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SUMMARY

Centromeres are essential chromosomal structures
that mediate accurate chromosome segregation
during cell division. Centromeres are specified
epigenetically by the heritable incorporation of the
centromeric histone H3 variant CENP-A. While
many of the primary factors that mediate centro-
meric deposition of CENP-A are known, the chro-
matin and DNA requirements of this process have
remained elusive. Here, we uncover a role for tran-
scription in Drosophila CENP-A deposition. Using
an inducible ectopic centromere system that uncou-
ples CENP-A deposition from endogenous centro-
mere function and cell-cycle progression, we
demonstrate that CENP-A assembly by its loading
factor, CAL1, requires RNAPII-mediated transcrip-
tion of the underlying DNA. This transcription
depends on the CAL1 binding partner FACT, but
not on CENP-A incorporation. Our work establishes
RNAPIlI passage as a key step in chaperone-
mediated CENP-A chromatin establishment and
propagation.

INTRODUCTION

Accurate chromosome segregation during cell division is depen-
dent on the correct assembly and propagation of a distinct
region of the chromosome known as the centromere. The
centromere forms the structural basis for the assembly of the
kinetochore, a multi-protein complex to which spindle microtu-
bules attach during mitosis and meiosis. In most eukaryotes,
the position of the centromere is defined epigenetically through
the heritable incorporation of the histone H3 variant CENP-A,
which is both necessary and sufficient for centromere activity
(De Rop et al., 2012).

Centromeric chromatin displays a conserved organization
composed of interspersed blocks of CENP-A and H3 nucleo-
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somes (Blower et al., 2002). During DNA replication in human
cells, no new CENP-A deposition occurs (Jansen et al., 2007),
and histone H3.3 and H3.1 are deposited as placeholders (Dun-
leavy et al., 2011). CENP-A deposition occurs during or after
mitosis in Drosophila and humans, respectively (Hemmerich
et al., 2008; Jansen et al., 2007; Mellone et al., 2011; Schuh
et al., 2007) and is mediated by specialized histone chaperones
known as Scm3 in fungi (Camahort et al., 2007; Pidoux et al.,
2009; Stoler et al., 2007), HJURP in tetrapods (Barnhart
et al., 2011; Bernad et al., 2011; Dunleavy et al., 2009; Foltz
et al., 2009; Sanchez-Pulido et al., 2009; Shuaib et al., 2010),
and CAL1 in flies (Chen et al., 2014). Each of these chaperones
has been shown to selectively bind CENP-A, and not canonical
H3, and to mediate the formation of CENP-A nucleosomes
in vitro. However, how placeholder nucleosomes are reorgan-
ized to incorporate CENP-A/H4 tetramers is unknown. Additional
histone chaperones have been found to either bind to CENP-A or
contribute to proper CENP-A localization in vertebrate cells
(Foltz et al., 2006; Okada et al., 2009; Perpelescu et al., 2009),
but whether or not they are involved in this reorganization is
unknown.

Mounting evidence points to a functional interplay between
the transcription of centromeric repeats and centromere function
across species. For instance, manipulation of a human artificial
chromosome (HAC) revealed that targeting a transcriptional
silencer to alpha-satellite repeats caused loss of CENP-A (Na-
kano et al., 2008). Remarkably, transcripts emanating from
centromeric DNA have been identified in yeast, human, wal-
labies, and plants (Carone et al., 2009; Chan et al., 2012; Choi
et al., 2011; Ohkuni and Kitagawa, 2011; Quénet and Dalal,
2014; Topp et al., 2004) and have been shown to be important
for centromere integrity. However, the idea that specific RNAs
play a role in centromere integrity is inconsistent with the notion
that centromeres can form independently of centromeric DNA
(Marshall et al., 2008). Additionally, the functional significance
of transcription in the CENP-A assembly cascade remains poorly
defined.

Here, we identify RNA polymerase || (RNAPIIl)-dependent tran-
scription as a key requirement for Drosophila CENP-A deposi-
tion. Using an inducible ectopic centromere system, which
allows for the direct comparison of chromatin states in the
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presence or absence of active CENP-A deposition, we find that
CENP-A assembly by its loading factor CAL1 is coupled with
transcription of the underlying DNA. We identify facilitates
chromatin transcription (FACT; Orphanides et al., 1998) as a
central molecular player in this process and show that its
role in centromere integrity is that of driving DNA sequence-
independent RNAPII transcription through centromeric chro-
matin via a direct interaction with CAL1. Thus, current models
for centromere transcription must take into account the tran-
scriptional requirements for CENP-A recruitment by its assembly
factor.

RESULTS

De Novo CENP-A Incorporation Temporally Coincides
with Transcription of the Underlying DNA

Transcription of centromeric DNA has been described in several
species (Chan and Wong, 2012), but whether or not it is directly
linked to CENP-A deposition has remained elusive. One limita-
tion of studying transcription at endogenous centromeres is
the inability to precisely compare the same genomic locus in
the presence and absence of active CENP-A deposition without
interfering with cell-cycle progression or global transcription,
which can result in reciprocal perturbation (Adolph et al., 1993;
Whitfield et al., 2002). Furthermore, the endogenous CENP-A-
bound DNA sequences of Drosophila are unknown, making an
assessment of their transcription unfeasible. To overcome these
limitations, we employed an ectopic centromere strategy based
on the Lacl/lacO system (Straight et al., 1996). This system uti-
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hours after induction with CuSO,
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Lacl cells at the indicated times. Error bars, SD of
three technical replicates.

(E) gRT-PCR measuring lacOP transcription after
24 hr induction in cell lines: lacO only (no Lacl),
lacO with GFP-Lacl (GFP), and lacO with CAL1-
GFP-Lacl (CAL1). The means + SD of three ex-
periments are shown. p = 0.01, unpaired t test.
(F) Transcription from lacOP determined by gRT-
PCR in CAL1-GFP-Lacl cells (induced 24 hr),
where the lacO plasmid is episomal. Error bars,
95% confidence interval (Cl) of three technical
replicates.

See also Figure S1.

lizes a stably inserted lacO vector (10 kb of lacO repeats and 3
kb of vector backbone inserted within one arm of chromosome
2 or 3; Mendiburo et al., 2011), coupled with the inducible
expression of the Drosophila CENP-A chaperone CAL1 fused
to the lac repressor Lacl (CAL1-GFP-Lacl; Figure 1A). A GFP-
Lacl protein is used as a negative control. lacO-tethered
CAL1-GFP-Lacl induces the formation of fully functional and
epigenetically propagated ectopic centromeres at the lacO site
(Chen et al., 2014), allowing the direct comparison of the tran-
scriptional status between lacO DNA with or without ongoing
CENP-A incorporation.

CAL1-GFP-Lacl is under the control of a metallothionein (MT)
promoter, which can be induced by addition of CuSO, to the
growth medium. First, we investigated how long after induction
of CAL1-GFP-Lacl CENP-A foci become visible at the lacO
site by immunofluorescence (IF) on metaphase chromosome
spreads. In parallel, we assessed transcription from the lacO
backbone (lacO®) by qRT-PCR (primer set 1.6; Figures 1A and
1B; Mendiburo et al., 2011). Transcription of the lacO array
portion of the vector could not be assessed by this method
due to its repetitive nature. 2 hr after induction, 54% of meta-
phase spreads displayed CAL1-GFP-Lacl foci on the lacO-
containing chromosome arm, with ~65% of these foci also
containing CENP-A, showing that the recruitment of CENP-A
at the lacO site occurs soon after CAL1-GFP-Lacl induction
(Figure 1C). Strikingly, at the 2 hr time point, a 28-fold change
in transcription from lacO® was detected by gRT-PCR. Further-
more, lacOP transcript abundance persisted throughout the
remainder of the time course (Figure 1D). Lac/ and lacOP
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transcript levels displayed a decrease at 8 hr post-induction that
was also observed in an independent time course experiment
(Figure S1A). This transient dip likely reflects the kinetics of
induction of the MT promoter (Bunch et al., 1988) driving
CAL1-GFP-Lacl. Detection of nascent lacOP transcripts showed
they are produced continuously, reaching a peak from 24-30 hr
after induction (Figures S1B and S1C), a time during which it
is expected that most lacO cells have acquired CENP-A at
the lacO site (Figure 1C). Thus, we reveal a striking correla-
tion between transcription and CENP-A incorporation at the
lacO site.

To ensure that transcription of lacOP is not due to the addition
of CuSO, or is not somehow linked to the binding of the GFP-
Lacl fusion protein to the lacO array, we carried out gRT-PCR
comparisons in the presence or absence of CuSO, between
the following cell lines: CAL1-GFP-Lacl cells, GFP-Lacl cells,
and cells completely lacking any Lacl/ transgene, yet still
harboring the integrated lacO plasmid (lacO). These experiments
showed that transcription from lacO® was only observed in
induced CAL1-GFP-Lacl cells (Figure 1E). No lacOP transcription
was detected in induced cells containing CAL1-GFP-Lacl or
GFP-Lacl without lacO (data not shown).

The expression of a control gene, actin, which is transcribed
by RNAPII, was unaffected, suggesting that addition of CuSQO,
does not cause non-specific transcriptional upregulation (Fig-
ure S1D). An increase in transcription from lacO® was also
observed when the lacO plasmid was introduced episomally,
along with the CAL1-GFP-Lacl plasmid, via transient transfec-
tion in S2 cells (Figure 1F). These transient transfections dis-
played low efficiency (~12%, as estimated by IF with anti-GFP
antibodies, data not shown), resulting in fewer transcripts being
detected by qRT-PCR compared to stable cells. Nonetheless,
they demonstrate that transcription of lacO® occurs indepen-
dently of its chromosomal insertion.

Transcription of lacO® Correlates with CENP-A and
RNAPII Distribution

To gain more insight into the relationship between transcription
and CENP-A occupancy across the lacO locus, we performed
paired-end RNA sequencing (RNA-seq) and chromatin immuno-
precipitation sequencing (ChlP-seq) experiments. RNA-seq of
induced CAL1-GFP-Lacl cells revealed that 28.5 fragments per
million (fom) mapped to lacOP, whereas only 0.45 fom mapped
to the lacO array itself, where CAL1 is tethered. This could be
due to blockage of RNAP passage by Lacl bound to lacO repeats
(Jacob and Monod, 1961). Thus, upon CAL1-GFP-Lacl induc-
tion, most of the transcription originates from lacO® sequences.
Consistent with our gRT-PCR results (Figures 1D-1F), induced
GFP-Lacl cells displayed fewer reads mapping to lacOP
(12.8 fpm; p < 0.05; Figure 2A).

CENP-A ChIP-seq of induced CAL1-GFP-Lacl cells revealed a
preferential association of CENP-A with the lacOP versus the
lacO array (4,751.6 versus 2,462.5 fpm; Figures 2B and 2C).
Since GFP ChIP-gPCR showed that CAL1-GFP-Lacl is also
enriched at lacO® (Figure 2D), we concluded that CENP-A and
CAL1-GFP-Lacl spread to lacOP from the lacO array, where
CAL1-GFP-Lacl is initially tethered.

Active RNAPII localizes to the centromeres of metaphase
chromosomes in Drosophila (Rosi¢ et al., 2014), raising the
possibility that RNAPIl may mediate transcription of lacOP
upon CAL1-GFP-Lacl tethering. ChIP-seq with antibodies
specific for the elongating form of RNAPII (RNAPIIS2p) showed
a marked increase in RNAPIIS2p occupancy at the lacOP
after CAL1-GFP-Lacl induction (178.3 fpm versus 75.5 fpm),
suggesting that RNAPIl mediates lacOP transcription. Fur-
thermore, the distribution of RNAPIIS2p closely resembled
that of CENP-A in induced cells, with low occupancy on
the lacO array and higher occupancy on the lacOP array
(32.3 versus 178.3 fpm; Figures 2B-2C), consistent with a
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functional interplay between CENP-A assembly and transcrip-
tional activity.

Low levels of CENP-A and RNAPIIS2p were observed in unin-
duced CAL1-GFP-Lacl cells (Figure 2B), possibly due to leaky
expression of CAL1-GFP-Lacl, but these were found to be signif-
icantly lower than in induced samples (p < 0.001 and g < 0.001
for both CENP-A and RNAPIIS2p ChiPs; see the Supplemental
Experimental Procedures; ChlP-seq and RNA-seq mapping).

Interestingly, immunoprecipitation (IP) of chromatin-associ-
ated CAL1 revealed a physical association between CAL1 and
RNAPIIS2p (Figure 2E). This interaction and our ChIP-seq results
indicate that CAL1 recruits RNAPIIS2p onto chromatin, in turn
stimulating transcription. Why only a subset of the RNAPIIS2p-
associated sequences produced transcripts by RNA-seq re-
mains unclear. It is possible that some of these transcripts are
unstable and cannot be detected by this type of assay.

Isolation of FACT, a CAL1 Interactor

Having shown that targeting of CAL1 to lacO triggers accumula-
tion of RNAPIIS2p and transcription, we sought to identify the
key components of this process by isolating CAL1-interacting
factors. We performed IPs of FLAG-tagged CAL1 (Chen et al.,
2012) from chromatin-free (CF) and chromatin-associated
(CA) cell extracts with anti-FLAG- M, agarose beads, using
Drosophila S2 cells (no FLAG tag) as a negative control. Mass
spectrometric analysis (see Table S1; data not shown) identified
among the highest scoring unique hits Spt16 (called Dre4 in
Drosophila) and SSRP1, the two subunits of the heterodimeric
FACT complex (Orphanides et al., 1999). FACT allows the pro-
gression of the transcriptional machinery through chromatinized
templates (Belotserkovskaya et al., 2003; Orphanides et al.,
1999), by a mechanism involving nucleosome destabilization
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antibodies are positive controls for their respective
fractions.

(B) Western blots of IPs with anti-CAL1 antibodies
from CF and CA extracts. Mock are IPs with rabbit
immunoglobulin G (IgG).

(C) Direct interaction between in-vitro-translated
353-methionine-labeled CAL1 with recombinant
His::Dre4 or His::SSRP1 bound to Ni-NTA beads.
His::MBP, negative control.

(D) IF with anti-SSRP1 or anti-Dre4 (green), anti-
CENP-A (red), and anti-fibrillarin (blue) antibodies.
DAPI shown in gray. Insets show 3Xx magnifica-
tions of boxed centromere. Scale bar, 5 um.

(E) IF on metaphase chromosomes with anti-
SSRP1 or anti-Dre4 (green) and anti-CENP-A (red)
antibodies. DAPI shown in gray. Scale bar, 1 um.

See also Figure S2 and Table S1.

(Hondele and Ladurner, 2013; Hondele
et al., 2013), and was found to be associ-
ated with human CENP-A (Foltz et al.,
2006), and to be important for CENP-A
localization in chickens (Okada et al.,
2009). Thus, FACT is a strong candidate for mediating CENP-A
deposition-coupled transcription.

In order to confirm the association between CAL1 and the
FACT complex, CF and CA fractions were prepared from S2
cells, and CAL1 IPs were performed using anti-CAL1 antibodies.
Dre4 and SSRP1 were present in both fractions (Figure 3A) and
associated with CAL1 in both cases (Figure 3B), confirming our
proteomic results. Reciprocal IPs were performed using anti-
FLAG antibodies to precipitate FLAG-Dre4 or FLAG-SSRP1;
however, CAL1 was not detected (Figure S2A), suggesting that
only a small fraction of FACT interacts with CAL1.

Next, we sought to determine if the association between
CAL1, Dre4, and SSRP1 is direct by analyzing protein-protein
interactions between recombinant His-Dre4 or His-SSPR1 and
in-vitro-translated 3°S-methionine-labeled CAL1. The His-Dre4
and His-SSRP1 proteins heterodimerized in vitro (Figure S2B),
suggesting that they are properly folded, and both pulled down
CAL1 (Figure 3C), demonstrating direct interaction.

FACT is involved in RNAPII (Belotserkovskaya et al., 2003;
Krogan et al.,, 2002; LeRoy et al.,, 1998; Orphanides et al.,
1998), RNAPI, and RNAPIII transcription (Birch et al., 2009);
therefore, it is expected to be broadly distributed throughout
chromatin. To determine if FACT displays any centromeric
enrichment, we used IF with anti-Dre4 and anti-SSRP1 anti-
bodies. After extraction with detergent pre-fixation, a treatment
expected to remove loosely chromatin-bound proteins, FACT
was enriched at interphase centromeres (identified by CENP-A
staining) and at the nucleolus (identified by Fibrillarin staining;
Figure 3D). Examination of FACT localization on metaphase
chromosome spreads revealed an even more striking centro-
meric accumulation of Dre4 and SSRP1, demonstrating that
during mitosis, when active deposition of newly synthesized



A B C
CENP-AChIP s=bisd
Hl SSRP1 ChIP oo Control
p<0.0001 | — —
C FACT
Qg 20 — 2 2 20- —
o9 Qo 8 Ow
=S 8% 83
Bg 15 p<0.0001 :g 6 =S 15
. — 1 oT oT
85 £ £E
€510 - 35 4 S5 10
S Eo Eo
2o % , &9
5% ° E2 52 %
3% ;1 sim smm 3 0 o3 .|
&= g v S= " Control Dre4 SSRP1 9= 0 —T—T——————
GFP-Lacl CAL1-GFP-Lacl = - 0 4 8 12 16 20 24
RNAI hours after induction with CuSO,
Bound
D E D F
$ K &L
kDa & ¥ 7P
-k 130 %S-A1-40 —0s
S Autoradiography n% 8
1304 — -His::Dre4 %% 6 .
& 1004 o | His::SSRP1 EE 4 -
Y 70| Eo
‘<_] - So 2
- 55- c2
- | - [OR] 0
g 35.[ - -His::MBP 22 ¥ fL.CAL1 A1-40
Coomassie =

Figure 4. FACT Is Required for CENP-A Deposition-Coupled Transcription

(A) CENP-A and SSRP1 ChIP-qPCR in CAL1-GFP-Lacl and GFP-Lacl lacO cells

. The graph shows the enrichment of induced cells (24 hr) relative to uninduced

cells. Error bars, 95% CI of three technical replicates. Significant p values (unpaired t test) are shown.
(B) gRT-PCR of lacOP® transcripts in CAL1-GFP-Lacl cells induced (24 hr) 6 days after the indicated RNAI treatments. p values (unpaired t test) are shown. The

means + SD of three experiments are shown.

(C) gRT-PCR of lacOP transcripts in control (purple) and SSRP1/Dre4 RNAI (blue) cells at the indicated times. Error bars, SD of three technical replicates.
(D) IF with anti-CENP-A (red) and anti-GFP (green) antibodies in lacO cells expressing full-length CAL1-GFP-Lacl (top) or CAL1A1-40-GFP-Lacl (bottom). DAPI is

shown in gray. Arrow points to the lacO site. Scale bar, 1 um.

(E) Direct interaction between in-vitro-translated 3*S-methionine-labeled CAL1A1-40 (3°S-A1-40) with recombinant His::Dre4 (Dre4) or His::SSRP1 (SSRP1)

bound to Ni-NTA beads. His::MBP (MBP) is a negative control.

(F) gRT-PCR of lacOP transcripts in induced cells (24 hr) transiently expressing full-length (fl) CAL1-GFP-Lacl or CAL1A1-40-GFP-Lacl. Means = SEM of three

experiments are shown. p = 0.68 (not significant; unpaired t test).

CENP-Atakes place (Mellone et al., 2011), FACT is more strongly
associated with the centromere than with other regions of
the genome (Figure 3E). These results were confirmed with
epitope tagged SSRP1 and Dre4 (data not shown) and are
consistent with a previous study in chicken DT-40 cells (Okada
et al., 2009).

The Transcription Associated with CENP-A Deposition
Requires FACT
Given that FACT enables RNAP progression, we next investi-
gated whether FACT is required for the transcription we
observed during CAL1-mediated CENP-A assembly at the
lacO site. First, we investigated if CAL1-GFP-Lacl recruits
FACT to lacO® using ChIP-gPCR with anti-SSRP1 antibodies
(Nakayama et al., 2007). CENP-A ChIPs were performed in par-
allel. CAL1-GFP-Lacl or GFP-Lacl (negative control) cells were
induced for 24 hr. CENP-A and SSRP1 were both found to be
enriched in induced CAL1-GFP-Lacl cells (Figure 4A). We
concluded that FACT is recruited by CAL1-GFP-Lacl to lacOP.
Next, we measured lacOP transcription by qRT-PCR after in-
duction of CAL1-GFP-Lacl cells, in which Dre4 and SSRP1 had
been knocked down by RNAI for 6 days. Control cells displayed,

on average, a 6.8-fold increase in lacOP transcript levels 24 hr
after induction with CuSO,. In contrast, cells lacking FACT
showed virtually no increase (Figure 4B). This result was also
confirmed in a time course experiment, in which, after 6 days
of FACT RNAi, CAL1-GFP-Lacl was induced and gRT-PCR
was performed on RNA extracted every 4 hr for 24 hr (Figure 4C).
Together, these data demonstrate that FACT is required for the
transcription observed upon CAL1 targeting.

CAL1-directed transcription could be a by-product of
CENP-A incorporation, or it could occur independently of
CENP-A deposition through the recruitment of RNAPII and
FACT onto chromatin. To distinguish between these two possi-
bilities, we used a CAL1 mutation lacking a short Scm3-like
domain (Phansalkar et al., 2012; CAL1A1-40), which is defec-
tive in recruiting CENP-A to the lacO (Figure 4D; Chen et al,,
2014). Importantly, CAL1A1-40 can interact directly with
Dre4 and SSRP1 (Figure 4E). When we tethered CAL1A1-40-
GFP-Lacl to the lacO, we observed levels of lacOP transcrip-
tion indistinguishable from those initiated by CAL1-GFP-Lacl
(Figure 4F). We concluded that lacOP transcription depends
on CAL1 and FACT, but it does not require CENP-A
incorporation.
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(A) Cartoon depicting the experimental strategy
to assess de novo CENP-A recruitment in the
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(B) lacO CAL1-GFP-Lacl cells were subjected
to RNAI to deplete Dre4, SSRP1, or a control for
5 days, followed by induction with CuSO, for 24 hr.
Metaphase chromosome spreads were stained
with anti-GFP (green) and anti-CENP-A antibodies
(red). DNA was stained with DAPI (blue).

(C) Graph showing the percentage of CAL1-GFP-
Lacl-positive cells in which ectopic CENP-A signal
was present or absent. Bars, 1 um. p <0.0001 (chi-
square test).

(D) FACS profile of control, CAL1, and SSRP1/
Dre4 (FACT) RNAi cells.

See also Figure S3 and Table S2.
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FACT-Mediated Transcription Is Required for De Novo
CENP-A Incorporation

CAL1 binds directly to FACT and recruits FACT and RNAPII to
sites of CENP-A assembly. To determine if the absence of lacOP
transcription caused by knockdown of FACT affects deposition
of CENP-A at the lacO site, we depleted Dre4 or SSRP1 by
RNAI for 5 days, induced CAL1-GFP-Lacl for 24 hr, and per-
formed IF with anti-CENP-A and anti-GFP antibodies on meta-
phase spreads (Figure 5A). Ectopic targeting of CAL1 via Lacl/
lacO leads to efficient de novo incorporation of CENP-A (Chen
et al., 2014). In contrast, depletion of either SSRP1 or Dre4 re-
sulted in a significant reduction in the percentage of CENP-A-
positive lacO sites (Figures 5B and 5C). Since FACT depletion
did not affect the formation of the CENP-A/CENP-C/CAL1 com-
plex (Erhardt et al., 2008; Figure S3A), a defect in CENP-A incor-
poration is the most likely explanation for this reduction in
ectopic CENP-A. Thus, these experiments demonstrate that effi-
cient recruitment of CENP-A by CAL1 requires FACT and imply
that CAL1 is not sufficient to assemble CENP-A into nucleo-
somes when chromatin is the substrate, as opposed to when
naked DNA is the substrate (Chen et al., 2014).

Given the ubiquitous role of FACT in DNA metabolism, we
investigated possible pleiotropic effects that could account for
the CENP-A incorporation defect seen after FACT RNA.. Fluores-
cence-activated cell sorting (FACS) analysis showed no change
in the distribution of cellsin G1, S, or G2-M upon FACT RNA. (Fig-
ure 5D), suggesting that the CENP-A incorporation defect is not
due to a cell-cycle defect. Additionally, gRT-PCR analyses of
cenp-a, call, or cenp-c transcripts (Figures S3B and S3C) and
western blot analyses from total protein extracts (Figure S3D)
demonstrated that FACT depletion did not decrease the expres-
sion of these essential centromere genes. Similarly, expression
of eight handpicked genes that are bound to Dre4 based on
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RNAi

2003), did not decrease upon FACT
RNAi. This suggests that general tran-
scription involves redundant chromatin
remodeling activities, at least in Drosophila-cultured cells. Alto-
gether, these results demonstrate that FACT plays a specific
function in CENP-A deposition.

Depletion of FACT Causes Defective CENP-A
Recruitment at Endogenous Centromeres

To determine if FACT is required for the recruitment of newly syn-
thesized CENP-A at endogenous centromeres, we performed
quench-chase-pulse experiments in cells stably expressing
SNAP-tagged CENP-A (Jansen et al., 2007; Mellone et al.,
2011). FACT was knocked down by simultaneous RNAi of Dre4
and SSRP1 for 6 days, after which time pre-existing SNAP-
tagged CENP-A was irreversibly quenched using the BG-block-
ing agent (To; quench). RNAi of CAL1 was used as a positive
control. After a chase that lasted until cells had divided once,
newly synthesized SNAP-tagged CENP-A was labeled using
TMR* (T4; pulse) and cells were fixed and processed for IF
(Figure 6A). Immediately after quenching SNAP-CENP-A, no
TMR*-labeled CENP-A signal was observed, as expected, while
labeling with an anti-CENP-A antibody showed that low levels of
CENP-A were still present in both FACT and CAL1 RNAi (Fig-
ure 6B, Tg). After one cell division, cells were incubated with
TMR* to label newly synthesized SNAP-CENP-A. Newly synthe-
sized SNAP-CENP-A was clearly visible at the centromeres of
control cells (Figure 6B, T4, top). In contrast, there was a signifi-
cant drop in the TMR*-CENP-A intensity levels of FACT RNAI
cells, consistent with defective CENP-A recruitment (Figures
6B, T4, and 6C).

To determine if FACT is also required to retain pre-existing
centromeric CENP-A through one cell division, we quantified
the total centromeric CENP-A IF signal at To and T4. In control
cells, retention and recruitment of CENP-A are intact; therefore,
no change in total CENP-A intensity occurs over one cell
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Figure 6. FACT Is Required for CENP-A Recruitment at Endogenous Centromeres

(A) Diagram of the quench-chase-pulse experiment.

(B) IF with anti-CENP-A antibodies (green) in control and Dre4/SSRP1 RNAi SNAP-CENP-A cells pulsed with TMR* (red) immediately after BG-block (T, left) or
after having completed one cell division (T, right). DAPI is shown in blue. Scale bars, 5 um.
(C) Quantification of the signal intensity of TMR*-labeled CENP-A foci. The means + SEM of three experiments (100 cells quantified per RNAi treatment) are

shown. p < 0.0001 for control versus SSRP1/Dre4 RNAi (unpaired t test).

(D) The total CENP-A centromeric intensity for control cells, CAL1 RNAi cells, and SSRP1/Dre4 RNAi (FACT) was quantified at To and T4. The mean change in
CENP-A intensity at T, relative to To + SEM is shown. n = 3 experiments (150 cells each RNAi treatment). p values from an unpaired t test are shown.

(E) IF with anti-CENP-A antibodies of S2 cells subjected to the indicated RNAi treatments. DNA is stained with DAPI. Scale bar, 5 um.

(F) Scatter plot showing total centromeric CENP-A signal intensity per cell from the experimentin (E). n = 50 cells per condition. p values from an unpaired t test are

shown.
See also Figure S4.

division (T+/Tg 100%). In contrast, in cells lacking FACT,
centromeric CENP-A signal displayed a decrease in intensity
consistent with a loading defect (T1/Tg = ~59%; Figure 6D; a
ratio lower that 50% would be expected if the retention of
pre-existing CENP-A were also affected). These results also
explain why CENP-A is lost at a relatively slower rate in the
absence of FACT (6 days): its loading is compromised but
its retention is not. In contrast, loss of CENP-A from the
centromere in the absence of CAL1 is much more rapid (Fig-
ure 6D), consistent with the dual role of CAL1 in CENP-A
loading and stabilization from degradation (Chen et al., 2014).
Collectively, our data demonstrate that FACT is required for
the centromeric recruitment of newly synthesized CENP-A at
the centromere.

To examine if FACT depletion can lead to complete loss of
CENP-A from centromeres, we knocked down Dre4 or SSRP1,
transfecting S2 cells twice with double-stranded RNA (dsRNA)
over 6 days and examined the intensity of centromeric CENP-A
by IF. We observed a dramatic decrease in the intensity of
CENP-A foci upon Dre4 or SSRP1 RNAi compared to control
cells (Figures 6E and 6F), demonstrating that two consecutive
RNAI lead to a nearly complete loss of CENP-A from centro-

meres. Consistent with defective CENP-A recruitment, we
observed a significant increase in chromosome missegregation
in mitosis in cells lacking FACT (Figure S4).

H3.1 and H3.3 Accumulate within Centromeric
Chromatin upon FACT RNAi

In human cells, histone H3 nucleosomes are deposited in
S phase as temporary placeholders that need to be replaced
by CENP-A in order to maintain centromere identity (Dunleavy
et al,, 2011). Whether CENP-A chaperones or other factors
perform this exchange is unknown. Transcription at the centro-
mere could mediate the eviction of the placeholder H3 during
CAL1-mediated CENP-A deposition, analogously to H3.3 depo-
sition at active genes (Schwartz and Ahmad, 2005). To determine
if, in the absence of FACT and transcription, histone H3.1 or H3.3
accumulate at centromeres, we depleted Dre4 (which causes
loss of SSRP1 as well; Figure S5) in S2 cells transiently trans-
fected with plasmids expressing V5-tagged H3.1 and H3.3 and
inspected centromeric chromatin by IF on stretched chromatin
fibers. In Dre4-depleted cells, the average length of continuous
CENP-A fibers was about one-half that of control cells (Figure 7A)
and the CENP-A signal became less contiguous, suggesting that
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H3.3-V5. V5 shown in red and CENP-A in green
(n = 10-17 fibers per condition). Scale bar, 5 um.
(C) Model for the role of RNAPII transcription in
centromere propagation. FACT is recruited to the
centromere along with CAL1 and CENP-A/H4;
here, it destabilizes H3-containing nucleosomes,

allowing the passage of RNAPII through chro-
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CENP-A is lost throughout CENP-A centromeric chromatin
stretches, as well as from their edges. IF with anti-CENP-A and
anti-V5 antibodies showed that H3.1 and H3.3 were continuously
present across CENP-A fibers in control and RNAI cells, indi-
cating that upon loss of CENP-A, no “gaps” were left at the
centromere (Figure 7B). These results, which are consistent
with a previous study that looked at centromeric fibers upon
CENP-A depletion (Blower et al., 2002), suggest defective ex-
change between the placeholders H3.1/H3.3 and CENP-A in
the absence of FACT and transcription.

Collectively, our data suggest a model in which FACT is re-
cruited to the centromere by interacting directly with CAL1 in a
pre-nucleosomal complex. Once at the centromere, FACT de-
stabilizes nucleosomes (Hondele and Ladurner, 2013; Hondele
et al., 2018), allowing transcription through the region via
RNAPII. Finally, transcription by RNAPII causes the eviction of
the placeholders H3.1 and H3.3, allowing the deposition of
CENP-A by CAL1 (Figure 7C).
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DISCUSSION

The epigenetic maintenance of centro-
meres through faithful CENP-A deposi-
tion is a process crucial for genome
stability. Much of the recent advances in
understanding this process in metazoans
have focused on the dissection of the
specific proteins involved in CENP-A
recruitment. In contrast, the roles of
DNA and chromatin in CENP-A deposi-
tion have remained largely elusive. In
this study, we have uncovered a key
role for transcription in Drosophila
CENP-A deposition and have identified
FACT as a central player in this process.
This mechanism of nucleosome reorgani-
zation—combining RNAPII passage with
CENP-A/H3 exchange—is analogous to
other paradigms seen during transcrip-
tion and development. For example,
FACT is recruited to specific genomic loci by the GAGA factor,
where it destabilizes nucleosomes, allowing replacement of
histone H3.1 with H3.3 by the chaperone HIRA and thereby
modulating the expression of Hox genes (Nakayama et al.,
2007; Shimojima et al., 2003).

To ensure the fidelity of centromere propagation, CENP-A
chromatin must be replenished after each round of DNA replica-
tion. In human cells, newly synthesized CENP-A is recruited to
centromeric chromatin along with newly synthesized histone
H4, indicating that CENP-A and H4 form a sub-nucleosomal
core, which is assembled simultaneously (Bodor et al., 2013).
As such, it is conceivable that CENP-A/H4 deposition involves
the eviction of pre-existing H3/H4 tetramers.

To determine if CENP-A assembly is coupled to transcription,
we used an inducible ectopic centromere system in Drosophila
S2 cells. We discovered that a remarkable change in transcrip-
tion occurs rapidly upon CAL1-GFP-Lacl targeting at the lacO
site. The same DNA that is transcribed is enriched in RNAPII,



suggesting that this polymerase is the one mediating this tran-
scription. The interaction between CAL1 and RNAPII supports
this idea, although the involvement of additional RNAPs cannot
be ruled out.

In order to characterize this phenomenon mechanistically, we
biochemically isolated the CAL1 partner FACT and demon-
strated that it is necessary for the transcription of the lacO site.
Despite its function in global RNAP elongation, the depletion of
FACT did not cause a decrease in expression of FACT-associ-
ated genes, suggesting a redundancy of mechanisms directing
general transcription in Drosophila cells. In contrast, upon
FACT RNAI, transcription at the lacO site was impaired, resulting
in defective de novo CENP-A deposition, demonstrating a spe-
cific disruption of centromere chromatin assembly.

Surprisingly, we found that transcription at the lacO site is in-
dependent of CENP-A assembly, revealing that CENP-A chaper-
ones can initiate local chromatin reorganization through the
recruitment of FACT and RNAPII.

The discovery that chromatin poses a barrier to CENP-A
deposition by its chaperone and the involvement of FACT-medi-
ated transcription in overcoming this barrier is likely to be rele-
vant to other complex eukaryotes. In budding yeast, FACT
allows Phs1 to access misincorporated CENP-A/Cse4 nucleo-
somes, allowing the ubiquitylation and subsequent degradation
of CENP-A/Cse4 (Deyter and Biggins, 2014). However, our
studies in Drosophila demonstrate that FACT is directly impli-
cated in CENP-A deposition. The finding that FACT is required
for CENP-A localization in chicken (Okada et al., 2009) and inter-
acts with human CENP-A (Foltz et al., 2006) raises the possibility
that the mechanism by which FACT promotes chromatin reorga-
nization during CENP-A deposition by its chaperone may be
conserved from flies to vertebrates.

In budding yeast, FACT increases nucleosome accessibility to
nucleases in the absence of H2A-H2B dimer displacement, sug-
gesting that it can reorganize nucleosomes in a more open
configuration, while maintaining their original composition (Xin
et al., 2009). Consistent with this, the crystal structure and muta-
tional analyses of Spt16/Dre4 showed that FACT allows a
gradual invasion of the nucleosome, breaking strong octamer-
DNA contacts and allowing the passage of polymerases
(Hondele et al., 2013). Thus, FACT is likely to function as a
nucleosome destabilizer (Hondele and Ladurner, 2013), allowing
the passage of RNAPII, which in turn interacts with CAL1
(Figure 7C).

A question that remains unanswered is whether the transcripts
produced during CENP-A deposition are simply a by-product of
the ongoing chromatin reorganization or if they are necessary
components of centromere structure and identity. Specific
RNAs emanating from centromeres do appear to play a role in
centromere/kinetochore integrity (Carone et al., 2013; Quénet
and Dalal, 2014; Rosic¢ et al., 2014; Topp et al., 2004). However,
the sequence requirements of these RNAs remain poorly
defined. Our work demonstrates a requirement for transcription
in CENP-A deposition as a means to reorganize nucleosomes
and suggests the dispensability of specific centromeric RNA se-
quences in this process. Either there is a generic, non-sequence
specific role for RNA at the centromere or specific sequences
emanating from the centromere possess additional structural
properties. Further work is needed to elucidate the functional

relationship between CENP-A deposition-coupled transcription
and structural centromeric RNAs.

EXPERIMENTAL PROCEDURES

Large-Scale Immunoprecipitation and Mass Spectrometry
FLAG-CAL1 complexes were purified from chromatin-free extracts generated
from 2 x 10° S2 cells, as described previously (Chen et al., 2012; Mellone et al.,
2011). FLAG-CAL1 complexes from chromatin-associated complexes were
generated by homogenization, nuclear extraction, and digestion with benzo-
nase. Extracts were added to anti-FLAG M2 beads (Sigma-Aldrich). After
washing, complexes were eluted with FLAG peptide (Sigma-Aldrich) and
sent for mass spectrometric analysis (see the Supplemental Experimental Pro-
cedures for details).

Small-Scale Immunoprecipitations

Extracts from chromatin-free and chromatin-associated fractions were pre-
pared from 108 cells, as described before (Mellone et al., 2011). Extracts
were added to Dynabeads-protein A beads (Life Technologies) coupled with
anti-CAL1 or anti-FLAG antibodies (Sigma-Aldrich) and incubated for 10 min
at room temperature, followed by a 30 min incubation at 4°C with rotation.
Beads were washed three times with PBS-T (PBS; 0.1% Triton). 6% of the
input and 50% of the IP was analyzed by 10% SDS-PAGE, followed by west-
ern blot. See the Supplemental Experimental Procedures for CAL1/RNAPII IPs.

In Vitro Protein Binding Assay

All steps were performed at room temperature. ~5 pg of purified His::MBP
(negative control) and His::Dre4 or His::SSRP1 immobilized on Ni-NTA
agarose (QIAGEN) were equilibrated in binding buffer containing 50 mM
HEPES (pH 7.4), 150 mM NaCl, 1 mM MgCl,, 1 mM EGTA, 0.1% Triton
X-100, 1x EDTA-free protease inhibitor cocktail (Roche), 20 mM imidazole,
and 0.5 mg/ml BSA, mixed with 3S-methionine-labeled proteins expressed
by a coupled in vitro transcription translation system (IVTT), and incubated
for 1 hr. Beads were then washed in binding buffer (without BSA); proteins
were eluted by boiling in Laemmli sample buffer and subjected to SDS-
PAGE, followed by autoradiography. See also the Supplemental Experimental
Procedures.

Cell Culture and RNAi
Stable S2 cells containing an integrated lacO plasmid (pAFS52; Straight et al.,
1996) were described before (Chen et al., 2014; Mendiburo et al., 2011). Addi-
tional stable S2 cells were generated by transfection with Cellfectin reagent
(Life Technologies) and selection with 450 ng/ml hygromycin. Stable lacO S2
cells were re-thawed after 1 month in culture due to loss of the lacO array
over time. Transient transfections were performed by treating cells with
FuGENE HD (Promega) for 2 days. Cells were induced with 0.5 mM CuSO,4
for 24 hr.

Stable CAL1-GFP-Lacl or GFP-Lacl cells were induced with 0.5 mM CuSO4
at 25°C for 1-48 hr or left uninduced. RNAi was performed using DOTAP and
10 ng of dsRNA (see the Supplemental Experimental Procedures).

Total RNA Extraction and qRT-PCR
Total RNA was isolated from 1 x 107 cells using TRI-reagent (Sigma-Aldrich).
10 pg of RNA was treated with 1 pl of Turbo DNase (Life Technologies) for
30 min at 37°C. RNA was reverse transcribed using the iScript cDNA Synthesis
Kit (Bio-Rad), and 2 ul were used in gPCR using SYBR-green (Bio-Rad) on a
CFX96 Real-Time System (Bio-Rad). Transcription from the lacO® (using
primer pairs 1.6 or 3; Mendiburo et al., 2011) was normalized to uninduced
samples. Values were calculated using the Pfaffl method (Pfaffl, 2001), with
Rp49 (unaffected by FACT; Nakayama et al., 2007) as a reference gene.
Some variability in the fold increase in lacOP transcription between experi-
ments was observed due to instability of the lacO array during cell culture
over time. See the Supplemental Experimental Procedures for primer
sequences.

For RNA-seq, libraries were generated using the Tru-Seq kit (lllumina) and
ran on a HiSeq. See the Supplemental Experimental Procedures for mapping
information.
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Total Protein Extraction and Western Blotting

Total cell extracts were obtained from 1 x 10° cells resuspended in 15 pl of
RIPA buffer (150 mM NaCl, 50 mM Tris [pH 8], 1% NP40, and 0.1% SDS), incu-
bated on ice for 10 min, and digested with 1 ul of benzonase (Novagen) for
20 min at 37°C. Extracts were separated by 10% SDS-PAGE and transferred
to nitrocellulose membranes. After 30 min incubation in blocking buffer (TBS,
0.1% Tween 20, 5% powder non-fat milk), membranes were incubated
overnight at 4°C with anti-CAL1 (rabbit, 1:1,000; from A. Straight), anti-
CENP-A (rabbit, 1:1,000; Active Motif), anti-FLAG (mouse, 1:1,000; Sigma-
Aldrich), anti-Dre4 and anti-SSRP1 (rabbit, 1:1,000; from S. Hirose), and
anti-RNAPIIS2p (mouse, 1:1,000; Abcam); anti-CENP-C (guinea pig, 1:3,000;
Mellone et al., 2011), anti-tubulin (mouse, 1:1,000; Sigma-Aldrich), or anti-his-
tone H3 (rabbit, 1:5,000; Abcam) antibodies were used as a loading control.

Immunofluorescence

IF on settled cells and metaphase spreads was performed as described (Chen
et al., 2014). For pre-extraction with detergent, settled cells were immersed in
100 ul of PBS-T for 5 min, followed by the addition of 11 ul of 37% formalde-
hyde for 10 min. Stretched chromatin fibers were performed essentially as
described (Sullivan, 2010), using twice the amount of primary antibodies
than conventional IF. Only extensively stretched fibers (DAPI nearly undetect-
able) were used for our analyses. The antibodies used were anti-CENP-A
(chicken, 1:1,000; Blower and Karpen, 2001), anti-GFP (rabbit-488 conju-
gated, 1:100; Life Technologies), anti-CENP-C (guinea pig, 1:1,000; Mellone
et al., 2011), anti-fibrillarin (mouse, 1:500; Cytoskeleton), and anti-V5 (mouse,
1:50; Life Technologies). Secondary antibodies (Life Technologies Alexa-Fluor
488 or 546 conjugated; Santa Cruz biotechnology CY5 conjugated; 1:500)
were used as appropriate. Slides were mounted in Slowfade (Life Technolo-
gies) containing DAPI.

Quench-Pulse-Chase Assay

RNAi of both Dre4 and SSRP1 was simultaneously performed for 6 days in a
12-well plate. Quench-chase-pulse, followed by IF, was performed as
described (Mellone et al., 2011), making sure the cells had divided once
(~24 hr for control and 24-48 hr for FACT RNAI) between BG-block (quench)
and TMR* labeling (chase).

Fluorescence-Activated Cell Sorting

After 6 days of RNAi (Bw for control and SSRP1/Dre4 for FACT), 1 x 10° S2
cells were washed in PBS with 2% BSA and then incubated in PBS containing
50 pg/ml propidium iodide, 200 ng/ml RNase A, and 0.1% Triton X-100 for
15 min at 25°C in the dark. Samples were analyzed on a BD FACSCaliber
Flow Cytometer and analyzed using FloJo.

Imaging

All images were taken at 25°C on an Olympus Fluorescence Microscope
(PersonalDV; Applied Precision) equipped with a 60x 1.42 NA or a 100x
1.40 NA oil-immersion objective (Olympus) and a CoolSnap HQ, Camera (Pho-
tometrics), keeping exposure conditions constant between all samples.
Images were acquired and deconvolved using softWoRx (Applied Precision),
maintaining the scaling constant between samples, and all images were saved
as Photoshop files. Figures were assembled in Adobe lllustrator. See the Sup-
plemental Experimental Procedures for image quantifications.

Chromatin Immunoprecipitation

ChIP was performed using the MAGnify Kit (Life Technologies). 10° cells
(~10 ng DNA) was used for each IP, and chromatin was sheared to fragments
100-300 bp long. 1 ul of anti-CENP-A (rabbit, Active Motif), anti-SSRP1 (Na-
kayama et al., 2007), anti-GFP (Abcam), or anti-RNAPIIS2p (Abcam) were
coupled to 10 pl beads for 2 hr and mixed with chromatin overnight at 4°C.
Immunoprecipitated DNA was eluted in 50 pl of elution buffer and analyzed
by qPCR. Normalization was performed using the following formula: 100 x
AE(@verageCT INPUT — averageCT IP) \yhere AE is the amplification efficiency calcu-
lated by the formula AE = 10-/51°P®) The values obtained for induced cells
were normalized by those for uninduced cells to calculate enrichment. For
ChlIP-seq, DNA from three independent ChIP experiments were pooled and
made into libraries with the TruSeq ChlIP Kit (Illumina). Samples were run on
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a MiSeq using the Reagent Kit (v. 3). See the Supplemental Experimental Pro-
cedures for mapping information.

Statistical Methods

SE, SD, and CI were calculated using Numbers (Apple). Unpaired t test
and chi-square tests were performed in Prism (GraphPad). See the Supple-
mental Experimental Procedures for statistical analysis of next-generation
sequencing data.
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The accession number for the ChIP-seq and RNA-seq raw data reported in this
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