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Abstract

Computational modeling at the atomistic and mesoscopic levels has under-

gone dramatic development in the past 10 years to meet the challenge of

adequately accounting for the many-body nature of intermolecular interac-

tions. At the heart of this challenge is the ability to identify the strengths

and specific limitations of pairwise-additive interactions, to improve classi-

cal models to explicitly account for many-body effects, and consequently to

enhance their ability to describe a wider range of reference data and build

confidence in their predictive capacity. However, the corresponding compu-

tational cost of these advanced classical models increases significantly enough

that statistical convergence of condensed phase observables becomes more

difficult to achieve. Here we review a hierarchy of potential energy surface

models used in molecular simulations for systems with many degrees of free-

dom that best meet the trade-off between accuracy and computational speed

in order to define a sweet spot for a given scientific problem of interest.
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1. INTRODUCTION

Molecular simulation has been broadly adopted by academic researchers and industry scientists

partly because of the tractability of the classical model assumption of the pairwise additivity of

molecular interactions. Molecular models, or force fields, are widely available and often are highly

successful on a variety of problems in chemistry, biochemistry, and materials science. Yet pairwise-

additive treatments do break down, for example, for heterogeneous environments or in areas of the

phase diagram outside of which they were parameterized, although we cannot always anticipate

why or for which chemical systems. In principle, mutually polarizable models offer a significant

improvement in the physics of multibody electrostatic interactions. However, the corresponding

cost of an advanced polarizable force field increases significantly enough that statistical conver-

gence of condensed phase observables using molecular dynamics (MD), the so-called sampling

problem, becomes more difficult to achieve.

Whereas MD simulations routinely and beneficially address questions centered around de-

tailed nanoscale chemistry, there is another set of problems on the supramolecular or mesoscale,

in which the limitations of size and timescales in MD are reached. Coarse graining of the partic-

ipating nanoscale structures and their environment, combined with simulations using stochastic

dynamics, can be just as insightful as the all-atom deterministic dynamics when this regime is

reached. Solutions to the Poisson-Boltzmann equation (PBE) provide an example of a very differ-

ent electrostatic model compared to an atomistic polarizable model, reducing molecular features

of complex macromolecules in salty aqueous solvent to embedded charge distributions polarized

by a dielectric continuum with the ability to describe the ionic strength of the solution. However,

the accuracy of the PBE solution degrades rapidly as the coarse-grained system geometries be-

come too complex or the length scales become too large, limiting its application to the mesoscale

regimes for which it is most needed.

These two extremes in molecular modeling seem to have little in common for a unified

review, but here we define a theme around advances made in the treatment of electrostatics

and polarization at the two scales of interest. These advanced potential energy surfaces that

now include mutual polarization have encountered obstacles that inhibit their application to

challenging chemical problems, including the accuracy and computational cost of the theoretical

models and lack of innovation in better algorithms or controlled approximations that can mitigate

the cost. However, there have been important strides made in these areas that signal a new era

in the more widespread development and use of advanced potential energy surfaces in condensed

phase simulations. This warrants an appraisal of the current state of the art in the area of atomistic

force fields and PBE solvers, both of which can be formulated to better describe anisotropic

interactions and many-body polarization.

2. RECENT ADVANCES IN ATOMISTIC FORCE FIELDS

A critical aspect of the accurate modeling of physical properties of condensed systems is the devel-

opment of models that reflect the complex potential energy surface of these systems. Naturally,

these systems are described by the solution of the many-electron Schrödinger equation, but this

is computationally intractable for many degrees of freedom simulated over long timescales, and

we must resort to the development of empirical force fields for use with classical Newtonian

mechanics. The typical components of a classical force field include

U = U bond + U angle + U torsion + U bθ + U oop + U vdW + U
perm

ele + U ind
ele , (1)

where the first five terms on the right-hand side describe covalent interactions, and the last

three terms are the noncovalent contributions. Ubond and Uangle are commonly modeled with
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AMOEBA: atomic
multipole optimized
energetics for
biomolecular
applications

harmonic functions, or carrying higher-order terms to model anharmonicity as in force fields

such as AMOEBA (atomic multipole optimized energetics for biomolecular applications) (1) and

MM3 (2), and Utorsion is typically modeled with a sinusoidal form. The second two covalent terms

are less commonly included. Ubθ describes coupling between bond stretching and angle bending,

which is important for reproducing vibrational frequencies. Uoop is a term to restrict out-of-plane

bending to enforce planar geometry at sp2 hybridized centers and is modeled with a harmonic

Wilson-Decius-Cross term (3) in the AMOEBA force field (1).

Whereas the description and parameterization of short-range valence terms are relatively

straightforward, modeling short- and long-range noncovalent interactions has remained more

elusive. This results in large part from the many-body, nonadditive nature of these interactions.

When describing complex intermolecular interactions, one finds it convenient and physically jus-

tified to distinguish between short-range interactions that decay exponentially as a function of

distance R [i.e., as exp(−αR)] and those that decay over a longer range as inverse powers of R (i.e.,

as 1/Rn) (4). Short-range many-body effects include exchange repulsion and charge transfer and

are best understood using quantum mechanics (QM), as the distance range over which these effects

are strong is short enough to allow for overlap of a molecule’s wave function with that of nearby

molecules. In most current force fields, only exchange repulsion is routinely represented explicitly,

typically as the repulsive 1/R12 component of a Lennard-Jones potential, and infrequently in an

exponential form, such as a Buckingham potential, or as a 1/R14 term in Halgren’s buffered 14-7

potential (5), as in the AMOEBA force field (1, 6).

Longer-ranged effects include dispersion, induction or polarization, and electrostatics. The

electrostatic energy arises from the fixed-charge distributions of the molecules, and this interaction

decays very slowly (as 1/R) for monopole-monopole interactions; interactions between higher-

order multipoles decay more rapidly but are still long range. In most present-day fixed-charge

force fields, charge distributions are approximated as atom-centered partial charges obtained by a

fit to a QM-derived potential, and one accounts for the long-range decay through the Ewald sum.

Within this pairwise-additive approximation, we show in Section 2.1 that immediate improvements

in predicted properties can be made in biomolecular simulation through direct reparameterization

of existing protein force fields with more quantitative water models developed under the Ewald

approximation.

Although one may naively conclude that the additive nature of the electrostatic interaction ren-

ders it straightforward to model in classical force fields, a challenge arises in how one describes the

charge distribution. Charge distributions approximated as atom-centered partial charges present

a severe simplification of the complex orbital picture of real molecules that may have lone pair

electrons that are not atom centered or diffuse and delocalized electron clouds, as in the case

of π orbitals in aromatic systems. Modeling efforts in the development of charge distributions

that extend beyond the standard atom-centered charges [e.g., the introduction of the distributed

multipole analysis (DMA) of Stone (4, 7)] are reviewed in Section 2.2.

Both dispersion and polarization are many-body, nonadditive effects, although dispersion is

typically approximated using a pairwise-additive term, decaying as −1/R6 or −1/R7 in the Halgren

potential. Notable exceptions to the approximation of pairwise additivity in dispersion are the well-

known three-body Axilrod-Teller potential and more recently other formulations of three-body

potentials (8, 9). Polarization arises from the distortion of a molecule’s charge distribution in the

presence of an external field and is also nonadditive in nature. It is longer in range than dispersion,

as induced dipole–induced dipole interactions decay as 1/R4. Current efforts in force field enhance-

ment with respect to the treatment of intermolecular interactions have focused on polarization

as it is the slowest decaying of the aforementioned many-body effects and therefore justifiably

receives special focus in force field development (see Table 1), as reviewed in Section 2.3.
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Table 1 Summary of methods reviewed herein that have a polarizable formulation in their molecular mechanical

component

Type Method Polarization model(s) employed

Fragment methods incorporating

polarization from inception

SIBFA (sum of interactions between fragments

ab initio)

Inducible dipole

NEMO (nonempirical molecular orbital) Inducible dipole and quadrupole

EFP (effective fragment potential) Inducible dipole

Periodic HBMI (hybrid many-body interaction

model)

Inducible dipole

Force fields incorporating polarization

from inception

AMOEBA (atomic multipole optimized

energetics for biomolecular applications)

Inducible dipole

QMPFF (quantum mechanical polarizable

force field)

Drude oscillator

SDFF (spectroscopically determined force

field)

Inducible dipole with

geometry-dependent polarization

Empirical point charge-based force

fields with polarizable

implementations added in

subsequent development

CHARMM (Chemistry at Harvard Molecular

Mechanics)

Drude oscillator, fluctuating charge, and

inducible dipole

AMBER (assisted model building with energy

refinement)

Fluctuating charge and inducible dipole

OPLS (optimized potential for liquid

simulations)

Fluctuating charge and inducible dipole

GROMOS (Groningen molecular simulation) Drude oscillator

QM/MM methods with mutually

polarizable QM and MM regions

EFP Inducible dipole

PE (polarizible embedding) Induced dipole

QM/MM-Drude oscillator/boundary potential Drude oscillator

PBRCD (polarized-boundary redistributed

charge and dipole)

Fluctuating charge

2.1. New Compatible Protein and Water Force Fields

Empirical, fixed point-charge force fields for biomolecular simulation have undergone significant

development since the pioneering work of Lifson and coworkers (10–12) in the development of

their consistent force field. This has consisted of a large-scale community-wide effort to refine force

field parameters; extend the parameter sets to encompass biologically important small molecules,

carbohydrates, and lipids; and appraise force field quality by benchmarking against experimental

data. In particular, fixed-charge force fields will certainly continue to be a frontline chemical model

when the demands of sampling are paramount, such as in the simulation of protein folding or the

characterization of sluggish dynamics at cold temperatures.

Enhancements in computing power have also enabled pairwise-additive force fields to be as-

sessed in terms of their ability to adequately describe the behavior of biological molecules on longer

timescales. Such important stress tests include structural stability tests, free energy calculations,

and protein folding simulations. Solvation free energy studies of both protein side chains (13) and

small organic molecules (14) showed that solvation free energies were systematically too positive

on average. In a study of the structure and hydration dynamics in concentrated peptide solutions,

Johnson et al. (15) demonstrated that fixed-charge force fields predicted too much aggregation

of the peptides. The excessive aggregation is an indicator that significant improvements of fixed-

charge force fields are required to correctly model extended peptide conformations, a necessity
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AMBER: assisted
model building with
energy refinement

TIP: transferable
intermolecular
potential

SPC: simple point
charge

for protein folding simulations and protein-protein interactions. Interestingly, the same simula-

tions performed with the AMOEBA polarizable force field did not yield unphysical aggregation

(15).

In addition to their performance in modeling solvation, fixed-charge force fields have been

assessed regarding their ability to reproduce key structural features of proteins, namely, exper-

imentally determined dihedral angle propensities. Compared with the other bonded degrees of

freedom in typical force fields, dihedral angles exhibit the greatest deviations from their equilib-

rium values in protein motions and thus are of utmost importance in elucidating large-scale con-

formational changes and folding/unfolding transitions. Several deficiencies have been reported.

Jiang et al. (16) showed that simulated peptides exhibited deviations in their χ-angle propensities

from those of a library of χ angles culled from the Protein Data Bank; this discrepancy extends

to backbone dihedral angles. Indeed, Hummer and coworkers (17, 18) found that the AMBER

(assisted model building with energy refinement) protein has a bias toward predicting α-helices,

and there is negligible dependence of helix formation on temperature, which is contrary to nuclear

magnetic resonance (NMR) data.

More under-recognized is that these deficiencies may stem in part from the water model

used, the primary molecular solvent for biological macromolecules. The early and successful

water models, such as the transferable intermolecular potential (TIP) models by Jorgensen and

coworkers (19, 20) and the simple point-charge (SPC) variants by Berendsen and coworkers

(21, 22), were designed to work under nonbonded interaction schemes involving simple spatial

truncation of electrostatics and van der Waals interactions. Given that a primary design purpose

was the ability to simulate systems with a large number of degrees of freedom, these early water

models sought to describe bulk and solvation properties with a computationally tractable r-space

cutoff of 9–12 Å. Even though monopole-monopole electrostatic interactions are still significant at

this spatial distance, model compensations could be made by adjusting the parameters to reproduce

primarily ambient bulk water properties in the context of the spatial truncations. Although the

TIP and SPC models were a significant step forward in the description of bulk water at the

time, their simulated discrepancies with experimental reference data over a range of temperatures

and pressures were harbingers of their limitations as aqueous solvent models in biomolecular

simulation.

The original TIP and SPC bulk water models have been superseded by more sophisticated

parameterization schemes that account for the missing van der Waals interactions ignored beyond

the cutoff, are optimized over a range of temperatures or pressures, and in some cases describe

long-ranged electrostatics through the Ewald approximation. Examples of these newer-generation

nonpolarizable water models include TIP4P-Ew (23), TIP4P/2005 (24), and TIP5P (25). (Unlike

the former two models, TIP5P continues to use truncation schemes.) Even so, a vast majority of

biomolecular simulations continue to use the TIP3P model as the default aqueous solvent model

and, furthermore, abuse its original parameterization conditions by combining it with particle

mesh Ewald and long-range van der Waals corrections—simulation conditions that have been

shown to degrade the accuracy of the TIP3P solvent model (26)!

Currently, there is a move toward adopting water models such as TIP4P-Ew and TIP4P/2005

in biomolecular simulations as early evidence has shown that they provide quantitative im-

provements in performance. For example, through the simulation of dynamical T1 and T2 spin

relaxations and ROESY (rotating-frame nuclear Overhauser effect spectroscopy) intensities for

the Aβ21−30 peptide, Fawzi and coworkers (27) found that the combination of AMBER ff99SB

and the TIP4P-Ew model yielded far better predictions than the default TIP3P model; similarly,

a range of NMR data was better predicted for Aβ40 and Aβ42 using TIP4P-Ew compared to

TIP3P (28–30). Using the same ff99SB protein force field, Wickstrom et al. (31) showed that
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TIP4P-Ew predicted NMR J-couplings for (Ala)3 and (Ala)5 with better accuracy than that

generated with TIP3P. Hydrophobic solvation was also improved under TIP4P-Ew (32).

With these positive initial results showing that a better water model could yield improvements

in simulated properties without a single parameter change, more recent work has sought to make

these water models more fully compatible over a range of structural, thermodynamic, and dynam-

ical data. Best & Mittal (33) developed a correction to the ψ backbone dihedral angle potential

for AMBER ff03 when simulated with the TIP4P/2005 water model to give a more cooperative

helix-to-coil transition and a more realistic collapse of the unfolded state with increasing tem-

perature. Nerenberg & Head-Gordon (34) developed a perturbation to the φ′ backbone dihedral

potential of the ff99SB protein force field so that when combined with the TIP4P-Ew model, it

yields agreement for a diverse set of J-coupling data over a temperature range of 275–350 K for

(Gly)3, (Ala)3, and (Val)3.

Nerenberg and coworkers (35) have continued to advance a larger goal of creating a next-

generation fixed-charge protein force field combined with the TIP4P-Ew water model by opti-

mizing solute-water van der Waals interactions to reproduce experimental solvation free energy

data. It is well known that current fixed-charge force fields yield aqueous solvation free ener-

gies that are systematically unfavorable by ∼1.0–2.5 kcal/mol (Figure 1). To better interface

the protein and water force fields that were developed in independent communities, Nerenberg

and coworkers (35) adopted a parameterization strategy that jettisoned the use of simple mixing

rules for the Lennard-Jones parameters in favor of optimizing the solute-solvent well depths and
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Figure 1

Mean signed errors (MSE) in calculated solvation free energies for chemical components of amino acid
side-chain analogs. Results using the HF/6-31G∗ charge model with optimized solute-water (TIP4P-Ew) van
der Waals parameters (magenta) are compared with benchmark results for the AM1-BCC charge model with
the TIP3P water (light blue) and HF/6-31G∗ charge model with unoptimized solute-water (TIP4P-Ew) van
der Waals parameters ( purple). Figure reprinted with permission from Reference 35. Copyright 2012 ACS.
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van der Waals radii directly against experimental solvation free energy data. Although there are

now additional parameters in the new protein-water force field, the potential problem of overfit-

ting was reduced in two ways: first by a novel optimization approach and second by the relative

abundance of solution phase data, which allowed for the formulations of both a training set and

independent testing set of the solvation free energies of model side-chain chemistries (35). Such

an alternative philosophy of force field parameterization—i.e., parameterization using complex

condensed phase experimental data as opposed to relying solely on neat organic liquid or gas

phase ab initio data—appears to be gaining traction within the simulation community (18, 33–36).

Figure 1 shows that Nerenberg and coworkers (35) were able to reproduce the solvation free

energies of the test set of side-chain analog molecules to within 1.0kBT and with random error,

while simultaneously reducing the aggregation propensities of dipeptide-water solutions, as well

as improving the conformational preferences of short disordered peptides.

Not surprisingly, the ubiquitin protein unfolded under the new, more favorable solute-water

interactions (35), which is to be expected as the protein-protein interactions are to be the final

stage of parameterization under the ff99SB-TIP4P-Ew force field. Encouragingly, the hydropho-

bic core of ubiquitin remained intact under the new solute-solvent model, suggesting that the

protein-protein van der Waals interactions are still relatively well balanced with the protein-water

van der Waals interactions. Instead, protein-protein hydrogen bonds unraveled in parts of ubi-

quitin. With the resurrection of the 10–12 potential for protein-protein backbone hydrogen bonds,

ubiquitin remained stable over a 100-ns trajectory and maintained near-quantitative agreement

with experimentally measured Lipari-Szabo order parameters (35). Therefore, it is worthwhile

to consider for the future the best functional form for capturing short-ranged directionality and

cooperativity, the essence of hydrogen bonding, as discussed in the following section.

2.2. Next-Generation Fixed-Charge Models

Because of their long-range character and consequently strong influence on molecular associa-

tion, solvation, and phase behavior, the proper treatment of permanent electrostatic effects is of

paramount importance. Naturally, a key component is the determination of fixed charges asso-

ciated with each atom that are accurate within the framework of Coulombic electrostatics. This

poses a strong challenge, as the complex orbital description of the electron density must be reduced

to a set of fixed atom-centered point charges that are determined from a restrained fitting of a

QM-determined electrostatic potential (37, 38). Although this approach is feasible for the deter-

mination of point charges, it is difficult to apply to the case of multipole models, as the increased

number of parameters associated with multipoles poses a difficult fitting challenge.

Rather than fitting to an electrostatic potential, Stone (7) developed an approach known as

DMA in which multipoles are derived from the QM-determined electron density according to

QLM (s ) =

∫

Y LM (R − S )ρ(R)dv, (2)

where YLM is a spherical harmonic operator, R is the spatial coordinate, S is the origin, ρ is the

charge density (in turn determined by the many-electron wave function), and dv is the differential

volume element. This is simply an alternative expression of the multipole expansion, which has

been discussed in other excellent reviews (39, 40). A key feature of DMA is the use of multiple sites,

S, for the multipole expansion, typically at atom centers, allowing for the multipole expansion to

be accurate at short intermolecular distances, as opposed to a regime in which there is only one

site, S, in which case the multipole expansion will be convergent far outside the distance range of

interest at which intermolecular association occurs.
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SIBFA: sum of
interactions between
fragments ab initio

NEMO:
nonempirical
molecular orbital

QMPFF: quantum
mechanical polarizable
force field

Early studies of point-multipole models showed that the use of higher-order multipoles yielded

better agreement with the quantum mechanical reference potential than point charges (41).

Dykstra (42) demonstrated the importance of higher-order multipoles in more accurately re-

producing the electrostatic potential just outside the van der Waals surface in particular, which

is the distance range over which key determinants of specific intermolecular associations such as

hydrogen bonding occur. Fowler & Buckingham (43, 44) showed that multipoles are essential to

obtain correct geometries of small-molecule complexes dominated by hydrogen bonds or nonpo-

lar interactions. Beyond offering an ostensibly more realistic approximation of a molecule’s true

electron distribution, the use of off-center atomic charges, such as derived by DMA, provides more

accurate modeling of physical properties (45, 46), such as improved crystallographic refinement

and agreement with electron densities.

The multipole model has been adopted by a number of force fields, including AMOEBA (1, 6,

47), SIBFA (sum of interactions between fragments ab initio) (48), NEMO (nonempirical molec-

ular orbital) (49), EFP (effective fragment potential) (50), and the PE (polarizable embedding)

QM/MM method (51). Other electrostatic models have been adopted, including augmenting

atom-centered charges with lone-pair sites (52), the use of exponential charge distributions in

QMPFF (quantum mechanical polarizable force field) (53), and Gaussian charge distributions

for the monopole (48). Although different approaches to representing charge distributions have

their strengths and weaknesses, the multipole method is attractive because of its straightforward

connection with classical multipole expansions, which is nothing more than a Taylor expansion

of the potential about a point(s) within the molecule’s charge distribution.

Hydrogen bonding is a noncovalent interaction that consists of electrostatics, induction, and

charge-transfer components (although the relative contribution of each is a current topic of de-

bate), whose description may benefit greatly by approaches that go beyond atom-centered charges.

Known deficits in the prediction of protein conformational preferences by current fixed-charge

force fields, which typically lack explicit hydrogen bonding, have been attributed to failure to

account for directional electrostatic interactions, explicitly or implicitly (18). The geometry de-

pendence of hydrogen bonding has typically been modeled with potentials dependent on the

donor-hydrogen-acceptor angle in force fields that include an explicit term for hydrogen bond-

ing. Force fields that include an explicit hydrogen-bonding term have demonstrated improved

NMR protein structure prediction (54) and protein-protein complex prediction (55). Therefore,

it is reasonable to hypothesize that hydrogen bonding may benefit from an electrostatic model

that affords directional dependency, such as in the multipole model. This elegant approach would

need to be weighed against simpler geometric definitions of explicit hydrogen bonding, which

would be cheaper to evaluate but may be inherently limited in accuracy.

2.3. Mutual Polarization Models

The importance of many-body effects in intermolecular energies has been appreciated by the

molecular modeling field for quite some time, beginning with the seminal work of Axilrod &

Teller (56) and Muto (57), who developed a three-body potential for the dispersion interaction.

Therefore, accounting for many-body interactions has become a vibrant area of research, both

within the community that develops fragment-based QM methods (8, 50, 58–59) and within the

empirical force field community. The energy components that are recognized to be many body

in character include polarization (often referred to as induction), exchange repulsion, dispersion,

and charge transfer. Typical empirical force fields account for exchange repulsion and disper-

sion, though under the assumption of pairwise additivity, as in the Lennard-Jones and Halgren

potentials.
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CHARMM:
Chemistry at Harvard
Molecular Mechanics

OPLS: optimized
potential for liquid
simulations

GROMOS:
Groningen molecular
simulation

SDFF:
spectroscopically
determined force field

When enhancements to force fields that account for many-body effects are considered, po-

larization usually receives special attention, as it decays more slowly than dispersion, exchange

repulsion, or charge transfer with a 1/R4 dependence. The multipole description of the charge

distribution fits naturally within the framework of polarizable models according to a Taylor ex-

pansion of the electrostatic energy U in the field Ē:

U (E) = U (E)
∣

∣

E=0
+ E

∂U

∂E

∣

∣

∣

∣

E=0

+
1

2!
E2 ∂2U

∂E2

∣

∣

∣

∣

E=0

+
1

3!
E3 ∂3U

∂E3

∣

∣

∣

∣

E=0

+ . . .

= U (E0) + μE +
1

2!
αE2 +

1

3!
βE3,

(3)

where μ is the dipole moment, α is the dipole polarizability, and β is the dipole hyperpolarizability

(42). Therefore, the empirical force field community has undertaken major efforts to account

for polarization. This began early with the seminal work of Warshel & Levitt (60) in 1976 in

which they expounded their Langevin dipole method. Beginning in the late 1980s and early

1990s, forerunners of modern treatments of polarization were introduced (61, 62). Since then, the

development of polarizable force fields has become an active area of research, in particular because

the correct treatment of the most-dominant many-body intermolecular interaction, polarization,

leads to improved descriptions of numerous phenomena, including phase transitions (63, 64),

solvation free energies (65–68), solvent behavior at hydrophilic and hydrophobic interfaces (15,

69), binding free energies (70–73), and intrinsic conformational preferences of organic compounds

and DNA oligomers (74, 75). Polarizable models afford the ability to model physical phenomena

across the phase diagram, whereas fixed-charge models have difficulty simultaneously reproducing

gas and condensed phase properties (76).

Three main approaches have emerged for calculating polarization in empirical force fields:

the fluctuating charge method (62, 77), adopted by CHARMM (Chemistry at Harvard Molecular

Mechanics) (78, 79) and OPLS (optimized potential for liquid simulations) (80, 81); the Drude

oscillator method (82, 83), as adopted by CHARMM (84, 85) and GROMOS (Groningen molec-

ular simulation) (86, 87); and the well-studied induced dipole method (88, 89), implemented in

AMOEBA (47), SIBFA (48), NEMO (49), EFP (50), SDFF (spectroscopically determined force

field) (90), the PE QM/MM method (51), AMBER (91), CHARMM (92), and OPLS (93). The

fluctuating charge and Drude oscillator approaches have been excellently reviewed in detail else-

where (40, 94) and are unique from the induced dipole model in that the former two approaches

are essentially attempts to extend previous fixed, atom-centered charge models to accommodate

polarization.

By contrast, the induced dipole model incorporates multipole moments beyond the point

charge in a formalism in which the natural link between the fixed off-atom charge and the polariz-

abilities is clear, as they are terms of a Taylor expansion of the energy in the field, as is evident from

Equation 3. This model allows for off-atom, through-space polarization by means of inducible

dipoles determined by

μi,β = αi

⎛

⎝

∑

{ j }

T j
i,β M

perm
j +

∑

{ j ′,δ}

T j ′,δ
i,β μ j ′δ

⎞

⎠ β, δ = x, y, z, (4)

where M
perm
j is the permanent multipole moment; T is the interaction tensor between sites

i and j containing derivatives of 1/R according to the multipole expansion; and αi is a scalar,

isotropic polarizability. In the AMOEBA model, multipoles are represented through quadrupoles

and μi is solved for by iterating Equation 4 to self-consistency using the conservative successive

overrelaxation method. The computational cost of tight convergence of the induced dipoles to
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Table 2 Accuracy of AMOEBA solvation free energies for small molecules compared to

experimenta

Compound AMOEBA Experiment

Isopropanol −4.21 ± 0.34 −4.74

Methylether −2.22 ± 0.38 −1.92

H2S −0.41 ± 0.17 −0.44

p-Cresol −5.60 ± 0.23 −6.61

Ethylsulfide −1.74 ± 0.24 −1.14

Dimethylsulfide −1.85 ± 0.21 −1.83

Phenol −5.05 ± 0.28 −6.62

Benzene −1.23 ± 0.23 −0.90

Ethanol −4.69 ± 0.25 −4.96

Ethane 1.73 ± 0.15 1.81

n-Butane 1.11 ± 0.21 2.07

Dinitrogen 2.26 ± 0.12 2.49

Methylamine −5.46 ± 0.25 −4.55

Dimethylamine −3.04 ± 0.26 −4.29

Trimethylamine −2.09 ± 0.24 −3.20

Propane 1.69 ± 0.17 1.96

Methane 1.73 ± 0.13 1.98

Methanol −4.79 ± 0.23 −5.10

n-Propanol −4.85 ± 0.27 −4.85

Toluene −1.53 ± 0.25 −0.89

Ethylbenzene −0.80 ± 0.28 −0.79

N-Methylacetamide −8.66 ± 0.30 −10.0

Water −5.86 ± 0.19 −6.32

Acetic acid −5.63 ± 0.20 −6.69

Methylsulfide −1.44 ± 0.27 −1.24

Methylethylsulfide −1.98 ± 0.32 −1.50

Imidazole −10.25 ± 0.30 −9.63

Acetamide −9.30 ± 0.27 −9.71

Ethylamine −4.33 ± 0.24 −4.50

Pyrrolidine −4.88 ± 0.29 −5.48

aAll units are kcal/mol. Table reprinted with permission from Reference 47. Copyright 2010 ACS.

10−6 to 10−8 Debye is a factor of 15–30 that of a standard fixed-charge model. Recently, the suc-

cessive overrelaxation method has been replaced by a more-stable version of the preconditioned

conjugate gradient self-consistent field developed by Wang & Skeel (95) that reduces that factor

to ∼3.

Table 2 reports the AMOEBA solvation free energies of common small molecules found in

biochemistry, including common amino acid side-chain analogs, with corresponding statistical un-

certainties. When compared to experimental results, the root-mean-squared error for AMOEBA

solvation free energies is 0.68 kcal/mol, with a mean signed error of +0.14 kcal/mol (96), which

is a qualitative improvement over traditional fixed-charge force fields (Figure 1), and without the

need to parameterize against solvation free energy data.
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DLVO: Derjaguin,
Landau, Verwey, and
Overbeek

3. RECENT ADVANCES IN POISSON-BOLTZMANN ELECTROSTATICS

On the other extreme of modeling, questions involving supramolecular assemblies and long

timescales are beyond the reach of current all-atom MD methods. An excellent illustration is

the cellular-scale dynamical simulation of Escherichia coli cytoplasm with ∼1,000 macromolecules

modeled with Poisson-Boltzmann (PB) electrostatics and simulated for 20 µs using Brownian dy-

namics (97). The extension of dynamical simulations to such regimes requires judicious reduction

of the computational complexity per time step on several fronts.

The inherent multiscale nature of macromolecular interactions generally comprises an initial

long-timescale diffusional search dominated by long-range electrostatics, followed by a dock-

ing phase characterized by more complicated short-range forces. Furthermore, because we are

principally interested in the behavior of the macromolecular solutes, explicit solvent molecules

and ions can be replaced with an implicit solvation model, as these smaller molecules relax to

their equilibrium positions and momenta faster than the macromolecular solutes. This mean-field

treatment comprises both a nonpolar contribution to the solvation energy (98, 99) and a polar

contribution that is modeled using continuum electrostatics. In this case, the solvent is modeled

as a uniform dielectric constant, εout, which typically differs substantially from the low-dielectric

envelope of the macromolecules, εin, within which are embedded complex charge distributions.

The contributions of salt or ions are modeled as a continuous-charge density profile outside the

macromolecular cavities, which can be determined by solving the PBE.

The classical DLVO (Derjaguin, Landau, Verwey, and Overbeek) theory (100, 101) was orig-

inally developed to describe the interaction between charge-stabilized colloidal particles via a

pair potential that includes repulsive screened Coulomb interactions characterized by the Debye

length, λD. Despite its success at long-range interactions, the DLVO approximation breaks down

when λD is much greater than the average distance between particles or low salt concentrations.

This corresponds to the scenario in which the ion clouds of particles overlap with each other

and many-body effects come into play. The PB treatment for electrostatics provides a powerful

coarse-grained model to account for this missing mutual polarization effect. In this review, we

focus primarily on the linearized form of the PBE, which gives the potential � at any point r in

space �3 as

−∇ · (ε(r)∇�(r)) + κ2�(r) = 4πρfixed(r), (5)

where ε is the relative dielectric function; ρfixed is the charge density due to the fixed macromolec-

ular partial charges; and κ =
√

8π n̄e2/εkB T is the inverse of the Debye length λD, with e the

fundamental electronic charge, kB the Boltzmann constant, and T the absolute temperature.

Traditionally, PB electrostatics have been limited to rigid-body solute descriptions (102–104)

because introducing internal degrees of freedom to the solute necessitates a smaller time step

and calls to PB solvers are computationally expensive. In most cases, MD using PB rigid bodies is

based on finite-difference or boundary element solvers, and various numerical limitations to a high-

quality description of the complex polarization fields have curtailed the dynamical simulations to

one macromolecule (105–109) or just a few (110). Consequently, MD using an implicit solvent

has typically relied on the faster (but less accurate) generalized Born model. However, new PBE

and linearized (L)PBE solvers are extending the ability of these methods to describe mutual

polarization accurately for larger and more complex systems.

3.1. Treatment of Mutual Polarization for Poisson-Boltzmann Solvers

The primary bottleneck for rapid evaluation of the PBE is the need to fully converge the mutual

polarization. Solutes immersed in a high-dielectric, salty continuum experience two sources of
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polarization, self-polarization and mutual polarization. Self-polarization refers to a solute’s com-

bined response to the dielectric discontinuity across its surface and the salt exclusion from its

interior. Mutual polarization refers to the response of a solute to the presence of other charges

from other solutes in the system. Accounting for mutual polarization is a many-body problem

that must be iteratively solved until self-consistency is achieved or via direct matrix calculation.

Whereas mutual polarization is negligible for well-separated cavities, it becomes dominant at

smaller separation distances (111). Using a system of barstar protein molecules, Lotan & Head-

Gordon (112) showed that forces and torques computed with and without mutual polarization

essentially agree when molecules are separated beyond 40 Å, but the exponential rise in the im-

portance of mutual polarization below this separation results in differences that increase to more

than 80% at 2-Å separation. However, most Brownian dynamics studies driven by PB electro-

statics use an effective-charge approximation, in which self-polarization charges are added to the

macromolecule at the start of the simulation, but no mutual polarization is computed during the

simulation (102). The cellular-scale E. coli simulation uses such an approximation (97).

3.2. Recent Advances in Poisson-Boltzmann Solvers

Solution of the PBE can be broadly categorized into analytical and numerical approaches. Ana-

lytical methods typically allow rapid solution of the PB theory under specialized geometries such

as spheres or cylinders. Kirkwood (113) developed the complete LPB solution for one spherical

macromolecule 80 years ago. Generalization of this solution to two or more spherical macro-

molecules proved to be more difficult, and many different partial and approximate solutions have

been proposed (114–117). Lotan & Head-Gordon (112) derived a complete analytical LPB solu-

tion for computing the screened electrostatic interaction between arbitrary numbers of spheres of

arbitrarily complex charge distributions, separated by an arbitrary distance. They accomplished

this by exploiting multipole expansion theory for the screened Coulomb potential by Greengard

& Huang (118) to describe screened charge-charge interactions and all significant higher-order

cavity polarization effects between low-dielectric spherical cavities containing their charges, while

treating mutual polarization correctly at all separation distances.

The full derivation is too complex to describe here, and the interested reader is referred to

Reference 112. Here we give the final result of the system of linear equations that describes the

fully analytical LPB solution for simple spherical geometries:

H = � · (C · T · H + F ), (6)

where the vectors H represent the effective multipole expansion of the charge distributions of

each molecule, for a given configuration of N macromolecules (the matrices T). Thus Equation 6

can be understood intuitively: The external potential field induced by a molecule is the sum of the

contribution of its free charges, F, and the contribution of polarization charges induced by other

molecules in a salty environment, C · T · H (where C is the cavity polarization operator, and T is

the operator that converts the multipole expansion to a local Taylor expansion), transformed by

the effect of its dielectric boundary, �. This solution allows for the study of full mutual polarization

and provides the first complete benchmark for numerical solutions of the LPBE, which we describe

next.

Numerical methods to solve for more realistic dielectric boundaries can be based on finite-

difference (119–121), finite-element (119, 122), or boundary element (123–127) approaches.

Finite-difference and finite-element methods require that the solution be solved on a grid, limiting

their practical application to spatial domains of either two to three typical macromolecules at rea-

sonably high resolution (∼0.2 Å) or to larger numbers of macromolecules with greatly diminished
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resolution and thus solution accuracy (128). In contrast, boundary element methods, by construc-

tion, focus on solutions only on the macromolecular surfaces, thus removing spatial resolution

limitations imposed by the 3D grid of the finite-difference or finite-element solutions, making

them more applicable to large-scale, multimolecular dynamic simulations. Other methods, such

as stochastic walk-on-spheres algorithms (129), are capable of computing the electrostatic ener-

gies, but the formulation for forces, needed for dynamics, is not yet available. Interface modules

supporting PB electrostatics to run APBS (Adaptive Poisson-Boltzmann Solver) (130) have been

implemented in several widely used MD packages, such as AMBER (108, 109), CHARMM (109,

131), and NAMD [Not ( just) Another Molecular Dynamics program] (132).

For one-time static computations, PB solvers can afford to fully account for mutual polariza-

tion, although error control differs between the numerical methods. Finite-difference and finite-

element methods, by construction, compute the solution globally at each iteration step. Although

focusing techniques (133, 134) can be used to refine the solution near points of interest (e.g.,

macromolecular surfaces), the mutual polarization responses must still propagate back and forth

through space from one molecule to another. Boundary element methods, in contrast, solve the

surface polarization charge on each macromolecule directly and allow for more physically intuitive

control of mutual polarization. For instance, Bordner & Huber (125) approximated the mutual

polarization effects of molecule 2 on molecule 1 via a one-step computation that solves the bound-

ary element–based PBE of the dielectric cavity of molecule 1 (i.e., without partial charges) in the

presence of potential due to molecule 2.

Recently, Yap & Head-Gordon (128, 135) developed a semianalytical PB method (PB-SAM)

using the boundary element method that accounts for complete mutual polarization. This new

numerical approach represents the macromolecular surface as a collection of spheres in which

the surface charges can then be iteratively solved by the analytical multipole methods previously

introduced by Lotan & Head-Gordon (112). The PB-SAM solution has been recently extended to

calculate forces and torques to simulate Brownian dynamics (136). The strength of the PB-SAM

method was illustrated by studying the association kinetics for a system of 125 barnase/barstar

molecules—a classic example of an electrostatically steered diffusion-limited association—but now

under conditions of high concentration relevant to so-called crowding conditions (136). In partic-

ular, this work showed that it is possible to perform an LPB dynamics simulation under periodic

boundary conditions by calculating the mean first-passage time for a barnase-barstar docking event

at high concentrations of these solutes. The two–orders of magnitude increase in the number of

macromolecules that can be treated with full mutual polarization in an MD scheme should allow

for systematic study of larger mesoscale systems in which electrostatics dominate (136). In sum-

mary, with current advancements in PB solvers, PB-based MD with far greater complexity may

be within reach (112, 128, 136, 137).

4. NEW RESULTS AND FUTURE DIRECTIONS

Mutually polarizable models offer a significant improvement in the physics of classical atom-

istic and coarse-grained force fields, as described in Sections 2 and 3. The sidebar, Mutually

Polarizable QM/MM Methods, provides recent developments in accounting for mutual polariza-

tion between the QM and MM regions for applications that model chemical reactivity, excited

states, and nonadiabatic interactions. Current challenges in treatments of polarizability include

enhancing computational efficiency and improving the ability of these models to reproduce phys-

ical observables to deliver a better model for a new range of systems accessible to molecular

and coarse-grained simulations. In this section, we consider systematic approximations to a full
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MUTUALLY POLARIZABLE QM/MM METHODS

Since the pioneering work of Warshel & Levitt (60), hybrid QM/MM studies have grown in popularity and

sophistication. In addition to adequate treatment of the QM region with the appropriate level of theory that is

inherent in all ab initio calculations, QM/MM calculations also require methods for modeling the interaction of

the MM region with the QM region. In most modern electrostatically embedded approaches, the electrostatic

interaction of the MM region with the QM region is taken into account by explicitly including the fixed partial

charges of the MM region in the QM Hamiltonian, effectively permitting polarization of the charge density in the

QM region by the MM region. Although this represents an advancement over mechanical embedding methods in

which the QM and MM regions are completely independent, there remains the need to account for polarization

of the MM region by the QM region. To address this, several groups have incorporated classical polarization

methods in the MM region that respond to the field generated by the MM permanent charges and the QM charge

density. These include the inducible dipole model, as recently implemented in the PE method (51) and EFP (50),

the fluctuating charge model (147), and the Drude oscillator model (148). Owing to the computational cost of

iteration to self-consistency, these approaches have been limited to small systems, with the exception of a QM/MM

calculation on chlorophyll performed with the relatively inexpensive semiempirical INDO (intermediate neglect of

differential overlap) method (149). Low-order approximations of the many-body polarization afford an attractive

solution to reduce the computational cost.

mutually polarizable model, atomistic or coarse grained, that may define a sweet spot for accuracy

and tractability for future condensed phase simulations.

The many-body expansion (MBE) to the total potential energy of an N-body system,

U = U 1 + �U 2 + �U 3 . . . , (7a)

where

U 1 =
N
∑

i=1

U (i ), �U 2 =
N −1
∑

i=1

N
∑

j=i+1

U (i, j ) − U (i ) − U ( j ),

�U 3 =
N −2
∑

i=1

N −1
∑

j=i+1

N
∑

k= j+1

U (i, j, k) − U (i, j ) − U (i, k) − U ( j, k) + U (i ) + U ( j ) + U (k),

(7b)

states that the potential energy can be evaluated as the set of atomic or molecular interactions

for increasing cluster size, starting from monomers and progressing to dimers, trimers, and so

on. The MBE has been known since the 1970s (138, 139), and it remains a current topic of

interest for those developing QM-based fragment approaches and embedding schemes (50, 58–

59, 140). Here the question is whether truncation of an N-body mutual polarization model such

as AMOEBA or PB-SAM to lower order is sufficient for both accuracy and cost savings. As

discussed above, truncation of Equation 7 at the level of two-body interactions is exact for a fixed-

charge model potential as the point charge or multipole electrostatics are, by definition, pairwise

additive.

It is at the next level of approximation that the analysis becomes more interesting for classical

electrostatic models. One such approximation is a direct polarization scheme in which the inducible

dipoles respond only to the field due to permanent multipoles, eliminating mutual polarization.

This entails omitting the second term on the right-hand side of Equation 4. By inspecting the

expression for the energy due to induced dipoles in this regime, we see that this is effectively a

three-body potential (42). Written in tensor notation, the expression for the energy using just the
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first term on the right-hand side of Equation 4 for μ is

U =
1

2

∑

i

μT
i E = αi

∑

i

⎡

⎣

∑

{ j }

T j
i,β M

perm
j

⎤

⎦

T
∑

{k}

T k
i,β M

perm
k , β, δ = x, y, z. (8)

Equation 8 makes clear that energy and force terms that arise depend on two- and three-body direct

polarization, with no contributions from higher-order terms. The two-body direct polarization

energy is the interaction of a polarizable site with the electric field of the permanent moments of

another site. The three-body direct polarization energy arises from the interaction of a polarizable

site with the interaction electric field of the permanent moments of two sites. Consequently, one

can easily show that the direct polarization energy of an N water molecule system is equivalent to

the direct polarization of the MBE truncated at the level of triplets in Equation 7.

However, ∼20% of the polarization energy is lost when neglecting the mutual polarization that

must be recovered through optimization of the model parameters. Fulfillment of accuracy for this

direct polarization scheme has been recently realized through a new classical water model that is a

direct polarization version of the fully polarizable AMOEBA water model. Wang and coworkers

(141, 142) used an optimization method called ForceBalance for parameterizing the iAMOEBA

model using a combination of experimental data and high-level QM calculations. The demon-

strated accuracy of the iAMOEBA model was validated against a published, comprehensive bench-

mark of water properties developed by Vega & Abascal (143) that covers a wide range of phases

and thermodynamic conditions, going far beyond the parameterization data set. Table 3 provides

a range of properties of the iAMOEBA model in comparison to other fully mutual polarizable

models and experiments, demonstrating that the iAMOEBA model performs exceptionally well.

It should be recognized that although iAMOEBA performs better on average than the mutu-

ally polarizable models, it is not because mutual polarization can always be neglected. Rather, it

is that the more automated ForceBalance scheme (142) is a better parameterization strategy than

hand-tuning, which is largely how most other polarizable (or even fixed-charge) force fields have

been derived. The limitation of the direct polarization functional form likely arises in the repro-

duction of ab initio benchmark energies of large water clusters, in which iAMOEBA systematically

Table 3 Properties of water calculated using several polarizable models and compared to experimental measurementsa

Property Experiment AMOEBA

SWM4-

NDP

TTM3-

F GCPM SWM6 BK3 iAMOEBA

ρ/g cm−3 0.997 1.000 0.994 (2) 0.994 1.007 0.996 (2) 0.9974 (2) 0.997

�Hvap/kcal mol−1 10.52 10.48 10.44 11.4 11.30 10.52 10.94 10.94

α/10−4 K−1 2.56 1.9 (6) 4.2 3.01 (8) 2.5 (1)

κT /10−6 bar−1 45.3 66 (1) 44.4 (7) 41.1 (4)

Cp/cal mol−1 K−1 18.0 21.3 (5) 22.5 22.0 (2) 18.0 (2)

ε(0) 78.5 81.4 (14) 78.0 (14) 67.7 84 78.1 (28) 79 (3) 80.7 (11)

D0/10−5 cm2 s−1 2.29 2.0 2.85 (28) 2.37 2.26 2.14 (19) 2.28 (4) 2.54 (2)

η/mPa·s 0.896 1.08 (5) 0.66 (9) 0.87 (12) 0.95 (1) 0.85 (2)

TMD/K 277 292 (2) <220 255 235 275 (3) 277 (1)

Tm/K 273.15 <120 248 (2) 250 (3) 261 (2)

Tc/K 647.1 581 (2) 576 642 629 (5) 622

aLiquid bulk properties are measured at 298 K, 1 bar; the temperature of maximum density (TMD) and Tm are measured at 1 bar; and Tc is determined for

the critical pressure of the model. Numbers in parentheses are uncertainties. Table reprinted with permission from Reference 144. Copyright 2013 ACS.
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Table 4 Various test systems of the many-body expansion (Equation 7) approximation to the parent AMOEBA model and

corresponding errora

System Uind
1 Uind

2 Uind
3

3
∑

i=1
�Uind

i Uind
N % Error

SO4
2−(H2O)7

(no Ewald)

0.0000000 −80.3121 39.5072 −40.8049 −47.4281 −13.9647

SO4(H2O)216 (polar; no

Ewald)

−0.0009637 −439.4129 −222.2215 −661.6344 −651.9152 1.4909

SO4(H2O)216 (hydrophobic;

no Ewald)

−0.0009633 −437.8364 −223.0631 −660.8995 −651.1337 1.4998

(H2O)17 −0.0156445 −54.4788 −40.1511 −94.6299 −97.0842 −2.5280

(H2O)216 −0.0009753 −444.8038 −231.0252 −675.8290 −665.5851 1.5391

(H2O)365 −0.0002649 −745.1708 −395.0369 −1,140.2077 −1,119.5548 1.8447

(H2O)430 −0.0004199 −811.3047 −442.0018 −1,253.3065 −1,239.7052 1.0971

(H2O)512 −0.0004962 −1,137.1554 −725.8877 −1,863.0432 −1,840.3689 1.2320

(H2O)1,000 −0.0079889 −1,477.8520 −649.1970 −2,127.0490 −2,115.6351 0.5395

aThe solute-water clusters were not done with Ewald, whereas standard Ewald with a real space cutoff of 7 Å was used for the water clusters.

underestimates the binding energies (144). Furthermore, although iAMOEBA correctly predicts

a higher dielectric constant in ice Ih compared to the liquid, the dielectric constant ratio of ice

to the liquid is lower than the experimental value, another indicator of the importance of full

polarization (144). The incomplete balance of the description of properties across gas phase water

cluster data, the bulk liquid, and ice provides evidence that the direct polarization model cannot

fully capture the significant variation in electric fields. Thus the development of mutual polariza-

tion models using automated parameter approaches such as ForceBalance (142) is an attractive

future direction.

The excellent ability of iAMOEBA in reproducing a range of bulk water data validates our

notion that we can approximate the mutual induction while achieving good agreement with con-

densed phase observables. Therefore, we would also like to attempt a regime in which we preserve

some mutual polarization while potentially saving computational cost. A model that successfully

recovers higher levels of mutual polarization would involve truncation of Equation 7 for full mu-

tually polarizable dimers, trimers, or perhaps tetramers (145, 146). Here we show that truncation

of Equation 7 at trimers can be a very good approximation to the N-body polarizable potential

given the rapid spatial decay of mutual polarization.

Table 4 compares the potential energy calculated with AMOEBA (our reference state for

N-body polarization) and as a function of truncations at one-, two-, and three-body mutual po-

larization for a variety of water clusters, ranging in size from 17 to 1,000 water molecules and

evaluated under the Ewald sum. We also consider small water clusters with an embedded sulfate

anion, as well as solutions of sulfate with no net charge and a sulfate with no permanent elec-

trostatics to mimic polar and hydrophobic species, respectively. Several important observations

from Table 4 are noteworthy. Most importantly, the truncation error of Equation 7 at the level

of three-body terms can be a small fraction of the total energy with errors below 3% in all cases

except for the net charged sulfate-water cluster. This opens up the possibility of a cheaper and

reasonably accurate polarization model that refactors the N-body algorithm for calculating mutual

polarization to one that is highly parallelizable over independent trimer calculations. Additionally,

in accord with established observations of the magnitude of many-body effects, the dominant inter-

molecular term is the two-body term, which provides the justification for subsuming higher-order
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many-body effects in popular pairwise-additive force fields. Lastly, whereas the three-body term

is negative in most cases, it is positive in the net charged system, which is interesting in that one

observes that polarization can give rise to cooperativity as well as anti-cooperativity.

A fortuitous effect of our reduction of computational cost is that we may consider enhancing the

three-body polarization model in a number of ways. For example, the three-body potential may

also include additional many-body effects in the calculation, such as charge transfer, changes to

the Thole damping model to allow for some account of charge penetration, coupling of polariza-

tion and exchange repulsion, anisotropic polarizabilities, coupling of polarization with conforma-

tional change, and other enhancements that heretofore were computationally infeasible. The 3-

AMOEBA model will necessitate reparameterization, and the ForceBalance suite of programs used

in the iAMOEBA reparameterization will also benefit from the 3-AMOEBA polarization scheme.

The direct polarization model or truncation of the MBE to approximate N-body polarization

at lower order is completely generalizable to the LPB and PB-SAM models described in Section 3.

To show the validity of these approximate polarizable coarse-grained models, we have calculated

the total interaction energy of four spheres of radius 21.8 Å with a net charge of −5e placed at the

sphere centers, which are separated by a distance a. Because the many-body interaction depends

on the interplay between a and λD, we also tested three monovalent salt concentrations of 0.001

M, 0.05 M, and 0.1 M, which correspond to λD = 95.997, 13.576, and 9.600 Å, respectively.

With the direct polarization model, the surface charge density of a given molecule is not polarized

by another molecule; the two-body and three-body approximations are based on the sum over

the mutual polarization interactions for N(N − 1)/2! dimers and N(N − 1)(N − 2)/3! trimers,

respectively.

Figure 2 compares the interaction energies scaled by kbT for the direct polarization, two-body,

and three-body approximations and the full mutual polarization PB-SAM model as a function

of a and λD. In all cases, the energy obtained from the three-body approximation is in excel-

lent agreement with that from full mutual polarization, and the two-body approximation is also

good for the smaller Debye lengths. This is a natural result as more dilute salt solutions have

larger Debye lengths, and at large separations, the ion cloud around each molecule can still

overlap, thus making three-body terms of the MBE still relevant. In summary, the PB solvers

outlined in Section 3 can also benefit from the trivial parallelization afforded by the MBE anal-

ysis presented here, thereby opening up an increased accuracy and size range of coarse-grained

calculations.

5. CONCLUSIONS

Next-generation computational chemistry will be strongly enabled by the deployment of new

state-of-the-art theoretical models that include improved pairwise-additive potentials, many-body

force fields, and new algorithms that increase their efficiency and practicality to perform sampling

via MD. The increasing complexity of the parameter search problem in the development of new

force fields is also exposing the limitations of hand-tuning parameters, which is often a manual

and laborious task. The benefits of a more automated process such as ForceBalance may aid in

the development of a hierarchy of atomistic theoretical models and PBE solvers that can work

seamlessly together.

Above we present a hierarchy of classical force fields that alter the trade-off between accuracy

and computational speed to define a sweet spot for a given scientific application. We believe

that fixed-charge force fields will benefit from greater integration with more recently developed

water models (the most ubiquitous of the solvent environment) and more complex functional

forms such as multipoles that describe short-ranged anisotropic interactions such as hydrogen
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Figure 2

The linearized Poisson-Boltzmann energy approximated by direct (red ), two-body (blue), three-body
( purple), and full mutual ( green) polarization as a function of separation, a, for salt concentrations of
(a) 0.001 M, (b) 0.05 M, and (c) 0.1 M. The system comprises four spherical molecules of radius 21.8 Å and
net charge −5e placed at the center of the sphere, which is a simplification of the barstar protein molecule.
The dielectric constant of the spheres and the solvent is ε in = 4 and ε out = 78, respectively. The multipole
expansion has been calculated up to order p = 30 poles.
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bonding. Direct polarization models and truncation of the N-body interactions to lower three-

body interactions offer well-defined approximations to mutual polarization that are valid for both

atomistic and coarse-grained electrostatic models. Finally, full mutual polarization interaction

will be needed when trying to cover a wide range of environments within one unified model.

Above we highlight the new accuracy possible with polarizable force fields, which is especially

needed in computational research that makes a connection with actual experimental observables.

In summary, a better understanding of which statistical properties of condensed phase chemical

systems actually require an advancement over a classical pairwise-additive force field helps give

formal understanding about the importance of more complex mutual polarization interactions and

a practical guide to the proper application of theoretical models.

SUMMARY POINTS

1. Many-body effects play a key role in solvation, phase properties, and intrinsic structural

propensities of biological macromolecules. Mutual polarization is the most dominant of

the many-body effects owing to its long-range behavior.

2. Because of the computational tractability of pairwise-additive empirical force fields, there

has emerged a major effort to carefully appraise their shortcomings and improve their

ability to describe bulk properties of water, solvation, and protein properties.

3. Aside from the inclusion of many-body effects such as polarization, there exists a need for

models that include off-center atom charges. DMA is a straightforward method grounded

in classical electrostatics that can be used to model off-atom charges.

4. Three main methods exist for modeling mutual polarization classically: inducible multi-

poles, fluctuating charge/charge equilibration, and the Drude oscillator method.

5. Continuum electrostatic models such as the LPBE are essential when modeling at the

mesoscale. Recently developed methods for solving the PBE include taking into account

mutual polarization, as well as analytical and semianalytical methods that obviate the

limitations of numerical methods.

6. Truncation of the MBE at low order, both in the atomistic and continuum regimes, can

be used to reduce the computational cost of full N-body mutual polarization. Preliminary

results show that this approximation does not lead to large errors. A recent parameteri-

zation of water with only direct polarization (iAMOEBA) gave excellent agreement with

a number of experimentally determined bulk properties.
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