
Design and Development of a Mobile Classroom
Response System for Interactive Problem Solving*

M. Muztaba Fuad
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC 27110, USA

fuadmo@wssu.edu

Debzani Deb
Department of Computer Science
Winston-Salem State University
Winston-Salem, NC 27110, USA

debd@wssu.edu

Abstract— It is common for students to multi-task and use
their mobile devices while in class for studying or other activities.
This research aims to leverage this situation by developing a
mobile classroom learning software to help students solve
interactive problems in their mobile devices in order to improve
their class engagement and problem solving skills. This paper
presents the design and development of the mobile classroom
response software to communicate, collaborate and evaluate in-
class interactive problem solving activities using mobile devices.
The software facilitates various pedagogical approaches that
reported to enhance student learning. The software is designed to
be easy-to-use and maintainable. MRS is extensible and can
render interactive problems developed by third party developer.
Software quality matrices for the developed code and the user
interface are presented to justify above stated objectives.1

Keywords-Mobile Learning Software; Software Architecture,
Client-server System, Extensibility.

I. INTRODUCTION
Mobile technology has brought tremendous potential and

opportunities for educators to enable and deliver learning in
ways that could not have been accomplished before. There
have been an increasing number of studies related to the
research and development of learning software intended for
mobile computing devices. Some of these studies focus on
supporting several interesting pedagogical approaches while
utilizing mobile learning software such as slide annotation,
collaborative note taking, student submissions, grading,
polling etc. This research envisions utilizing mobile learning
environment to help students solve interactive problems in
order to improve their class engagement and problem solving
skills. Toward this goal, this paper present the design,
development and planned incorporation of the mobile
classroom response software (MRS) designed to
communicate, collaborate and evaluate in-class interactive
problem solving activities using mobile devices.

MRS is a client-server software that allows the faculty to
dynamically prompt the students with interactive problems
synchronized with the lecture material in their mobile
computing devices (Clients). Students are able to actively
interact with the problem and send their answer back to the
faculty computer (Server). MRS then performs grading of the
exercises automatically, by comparing the student made

* Supported by NSF fund # 1332531

sequence of steps with the correct sequence of steps. The other
important features supported by MRS are immediate and
context-sensitive feedback, anonymous question, polling,
summarized grading etc. Currently MRS software and
associated problem solving activities are being deployed in CS
and IT courses at Winston-Salem state University (WSSU).
By adopting MRS in the classroom, this research expects to
increase student engagement and improve their problem
solving capabilities and therefore prepare them better to enter
the computing workforce. MRS is designed to be user friendly
and extensible so that faculty and students can use the system
with ease and can extend it to any domain.

II. BACKGROUND AND RELATED RESEARCH
To improve student learning in the STEM disciplines,

traditional pedagogical approaches are not enough to transfer
critical knowledge to students. A feedback driven evidence
based teaching and learning technique has to be devised and
implemented to improve student retention rates in the STEM
discipline. In that regard, evidence-based instructional
practices were incorporated in a sophomore-level CS course
for the last few offerings, where at the end of a lecture,
students were immediately prompted with in-class problem
solving activities. Intervened student’s performance data and
their response to this pedagogy reveal the potential of this
approach in order to enhance student learning. This finding
encourages us to extend this model by scattering the
questions/problems throughout the class period by
synchronizing with the content covered. Observation about
student’s frequent use of mobile devices during class further
inspires us to extend the above idea of asynchronous problem
solving to mobile devices to engage students more to class
activities.

Different studies [1]-[2] have found the benefits of using
mobile devices in classrooms and in recent years, there has
been a plethora of work [3]-[4] etc. performed to incorporate
mobile devices in classrooms. There are also several
commercial products [5]-[6] etc. for different mobile platforms
that provide similar functionalities. Classroom Presenter [7],
Ubiquitous Presenter [8] and DyKnow [9] are notable research
initiatives that utilize tablets to create more active, student-
centered lecture environment while supporting various
effective pedagogies. However, there are distinct differences

between the MRS and similar systems. Most importantly,
MRS facilitates interactive problem solving. In STEM
courses, students need to actively solve problems by
interacting with the problem in a hands-on approach. Students
cannot develop skills such as synthesizing a problem and
critical thinking only by using multiple-choice or true-false
questions. We argue that by presenting the problems as
interactive entities, where students can actively play with the
problem; student’s critical thinking and problem solving skills
can be improved.

A. Interactive Problem
An interactive problem is one, where students have to

devise the answer following a set of steps and by following a
particular algorithm/process. In each step, students have to
make key choices that will have impact on the next step of the
interaction. During these interaction steps, students can go
back and forth and change their answer. This will allow them
to see what is the affect of different selection on the result and
how every piece fits together. Problems can be started bottom
up or at the middle to give students different perspective on
the problem and assess their problem solving skills. Only after
the student traverse each of the steps or the allotted time to
answer a problem runs out, the results of their interactions
performed at each step are then sent back to the server as the
answer. Each problem has a rubric that not only grade final
answer but also partial answers to gauge student’s problem
solving skills and thinking models.

III. SYSTEM DESIGN
The MRS software is designed as a client-server

application. Client device needs the corresponding client app
installed in them to interact during the class. The server (or the
faculty computer) hosts the questions, manage users and
process the results for display and for grade calculation
purposes. It also has the required data analysis component to
tabulate user responses and produce easy to interpret reports.

A. Server
Figure 1 shows the lifecycle of the server. The server is
designed as a multi-process, multi-threaded entity to satisfy
simultaneous invocation from users and to provide real time
response to in-class activities. Usually when a user initiates a
check-in to the system, the server validates the identity of the
user and set a role for that specific user. Roles are basically
privilege levels that allow a user to interact with the system
with certain accessibility. The client app also allow students to
send anonymous feedback/questions to faculty and vote on
questions that faculty will choose to review at the end of the
class. Separate thread of the server constantly monitors
whether students wants to initiate a feedback/question session.
In that case, it sends the current pool of feedback/ questions to
the corresponding client. Once a response from the client is
received, it is matched with the current pool and if a match is
found, the priority of that entry is increased. Otherwise a new
entry is created with the newly initiated feedback/question.
Once the server receives answers back from all the clients, it
does corresponding analysis of the data and produce

appropriate summarized representation as specified by the
faculty. The server also maintains the score of every student,
which can be used later to calculate student’s grade.

Figure 1. Server lifecycle.

Figure 2. Client lifecycle.

B. Clients
Figure 2 shows the life cycle of the client. Once a student
checks in, the app shows a standard screen where students can
only submit new feedback/question or vote on one. If the app
receives a new question from the server, the corresponding

activity that will render the given question into interactive
entity will be executed. Every problem has a set amount of
time to answer (which the faculty can assign) and a visible
timer starts counting down to allow the students to see how
much time they have left to answer the question. Once the
answer of the student is received (or the timer runs out) and
sent to the server, the app goes back to its root screen. At any
time during the class, students can initiate a session to post a
feedback/question or vote on an existing one anonymously.

IV. SYSTEM DEVELOPMENT
The current implementation of the server is in Java and

the client is on Android. The server’s components are:
• User interface: To manage and monitor the system.
• Encoder and Decoder: To store, transmit and convert the
question and answer in the server and to client applications. A
lightweight XML format is developed for encoding.
• Result processing: Data processing capabilities built into
this module to process answers back from the clients and to
produce proper representation.
• Blackboard integration: To import student information and
export student score to course management system.
• Trigger management: To synchronize question
broadcasting and answer propagation and timing management.
• Meta-language: A Meta language is developed to describe
the questions and to render them in a general way across
different platforms. It is XML based and has similarity with
the encoding scheme mentioned above.
• Question editor: To easily add, delete and edit questions.
• User management: To manage user roles and information.

The client app has platform specific components and also
the following:
• User Interface: To allow students to interact with the given
problem and to initiate/vote anonymous questions/feedback.
• Networking module: This module is responsible for
transmission and reception of questions, their answers and
student feedback/questions and any other server messages. To
properly communicate with the server, an asynchronous
communication and synchronization protocol is developed to
satisfy timely execution of problems and propagation of
answers back to the server.
• Render module: This module render the encoded question
sent from the server in the client device. This module
determines which Android activity should be initiated for a
question, initialize the activity with proper parameters as sent
from the server and keep in consideration the target screen
dimension, resolution and orientation for rendering a question.
• Log-in module: This component is responsible for
discovering the server, checking user information and setting
appropriate role of the user. This module allows the client to
work per session basis and will automatically logs out, if it
receives a stop signal from the server.

A. Extensibility
Building each possible problem type within the client is
impossible and not practical. This will not only make the
client overly bulky to run in mobile platform, but will also

make it domain centric. To overcome this, the activity (or the
android app) that facilitates interactive problems is completely
separated from the application logic of the MRS client
software. Figure 3 shows the life cycle of such interactive
problem app. This approach makes it possible to integrate and
execute any interactive problems developed by third party
developers into the MRS software. The renderer module of
MRS software can run any android activity (and app) as long
as following conditions are met:
• Name of the package for the target app should be same as
the question type in server.
• The incoming question will be delivered to the app through
an Android Intent using the encoding scheme. Therefore the
developer should use the decoding method in the project
library to work with the given question.
• Answers from the interactive app should be returned to
MRS using an Android Intent and using the encoding method
in the project library.

Constrained with above conditions, anyone can develop
their own interactive problem apps in any domain and use the
MRS software to incorporate interactive problem solving in
class. Third party developer can also decide on the level of
interactivity they want to incorporate in their apps and the way
to tackle Android’s activity life cycle for their app.

Figure 3. Lifecycle of interactive problem app.

B. Communication
 A prefix-based communication scheme is devised for all
messages, where different parts of the message are separated
by a dedicated delimiter symbol. Any acknowledgement is
piggy-backed with an outgoing message to minimize
transmission overhead. The prefixes distinguish each message
and the server or the client process an incoming messages
according to the prefix. The size of the prefixes and the
delimiter symbol are kept small in order to reduce the
transmission overhead. Underneath the custom transport layer
protocol, UDP is used to transfer packets between clients and

server. Since each of the messages occupied single packets,
there is no need to sequence them, saving us the overhead for
sequencing and blocking communication.

C. Software Matrices
 To examine the quality and maintainability of the code,
we use a static code analysis tool named STAN [10]. STAN
analyzes the structure of the code and visualizes the design, to
measure quality of the code and to report design flaws. STAN
supports a set of selected metrics, suitable to cover the most
important aspects of structural quality. Below we present two
such measures that show the overall quality of the code.

Figure 4. McCabe Cyclomatic Complexity.

 Figure 4 shows McCabe Cyclomatic Complexity [11] of
the code. We used this measure as it can be accurately
calculated from the static call graph and determines code’s
structural complexity. Studies [12]-[13] show a correlation
between a program's Cyclomatic Complexity, where code with
higher Cyclomatic Complexity have higher probability of
inducing errors during later maintenance. In that regard, it is
evident from Figure 4 that the Cyclomatic Complexity values
for MRS falls within the low risk and simple program range
[14] and therefore the software is easy to maintain and extend.
We also evaluated the code using object-oriented metrics
found in [15]. Table I shows the values calculated by STAN
for the developed code. The value for each of the matrices
falls within desired ranges, which justify our claims regarding
extendibility, manageability and maintainability.

TABLE I. QUALITY MATRICES.

Chidamber & Kemerer Metrics Average
Weighted Method Per Class (WMC) 9.2
Depth of Inheritance Tree (DIT) 2
Number of Children (NOC) 1
Coupling between Objects (COB) 4
Response for a Class (RFC) 6.87
Lack of Cohesion in Methods (LCOM) 7.93

V. MRS AT WORK
One of the goals of the system is to provide users with

easy to use interfaces and seamless user experience. In that
regard, all user interfaces were made intuitive and easy to use.
Before the start of the class, faculty has to setup in-class
interaction (importing student info, questions, their answers/
rubrics and setup type of analysis, kind of report etc.) in the
faculty computer using a graphical user interface. Once the
interaction for the class is setup, students logged into the
system and the class is in progress; the faculty can use a

trigger (mouse click or a designated key in the keyboard) to
broadcast a question to students. On the other hand, when a
student initiates a check-in to the system, the clients first
locates the faculty machine (MRS server) and once a session is
established, credentials are validated so that the client can start
accepting questions. After a successful login, the client shows
the root screen, where the students can post anonymous
questions/feedback to the faculty. Once a question is received
the client invokes the corresponding activity to render the
given question as described in Section IV.A. As mentioned
earlier, each question has multiple interactive screens, which
students can traverse back and fourth. Once the faculty
machine receives answers back from all the clients, it does
corresponding analysis of the data and displays it accordingly.
Currently, several interactive problems are being developed
with a planned deployment in the class of Fall, 2014.
Currently MRS is operational and it’s scalability,
responsiveness and reliability parameters have been tested and
they all fell within accepted ranges.

VI. CONCLUSIONS
In this paper, we present the design and development of

MRS software that is targeted towards supporting classroom
interaction using mobile devices. More specifically the goal is
to facilitate interactive problem solving, submission, grading
polling etc. by using the software. The architecture is
presented and elaborated to exemplify the communication,
maintainability and extendibility aspects. The result acquired
from software quality data and the user interface shows that
the system is easy-to-use, extendible and maintainable.

REFERENCES

[1] Mockus, L. and Edel-Malizia, S., “The Impact of Mobile Access on

Motivation: Distance Education Student Perceptions”, 17th Annual
Sloan Consortium International Conference on Online Learning, 2011.

[2] Jones, A., & Issroff, K., “Motivation and mobile devices: exploring the
role of appropriation and coping strategies”, Research in Learning
Technology, Vol. 5, No. 3, 2007.

[3] Roberts, J., Harvesting fragments of time. Mobile learning pilot project.
Technical report, McGraw-Hill, 2003.

[4] Young, J. Mobile College App: Turning iPhones Into ‘Super-Clickers’
for Classroom Feedback, Chronicle of higher education, 2008.

[5] Top Hat Monocle, 2013, https://www.tophatmonocle.com.
[6] E-Clicker, Apple App Store, 2013.
[7] Anderson R., et. al., “Classroom Presenter: Enhancing Interactive

Education with Digital Ink”, Computer, Vol. 40, No. 9, pp. 56-61, 2007.
[8] Griswold, W., Simon, B., “Ubiquitous presenter: fast, scalable active

learning for the whole classroom”, ITiCSE, pp. 358, 2006.
[9] Berque, D. “An evaluation of a broad deployment of DyKnow software

to support note taking and interaction using pen-based computers”,
Journal of CSC, Vol.21, No.6, pp. 204-216, 2006.

[10] Structure Analysis for Java (STAN), http://stan4j.com, 2014.
[11] McCabe, T., A Software Complexity Measure, IEEE Transactions on

Software Engineering, Vol. 2, pp 308-320, 1976.
[12] Watson, A. and McCabe, T. Structured Testing: A testing methodology

using cyclomatic complexity metric, NIST special publication, 1996.
[13] Clark, M., “Measuring Software Complexity to Target Risky Modules in

Autonomous Vehicle. Systems.” AUVSI North America Conference,
2008.

[14] C4 Software Technology Reference Guide, Software Engineering
Institute, Carnegie Mellon University, 1997.

[15] Chidamber, S.R., Kemerer, C.F., A Metrics Suite for Object-Oriented
Design. IEEE Transactions of Software Engineering, pp. 476–493, 1994.

