original papers cited above.

In the DaMa model [30], the strain increments are additively
decomposed into elastic and plastic parts. The elastic parameters
G0 and � define the nonlinear hypo-elastic behavior by

G ¼ G0pat
2:97� eð Þ2

1þ e

p

pat

� �1=2

; K ¼ 2 1þ �ð Þ
3 1� 2�ð ÞG (5)

where G0 is a material constant, � is the Poisson’s ratio, e is the
current void ratio, and pat is the atmospheric pressure. Both G0

and � are independent of applied stress path and can be obtained
from small strain monotonic shearing behavior.

The yield surface is defined as

f ðr; a;mÞ ¼ ðrijrijÞ1=2 �
ffiffiffiffiffiffiffiffi

2=3
p

mp ¼ 0 (6)

rij ¼ ðsij � aijÞ (7)

where m is the size of the yield surface, sij is the deviatoric stress
tensor, and aij is the deviatoric back stress tensor which describes
the kinematic hardening of the yield surface by indicating the
location of the center of the yield surface.

The critical state of a soil [15] refers to a continuous flow state
with constant stress and constant volume in granular soil. In this
model, the critical state of a soil [54] is defined to satisfy simulta-
neously the conditions q ¼ qc, p ¼ pc, e ¼ ec, qc=pc ¼ M as well
as the equation of critical state line (CSL) in e� p space [55]

ec ¼ ec0 � kc
pc

pat

� �n

(8)

where qc, pc, M, ec0, kc, and n are scalar parameters obtained from
interpolating the mean stress p ¼ ðr1 þ 2r3Þ=3, deviatoric stress
q ¼ r1 � r3 and the void ratio e at the critical state. Here, ec0
denotes the void ratio at pc ¼ 0. The bounding surface is associ-
ated with the maximum peak stresses ratio state that can be
attained, and the dilation surface represents the condition at which
the contractive soil behavior changes to dilative. The bounding
surface and the dilation surface are constructed to comply with
the critical state theory in the following form which are dependent
on the Lode angle h:

aahij ¼
ffiffiffiffiffiffiffiffi

2=3
p

aahnij; nij ¼ rij

.
ffiffiffiffiffiffiffiffiffiffiffiffi

ðrijrijÞ
q

ða ¼ b; c; dÞ (9)

abh ¼ gðh; cÞM exp ð�nbwÞ � m (10)

adh ¼ gðh; cÞM exp ðndwÞ � m (11)

ach ¼ gðh; cÞM � m (12)

g h; cð Þ ¼ 2c

1þ cð Þ � 1� cð Þcos 3h ; c ¼ Me

Mc

(13)

where the superscript a may take three values of b (for bounding
surface), d (for dilatancy surface), and c (for critical surface); nb

and nd are positive scalar constants which control the size of the
two limit surfaces, respectively; gðh; cÞ is the scaling function
used for generalization of surfaces from triaxial space to multi-
axial space; and c is referring to the ratio between the critical state
stress ratios in compression and extension. For simplicity, c is a
common parameter for all three surfaces. It is seen from
Eqs. (9)–(11) that the bounding and dilation surfaces tend to coin-
cide with the critical state surface as w ! 0. The yield surface
governed by pure kinematic hardening law translates in the stress
space. The state parameter w ¼ e� ec proposed by Been and
Jefferies [56] is used to measure the distance from the current
state to the critical state.

The evolution of hardening modulus Kp and plastic dilatancy D
is described as functions of the relative distance between the
image back stress ratios, abhij and adhij, respectively, and the back
stress of the yield surface aij, given by

Kp ¼
2

3
ph abhij � aij

� �

nji (14)

D ¼ Adðadhij � aijÞnji (15)

where h is a positive scaling function defined by positive constants
h0 and ch

h ¼ b0=½ðabhij � ainij Þnji� with b0 ¼ G0h0ð1� cheÞðp=patÞ�1=2

(16)

And the positive scaling function Ad for dilatancy is affected by
the fabric changes such that

Ad ¼ A0ð1þ hzijnjiiÞ with _zij ¼ �czh�_epviðzmaxnij þ zijÞ (17)

where zij denotes the fabric-dilatancy internal variable, A0 and
zmax are material constants which control the pace of evolution of
zij. The Macaulay brackets h i representing hxi ¼ x if x > 0 and
hxi ¼ 0 if x � 0. Equations (14)–(17) dictate the mechanism of
the effect of fabric change on dilatancy upon load increment
reversals.

Therefore, a total set of 15 model parameters are required to
completely define the DaMa model. These parameters can be cate-
gorized into three groups, namely, elastic parameters, critical state
parameters, and model specific parameters [33,57,58]. The param-
eters in each group are:

� elastic parameters: G0 and �
� critical state parameters: M, c, kc, e

c
0, and n

� model specific parameters: yield surface parameter m, hard-
ening constants fh0; ch; nbg, dilatancy constants fA0; n

dg,
and fabric-dilatancy constants fzmax; czg

2.4 Calibration Through Constrained Optimization. The
parameter identification process is formulated as a constrained
optimization problem in which the objective is to identify an opti-
mal set of parameters that minimizes the discrepancy between the
simulated response by DaMa and the data housed in EDD in the
least square sense. In other words, the optimization problem is an
iterative process in which material parameters are modified in
each trial based on the results of the inverse problem until the pre-
dicted data best fits the target data housed in EDD.

Let us denote the model parameters to be calibrated by
h 2 RN�1, where N is the total number of parameters. In the pres-
ent study, h consists of 15 DaMa model parameters (N¼ 15), i.e.,
h ¼ fG0; �;M; c; kc; e

c
0; n;m; h0; ch; n

b;A0; n
d; zmax; czgT.
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We define an objective function representing the discrepancy
between the target response quantities from EDD and the pre-
dicted data obtained by DaMa model as

f hð Þ ¼ 1

2
rT hð ÞWr hð Þ (18)

where rðhÞ 2 RSL�1 is the residual vector and W 2 RSL�SL is the
diagonal weight matrix, given by

r hð Þ ¼

ŷ1 hð Þ � y1

ŷ2 hð Þ � y2

�

ŷS hð Þ � yS

8

>

>

>

>

>

<

>

>

>

>

>

:

9

>

>

>

>

>

=

>

>

>

>

>

;

; W ¼

w1

yT1y1
I 0

w2

yT2y2
I

. .
.

0
wS

yTSyS
I

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

(19)

in which yi ¼ fyi1; yi2; :::; yiLgT and ŷiðhÞ ¼ fŷi1ðhÞ; ŷi2ðhÞ;
:::; ŷiLðhÞgT are the target response quantities and the predicted
data, respectively, of the ith data set (i ¼ 1; 2; :::; S); wi is the

weight coefficient of the ith data set; I 2 RL�L is an identity
matrix; S is total number of target data sets; and L is total number
of data points of the target response quantities.

For example, in our implementation, both the stress–strain
behavior and the evolution of void ratio are considered in
the curve fitting process for each test (e.g., L¼ 2). Thus, the
target response quantities and the predicted data can be
expressed as

yi ¼
qi

p0
; ei

	 
T

and ŷi hð Þ ¼ q̂i hð Þ
p0

; êi hð Þ
( )T

(20)

where q denotes the deviatoric stress, p0 is the initial mean stress,
and e is the void ratio.

The goal is to minimize the objective function f ðhÞ and to
obtain the best set of model parameters. Therefore, the con-
strained optimization problem can be stated as

ĥ ¼ arg min
h

ff ðhÞg hlbj � hj � hubj ðj ¼ 1; 2; :::;NÞ (21)

where hlbj and hubj denote the lower and the upper bound of the jth
parameter, and ĥ denotes the calibrated model parameters that
best fit the target database.

We employ the Gauss–Newton trust region algorithm [59] to
solve the optimization problem in Eq. (21). In the optimization pro-
cess, the parameters are updated by the iterative process given by

h
_

kþ1 ¼ h
_

k � ðJ
_T

kW
_

J
_

k þ kIÞ�1J
_T

kW
_

r
_ ðhkÞ (22)

where k is the iteration number index; h
_

k denotes the active

parameter set (i.e., h
_

k 2 hk); k is the Levenberg–Marquardt

parameter [60] which can be determined iteratively; r
_
and W

_

con-
tain components of r and W, respectively, for model parameters

inside the bounds; J
_

k is the Jacobian of r
_ðhkÞ, namely,

J
_ pj

k ¼ @r
_

pðhkÞ=@hj, where p ¼ 1; 2; :::; SL and j ¼ 1; 2; :::;N.
Herein, we approximate the Jacobian components using central
difference method, viz.,

J
_ pj

�
r
_

p h1; :::; hj�1; hj þ dhj; hjþ1; :::; hN
� �

� r
_

p h1; :::; hj�1; hj � dhj; hjþ1; :::; hN
� �

2dhj
(23)

where dhj is an infinitesimal perturbation. It is noteworthy that
Eq. (23) is guided by an active parameter strategy, which imposes
simple bounds on the trust region represented by radius D [59]. In
addition, k is selected to ensure that the solution updates lie within
the trust region. The two parameters k and D are computed using
a locally constrained hood step algorithm [61].

The optimization is completed and a set of parameter ĥ is
returned when the following criteria are satisfied:

C1 ¼ f ðhkÞ � 0:01 and C2 ¼ kJ
_1:SL;j
k k � 1� 10�8 ðj¼ 1;2; :::;NÞ

(24)

where k•k denotes the L2 norm of a vector and 1:SL denotes the
first SL rows in a matrix.

3 Calibration and Prediction of DEM Model

In this study, we test the proposed multilevel calibration proce-
dure with the Nevada sand dataset from published literature. We
choose the Nevada sand as the test bed due to the large amount
of existing data generated in the past decades. For this purpose,
laboratory tests performed on this sand by Earth Technology Cor-
poration in the course of the Verification of Liquefaction Analysis
by Centrifuge Studies project [62] were used. The objective is to
use well-calibrated DEM assemblies as virtual specimens and
conduct high-fidelity microscale (DEM) simulations on those

DEM assemblies to generate the necessary constraints to calibrate
the DaMa model when experimental data alone is insufficient.
The generalized procedure of the calibration process can be
described as follows: (i) construct DEM assemblies with the goal
of approximating the behavior of Nevada sand, (ii) calibrate the
DEM model parameters based on the lab experimental data, (iii)
carry out DEM simulations subjected to loading paths that are not
considered in the lab tests, (iv) expand the database by adding the
DEM simulated responses to the experimental database and form
the EDD, and (v) calibrate the constitutive model parameters
based on the EDD.

In this section, the DEM assemblies are created and calibrated
to approximate the behavior of Nevada sand at different relative
densities and confining pressures against the experimental data
from lab test reports [62,63]. The DEM simulations were con-
ducted using the open source DEM code OVAL [64].

3.1 Representative Volume Element (RVE) Genera-
tion. The macroscopic mechanical behavior of granular materials
depends on both the material properties of particles and the topo-
logical features of the grain assemblies. The DEM provides a con-
venient tool to explicitly model this particulate nature but is also
more computationally expensive than continuum model. As a
result, the DEM is chosen as the high-fidelity model to expand the
material database. In this study, we assume that the material data-
base contains only macroscopic constitutive responses obtained
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from conventional shear, plane strain and triaxial loading experi-
ments. Microscopic data that require unconventional experimental
techniques to obtain (e.g., position vectors of individual particles, to-
pology of void space, and the scale of fluctuation of material param-
eters within specimen) are not considered [65–68]. Such a
consideration is reasonable for engineering practice in which micro-
scopic data are rarely extracted or used due to the associated cost.

Since we do not employ any microscopic data that explicitly
captures the geometry of individual grains, we will not attempt to
use the corresponding DEM models, such as the level-set based
potential element method [69] and nonuniform rational basis
spline-based granular element method [70], to generate granular
assemblies that are compatible to the experimental counterpart on a
grain-by-grain basis. Instead, our goal is to generate RVE that has
the compatible initial relative density, grain size distribution, and
constitutive responses to those of the experimental counterpart. In
this study, we adopt the particle assemblies from Ref. [71], which
are composed of bumpy particles formed by lumping overlapped
spheres together. As shown in Ref. [72], those assemblies composed
of bumpy particles may yield more realistic friction angles and mac-
roscopic shear strength than those composed of spherical particles.
Since the angularity and nonsymmetry of particle shape can be prop-
erly replicated, this leads to improvement in capturing the interlock-
ing among particles and the greater resistance of particle rotation.
As a result, the increase in the deviatoric stress to the peak value
and in the volumetric strain with the angularity commonly observed
in experiments can be replicated with bumpy particles.

In this study, a bumpy, compound cluster shape with a large
central sphere with six embedded satellite spheres in an octahedral
arrangement was chosen, which was studied and presented by
Kuhn et al. [71]. This shape has proven to be sufficiently non-
round to produce a target range of initial densities and realistic
strength. A total number of 6400 bumpy elements from an assem-
bly represents a unit cell at the material point, which are found to
be large enough to capture the overall stress–strain response of
material but sufficiently small to prevent mesoscale localization
and boundary-condition-induced nonuniformities (e.g., shear
bands, footings, excavations) [71].

The particles in the grain assembly are scaled such that the
grain size distribution of the DEM assembly is close to those of
the real Nevada sand. The resultant virtual specimen has a grain
size distribution with median particle size D50 ¼ 0:165 mm and a
coefficient of uniformity Cu ¼ 2:0, comparing with the laboratory
tests data D50 ¼ 0:165 mm and Cu ¼ 2:2 [62] (see Table 1). A
comparison of the physical properties between lab test samples
for Nevada sand and the DEM assembly of virtual particles are
shown in Table 1.

The 6400 bumpy particles were initially sparsely distributed in
a space cell surrounded by period boundaries. By repeatedly
assigning random velocities to particles and reducing the assem-
bly height, 15 assemblies with initial void ratios in the range of
0:850–0:525 were created. Each assembly was then isotropically
consolidated to a target mean effective stress from 10 kPa to
400 kPa for subsequent computations involving microparameter
calibration and digital database enrichment. It is noted that tests
under even higher consolidation stresses may lead to particle
breakage and grain crushing [73–75] when the stress applied on
the soil particle exceeds its strength, which is beyond the scope of
this study.

Due to the disparity in shapes between natural sand and DEM
particles, the real and numerical specimens may have different
ranges of attainable porosity. As a result, minimizing the discrep-
ancy of the numerical and experimental void ratios may not lead
to comparable state condition in granular materials. Alternatively,
we conduct a numerical relative density test to obtain the maxi-
mum and minimum void ratio of the granular assemblies, and the
notion of relative density was chosen as a measure of equivalence
to match experimental and numerical results [72]

Dr ¼
emax � e

emax � emin

(25)

where void ratio e can be obtained from relative density Dr

through the maximum void ratio emax and minimum void ratio
emin that a sand sample could achieve with standard ASTM proce-
dures [76,77]. The corresponding void ratios at three different rel-
ative densities used in the following simulations are shown in
Table 1. It is noteworthy that, to compare the results quantita-
tively, the simulations were accomplished on samples with identi-
cal or nearly identical relative densities compared with those in
target experimental tests.

3.2 Calibration of the Micromechanical Properties of
DEM Assemblies. The micromechanical properties of the afore-
mentioned DEM assemblies have been calibrated by Kuhn et al.
[71] to capture cyclic liquefaction behavior of Nevada sand. The
calibration efforts attempt to produce a relationship between
small-strain bulk shear modulus Gmax and the mean effective
stress p0 (i.e., Gmax ¼ ðp0Þ0:5), and to achieve Gmax with a target
value of 90MPa at a mean effective stress of 80 kPa [78,79]. The
same set of model parameters obtained by Kuhn et al. [71] was
used throughout all the DEM simulations in this study, as shown
in Table 2. For detailed processes on particle assembly prepara-
tion and guidance on model parameter calibration, readers are
referred to Refs. [71], [72], and [80].

A series of undrain and drained triaxial compression (TC) and
extension simulations were carried out on the samples studied
above. The shear stress–strain (octahedral) responses recorded
during the computations were compared to experimental data [62]
in Figs. 3–10.

To match the monotonic undrained TC and extension tests for
Nevada sand at 40% Dr , two assemblies with initial void ratios
(0.732 and 0.707) that straddle the target void ratio e0 ¼ 0:720
(see Table 1) were considered. Before triaxial loading, the assem-
blies were isotropically consolidated to the mean effective stress
p00 corresponding to the experiments’ confining stresses, e.g.,

Table 1 Physical properties of Nevada sand and DEM assemblies used in this study

Void ratio at different Dr

Sample
Mean grain

size D50ðmmÞ
Uniformity coefficient

Cu ¼ D60=D10

Maximum void
ratio emin

Minimum void
ratio emax eDr¼40% eDr¼60% eDr¼89%

Nevada sand [62] 0.165 2.2 0.511 0.887 0.736 0.661 0.552
DEM assembly 0.165 2.0 0.525 0.850 0.720 0.655 0.560

Table 2 Micromechanical parameters for DEM computations

29.0 Shear modulus G (GPa)
0.15 Poisson ratio
0.60 Coefficient of friction at particle–particle and particle–wall contacts
0.20 Viscosity coefficient for translational body damping
0.30 Viscosity coefficient for rotational body damping
0.00 Viscosity coefficient for contact damping
5.3 J€ager contact model parameter A1

1.3 J€ager contact model parameter a
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40 kPa, 80 kPa, and 160 kPa, respectively. The mean effective
stress p0 was computed from initial confining pressure and pore-
water pressure (PWP) p0 ¼ p� u. Loading was applied in the z
direction with a small strain increment Dezz ¼ 65:0� 10�7 to
maintain nearly quasi-static conditions. For undrained tests, zero
volume-change conditions were applied by constantly adapting
deformations of the assemblies in x and y directions such that
ð1þ exxÞð1þ eyyÞð1þ ezzÞ ¼ 1. Figures 3 and 4 show the
undrained behavior for these two DEM assemblies in triaxial tests,
respectively. The undrained stress paths of the two DEM assem-
blies shown in Fig. 3 depict the constitutive responses of Nevada
sand observed in the laboratory tests, i.e., the stress-paths con-
verge to substantially the same CSLs in both extension and com-
pression tests at larger strains. During extension tests, strain
softening behaviors are observed at small strains, followed by a
pickup of strength at phase transformation (PT) points. It can be
seen that a good match occurred in the TC tests at confining pres-
sure p0 ¼ 80 kPa and p0 ¼ 160 kPa. However, the small strain
portion in p0 ¼ 40 kPa compression tests differed from the experi-
ment curve. Better overall agreement is achieved at assembly with
e0 ¼ 0:707. The q -axial strain curves predicted by DEM simula-
tions in Fig. 4 exhibit the correct trend with the experiment data in
small strain regime.

Figures 5 and 6 show the DEM simulations along with the
experimental results of drained monotonic compression constant-
p0 tests with initial relative density of about 40%. Reasonably well

agreement in the q� p0 plots (Fig. 5(a)) with experimental results
was achieved for both densities e0 ¼ 0:732 and e0 ¼ 0:707 at var-
ious confining pressures. The volumetric curves in Figs. 5(b) and
6(b) show that the calibrated DEM model can predict the volumet-
ric strain reasonably well in the small strain region, particularly
within 4%. Nevertheless, the discrepancy in volumetric responses
gradually grows beyond this strain level, and the overprediction of
volumetric strain in DEM becomes apparent, even though the
deviatoric stress of the simulated and experimental simulations
remains roughly compatible. This discrepancy in volumetric
responses may be attributed to the discrepancy in particle shapes
and arrangements, particle crashing, the oversimplification of con-
tact laws, and the effect of boundary conditions. Presumably,
incorporating microscopic experimental data via particle tracking
techniques as well as more advanced DEM models to replicate the
real particle shapes can reduce these discrepancies. These possible
research directions will be explored in subsequent studies, but is
out of the scope of this work.

The DEM predictions for 60% Dr triaxial tests under undrained
and drained conditions are shown in Figs. 7–10. Two assemblies
were considered for comparison with initial void ratios
e0 ¼ 0:674 and e0 ¼ 0:640. Similar trends are observed in the
60% Dr drained and undrained tests.

The above figures showcase how well the high-fidelity DEM
model replicates the pressure-sensitive responses of Nevada sand.

Fig. 3 Undrained TC and extension of DEM simulations at
three densities, comparing with Nevada sand tests (black
dashed lines) at relative density of 40% with initial confining
pressure of 40 kPa, 80 kPa, and 160kPa (stress paths)

Fig. 4 Undrained TC and extension of DEM simulations at
three densities, comparing with Nevada sand tests (black
dashed lines) at relative density of 40% with initial confining
pressure of 160 kPa (stress–strain curves)

Fig. 5 Drained TC (constant p0) of DEM simulations at
e50.732, comparing with Nevada sand tests at relative density
of 40% with initial confining pressure of 40kPa, 80 kPa, and
160kPa: (a) stress paths and (b) volumetric curves
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We observe that the particle assemblies composed of bumpy par-
ticles are able to reproduce the shear responses and friction angles
observed in triaxial experiments conducted at different confining
pressure levels. Nevertheless, a sizable discrepancy in volumetric

responses at finite deformation range is also noticed. These results
imply that the DEM model currently employed in this study is a
reasonably high-fidelity model when the strain-level is small.
Nevertheless, caution must be exercised when interpreting the

Fig. 6 Drained TC (constant p0) of DEM simulations at
e50.707, comparing with Nevada sand tests at relative density
of 40% with initial confining pressure of 40kPa, 80 kPa, and
160kPa: (a) stress paths and (b) volumetric curves

Fig. 7 Undrained TC and extension of DEM simulations at
three densities, comparing with Nevada sand tests (black
dashed lines) at relative density of 60% with initial confining
pressure of 40 kPa, 80 kPa, and 160kPa (stress paths)

Fig. 8 Undrained TC and extension of DEM simulations at
three densities, comparing with Nevada sand tests (black
dashed lines) at relative density of 60% with initial confining
pressure of 160 kPa (stress–strain curves)

Fig. 9 Drained TC (constant p0) of DEM simulation at
e05 0.674, comparing with Nevada sand tests at relative density
of 60% with initial confining pressure of 40kPa, 80 kPa, and
160kPa: (a) stress paths and (b) volumetric curves
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volumetric responses from the extended database. It is also
worthy to mention that results from Ref. [71] illustrated that the
shear responses may be artificially stiffen if the load increment
is too large. To avoid this issue, the same load increment
Dezz ¼ 65:0� 10�7 was used for all of the DEM simulations in
this paper.

3.3 Database Expansion With Virtual Tests. The experi-
mental database was supplemented by simulated constitutive
responses obtained from DEM simulations. These DEM simula-
tions are conducted with particle assemblies of compatible rela-
tive densities and with grain-scale contact law parameters
calibrated from experimental data. In the numerical examples, we
limit our scopes on predicting the stress paths that were initially
isotropic. Hence, the virtual database will only contain stress path
of particle assemblies that were initially isotropically consoli-
dated. The stress paths used for database expansion include (1)
monotonic undrained TC, triaxial extension (TE), and simple
shear (SS) tests; (2) monotonic drained conventional TC (CTC)
tests; (3) monotonic true triaxial tests with constant mean effec-
tive stresses and various loading paths quantified by the intermedi-
ate principal stress ratio b ¼ ðr02 � r03Þ=ðr01 � r03Þ (as shown in
Fig. 11) [81]; and (4) cyclic undrained unidirectional SS and TC
tests. In this study, 15 DEM assemblies were considered with ini-
tial void ratios e ¼ 0.898, 0.789, 0.785, 0.783, 0.767, 0.746,
0.734, 0.707, 0.674, 0.640, 0.609, 0.577, 0.550, 0.529, 0.512

which were preconsolidated to different confining pressures
p0 ¼ 40, 80, 100, 160, 200, 300, 400 kPa. These initial assem-
blies were then subjected to different loading paths to expand
the experimental database. True triaxial stress paths are simu-
lated via the servo-wall mechanism introduced in Ref. [82]. The
major, intermediate, and minor principal stresses r01, r02, and r03
are controlled by adjusting the tractions exerted on the walls
such that the intermediate principal stress ratio b can be held
consistently for the given stress path, as shown in Fig. 11.

4 Identification of Dafalias–Manzari
Model Parameters

In this section, we present the procedure to identify material
parameters using the EDD concept. We herein use one of the most
commonly used critical state plasticity model, Dafalias–Manzari
(DaMa) model [30], as an example to illustrate how EDD is built,
calibrated, and utilized for material characterization. We want to
emphasize that the proposed EDD procedure is applicable to other
path-dependent materials.

4.1 Identification of DaMa Model Parameters. In order to
predict the response of soils via a macroscopic constitutive model,
it is necessary to determine the initial material state, drainage con-
dition, and the model parameters. The initial state of soil is
described by parameters include the initial effective confining
pressure, p00, and initial void ratio, e0. A set of 15 parameters is
required to completely define the two-surface elastoplastic model
in a fully three-dimensional space. These parameters can be
grouped into three categories: (i) elastic parameters, G0; �; (ii)
critical state parameters, M; c; ec0; k; n; and (iii) model parameters
such as state parameter constants nb; nd yield surface parameter m,
hardening constants h0; ch, dilatancy parameter A0, and fabric-
dilatancy constants zmax; cz.

In a conventional calibration procedure for determining DaMa
model parameters, a two-step calibration process is needed. In
step 1, the elastic and critical state parameters are first manually
determined with a high accuracy directly from experimental test
data. The parameter of elastic shear modulus G0 and Poisson’s
ratio � is path independent and can be obtained from least square
regression of the small strain monotonic shearing behavior at
various confining pressures. We assume that the critical state

Fig. 10 Drained TC (constant p 0) of DEM simulations at
e05 0.640, comparing with Nevada sand tests at relative density
of 60% with initial confining pressure of 40kPa, 80 kPa, and
160kPa: (a)stress paths and (b)volumetric curves

Fig. 11 Application of major, intermediate and minor principal
stresses, r1, r2, and r3, to DEM assemblies in true triaxial tests
to achieve all directions in the stress ratio p-plane (s1, s2, and s3
denote the deviatoric principal stresses) [81]
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constants M; c; ec0; k; n for a given soil are independent of initial
state and loading condition. Therefore, the critical state can be
determined through curve fitting from a plot of triaxial test data
that approach the critical state in e� p=pat space. In step 2, the
model specific parameters can be obtained by trial-and-error or
through a numerical optimization procedure. In many situations,
attention must be paid such that the material parameters used in
the DaMa model would not lead to spurious numerical instability,
especially when the mean effective stress is low [33]. In our
implementation, we assume all the tests have the equal weights
wi ¼ 1 for simplicity.

4.2 Parameter Identification for Nevada Sand. In this
section, a comparison of DaMa model simulations and DEM
trained data corresponding to monotonic triaxial tests is presented.
DaMa model parameters have been calibrated based on existing
laboratory experiments in Refs. [32] and [58] for Nevada sand.
Andrade et al. [58] calibrated the DaMa model parameters to four
undrained triaxial tests on Nevada sand performed by Yamamuro
and Covert [83] for initial confining pressure p00 ¼ 200 kPa and
p00 ¼ 350 kPa with void ratios e0 ¼ 0:699 and e0 ¼ 0:711. Shahir
et al. [32] identified a set of parameter using nine experiments
reported in Ref. [62] including seven monotonic drained and
undrained TC tests and two undrained cyclic tests with relative
density of about 40% and 60%. Though good agreements were
achieved with experiments which were simulated in the aforemen-
tioned works, the simple loading conditions and limited number
of the experimental tests may not provide enough constrains in the
calibration process to capture the comprehensive material behav-
ior. The large set of data in the EDD obtained from versatile vir-
tual experiments solves this issue. The material parameters
presented in Refs. [32] and [58] are used as initial guesses while
calibrating the DaMa model in this study. To study the sensitivity
of model parameters on different types of tests, material parame-
ters are calibrated against tests under combinations of different
initial material states, drainage conditions, and loading conditions
for Nevada sand. The calibrated material parameters are listed in
Table 3. Material constants presented by Andrade et al. [58] and
Shahir et al. [32] are also given in Table 3 for comparison.

4.2.1 Critical State. The critical state surface is introduced in
the DaMa model to incorporate the critical state soil mechanics
concept into the bounding surface plasticity model. When the crit-
ical state is reached, both the bounding surface and dilatancy sur-
face converge to the critical state surface in the stress space. On

the other hand, both the hardening rule and the amount of plastic
dilatation is dictated by the distance between both bounding
surfaces to the critical state surface, and the dilatancy surface to
the critical state surface, respectively. Therefore, determining the
location of the critical state surface via calibrating the critical state
parameters is crucial to the forward prediction capacity of the
calibrated DaMa model. The DEM assemblies were deformed
through the critical state so as to simulate the critical state
responses of Nevada sand. The critical state parameters that locate
the CSLs in the effective stress and state paths are identified. In
the calibration process, a constrained optimization procedure is
first run to determining the set of the critical state parameters
M; c; ec0; k; n that minimize the errors measured by the objective
function. Figure 12 plots the critical state surface in the stress ratio
p-plane corresponding to the calibrated parameters set case 12b in
Table 3. The loading paths for drained true triaxial tests predicted
by DEM simulations and the loading paths for the lab experiments
are also shown in Fig. 12. As seen from Fig. 12, conventional lab
experiments are conducted in limited loading paths, i.e., TC
(b ¼ 0) and TE (b ¼ 1). While using DEM, under constant p0 con-
straint, r01, r02, and r03 were controlled based on Fig. 11 to achieve
constant b conditions, with b values representing different loading
directions. The monotonic triaxial tests considered in the calibra-
tion help improve the DaMa model prediction of deviatoric plastic
strain under radial monotonic loading.

4.2.2 Monotonic Triaxial Tests. Figures 13–16 show the con-
stitutive responses simulated by the DaMa model in monotonic
drained CTC tests for samples of various relative densities and
initial confining pressures. The parameters referred as case 12b in
Table 3 were used in this set of simulations. The comparison
between DEM trained data and DaMa model predicted results are
presented in terms of q versus axial strain, and e versus p0 plots.
These results show the model can produce a reasonably well pre-
diction of Nevada sand behavior for a broader range of densities
and initial mean confining pressures using one set of parameters.

Figure 17 depicts DaMa model prediction results of q� p0

responses (case 12a in Table 3) for monotonic undrained TC tests.
The overall trend of the sand behavior under undrained compres-
sion is well captured. It can be observed that in higher density and
lower confining pressure samples, the sand is highly dilatant,
while in lower density and higher confining pressure samples, the
opposite effect is observed. Good agreement of the q� p0

responses is obtained for loose and medium dense samples (i.e.,
e0¼ 0.783 and 0.720). However, the DaMa model predicts larger

Table 3 Model parameters of the DaMa model calibrated for Nevada sand

Parameter function Parameter index Andrade et al. [58] Shahir et al. [32] Case 12a Case 1b Case 2b Case 12b Case 2a*#

Elasticity G0 125 150 150 150 150 150 150
v 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Critical state M 1.45 1.14 1.14 1.34 1.34 1.34 1.08
c 0.78 0.78 0.78 0.78 0.78 0.78 0.78
kc 0.09 0.027 0.098 1.13 1.13 1.13 0.09
ec0 0.737 0.83 0.833 0.833 0.833 0.912 0.73
n 1.0 0.45 0.12 0.12 0.12 0.12 1.0

Yield surface m 0.01 0.02 0.02 0.02 0.02 0.02 0.02

Plastic modulus h0 4.5 9.7 9.7 9.416 9.416 9.402 9.25
ch 1.05 1.02 1.02 1.2 1.28 1.21 1.03
nb 1.1 2.56 2.56 2.038 2.038 1.307 1.49

Dilatancy A0 0.804 0.81 0.81 0.81 0.796 0.85 0.81
nd 5.5 1.05 1.05 5.78 1.014 1.78 4.98

Fabric-dilatancy zmax 10 5 5 5 5 5 10
cz 500 800 800 800 800 800 500

Note: Italic symbols appeared after cases have the meaning as follows: 1 denotes loose–medium dense samples, 2 denotes medium dense–dense sample,
a denotes monotonic undrained triaxial tests, b denotes monotonic drained triaxial tests, * denotes tests with variable loading paths, and # denotes
loading–unloading tests.
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slopes of the CSL at large strains for dense samples than what is
expected in the trained data.

5 Assessment of Forward Predictions With Calibrated
Dafalias–Manzari Model

In this study, a subset of the data in the EDD, which is called
the verification/test set, is purposely excluded from being used for
material identifications of both the high- and low-fidelity models
(see Fig. 1). Instead, these unused data are employed to assess the
accuracy and robustness of forward predictions. The verification
set consists of experiments from both the laboratory tests and the
virtual simulations. In this assessment study, we conduct the pre-
dicted simulations using the calibrated DaMa model and compare
the predicted results with this subset of experimental data that
have purposely not used for calibration. Figure 18 shows compari-
sons between predictions from DaMa model and verification data
for monotonic TC tests. The verification tests consist of both
drained and undrained TC loading paths of an isotropically con-
solidated Nevada sand, in which the DEM virtual simulations are
conducted with densities e0 ¼ 0.707 and 0.529 under initial mean
effective pressure p00 ¼ 100, 200, and 300 kPa, respectively. The

experimental data from Ref. [84] for Nevada sand with Dr ¼ 65%
and initial mean effective pressure p00 ¼ 100, 250, and 400 kPa
are also compared with DaMa model prediction (see Fig. 18(c)).
The stress–strain relation shown in Fig. 18 indicates that the cali-
brated DaMa model can produce a reasonably good prediction of
Nevada sand behavior for the tests in the verification set of EDD.
Comparisons of results from Figs. 18(a) and 18(b) suggest that the
calibrated DaMa model replicates the strain–strain curves more
accurately at the drained limit than those at the undrained limit.
Nevertheless, both the drained and undrained simulation results
are able to predict the friction angle at steady-state well. These
well-matched responses are encouraging given the fact that there
is no microstructural information available to calibrate the high-
fidelity DEM model and there is no attempt to explicitly model
the particle shape variation in this study.

Another assessment test we conducted is a comparison between
the simulated undrained cyclic SS loading responses predicted by
the calibrated DaMa model and the experimental data reported in
Ref. [62] for Nevada sand with Dr ¼ 40% and p00 ¼ 80 kPa. The
purpose of this test is to assess how well the calibrated low-
fidelity model predict loading paths not included in the EDD data-
base. Such a test is important, as the loading history of soils is

Fig. 12 Calibrated critical state surface for DaMa model, and the loading paths of monotonic
triaxial tests for DEM simulations and lab experiments [62] in the stress ratio p-plane (s1, s2,
and s3 denote the deviatoric principal stresses)

Fig. 13 DaMa model calibration for CTC tests on samples with different initial confining pres-
sures (e05 0.783). (a) q versus axial strain and (b) void ratio versus mean effective stress.
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Fig. 14 DaMa model calibration for CTC tests on samples with different initial confining pres-
sures (e05 0.746). (a) q versus axial strain and (b) void ratio versus mean effective stress.

Fig. 15 DaMa model calibration for CTC tests on samples with different initial confining pres-
sures (e05 0.640). (a) q versus axial strain and (b) void ratio versus mean effective stress.

Fig. 16 DaMa model calibration for CTC tests on samples with different initial confining pres-
sures (e05 0.550). (a) q versus axial strain and (b) void ratio versus mean effective stress.
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Fig. 17 DaMa model calibration of q2p0 responses for monotonic undrained TC tests on
samples with different initial confining pressures and densities

Fig. 18 Comparison between verification data and DaMa model prediction for: (a) and (b)
drained monotonic CTC tests, and (c) and (d) undrained TC tests (experimental data in (c) are
from Ref. [82])
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often significantly different and more complicated than the ideal-
ized cases studied in the laboratory. The cyclic test was numeri-
cally simulated using the DaMa model with parameters of case
2a*# as reported in Table 3. In this test, cyclic shearing was
applied in the horizontal direction in a load-controlled manner
with a cyclic stress amplitude of 67:4 kPa. Figure 19 compares
curves of the shear stress versus mean effective stress, shear stress
versus shear strain, and PWP change versus shear train, obtained
from both lab experiment and DaMa model prediction. The com-
parison shows that the DaMa model predictions are qualitatively
consistent with the experimental responses. Similar to what was
observed in the monotonic tests, the discrepancy become evident
in the large strain region as shown in the shear stress versus shear
strain curve. The inaccurate prediction for the cyclic test by DaMa
model may be attributed to the fact that most of the experiments
used to construct the database are monotonic and the DEM model
does not reflect the real geometrical features of grains; therefore,
the parameters calibrated based on such database cannot accu-
rately capture the cyclic responses in which the material may
undergo very complex behaviors, such as multiple PT. In addition,
the DaMa model used in this study is a small strain plasticity
model and does not incorporate the geometrical nonlinearity. We
found that the accuracy and robustness of the low-fidelity surro-
gate model reduce when the simulated loading paths are different
from those available from the experimental data (e.g., drained ver-
sus undrained, monotonic versus cyclic). This observation is con-
sistent of the previous studies [18,33]. Presumably, those issues
can be resolved by incorporating more advanced high-fidelity
method, such as granular element method [85] to extend the

material database more accurately, and/or more comprehensive
constitutive models that incorporate more detailed mechanisms,
such as fabric changes, cyclic mobility, and geometrical nonli-
nearity. Those studies will be considered in the future study but is
out of the scope of this work.

6 Conclusions

In this paper, we present a new simulation-based database
extension technique aimed at calibrating comprehensive critical
state plasticity models with limited available experimental data.
By utilizing a high-fidelity model (DEM) that has been calibrated
against experiments, additional high-fidelity simulations are used
to supplement experimental data by the so-called EDD. The EDD
essentially provide additional constraints for identifying the opti-
mized parameter set for the low-fidelity phenomenological consti-
tutive models. When experimental data is expensive to generate
or inaccessible, this approach provides a much-needed alternative.
Numerical experiments conducted herein show that the proposed
multilevel calibration approach is capable of obtaining material
parameters for capturing the behavior of cohesion-less sand under
various drainage and monotonic loading conditions, void ratios,
and confining pressures at the small deformation range, but
the results are less satisfactory for cyclic and large deformation
problems.
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