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We have adapted a hybrid extended Lagrangian self-consistent field (EL/SCF) approach, developed
for time reversible Born Oppenheimer molecular dynamics for quantum electronic degrees of
freedom, to the problem of classical polarization. In this context, the initial guess for the mutual
induction calculation is treated by auxiliary induced dipole variables evolved via a time-reversible
velocity Verlet scheme. However, we find numerical instability, which is manifested as an accumula-
tion in the auxiliary velocity variables, that in turn results in an unacceptable increase in the number of
SCF cycles to meet even loose convergence tolerances for the real induced dipoles over the course of a
1 ns trajectory of the AMOEBA 14 water model. By diagnosing the numerical instability as a problem
of resonances that corrupt the dynamics, we introduce a simple thermostating scheme, illustrated
using Berendsen weak coupling and Nose-Hoover chain thermostats, applied to the auxiliary dipole
velocities. We find that the inertial EL/SCF (iEL/SCF) method provides superior energy conservation
with less stringent convergence thresholds and a correspondingly small number of SCF cycles, to
reproduce all properties of the polarization model in the NVT and NVE ensembles accurately. Our
iEL/SCF approach is a clear improvement over standard SCF approaches to classical mutual induction
calculations and would be worth investigating for application to ab initio molecular dynamics as
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well. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4933375]

INTRODUCTION

Polarizable empirical force fields offer a clear and system-
atic improvement over current generation fixed charge force
fields by including many-body effects that allow for a molec-
ular response to evolving heterogeneous environments.'=
However, the primary computational expense of a classical
polarization model for large systems resides in the solution of
a linear system of equations for the induced dipoles. They may
be solved exactly by matrix inversion or Cholesky factoriza-
tion for small systems' or approximately by an iterative self-
consistent field (SCF) solution to the induced dipoles for the
larger systems encountered in a condensed phase simulation.
With conservative methods such as successive over-relaxation
(SOR),” the SCF costs for an induced dipole convergence
of 10751078 D is up to 10 times the energy and force cost
of a fixed charge model, and thus better SCF methods are
required to reduce this computational cost in order to maintain
effective sampling of thermalized systems with many degrees
of freedom.

One choice is to implement an effective iterative scheme
such as a pre-conditioned conjugate gradient SCF (CG-SCF)?
approach or direct inversion in the iterative subspace (DIIS)”!”
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along with a predictor to accelerate the convergence of the
SCF problem. However, predictors use information from pre-
vious steps and are time irreversible, leading to an inevitable
degradation in energy conservation. Another approach is to
replace the SCF step with an extended Lagrangian (EL) formu-
lation to avoid any iterative SCF costs.”*!:'> However, this
approach can be plagued with problems of accuracy since EL
formulations allow the induced dipoles to fluctuate around an
average orientation that does not strictly conform to the true
electric field vector. Moreover, this approach can suffer from
problems of stability and energy conservation in the context of
amolecular dynamics (MD) trajectory that forces the time step
to be unacceptably short.

Recently, Niklasson and co-workers'*'® have introduced
a hybrid EL/SCF scheme in the context of Born-Oppenheimer
molecular dynamics (BOMD) wherein an extended set of
auxiliary electronic degrees of freedom serves as an initial
guess of the SCF solver. This allows less strict convergence
of the ground state electron density due to the benefits of a
time reversible Verlet algorithm that realizes excellent energy
conservation. However, when analyzed over timescales that
exceed ~100 fs, it was observed that the accumulated error
in the auxiliary electronic degrees led to eventual numerical
instability due to numerical noise that increases without loss.'”
Subsequently, it was shown that the introduction of a dissi-
pative term can be effectively parameterized to offer the best

©2015 AIP Publishing LLC
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compromise between maximizing numerical stability while
minimizing the inevitable introduction of time irreversibility
in the auxiliary equation of motion.'”

In this work, we have extended the hybrid EL/SCF
approach to the problem of classical polarization, in which
the initial guess for the mutual induction calculation is treated
by additional dynamical induced dipole variables evolved via
a velocity Verlet scheme.'® The benefit to such an approach
is that we can integrate reversible equations of motion of the
auxiliary dipole initial guess at the same large time step as the
atomic positions, while maintaining superior energy conser-
vation since the polarization response stays near the Born-
Oppenheimer surface at looser convergence levels relative
to standard SCF solvers. However, like the original hybrid
EL/SCF approach used in BOMD for the electron density
matrix, we find that the set of auxiliary induced dipoles also
exhibit a similar problem in numerical stability. This is man-
ifested as a continued (and likely boundless) increase in the
number of SCF cycles to meet even loose (107" D) conver-
gence tolerances over the course of a 1 ns trajectory of the
AMOEBA 14 water model,'” and we show that adding dissi-
pation to the auxiliary equation of motion as described in
Ref. 17 has a detrimental effect on energy conservation for
small numbers of SCF cycles.

We have diagnosed the problem in the hybrid EL/SCF
scheme applied to classical polarization as arising from reso-
nances in the equations of motion’’~? that manifests as a
buildup of inertia for the auxiliary dipoles. Although in prin-
ciple we could address the resonance problem with a smaller
integration time step, instead we have formulated a new
restrained inertial EL/SCF (iEL/SCF) method that for all
intents and purposes controls for the resonance problem, anal-
ogous to other isokinetic approaches,?” such that the equations
of motion of the auxiliary dipoles remain stable and time
reversible. The results on the Atomic Multipole Optimized
Energetics for Biomolecular Applications (AMOEBA) polari-
zation model show that the iEL/SCF method exhibits excellent
energy conservation and thermodynamic and dynamic prop-
erties, but at greatly relaxed real dipole convergence tolerances,
which reduce the number of SCF cycles relative to standard
SCF solvers used for the classical polarization solution. As
such, the iEL/SCF scheme clearly offers a better choice for
classical mutual induction calculations compared to many EL
and SCF and hybrid alternatives and is worthy of investigation
for application to BOMD as well.

METHODS
Polarizable model

In this work, we develop our approach on the classical
polarizable force field AMOEBA.?>?* In addition to fixed
multipole electrostatics, the AMOEBA model provides a
consistent treatment of intramolecular polarization and inter-
molecular polarization and uses a physically motivated Thole
damping scheme for local polarization effects to avoid the well-
known polarization catastrophe that results when mutually
inducible sites polarize each other to infinity at short inter-site
separation.”>>* AMOEBA’s many-body polarization energy,
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Upoi, 1s given by

1
Upor = - 2(#5,‘3) E(”) (1a)
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13N

EP) = 3" TyMP,  i=1,... N (1b)
J
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where ,Tli is the inducible dipole at atom site 7, ; is the isotropic
polarizability of atom i, T}; is the rank-two interaction tensor
between atoms i and j containing derivatives of 1/r; according
to the permanent multipole expansion, 7;;" is the correspond-
ing interaction tensor for inducible dipole-dipole interactions,
Mj(.d) are the permanent multipole moments; the 7" and (rank-
one) M tensors encompass the 13 permanent multipole mo-
ments for the AMOEBA potential (g, i, iy, tz, Oxes Qrys Oxzs
Oy, Oyys Qyz, Oz, Oy, O2), and the superscripts (d and p) refer
to special scaling factors used for electrostatic interactions in
AMOEBA.

Self-consistent field method

The SCF method for AMOEBA implemented in TINKER
has up until recently used a conservative SOR method’ but
has been replaced in the TINKER 7.0 release with a pre-
conditioned CG-SCF method using a predictor,® while other
AMOEBA implementations have used direct inversion of the
iterative subspace.”'®?” These more recent SCF solvers are
more efficient iterative methods that converge in fewer steps
compared to SOR. In our comparisons to the various mutual
induction calculation approaches such as EL*'' and hybrid
EL/SCF schemes,'® we use the default CG-SCF with predictor
method in TINKER.

Extended Lagrangian method

We have implemented an extended Lagrangian formal-
ism'!""1? (directly analogous to the Car-Parrinello approach'?)
for AMOEBA in the TINKER package that treats the polari-
zation degrees of freedom as additional dynamic variables in
the system,'' allowing us to integrate them on the same footing
as the atomic positions and avoid using self-consistent iteration
to obtain polarization near the Born-Oppenheimer surface. The
extended Lagrangian for point dipoles is given by

N
. 1 N N
dipole _ T2 =N ;N
Lot = 21 24~ § it = U (FY V), @)

where m; is the mass of atom i, 7; is the position of atomic
centeri, U(rYN, unN ) is the potential energy from the AMOEBA
force field with the only difference being that the dipoles are
now dynamically integrated and not iteratively converged. As
a result there is a kinetic energy contribution from the dipoles
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given as the second term on the right hand side of Eq. (2),
where m,, ; is a fictitious dipole mass given in units of psz/z&3 .
In addition, we also thermostat these extended system degrees
of freedom to a very low temperature (~1 K)*? to maintain
the polarization close to the Born-Oppenheimer surface using
Nosé-Hoover (NH) thermostats. The complete extended sys-
tem equations of motion for Nosé-Hoover temperature control
on both the atomic centers and induced dipoles using a single
Nosé-Hoover thermostat are

mir: = Fz.; — mi¥j, (3a)
m/.l,iﬁi = I_::ﬁ,i - mﬁ’iﬁiﬁ*, (3b)
N .
Qi = " mir? - NyksT, (3c)
i=1
N N
Quife= ) my il = Np.kgT., (3d)

i=1
where the thermostat “position,” 7, couples to the physical
system to control the temperature and the thermostat mass,
0, which is related to a characteristic time parameter, 7, by
Q = NykgT7?. In these equations “*” denotes quantities asso-
ciated with polarization degrees of freedom so Ny and T are
the number of degrees of freedom and temperature of the
atomic coordinates, respectively, and Ny, and T, are the degrees
of freedom and the temperature of polarization degrees of
freedom, respectively, associated with a low 7. It should be

noted that Fg ; = E; — i which goes to 0 in the limit of a

@;

self-consistent solution of the dipoles, ,Tli = a/,-Z?l-.

Simulation details

All results reported here are for pure water systems of 512
molecules, although all methods described should be general-
izable to any molecular system; we use the water parameters of
the AMOEBA 14 water model.'” All simulations started from a
pre-equilibrated box and long-range electrostatics were treated
with particle-mesh Ewald®® with a real-space cutoff of 9 A.
The equations of motion of the atomic degrees of freedom
were integrated using the velocity Verlet method'® and the
Nosé-Hoover formalism with a fourth-order chain was used
for temperature control” with a 7 of 0.1 ps. We used a time
step of 1.0 fs for base AMOEBA simulations. For the extended
Lagrangian simulations, we used a7, of 1.0 Kand a 7. of 0.1 ps
with 1500 iterations of the thermostat per step; the “mass”
associated with inducible dipoles was set to 3.6 x 107 ps2/A3;
we explored time steps from 0.25 to 1.0 fs depending on the
method used to solve mutual induction.

THEORY

We have adapted the approach developed by Niklasson
and colleagues,'*~'® originally formulated for BOMD, but now
extended by us to classical mutual induction calculations. In
particular, this original hybrid EL/SCF method introduced an
initial guess for SCF calculations by propagating a set of auxil-
iary electronic degrees of freedom in a time-reversible manner.
In its original form, these auxiliary variables corresponded to
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the electronic ground state density matrix and here, we adapt
these to the case of classical polarization formulated as induced
dipoles.

In the spirit of Niklasson et a we can define an
extended Lagrangian given by Eq. (4) for the induced dipoles

1 N 1 N .
dipole __ =92 ) —-~N ;N
Linpria = 5 Zmiri "2 Z Myib; = U (r "uSCF)
i=1 i=1

1 13,15,16

1 ,< 2
5 - -
- Ew ; mp,i(:uSCF,i - ﬂi) > “)

where ﬁg’cp represents the set of all converged real induced

dipoles, and we introduce another set of induced dipoles, uN R
which are the initial guesses to the iterative solution of ﬁg’CF
This auxiliary set of induced dipoles is restrained to stay near
the true self-consistent values via the final term in Eq. (4)
using a harmonic function where m,, ; and w are the fictitious
mass and a universal frequency that determines the curvature
of the harmonic well, respectively. Applying the Lagrangian
equation of motion to Eq. (4) in the limit of m, ; — 0 yields
the equations of motion for atomic centers and induced dipoles,

U (?N,ﬁgvcp)
m;r; = _T > (53.)

N
:ai = w’ (ﬁSCF,i - :‘7[) . (5b)

Eq. (52) shows that equations of motion for the atomic centers
are propagated in the usual way, except that the iterative solu-
tion uses an initial guess that is propagated by the auxiliary
electronic degrees of freedom in Eq. (5b). We integrate both
equations of motion using time-reversible velocity Verlet inte-
gration.'® To determine ﬁéVCF, we still use CG-SCF, but now the
time reversible auxiliary dipoles serve as an initial guess. We
chose w to be \/E/ At, where At is the time step, 13 which we set
to 1 fs.

The one drawback of the original hybrid EL/SCF
scheme'?~'® is that over longer trajectories, the propagated
auxiliary dipoles systematically degrade as a reasonable initial
guess for the subsequent SCF steps using reasonable time
steps. Figure 1(a) shows that just beyond the 100 fs time
scale the original hybrid EL/SCF'*!>!¢ requires an increasing
number of SCF cycles, eventually reaching up to 5 SCF
iterations to meet even a loose criteria of 10! D after 1 ns.
To put that in perspective, the standard CG-SCF scheme with
a predictor requires 5 SCF cycles to reach a convergence of
107 D at all timescales. In fact the hybrid EL/SCF scheme
starts at 6 SCF steps at this corresponding 10~ D convergence
level and increases to 8 SCF cycles over the 1 ns trajectory. In
an attempt to alleviate this problem, we considered the use of
higher-order symplectic integrators, which use multiple force
evaluations per time step. The dotted line in Figure 1(a) gives
the results of a 4th-order integrator’’ applied to this hybrid
EL/SCF scheme at the lowest level of convergence. These
results show that while higher-order integration stretches the
time scale of the increase of SCF cycles it does not eliminate
the problem. The number of SCF cycles would be expected to
continue to rise based on the data shown in Figure 1(a).
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FIG. 1. The standard hybrid EL/SCF scheme without dissipation. Different curves represent different levels of convergence for the induced dipoles, given in
terms of the root mean square change in the induced dipoles from one iterative step to another. (a) The number of SCF cycles needed by the EL/SCF hybrid
scheme increases without limit over longer time scales since the initial guesses for the auxiliary dipoles are degrading over time. Also included at the lowest
convergence are the results from a 4th-order integrator. (b) The origin of the numerical instability in the standard hybrid EL/SCF scheme is that the mean squared
auxiliary induced dipole velocities increase without bound, especially under loose convergence. Different curves represent different levels of convergence for
the induced dipoles, given in terms of the root mean square change in the induced dipoles from one iterative step to another.

The reason for this is presented in Figure 1(b) which shows
that over the course of the simulation, the ensemble average of

the auxiliary dipole velocities <ﬁf> a “pseudo temperature,”
increases continuously throughout the simulation, and this
inertia eventually swamps the harmonic restoring force that
aims to keep the auxiliary dipoles close to the real, converged
dipoles, ultimately leading to instability in the equations of
motion Eq. (5b). This seems to be a problem with resonances”’
existing in the auxiliary dipole equations of motion that are on
a faster time scale than that experienced by the real induced
dipoles through the subsequent SCF solver. As Figure 2 shows,
the auxiliary dipoles show high frequency behavior compared
to their real counterparts owing to the optimal choice for their
characteristic frequency, V2/Ar, and their direct coupling in
the auxiliary potential (Eq. (4)) leads to corruption of the
dynamics.

0.5
N
|
i T
ey
e 0
SES
-0.5
—auxiliary
—real
-1 x ‘ ‘
0 0.1 0.2 0.3 0.4 0.5
t(ps)
FIG. 2. Oxygen auxiliary dipole time correlation function. The optimal fre-
quency, w = g, of the auxiliary dipoles (black) causes the dipoles to move

on a much shorter timescale than the real dipoles (red).

Niklasson and co-workers attributed this behavior to accu-
mulation of numerical errors throughout a simulation and
sought to mitigate it with a Langevin-like scheme'” that intro-
duces an explicit dissipative force on the motion of the elec-
tronic degrees of freedom. The introduction of a dissipative
force will inevitably lead to some time irreversibility, and
hence, an optimization scheme was introduced in that study to
maximize stability and minimize the undesired time irrevers-
ibility that will degrade energy conservation.'” We have imple-
mented the 9th-order version of this scheme and its results are
given in Figure 3. Figure 3(a) shows that the dissipative scheme
corrects for the increasing number of SCF cycles. However,
Figure 3(b) and Table I show that the benefits of small numbers
of SCF iterations comes at the cost of unacceptable energy drift
at loose levels of convergence due to its time irreversibility.
This leads to the conclusion that dissipation of pseudo kinetic
energy is important in achieving a stable number of SCF
iterations, but that dissipation schemes with acceptable energy
conservation do not significantly reduce the number of SCF
iterations relative to standard SCF solvers.

Here, we present a different solution to this instability
problem by “thermostating” the auxiliary dipoles through
modification of their velocities in the time reversible ve-
locity Verlet integration. It is known that corruption of the
dynamics due to resonances can be controlled using the isoki-
netic ensemble,’” although we cannot formally implement an
isokinetic scheme due to the m,, ; — 0limit that yields Egs. (5).
Since there are no longer any contributions to the total energy
from the auxiliary dipoles and thus we cannot formally define
their kinetic energy or temperature, we nonetheless show that
by rescaling the auxiliary velocities we can execute control

on the mean squared velocity (or pseudo temperature), <l712>,
that controls the buildup of this inertial pseudo kinetic energy
quantity.

For iEL/SCF, we have implemented both a weak coupl-
ing Berendsen velocity rescaling scheme?' and a fourth-order
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FIG. 3. Total energy conservation and stability using the adapted EL/SCF method with a 9th-order Langevin-like dissipative scheme from Niklasson et al.'” (a)
The required number of SCF iterations and (b) the total energy in the NVE ensemble. Different curves represent different levels of convergence for the induced
dipoles, given in terms of the root mean square change in the induced dipoles from one iterative step to another.

time-reversible Nosé-Hoover chain (NHC)?” to control for the
inertial accumulation. In this context, the distinction between
Berendsen and NHC is likely unimportant since the auxiliary
dipoles are serving as an initial guess to the SCF equations.
Hence, although Berendsen velocity rescaling does not lead
to the correct limiting canonical ensemble as does the NHC
scheme, we note that the primary property needed is a damping
scheme for the auxiliary variables that can be formally proven
to be numerically stable, close to the exact solution regardless
of convergence level, minimally perturbs time reversibility,
and keeps the pseudo kinetic energy of the auxiliary dipoles
constant. More sophisticated schemes for isokinetic integrators
would perhaps be more desirable,”’:>> but we show that the
simple velocity rescaling approach is sufficient in this case,
since we are thermostating the auxiliary variables whose only
role is to provide an initial guess to the SCF solver of the real
inducible dipoles.

We define the Berendsen rescaling factor, @, which scales
the velocities propagated by a reversible velocity Verlet inte-
gration at each time step in the weak coupling regime

o= |[1+—=[=2 -1}, (6)

where 7 is a rescaling time scale parameter and 7}, is the set
pseudo temperature of the auxiliary induced dipoles that corre-

sponds to the desired value of <,7112> and has units of e>A%/ps.
The pseudo temperature chosen for the auxiliary dipoles is
chosen to approximately conform to equipartition of energy
consistent with a classical harmonic oscillator given the form
of the auxiliary dipole potential

%Na)2<(ﬂscp,i - ui)2> + %N(#?} = NT,. )
We can estimate the maximum auxiliary dipole velocity by us-
ing the square of the maximum displacement of the real induced

2 .
Hi) > Using

N — -2 °
T, = (H2) and w?= 2 with ((Hscr.i— 1) ) ~ (0.2 eA)?
gives a pseudo temperature of ~10° eZAz/ps2 which is what we
use here. A discussion of the numerical stability of our method

is given in the Appendix.

dipole distribution to approximate <(/Tlscp,i -

RESULTS

In what follows, we characterize the relative performance
of the CG-SCF solver with predictor, the standard EL method,
the hybrid EL/SCF scheme with no dissipation, and our new

TABLE 1. Total energy drift rates for CG-SCF with predictor, the standard hybrid EL/SCF scheme with no
dissipation, the hybrid EL/SCF scheme with Langevin-like dissipation described by Niklasson ef al.,'” and a
hybrid EL/SCF method which thermostats the auxiliary dipole velocities. Drift rates are fit to the simulated data
given in Figures 3-5.

Energy drift ((kcal/mol)/ps)

Convergence Standard Hybrid Hybrid EL/SCF with Hybrid EL/SCF with Hybrid EL/SCF with
(RMS Debye) SCF EL/SCF dissipation Berendsen Nosé-Hoover
1076 +4.63x107° —6.09x 1078 -4.86x1077 +1.21x1077 +6.20x 1078
1073 -2.50x1075 +1.87x 1077 -6.99x 1077 +2.37x1077 -7.96x 1078
1074 +2.10x1073 —6.62x 1077 -2.08%x107° +2.48x1077 +7.96 % 1078
1073 +6.52%x 107 -1.05%x107° -3.52% 107 +9.07x 1078 -4.13% 1077
1072 -1.24x107! +5.16x107° -1.49%x1073 +2.32x107° +2.75%107°
107! -1.17x107! +2.83x10™* -1.50x 1073 +2.96x107° +2.76x107°
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FIG. 4. Total energy conservation in the NVE ensemble (a) using a CG-SCF solver with predictor, (b) using a basic EL method, (c) using the standard EL/SCF
method with no dissipation. Different curves represent different levels of convergence for the induced dipoles, given in terms of the root mean square change in

the induced dipoles from one iterative step to another.

iEL/SCF scheme over a 1.0 ns simulation of the AMOEBA 14
polarizable force field for water in the NVE and NVT ensem-
bles. In all cases, we utilize the CG-SCF solver with predictor
in which dipoles are converged to 1076 D as the gold standard,
with the understanding that over longer timescales there will
be a noticeable energy drift with the CG-SCF approach even
at this relatively tight dipole convergence tolerance.

Figure 4 shows energy conservation in the NVE ensemble
for a standard CG-SCF scheme with predictor, a standard EL
scheme, and the original EL/SCF scheme with no dissipation.
On the nanosecond time scale examined here, we can see a
significant energy drift for CG-SCF at a convergence level of
10~ D and a severe lack of energy conservation with even
looser convergence criteria (Figure 4(a)). Although the energy
conservation of the SCF scheme looks stable for convergence
levels of 107> D or tighter over the 1 ns trajectory, in fact the
energy will eventually drift over longer time scales due to its
one-sided convergence and use of a predictor. The standard EL.
scheme shows poor energy conservation, even for small time
steps of 0.25 fs and 0.5 fs for which the EL method is stable
(Figure 4(b)); time steps larger than 0.5 fs are numerically
unstable.

For the hybrid EL/SCF without dissipation (Figure 4(c)),
there is very good energy conservation up to a convergence
level of 1073 D, but for looser levels of convergence, the
system energy experiences continual adjustment due to the

poor quality of the SCF guess generated by the auxiliary di-
poles. These deviations do not appear to be divergent and/or
large in magnitude compared to the standard SCF and EL
methods and eventually settle down at the end of the 1 ns
trajectory. However, although there is some improvement in
energy conservation for the hybrid EL/SCF without dissipation
compared to the standard CG-SCF with predictor and EL
schemes at a given level of convergence of the mutual induc-
tion, it comes at the cost of increasing numbers of SCF cycles
due to the accumulated inertia over time (Figure 1(a)). In fact,
the rebounding energy profile at the lowest level of induced
dipole convergence for the no dissipation scheme corresponds
exactly to a systematic bump up in the number of SCF cycles
as the accumulated pseudo kinetic energy in the initial SCF
guess gets worse over time (Figure 1(a)). Even so, the hybrid
EL/SCF without dissipation outperforms the standard EL and
SCF approaches when we fit the energy conservation profile to
derive total energy drift rates (Table I).

Figure 5 shows energy conservation for the iEL/SCF us-
ing weak coupling Berendsen velocity rescaling and NHC

for controlling <,ft12>, for which mutual induction tolerances
<1072 D using either thermostating methods show superior
energy conservation compared to CG-SGF at tight tolerances
>1073 D, with the significant additional benefit that fewer SCF
steps are required; using the iEL/SCF method, only 4 SCF steps
are needed for 1072 D and 3 SCF steps for 10~! D, compared
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FIG. 5. Total energy conservation and stability of the adapted EL/SCF method with “temperature” control of the auxiliary dipoles. (a) Total energy in the NVE
ensemble using Berendsen control, (b) total energy conservation in the NVE ensemble using Nosé-Hoover control, and (c) the number of SCF cycles needed
by the EL/SCF hybrid scheme for a given convergence level. Different curves represent different levels of convergence for the induced dipoles, given in terms
of the root mean square change in the induced dipoles from one iterative step to another. It is evident that the effective thermostats make even the 107! D level
of convergence using the hybrid EL/SCF scheme superior to any known method for the classical mutual induction calculation, requiring only 3 SCF cycles to

reach reasonable energy conservation.

to the 5 SCF steps needed by CG-SCF for a convergence level
of 107 D. Both velocity attenuation methods show superior
energy conservation compared to all methods over the full
range of induced dipole convergence (Table I) and correct for
the “rebounding” energy behavior seen in the non-dissipative
EL/SCF method at low convergence levels (Figure 4(c)). We
note that both thermostating methods begin to show systematic
energy drift at 10~! D levels of convergence. Since the NHC
thermostat is formally formulated as a time reversible scheme,
we conclude that we have reached an inherent limit to how
low we can set the convergence tolerance in the SCF solutions,
although the energy drift is at least one if not many orders of
magnitude better than any other possible scheme at 3 SCF steps
for 107! D.

Next, we consider in detail how the induced dipole polar-
ization is accounted for in each method within an NVT simu-
lation at 298.0 K. Figure 6 shows the probability density func-
tion for the induced dipole magnitude and Figure 7 shows
the normalized dipole autocorrelation function at short times
(<1 ps) for the AMOEBA 14 water model; Figures S1 and S2
in the supplementary material provide the probability density
of the in-plane and out-of-plane induced dipole angle as well.*
We see that the CG-SCF with predictor method shows signif-
icant deviations from the gold standard (10~® D) starting at

convergence levels of the induced dipoles at 1073 D. Whereas
the standard EL method shows good agreement with the SCF
converged result for time steps of 0.25 fs and 0.5 fs, it fails
completely at larger time steps due to numerical instability.
By contrast, the hybrid EL/SCF scheme without dissipation
reproduces correct polarization probability distributions and
the dipole autocorrelation well, even at 10~! D, although again
this comes at the cost of increasing numbers of SCF cycles.
The iEL/SCF approach developed here also reproduces all
polarization properties well at loose convergence and uses the
fewest number of SCF cycles to do so. All of the methods show
some degradation in the range of polarization properties at a
given level of convergence when utilized in the NVE ensemble
(Figures S3-S6 and Table S1 in the supplementary material**),
which is not unexpected since thermostating of the real system
variables can mask underlying numerical problems in integra-
tors and/or poorly converged energy and forces. However, the
hybrid EL/SCF schemes are superior to the standard EL and
CG-SCF at any dipole convergence tolerance.

Table Il reports the average potential energy and molecular
dipole which were calculated from a single NVT simulation at
298 K, as well as the diffusion coefficient, calculated by taking
independent snapshots from the 298.0 K NVT simulation and
calculating the molecular mean squared displacement in the
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FIG. 6. Comparison of the ensemble averaged probability distributions for induced dipole magnitude. Using (a) standard CG-SCF solver with predictor, (b)
basic EL method, (c) the adapted EL/SCF method with no dissipation, (d) the adapted EL/SCF method with “temperature” control of the auxiliary dipoles using
Berendsen (Ber.) rescaling, and (e) the adapted EL/SCF method with “temperature” control of the auxiliary dipoles using a Nosé-Hoover thermostat (NHC).
The continuous curves give the data obtained using base AMOEBA at a level of 10~% RMS Debye convergence.

NVE ensemble. The SCF scheme gives correct average poten-
tial energies and molecular dipoles down to a relatively loose
convergence of 1072 D, a benefit of thermostating in regards
thermodynamic quantities, but gives incorrect diffusion coef-

ficients starting at a much tighter tolerance of 10™* D. For the
EL method, even using a smaller time step than the other two
approaches, we see more significant differences between the
average potential energies and molecular dipoles compared to
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FIG. 7. Comparison of the normalized induced dipole time autocorrelation function. Using (a) standard CG-SCF solver with predictor, (b) basic EL method,
(c) the adapted EL/SCF method with no dissipation, (d) the adapted EL/SCF method with “temperature” control of the auxiliary dipoles using Berendsen (Ber.)
rescaling, and (e) the adapted EL/SCF method with “temperature” control of the auxiliary dipoles using a Nosé-Hoover thermostat (NHC). The continuous
curves give the data obtained using base AMOEBA at a level of 107° D convergence.

the best converged SCF result and poor results for the diffusion
coefficient. Across all convergence levels, all EL/SCF schemes
reproduce the thermodynamic and kinetic data quite well, even
producing a diffusion coefficient within error bars of the gold
standard at much looser convergence levels. Although ulti-
mately the computational cost of the increasing number of SCF

cyclesis early evidence for eventual numerical instability in the
non-dissipative EL/SCEF, the iEL/SCF method retains excellent
property performance with a stable algorithm that conserves
energy at loose convergence and minimizes the number of
SCF cycles relative to the standard CG-SCF with predictor
method.
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TABLE II. Average potential energy, average molecular dipole moment, and diffusion coefficients as a function
of mutual induction convergence for CG-SCF with predictor, standard EL, the hybrid EL/SCF scheme with no
dissipation, and a hybrid EL/SCF method which thermostats the auxiliary dipole velocities. Average potential
energy and molecular dipole were calculated from NVT simulations at 298.0 K. Diffusion coefficients were
averaged over multiple NVE simulation using independent snapshots from 298.0 K NVT simulations as the initial

condition.
Standard SCF
Convergence Average potential energy Average molecular dipole Diffusion coefficient
(RMS Debye) (kcal/mol) (D) (10° cm?¥/s)
107° —-8.84 + 0.09 2.742 +0.014 222 +0.29
1073 —-8.83 £ 0.08 2.742 +0.012 2.26 +0.14
107 —8.84 + 0.08 2.744 + 0.013 3.45+0.28
1073 -8.83 £ 0.09 2.743 +0.013 271 +0.22
1072 —-8.84 + 0.09 2.743 £ 0.013 0.0019 + 0.000 21
107! —-8.67 + 0.09 2.703 +0.013 0.0020 + 0.000 25
Standard EL
Time step Average potential energy Average molecular dipole Diffusion coefficient
(fs) (kcal/mol) (D) (105 cm?/s)
0.25 -8.97 + 0.08 2.753 £ 0.012 1.28 +0.14
0.50 -8.92 +0.08 2.746 + 0.012 1.22 +0.17
Hybrid EL/SCF
Convergence Average potential energy Average molecular dipole Diffusion coefficient
(RMS Debye) (kcal/mol) D) (10° cm?/s)
1076 —-8.83 £ 0.08 2.742 +0.013 239 +0.21
1073 —8.84 + 0.09 2.743 £ 0.013 2.25+0.17
107 —-8.83 +0.09 2.742 +0.014 2.16 +0.18
1073 —-8.83 +0.09 2.742 +0.013 223 +0.16
1072 —-8.83 £ 0.09 2.743 £ 0.013 2.25+0.13
107! —-8.84 +0.09 2.743 £ 0.013 2.09 +0.12
Hybrid EL/SCF with Berendsen
Convergence Average potential energy Average molecular dipole Diffusion coefficient
(RMS Debye) (kcal/mol) (D) (10° cm?/s)
1076 —-8.84 + 0.09 2.744 + 0.013 2.17 £ 0.15
1073 —-8.84 + 0.09 2.743 £ 0.013 2.25+0.15
1074 —-8.83 +0.09 2.742 +0.013 2.21+0.16
1073 —-8.83 +0.09 2.743 +0.013 228 +0.13
1072 —-8.84 + 0.08 2.743 +0.013 2.17+0.13
107! -8.83 +0.08 2.742 +0.013 2.28+0.13
Hybrid EL/SCF with Nosé-Hoover
Convergence Average potential energy Average molecular dipole Diffusion coefficient
(RMS Debye) (kcal/mol) (D) (10% cm¥/s)
1076 —-8.83 +0.09 2.742 +0.013 2.36 +0.14
1073 —-8.83 £ 0.09 2.743 £ 0.013 2.30 +0.14
1074 —-8.84 + 0.08 2.743 £ 0.013 2.27+0.15
1073 —-8.84 + 0.09 2.743 £ 0.013 243 +0.18
1072 —-8.83 £ 0.08 2.742 +0.013 2.37+0.20
107! —8.84 + 0.08 2.744 + 0.013 2.17 +0.11
CONCLUSIONS auxiliary electronic degrees in BOMD simulations.'” How-

ever instead of using a dissipative force that can compromise

We have presented a new adaptation of a hybrid EL/SCF  time reversibility of the auxiliary induced dipole initial guess,
scheme applied to induced dipole polarization in classical we have introduced the use of thermostats applied to the
simulations that overcomes numerical instability problems auxiliary dipole velocities to control for the accumulation of
that were also observed in the equations of motion for the a pseudo kinetic energy due to resonances. This approach
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simultaneously preserves energy conservation and numerical
stability at loose real dipole convergence values of 10~! D,
thereby requiring fewer SCF cycles to describe polarization
and system properties accurately when compared to a typical
CG-SCF convergence of 1075-107% D. For the AMOEBA 14
water model, this also translates to an overall decrease in the
required number of SCF iterations per time step from 5 to 3,
resulting in some computational savings.

In the original explicit dissipative schemes explored in
Ref. 17, a flexible but complicated optimization scheme was
introduced to parameterize the functional form of the needed
dissipation but suffers from severe time irreversibility prob-
lems at convergence tolerances that yield the most benefit
in number of SCF iterations. We have shown that the actual
problem arises from the fact that the dynamics of the auxiliary
dipoles evolve on a faster time scale than the time evolution
of the real induced dipoles and that resonances arise due to
their coupling through the potential energy termin Eq. (4). This
leads to a buildup of inertia in the auxiliary dipoles that can
be solved by either reducing the time step for their equation of
motion or by controlling it through pseudo temperature control
as we have done here. Our iEL/SCF approach is a simple
velocity attenuation scheme that effectively removes the effect
of these resonances while still maintaining time-reversibility
(within that allowed by the numerical integration scheme) de-
pending on the thermostat method chosen. We are thus able to
have better energy conservation and can reproduce molecular
properties, even at very loose levels of convergence with only
a small number of SCF iterations required. While the iEL/SCF
method has been demonstrated on a classical inducible dipole
model AMOEBA (and is available in the TINKER program),
it may also be useful in the context of ab initio molecular
dynamics.
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APPENDIX: NUMERICAL ANALYSIS

Following the numerical stability analysis of Niklasson
and colleagues,'” we have developed a Verlet-like recursion
for the Berendsen rescaling for analysis purposes. Adding two
Taylor series expansions of the dipole “position,”

- - - 1=z
Hppo = Hypq + Hp At + ElunJrlAt2 (Al)

and

- ~ - 1=
My = Hyy1 + HpAt — E#nAtz (A2)

to obtain

N N N N N 1 Y Y
Hyip=21pe1 — My + At (l’tn+1 - #n) + EAtz (Hn+1 - lun) .
(A3)

J. Chem. Phys. 143, 174104 (2015)

Using a scaled velocity from the velocity Verlet recursion

N N 1 = Y
it = et | o+ 3 A (un+1+un) L (A%

we can substitute for ﬁn in Eq. (A3) to obtain

Hnsg = 2Hn41 — Hy + At (1 - ) + APl (A5)

Ap+l

Finally an approximation for Hyey is given by a finite
difference

N 1 N N
Hpv1 = — (/'ln+2 - :un)

2At (A6)

and Eq. (5b) is substituted for ﬁn+1 to obtain the recursion

1 1\- - 1 1\-
5(1"'_) Iun+1=2ﬂn_§(3__) M1

n n

+ AfPw? (ﬁff’” - ﬁ,,) , (A7)
where ,Tln = ﬁi(to + nAt) and @, = a(ty + nAt) are the instan-
taneous velocity rescaling factor. Note that when there is no
pseudo temperature control (@, = 1), we recover the Verlet
recursion, as expected. To analyze the numerical stability of
the velocity rescaling scheme, Eq. (A7) has a characteristic
equation given by

1 1
= (1 + —) A+ (APW? - yAPw? - 2) A"

2 a,
1 1
oL (3 _ _) 120, (A8)
2 a,

where A corresponds to the roots of the characteristic equation
and vy is the largest eigenvalue of the iterative response matrix
acting on the difference between ﬁn and the true solution
of the induced dipoles. Thus, Eq. (A8) allows us to explore
various levels of convergence of the solution of the auxil-
iary dipoles over the range —1 < y < 1, where in the limit y
— 0 corresponds to the exact solution, while the magnitude
of the largest root, |1],,,,, Will determine the stability of the
recursion, with |4],,,, > 1 giving exponentially growing solu-
tions, |4, < 1 giving exponentially decaying solutions, with
an exactly stable solution occurring at |4],,,, = 1. We note
that @ # 1 corresponds to increasing time irreversibility in the
equations of motion, which should be avoided when possible.
Time-reversibility is preserved in our iEL/SCF method when
a = 1, whereas a related coupling parameter that multiplies
the dissipation force, @, discussed in Ref. 17 remains time
reversible when a ;s = 0.

Similarly, we can show that for a Nosé-Hoover chain
thermostat (taking into account rescaling that happens twice
per time step now) that the Verlet-like recursion is given by

1 1 - - 1 1 N
1+ —— | My =201, — = |3 - e
2 ( a’nan—l)ﬂ ! a 2 ( ana'n—l),u !

1 1 - -
+= ( + 1) APw? (uffp - ,u,,)
2 An-1

1 1 - -
! ( _ 1)Atzw2(u§€f-un_l) ,
2 An-1

(A9)

+
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FIG. 8. The use of thermostats for the hybrid EL/SCF scheme using Berendsen weak coupling velocity scaling. (a) Roots of the characteristic equation for
Berendsen rescaling (Eq. (A8)) and Nosé-Hoover thermostating (Eq. (A10)) as a function of the degree of SCF convergence, vy, for various velocity rescaling
factors, o. Note that for this figure, the range of o is exaggerated with observed a values ranging from 0.9997 to 1.0003 in the course of a typical simulation. (b)
The time trajectory for the velocity rescaling factors, a, for the Berendsen scheme and the Nosé-Hoover scheme. The Nosé-Hoover scheme scales the velocity

at the beginning and end of a single step, hence the “n

where @, and a,-; now represent the velocity scaling fac-
tors that come from a time-reversible Nosé-Hoover method
at the end and beginning of the n-th recursion. These two
a-values mask the complexity of the Nosé-Hoover chains

J

1 1 1 {AfPw?
—(1+—)/l”+1+—(—w
2 App-1 Ap-1
1 (3 1 At?w?
2 App-1 Ap-1

Figure 8(a) gives |A|,,,. as a function of the SCF conver-
gence, v, for various values of « (assuming @, = a,-; for the
NHC case). Intuitively, we find that for @ > 1, then |1],,,, > 1
and the equations of motion are unstable which would corre-
spond to an accumulation in the pseudo kinetic energy as
observed in Figure 1(b). For @ < 1, the increasing dissipation
will realize stable solutions (||, < 1) but at the expense of
time-reversibility as @ decreases. Thus, both the Berendsen
weak coupling and NHC iEL/SCF schemes have the desirable
property that the equations of motion can be made stable under
incomplete SCF convergence in the full y interval for a values
that are close to that needed for time reversibility. We would
like to note that Egs. (A8) and (A10) are presented for analysis
purposes only and the method is truly implemented using a
velocity Verlet scheme with thermostat action being applied
at the appropriate points within such a scheme.

Figure 8(b) shows the simulated trajectory of the rescal-
ing parameter « during the course of our weak coupling
Berendsen velocity rescaling as well as NH scheme which
is shown to range from 0.9997 to 1.0003 with an average
of ~0.999 99 such that we are essentially close to the exact

— 17 and “n,” respectively.

- AP -

which are also a function of additional extended system vari-
ables; see the work of Martyna et al. for details.”’ Again,
we can construct the characteristic equation of Eq. (A9) for
analysis

At2 2
A = Y2RY yAPw? - 2) At

(A10)

time—reversible solution. While velocity rescaling using weak
coupling Berendsen formally breaks the time-reversibility of
the integration scheme, an a-value so close to 1 corresponds to
only a slight disturbance of this reversibility while dissipating

the integration error that causes divergence in (ﬁf) due to reso-
nances. In any event, errors in time reversibility are formally
circumvented through use of NHC thermostats, also shown in
Figure 8(b), although, at least for our test system of bulk water,
the practical differences are largely unimportant. Thus, our
diagnosis of the problem in the original hybrid EL/SCF scheme
arises from resonances in the auxiliary equations of motion that
can be controlled by a simple velocity rescaling scheme that
prevents the accumulation of a pseudo kinetic energy for these
degrees of freedom.
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