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Abstract 

Conventionally, the assessment of reinforced concrete shear walls (RCSW) relies on manual 

visual assessment which is time-consuming and depends heavily on the skills of the 

inspectors. The development of automated assessment employing flying and crawling robots 

equipped with high resolution cameras and wireless communications to acquire digital 

images and advance image processing to extract cracks pattern, has paved the path toward 
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implementing an automated system which determines structural damage based on visual 

signals acquired from structures. Since there are few if any studies to correlate crack patterns 

to structural integrity this paper proposes to analyze crack patters by using a Multifractal 

Analysis (MFA). The approach is initially tested on synthetic crack patterns, then it is applied 

to a set of experimental data collected during the testing of two large-scale RCSW subjected 

to controlled reversed cyclic loading. The structural response data available for each 

specimen is used to link the multifractal parameters with the structural performance of the 

two specimens. A relationship between the multifractal parameters and the cracks patterns 

evolution and mechanism is noted. The results show that as the cracks patterns extend and 

grow, multifractal parameters move toward higher values. The parameters jump as the 

mechanical response show severe stiffness loss. In this study no attempt is made to automate 

the process of mapping cracks from images.  

Keywords 

Multifractal Analysis, Visual Assessment, Damage Assessment, Surface Crack Patterns, 

Reinforced Concrete Structures  



Introduction 

Reinforced concrete shear walls (RCSW) are one of the most commonly used seismic 

resisting systems in conventional buildings and infrastructures. RCSWs are subjected to 

deterioration due to aging, increased load, and natural hazards. To secure the overall 

soundness of these structures proper assessment is crucial. Commonly, RCSWs are assessed 

visually by tracking defects such as corrosion and spalling, and quantifying the length and 

the width of existing cracks1,2. Concrete bridge decks are also commonly assessed based on 

cracks density3,4. Worldwide, various condition-rating grades have been developed to 

quantify damage conditions in terms of crack’s width and length 5–7. Although manual visual 

inspection (VI) is a well-established method to inspect RCSWs, it is time-consuming and 

depends heavily on the skills of the inspectors. Moreover, it may take weeks to obtain access 

to buildings hit by natural hazards, such as earthquake. In order to overcome these limitations, 

automated-based VI is a field that has received significant interest over the past few years. 

Automatic inspection techniques use flying and crawling robots equipped with high 

resolution camera and wireless communications to acquire 2D digital images; then image 

processing is used to automatically retrieve damage properties, such as crack length and 

width 8–10, 11,12. Despite their increasing usage in the last few years few automated visual 

inspection methods if any other than the authors recent publication exists13 to link the effect 



of damage to the overall soundness of the structure.  Current systems simply relay the 

information about crack length and width to engineers that then determine the course of 

action: retrofit, replacement, or no action. The results presented in this paper are part of a 

long-term project that aims at developing an automated-based inspection technology for the 

nondestructive evaluation (NDE) of reinforced concrete structures. The technology is based 

on the fractal analysis of 2D images taken in the visible spectrum, to retrieve surface defect 

patterns that can provide a quantitative measure of damage. Fractal analysis is a relatively 

novel mathematical tool that has been used successfully in many fields including biology and 

physical sciences 14–17. However, its application in the NDE/SHM community has been 

modest18–21. Recently, the authors have used a monofractal analysis to discriminate different 

damage grades in RCSWs 22. They have shown that, in general the fractal dimension 

increases as the structural damage increases. Although these preliminary results using the 

monofractal analysis have been encouraging, it is important to recognize that using a single 

scalar, the fractal dimension (FD), may be insufficient as a summary statistic for the overall 

crack patterns. In this paper a more general approach is presented (i.e., multifractal analysis) 

based on point-wise scaling properties (i.e., local fractal dimensions) of the image. As cracks 

develop, their width, length, density, and fractal dimension grow (local change). Besides, as 

cracking mechanism changes, multifractal parameters form separate clusters which indicates 



the change in mechanism (global change). So, the idea is to decomposed 2D images into 

many subsets characterized by different local FD, which quantify the local singular behavior 

and as a result relate to the local scaling of the image 23. Thus, a 2D image will require a set 

of FD to fully characterize its scaling properties. This paper is organized as follows. First, a 

brief overview on the multifractal analysis is provided, and followed by application of the 

method on synthetic cracks.  Then, experimental results are presented with application to the 

damage assessment of two large-scale reinforced concrete shear walls under lateral cyclic 

loading. 

Multifractal analysis 

Background 

The term “Fractal” was first introduced by Mandelbrot 24 to indicate self-similar objects 

whose complex geometry cannot be characterized by an integer dimension. Since then, the 

term has been extensively used to study natural and experimental physical phenomena 25.  A 

common way to characterize fractal objects is by their fractal dimension (FD) which, very 

roughly speaking, is related to their degree of complexity, and the extent to which features at 

different scales are related. More specifically, FD  is defined as a ratio comparing how detail 

in a pattern changes with the scale at which it is measured26. The most popular algorithm to 

calculate the FD is the box-counting, which considers the space filling properties of the object 



as an indication of the object’s complexity 14. In this approach, a virtual grid of squared boxes 

overlaps the object, and the number of boxes of a given size (r) necessary to cover it is 

counted. As r→0, the total area covered by the area elements converges to the measure of 

FD 22. Based on this method FD is defined as: 

where )(rN is the total number of non-empty boxes of linear size r. 

Many natural phenomena, however, have a more complex scaling relation, and their statistics 

cannot be described by just a single scalar (i.e., FD). For instance, consider a 2D signal such 

as a gray scale image. For describing an object of the image the box-counting method may 

not be appropriate since it gives only a relation between the non-empty boxes and the box 

size 27; therefore no weighting is done to the count according to the signal levels into the 

boxes. Multifractal analysis has shown the potential to provide more insights into the scaling 

properties of these objects 28 29. The multifractal analysis is a generalization, in which the 

fractal dimension (FD), instead of being a global parameter which only gives information on 

the support of a given measure 30, is a local parameter (called singularity strength  ) that 

may change from box to box, and provides more insight into the way the measure is 
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distributed over its support 31 28. In multifractal analysis the scale-invariant properties of the 

object can be characterized on the basis of its generalized 32 dimensions Dq, defined as: 

 

 

where q is a real value moment order, )( rPi
 is the measure (or weight) associated with the 

i-th box. For a binary image )(rPi  can be seen as the probability of existence of black pixels 

in that box, that is 33: 
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where ( )iN r   is the number of black pixels inside the i-th box of size r, and )(rM is the total 

number of boxes containing at least one black pixel. The most popular generalized 

dimensions are: the capacity dimension (D0), the information dimension (D1), the correlation 

dimension (D2). In general, Dq is a monotone decreasing function of q. If Dq is a single-
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valued function, equal to the fractal dimension (FD) defined above, the object is called 

monofractal 14. Overall, the parameter q serves as a “microscope” that analyzes the object at 

different scales 14. In multifractal analysis, one can also determine the number of boxes 

having similar local scaling, that is same , and define ( )f  as the fractal dimension of the 

set of boxes with singularities . The curve ( )f  , also called multifractal spectrum, is a 

convex function whose maximum corresponds to D0. As max,q    , and as 

min,q    . In general, when ( )f   and Dq are smooth functions of   and q, a 

Legendre transformation can be used to derive ( )f   from Dq 34,35. However, ( )f  can also 

be directly calculated, without knowing Dq, by using the method proposed by Chhabra et al. 

34,35. The first step of this approach consists of defining a family of normalized measures 

( , )i q r  defines as: 
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For each box i, the normalized measure ( , )i q r  depends on the order of the statistical 

moment, and on the box size and it takes values in the range [0,1] for any value of q. Then, 

the two functions  q  and )(qf  are evaluated: 
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For each q, values of  q and ( )f q are obtained from the slope of plots of 
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entire range of box size values under consideration. Finally, these two data sets of  q and

( )f q are plotted with respect to each other to construct the singularity spectrum (i.e. plot of 

 vs. ( )f  ).  



Synthetic data analysis  

The analysis of synthetic data sets presented in this section are intended to illustrate how the 

multifractal parameters are calculated, and show their application for crack patterns 

quantification in RCSWs. As shown in Figure 1, the data sets consisted of four binary images 

(size 400500 pixels), representing typical crack patterns in a shear wall (size of the wall 

was assumed to be 5000mm 4000mm ). Figure 1(a) was assumed as a base pattern (CASE 

0), while the other three cases were generated by simple manipulations of CASE 0. 

Specifically, for CASE 1 (Figure 1(b)) minor changes were applied on CASE 0, while the 

overall shape was preserved. CASE 2 (Figure 1(c)), was generated by flipping one of the two 

cracks of the base pattern. Hence, the cracks details are exactly the same, but the general 

shape was changed. Finally, CASE 3 is representative of crack patterns growth.  



 

Figure 1. Synthetic crack patterns: (a) CASE 0, (b) CASE 1, (c) CASE 2, (d) CASE 3 

In order to perform the multifractal analysis of these images the Chhabra method described 

in section 2.1 was used to directly evaluate the singularity spectrum  and the generalized 

dimension Dq. The analysis was carried out by dividing each image with rectangular boxes 

of aspect ratio similar to the original image. The number of division ranged from 1 to 40, 

( )f 



(i.e., the smallest box size was equal to 105.12  pixels), while the range of q was selected 

within the range between 10 and -10 (i.e., ]10,10[q ). 

Figure 2 shows ( )iP r and ( , )i q r  for the data set shown in Figure 1(a). Two different box 

sizes were considered, that is, 100 80  and 50 40 pixels. As expected, the higher value of 

( )iP r  was obtained at boxes with higher concentration of black pixels. In order to illustrate 

the effect of the parameter q, ),( rqi  was calculated for three different values of q, i.e.

}1,0,1{q as shown in Figure 2. It can be observed that negative values of q’s ( 1q ) are 

dominated by boxes of low probability densities (i.e., rare events), while positive values of 

q’s ( 1q   ) are dominated by boxes of high probability densities (i.e., smooth events). For

0q , each box is given equal weight regardless of the number of points in the boxes. Thus 

information concerning distribution of points in the boxes is lost. Therefore, for 0q  a 

traditional monofractal analysis is recovered. 



 

Figure 2. Probability and measure functions of synthetic cracks at q=-1, q=0, and q=1, all 
plots are normalized. 

As it was described in section 2.1, ( )q , ( )f q , and qD were calculated by using regression 

lines over the entire range of box sizes. Figure 3 illustrate some of these regression lines for 

CASE 0 (Figure 1(a)). In this figure, regression line plots for only three values of q, i.e.

}1,0,1{q are shown in column wise order.  



 

Figure 3. Regression lines on the synthetic crack pattern CASE 0’s data. Note r is in [mm]. 

As illustrated in Figure 4, where ( )f   and qD  curves are shown for the four synthetic crack 

patterns shown in Figure 1, multifractal analysis could provide a sensitive tool for the 

discrimination of crack patterns. As expected, the curves ( )f   are convex with a single 

maximum at 0q while qD  are monotonically decreasing. The relation between   and the 



parameter q, is the following: the right branch corresponds to negative values of q, the left 

one to positive values of q. By comparing CASE 0, and CASE 1, it can be observed that ( )f   

and qD  show negligible difference for positive values of q, whereas more significant 

difference can be observed for negative values of q. The reason behind this different behavior 

is that, q acts as a scanning tool, that is, for 0q  regions with high probability are amplified, 

while for 0q  regions with low probability are magnified, making the analysis more sensitive 

to local variations; therefore for 0q  the analysis focuses more on the general shape rather 

than local features of the input patterns. For CASE 2, since overall shape of the pattern 

changed, while local features were kept the same, both ( )f  and Dq  show the change just in 

the negative range of q. For CASE 3 it can be clearly recognized a qualitative difference in 

the ( )f   and qD  curves, caused by differences in crack patterns. Therefore, it is conceivable 

that with the help of the multifractal analysis an automatic “early warning” of the damage 

progression could be implemented if the actual shape of ( )f   and qD  curves deviates 

considerably from critical curves representing "normal" operating conditions. 



 

Figure 4. Singularity spectrum (a) and generalized dimension (b) of the synthetic crack 
patterns. 

Experiments 

Experimental tests were carried out on two large scale RC concrete shear walls namely SW1 

and SW2 with height-to-width ratio of 0.94 and 0.54, respectively. The walls were designed 

in compliance with ACI 318-08 including its chapter 21, earthquake resistance structures. 

Figure 5 shows an overall view of the specimens, and Table 1 summarizes their main 

characteristics. More details regarding specimens design can be found in the reference 36. To 

simulate earthquake loading effects, each specimen was subjected to a quasi-static cyclic 

loading. Cyclic loads were applied by two hydraulic actuators to the top of the specimens 

while their foundations were fully connected to the strong floor laboratory with 14 post-

tensioned, 1.5 inch nominal diameter Dywidag bars. Load transfer between the actuators and 



the walls was provided with brackets and plates at sides of the wall. The plates were post-

tensioned connected to each other at 450 mm bellow the top of each wall. In order to ensure 

synchronized loading, actuators were actively controlled with master-slave method. They 

were also sloped downward about 9° from horizon to prevent out-of-plane behavior. Due to 

typical low axial stress in low aspect ratio RCSW, axial load was not applied in these 

experiments. 



Figure 5. Experimental setup: (a) SW1, (b) SW2 

Table 1. Specimens Details 37 
Characteristics SW1 SW2 

Height [mm] 3300 2100 

Width [mm] 3050 3050 

Thickness [mm] 200 200 

Reinforcement ratio [%] 0.67 1 

Wall f’c (28th day) [MPa] 21 35 

Wall f’c (test day) [MPa] 25 48.2 

Rebars yield strength [MPa] 464 434 

Rebars ultimate strength [MPa] 708 460 

It was proposed to apply ten load steps on each wall; however, failure occurred during LS10. 

Each load step consisted of two load cycles, except load step zero which had there cycles. 

This load step was intended to verify functionality of the experimental set up and its results 

are not considered. Figure 6 shows the test loading protocols. Loading rate was set around 6 

mm/sec and 1.3 mm/sec, respectively for SW1 and SW2. Crack mapping was carried out at 

each peak and zero displacement. Maximum cracks width were measured using transparent 



scales, and pictures were taken at the end of each load step using a high definition camera. 

Due to severe crushing and spalling of SW1 at the end of experiment, and tilting of SW2 at 

LS10, crack monitoring was not considered at the end of the last load step. 

  

Figure 6. Load protocol 36: (a) SW1, (b) SW2  

Experimental results 

Mechanical behavior 

Figure 7 shows the force-displacement hysteresis loops for the two specimens. Also 

superimposed the trilinear backbone curve suggested by ASCE standard 41-13, for nonlinear 

analysis of low aspect ratio walls 38. The trilinear backbone curves (I, II, and III) identified 

in Figure 7 correspond to concrete cracking (I), yielding of the reinforcement (II), and 



ultimate strengths (III), observed at load steps LS2, LS6, and LS9, respectively for SW1, 

while at LS1, LS7 and LS9 for SW2. 

  

Figure 7. Force-displacement hysteresis loops 36, SW1 (a), SW2 (b) 

Visual inspection 

At the end of each cycle the formation of new cracks was observed while existing crack were 

expanded.  Therefore, length or density of the cracks increased monotonically. Crack width 

measurements were performed at peak displacements, and zero displacements (i.e., residual 

cracks), for each load step. In order to categorize the severity of damage, condition-rating 

grades suggested by the International Atomic Energy Agency (IAEA) guidebook 5, were 



adopted. Specifically, three damage grades (DG) were defined (different DG are detonated 

with alphabets in this paper while roman letters are used in the IAEA guidebook): grade A 

in which the maximum crack width was less than 0.2 mm; grade B (i.e., moderate damage) 

in which the largest crack width was comprised between 0.2 and 1mm; and grade C (i.e., 

critical damage) for cracks larger than 1mm. In general, no repair is needed for grade A, 

whereas appropriate rehabilitation strategy is necessary for grade B and C.  

Figure 8 compares crack widths at peak and zero displacements during testing. Also 

superimposed the DG thresholds suggested by IAEA guidebook. For the sake of clarity, 

cracks at peak displacements are shown in the middle of each load steps, while residual 

cracks are shown at the end of each load step. It is worth noting that damage classification 

based on residual crack measurements may lead to underestimation of the actual severity of 

damage. For instance, according to the DGs assigned to SW1 based on its residual crack 

width, critical damage (grade C) was reached at LS8 (Figure 8(a)), while the mechanical 

behavior of the wall identified severe damage at LS7. Similarly, damage grade C was 

identified in LS9 of SW2 (Figure 8(b)), while its backbone curves show severe damage in 

LS8. In addition as the structure returns to its rest position, cracks close; therefore, different 

lateral displacements of the wall results in different crack width measurements for the same 

actual level of damage.  



 

 
Figure 8. Crack width at peak, and zero displacement, IAEA DG are shown 22, (a) SW1, 
(b) SW2 

 

Crack patterns images were also collected at the end of each load step, when the wall reached 

the zero displacement (residual cracks). In order to extract binary images from original ones, 

crack patterns were drawn manually on the original images using Adobe Photoshop, as 

shown in Figure 9. A complete sequence of residual crack patterns for both SW1 and SW2 

can be found in 22. 



Figure 9. SW1-residual cracks after LS4: (a) original image (b) crack patterns 22 

Multifractal analysis results 

The Chhabra method was used to calculate the multifractal singularity spectrum and 

generalized dimension for the residual cracks mapped at the end of each load step. Images 

were treated as binary images, composed of pixels which are either black or white. Each 

image was partitioned into a grid of rectangular boxes of the same width-to-length ratio of 

that specimen under investigation, and the box sizes ranging from the wall size to forty times 

smaller ones. Binary images containing crack patterns were respectively of size 443552

and 322730 pixels for SW1 and SW2. Therefore, the smallest boxes have short edges of 

at least 11 and 8 pixels respectively for SW1 and SW2. 



Figure 10 illustrates )(rPi  
and ),( rqi  at scales }1,0,1{q , and for two box sizes, that is,

mm 2.1633.203  , and mm 6.817.101  , corresponding to partitioning the original image into 

15 and 30 boxes, respectively (note a portion of each wall was under the braces and not 

visible). As box sizes decreases, the overall area covered by the boxes decreases; as a result, 

the shape of the filled boxes will approach to the original shape of the crack patterns. 

Supposing that the mesh is large enough that all boxes are filled by at least one crack, and the 

entire special domain is fully covered by filled boxes. As a finer mesh covers the domain, 

regions having less density of cracks, are more likely to remain empty. Therefore, boxes with 

lower density are more likely to lose part of their area when covered by a finer mesh. These 

boxes are called rare events. Lower density in these boxes results in lower probability. 

Negative q magnifies these boxes, and eventually provides higher ),( rqi . On the other 

hand, boxes with higher density (e.g. where two cracks cross each other) are called smooth 

events because they are less probable to loss area as box size reduces.  



 

Figure 10. Probability and measure functions of SW1-LS4 cracks at different scales and box 
sizes 



  

Figure 11. Regression lines for SW1-LS4 crack patterns multifractal analysis. Note r is in 
[mm] 

 

Figure 11 shows regression lines fitted to data points obtained from SW1 at LS4 using 

different box sizes. Each columns in this figure corresponds to a different value for q, and 

rows correspond to regressions for different parameters. Figure 12 and Figure 13 show ( )f   



and qD  curves for SW1 and SW2 respectively. It can be seen that, as the cracks patterns 

extend and grow, ( )f   and qD  curves move toward higher values, which was expected from 

the preliminary analysis carried out on the synthetic data (see CASE 3). Multifractal analysis 

tracks crack patterns changes in a spectrum of scales from local to global scales. Since cracks 

are monotonically increasing a monotonic increase in local scaling is expected while global 

changes are expected only after changes in cracking mechanism which results in generating 

different patterns. 

In order to correlate the multifractal parameters, with the mechanical behavior of the 

specimens, the curves were clustered according to the trilinear backbone curve shown in 

Figure 7. The three clusters (I, II, III) were superimposed in Figure 13. The following 

observation can be made for SW1. First, significant changes for negative values of q, can be 

observed between load steps 2 (LS2) and 3 (LS3), where the initial yielding of the wall 

occurred. This may also indicate the occurrence of some minor localized cracks, similar to 

the CASE 1 for the synthetic data. Then, significant changes can be seen for the entire range 

of q (i.e., positive and negative), in the subsequent load steps in which significant yielding 

and stiffness degradation occurred, similar to the results predicted for CASE 3. For SW2 

changes on the multifractal parameters occurred in the entire range of q, with the most 



significant changes corresponding to the initial concrete cracking (I), yielding of the 

reinforcement (II), and ultimate strengths (III), observed at load steps at LS1, LS7 and LS9. 

Figure 12. Multifractal analysis of SW1 at different load steps, clusters are indicated with 
circles and guidelines: (a) singularity spectrums, (b) generalized dimension 

Figure 13. Multifractal analysis of SW2 at different load steps, clusters are indicated with 
circles and guidelines: (a) singularity spectrums, (b) generalized dimension 



  

Figure 14 shows information, and correlation dimensions at various load steps, and compares 

them with the clusters. It can be observed that, both information and capacity dimensions of 

crack patterns increase monotonically with load steps, and each jump in the curve could 

indicate severe changes in the mechanical behavior of the structure. In addition, difference 

between information and capacity dimension in region I has been notably less than other 

regions.    



  

Figure 14. Capacity and information fractal dimentions at the end of each load step, 
multifractal clusteres are indicated with background colors: (a) SW1, (b) SW2 

 

Conclusions 

Reinforced concrete shear walls (RCSW) are one of the most commonly used seismic 

resisting systems in conventional buildings. Commonly, RCSWs are assessed visually by 

tracking defects such as corrosion and spalling, and quantifying the length and the width of 

existing cracks. Although manual visual inspection (VI) is a well-established method to 

inspect RCSWs, it is time-consuming and depends heavily on the skills of the inspectors. 

This paper presented an approach based on the multifractal analysis of 2D images taken in 

the visible spectrum, to retrieve surface defect patterns that can provide a quantitative 

measure of damage. Traditional multifractal parameters, including singularity spectrum and 



generalized dimension curves, were first illustrated for synthetic crack patterns. Main 

differences between monofractal and multifractal analysis were emphasized. The approach 

was applied to a set of experimental data collected during testing of two large-scale RCSW 

subjected to controlled reversed cyclic loading in the plane of their web. In particular, the 

available data set included detailed records of crack images and structural performance for 

each test specimen. The structural response data available for each specimen was used to link 

the multifractal parameters with the structural performance of the two specimens. It was 

observed that, as the cracks patterns extend and grow, ( )f   and qD  curves move toward 

higher values and jump as cracking mechanism changes. This trend was also predicted by 

the preliminary analysis on the synthetic crack patterns.  

It is conceivable that with the help of the multifractal analysis an automatic alarming system 

could be implemented that will alert the appropriate engineers if the actual multifractal 

spectrum deviates considerably from a critical multifractal curve representing "normal" 

operating  in a structure. However, more tests and investigations are needed to standardize 

the approach and define a critical multifractal curve for each RCSWs based on their 

specifications.  
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