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Abstract

Conventionally, the assessment of reinforced concrete shear walls (RCSW) relies on manual
visual assessment which is time-consuming and depends heavily on the skills of the
inspectors. The development of automated assessment employing flying and crawling robots
equipped with high resolution cameras and wireless communications to acquire digital

images and advance image processing to extract cracks pattern, has paved the path toward
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implementing an automated system which determines structural damage based on visual
signals acquired from structures. Since there are few if any studies to correlate crack patterns
to structural integrity this paper proposes to analyze crack patters by using a Multifractal
Analysis (MFA). The approach is initially tested on synthetic crack patterns, then it is applied
to a set of experimental data collected during the testing of two large-scale RCSW subjected
to controlled reversed cyclic loading. The structural response data available for each
specimen is used to link the multifractal parameters with the structural performance of the
two specimens. A relationship between the multifractal parameters and the cracks patterns
evolution and mechanism is noted. The results show that as the cracks patterns extend and
grow, multifractal parameters move toward higher values. The parameters jump as the
mechanical response show severe stiffness loss. In this study no attempt is made to automate

the process of mapping cracks from images.
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Introduction

Reinforced concrete shear walls (RCSW) are one of the most commonly used seismic
resisting systems in conventional buildings and infrastructures. RCSWs are subjected to
deterioration due to aging, increased load, and natural hazards. To secure the overall
soundness of these structures proper assessment is crucial. Commonly, RCSWs are assessed
visually by tracking defects such as corrosion and spalling, and quantifying the length and
the width of existing cracks'. Concrete bridge decks are also commonly assessed based on
cracks density®*. Worldwide, various condition-rating grades have been developed to
quantify damage conditions in terms of crack’s width and length °>~. Although manual visual
inspection (VI) is a well-established method to inspect RCSWs, it is time-consuming and
depends heavily on the skills of the inspectors. Moreover, it may take weeks to obtain access
to buildings hit by natural hazards, such as earthquake. In order to overcome these limitations,
automated-based VI is a field that has received significant interest over the past few years.
Automatic inspection techniques use flying and crawling robots equipped with high
resolution camera and wireless communications to acquire 2D digital images; then image
processing is used to automatically retrieve damage properties, such as crack length and
width 810 1112 Degpite their increasing usage in the last few years few automated visual

inspection methods if any other than the authors recent publication exists'® to link the effect



of damage to the overall soundness of the structure. Current systems simply relay the
information about crack length and width to engineers that then determine the course of
action: retrofit, replacement, or no action. The results presented in this paper are part of a
long-term project that aims at developing an automated-based inspection technology for the
nondestructive evaluation (NDE) of reinforced concrete structures. The technology is based
on the fractal analysis of 2D images taken in the visible spectrum, to retrieve surface defect
patterns that can provide a quantitative measure of damage. Fractal analysis is a relatively
novel mathematical tool that has been used successfully in many fields including biology and
physical sciences '“'7. However, its application in the NDE/SHM community has been
modest'®2!. Recently, the authors have used a monofractal analysis to discriminate different
damage grades in RCSWs 2. They have shown that, in general the fractal dimension
increases as the structural damage increases. Although these preliminary results using the
monofractal analysis have been encouraging, it is important to recognize that using a single
scalar, the fractal dimension (FD), may be insufficient as a summary statistic for the overall
crack patterns. In this paper a more general approach is presented (i.e., multifractal analysis)
based on point-wise scaling properties (i.e., local fractal dimensions) of the image. As cracks
develop, their width, length, density, and fractal dimension grow (local change). Besides, as

cracking mechanism changes, multifractal parameters form separate clusters which indicates



the change in mechanism (global change). So, the idea is to decomposed 2D images into
many subsets characterized by different local FD, which quantify the local singular behavior
and as a result relate to the local scaling of the image 2. Thus, a 2D image will require a set
of FD to fully characterize its scaling properties. This paper is organized as follows. First, a
brief overview on the multifractal analysis is provided, and followed by application of the
method on synthetic cracks. Then, experimental results are presented with application to the
damage assessment of two large-scale reinforced concrete shear walls under lateral cyclic

loading.

Multifractal analysis

Background

The term “Fractal” was first introduced by Mandelbrot ** to indicate self-similar objects
whose complex geometry cannot be characterized by an integer dimension. Since then, the
term has been extensively used to study natural and experimental physical phenomena %°. A
common way to characterize fractal objects is by their fractal dimension (FD) which, very
roughly speaking, is related to their degree of complexity, and the extent to which features at
different scales are related. More specifically, FD is defined as a ratio comparing how detail
in a pattern changes with the scale at which it is measured*®. The most popular algorithm to

calculate the FD is the box-counting, which considers the space filling properties of the object



as an indication of the object’s complexity '*. In this approach, a virtual grid of squared boxes
overlaps the object, and the number of boxes of a given size () necessary to cover it is
counted. As r—0, the total area covered by the area elements converges to the measure of
FD 22, Based on this method FD is defined as:
FD =1im 22V ()
>0 log(r)
where N () is the total number of non-empty boxes of linear size r.

Many natural phenomena, however, have a more complex scaling relation, and their statistics
cannot be described by just a single scalar (i.e., FD). For instance, consider a 2D signal such
as a gray scale image. For describing an object of the image the box-counting method may
not be appropriate since it gives only a relation between the non-empty boxes and the box
size ?7; therefore no weighting is done to the count according to the signal levels into the
boxes. Multifractal analysis has shown the potential to provide more insights into the scaling
properties of these objects 2® 2°. The multifractal analysis is a generalization, in which the
fractal dimension (FD), instead of being a global parameter which only gives information on
the support of a given measure *°, is a local parameter (called singularity strength , ) that

may change from box to box, and provides more insight into the way the measure is



distributed over its support 3! 28, In multifractal analysis the scale-invariant properties of the

object can be characterized on the basis of its generalized *? dimensions Dy, defined as:

N(r)
1 P’
1 0og 12:1: i (I”) (2)

D = lim
q—1r0 log(7)

q

where ¢ is a real value moment order, p () is the measure (or weight) associated with the

i-th box. For a binary image £ () can be seen as the probability of existence of black pixels

in that box, that is **:

()

where N,(7) is the number of black pixels inside the i-th box of size r, and M (r) is the total

number of boxes containing at least one black pixel. The most popular generalized
dimensions are: the capacity dimension (Do), the information dimension (D7), the correlation

dimension (D:). In general, Dy is a monotone decreasing function of q. If Dy is a single-



valued function, equal to the fractal dimension (FD) defined above, the object is called
monofractal 4. Overall, the parameter g serves as a “microscope” that analyzes the object at
different scales '*. In multifractal analysis, one can also determine the number of boxes

having similar local scaling, that is same, , and define f(a)as the fractal dimension of the

set of boxes with singularities, . The curve f(a), also called multifractal spectrum, is a
convex function whose maximum corresponds to Do. As  >—0, d—>C ., and as

q—>1%, a—a, . In general, when f(a) and Dy are smooth functions of , and ¢, a
Legendre transformation can be used to derive f(a) from D, ***°. However, f(«)can also
be directly calculated, without knowing Dy, by using the method proposed by Chhabra et al.

3435 The first step of this approach consists of defining a family of normalized measures

u,(q,r) defines as:

M, (q,r) = N({?L
INAGE
@



For each box i, the normalized measure 4 (4,) depends on the order of the statistical

moment, and on the box size and it takes values in the range [0,1] for any value of q. Then,

the two functions ,(,) and f(q) are evaluated:

N(r)

‘ Zﬂi (q,7)log(P.(r)) (5)
S S
N(r)
> w(g,r)log(u,(q,7)) (6)
f(g)=lim-= 1
r—0 Og(l")

For each ¢, values ofa(q) and f(g)are obtained from the slope of plots of

N(r) N(r)

Zﬂ[(q,r)log(Pi(r)) versus log(r), and Z 1,(q,r)log(11,(q,r)) versus log(r) over the

i=1 i=1
entire range of box size values under consideration. Finally, these two data sets of & (q) and

f(q) are plotted with respect to each other to construct the singularity spectrum (i.e. plot of

A vs. f(a)).



Synthetic data analysis

The analysis of synthetic data sets presented in this section are intended to illustrate how the
multifractal parameters are calculated, and show their application for crack patterns
quantification in RCSWs. As shown in Figure 1, the data sets consisted of four binary images
(size 500 x 400 pixels), representing typical crack patterns in a shear wall (size of the wall
was assumed to be 5000mm x 4000mm ). Figure 1(a) was assumed as a base pattern (CASE
0), while the other three cases were generated by simple manipulations of CASE 0.
Specifically, for CASE 1 (Figure 1(b)) minor changes were applied on CASE 0, while the
overall shape was preserved. CASE 2 (Figure 1(c)), was generated by flipping one of the two
cracks of the base pattern. Hence, the cracks details are exactly the same, but the general

shape was changed. Finally, CASE 3 is representative of crack patterns growth.
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Figure 1. Synthetic crack patterns: (a) CASE 0, (b) CASE 1, (c) CASE 2, (d) CASE 3

In order to perform the multifractal analysis of these images the Chhabra method described
in section 2.1 was used to directly evaluate the singularity spectrum f(«) and the generalized

dimension Dy. The analysis was carried out by dividing each image with rectangular boxes

of aspect ratio similar to the original image. The number of division ranged from 1 to 40,



(i.e., the smallest box size was equal to 12.5x10pixels), while the range of ¢ was selected

within the range between 10 and -10 (i.e., ¢ € [-10,10]).

Figure 2 shows B (7’ ) and ,U,-(q, r ) for the data set shown in Figure 1(a). Two different box
sizes were considered, that is, 100x80 and 50x40 pixels. As expected, the higher value of

P (7) was obtained at boxes with higher concentration of black pixels. In order to illustrate

the effect of the parameter g, £ (q, r ) was calculated for three different values of g, i.e.
g € {~1,0,1} as shown in Figure 2. It can be observed that negative values of ¢’s (¢ = —1) are

dominated by boxes of low probability densities (i.e., rare events), while positive values of

q’s (¢ = +1) are dominated by boxes of high probability densities (i.e., smooth events). For
g = 0, each box is given equal weight regardless of the number of points in the boxes. Thus
information concerning distribution of points in the boxes is lost. Therefore, for ¢ =0 a

traditional monofractal analysis is recovered.
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Figure 2. Probability and measure functions of synthetic cracks at q=-1, q=0, and g=1, all
plots are normalized.

As it was described in section 2.1,a(q) , f(q), anlelwere calculated by using regression

lines over the entire range of box sizes. Figure 3 illustrate some of these regression lines for
CASE 0 (Figure 1(a)). In this figure, regression line plots for only three values of ¢, i.e.

g € {~1,0,1} are shown in column wise order.
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Figure 3. Regression lines on the synthetic crack pattern CASE 0’s data. Note 7 is in [mm)].

As illustrated in Figure 4, where f(a) and Dq curves are shown for the four synthetic crack

patterns shown in Figure 1, multifractal analysis could provide a sensitive tool for the

discrimination of crack patterns. As expected, the curves f(a) are convex with a single

maximum at ¢g=0while ), are monotonically decreasing. The relation between , and the



parameter g, is the following: the right branch corresponds to negative values of g, the left
one to positive values of g. By comparing CASE 0, and CASE 1, it can be observed that f(a)
and Dq show negligible difference for positive values of g, whereas more significant

difference can be observed for negative values of ¢. The reason behind this different behavior
is that, ¢ acts as a scanning tool, that is, for ¢>0 regions with high probability are amplified,
while for ¢<0 regions with low probability are magnified, making the analysis more sensitive
to local variations; therefore for ¢>0 the analysis focuses more on the general shape rather

than local features of the input patterns. For CASE 2, since overall shape of the pattern

changed, while local features were kept the same, both f(a)and D; show the change just in

the negative range of g. For CASE 3 it can be clearly recognized a qualitative difference in
the f(a) and D), curves, caused by differences in crack patterns. Therefore, it is conceivable
that with the help of the multifractal analysis an automatic “early warning” of the damage
progression could be implemented if the actual shape of f(«) and Dq curves deviates

considerably from critical curves representing "normal" operating conditions.
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Figure 4. Singularity spectrum (a) and generalized dimension (b) of the synthetic crack
patterns.

Experiments

Experimental tests were carried out on two large scale RC concrete shear walls namely SW1
and SW2 with height-to-width ratio of 0.94 and 0.54, respectively. The walls were designed
in compliance with ACI 318-08 including its chapter 21, earthquake resistance structures.
Figure 5 shows an overall view of the specimens, and Table 1 summarizes their main
characteristics. More details regarding specimens design can be found in the reference *°. To
simulate earthquake loading effects, each specimen was subjected to a quasi-static cyclic
loading. Cyclic loads were applied by two hydraulic actuators to the top of the specimens
while their foundations were fully connected to the strong floor laboratory with 14 post-

tensioned, 1.5 inch nominal diameter Dywidag bars. Load transfer between the actuators and



the walls was provided with brackets and plates at sides of the wall. The plates were post-
tensioned connected to each other at 450 mm bellow the top of each wall. In order to ensure
synchronized loading, actuators were actively controlled with master-slave method. They
were also sloped downward about 9° from horizon to prevent out-of-plane behavior. Due to
typical low axial stress in low aspect ratio RCSW, axial load was not applied in these

experiments.

3050 mm




Figure 5. Experimental setu: () 1, (b) W2

Table 1. Specimens Details *’

Characteristics SW1 Sw2
Height [mm] 3300 2100
Width [mm] 3050 3050
Thickness [mm] 200 200
Reinforcement ratio [%] 0.67 1
Wall £, (28" day) [MPa] 21 35
Wall £ (test day) [MPa] 25 48.2
Rebars yield strength [MPa] 464 434
Rebars ultimate strength [MPa] 708 460

It was proposed to apply ten load steps on each wall; however, failure occurred during LS10.
Each load step consisted of two load cycles, except load step zero which had there cycles.
This load step was intended to verify functionality of the experimental set up and its results
are not considered. Figure 6 shows the test loading protocols. Loading rate was set around 6
mm/sec and 1.3 mm/sec, respectively for SW1 and SW2. Crack mapping was carried out at

each peak and zero displacement. Maximum cracks width were measured using transparent



scales, and pictures were taken at the end of each load step using a high definition camera.
Due to severe crushing and spalling of SW1 at the end of experiment, and tilting of SW2 at

LS10, crack monitoring was not considered at the end of the last load step.

Displacement [mm]

0 12 3 456 7 8 910 0 123 456 7 8 910
Load Step Load Step
Figure 6. Load protocol *®: (a) SW1, (b) SW2

Experimental results

Mechanical behavior

Figure 7 shows the force-displacement hysteresis loops for the two specimens. Also
superimposed the trilinear backbone curve suggested by ASCE standard 41-13, for nonlinear
analysis of low aspect ratio walls *%. The trilinear backbone curves (I, II, and III) identified

in Figure 7 correspond to concrete cracking (I), yielding of the reinforcement (II), and



ultimate strengths (III), observed at load steps LS2, LS6, and LS9, respectively for SW1,

while at LS1, LS7 and LS9 for SW2.
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Figure 7. Force-displacement hysteresis loops *°, SW1 (a), SW2 (b)

Visual inspection

At the end of each cycle the formation of new cracks was observed while existing crack were

expanded. Therefore, length or density of the cracks increased monotonically. Crack width

measurements were performed at peak displacements, and zero displacements (i.e., residual

cracks), for each load step. In order to categorize the severity of damage, condition-rating

grades suggested by the International Atomic Energy Agency (IAEA) guidebook °, were



adopted. Specifically, three damage grades (DG) were defined (different DG are detonated
with alphabets in this paper while roman letters are used in the IAEA guidebook): grade A
in which the maximum crack width was less than 0.2 mm; grade B (i.e., moderate damage)
in which the largest crack width was comprised between 0.2 and 1mm; and grade C (i.e.,
critical damage) for cracks larger than 1mm. In general, no repair is needed for grade A,

whereas appropriate rehabilitation strategy is necessary for grade B and C.

Figure 8 compares crack widths at peak and zero displacements during testing. Also
superimposed the DG thresholds suggested by IAEA guidebook. For the sake of clarity,
cracks at peak displacements are shown in the middle of each load steps, while residual
cracks are shown at the end of each load step. It is worth noting that damage classification
based on residual crack measurements may lead to underestimation of the actual severity of
damage. For instance, according to the DGs assigned to SW1 based on its residual crack
width, critical damage (grade C) was reached at LS8 (Figure 8(a)), while the mechanical
behavior of the wall identified severe damage at LS7. Similarly, damage grade C was
identified in LS9 of SW2 (Figure 8(b)), while its backbone curves show severe damage in
LS8. In addition as the structure returns to its rest position, cracks close; therefore, different
lateral displacements of the wall results in different crack width measurements for the same

actual level of damage.
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Figure 8. Crack width at peak, and zero displacement, IAEA DG are shown %2, (a) SW1,

(b) SW2

Crack patterns images were also collected at the end of each load step, when the wall reached
the zero displacement (residual cracks). In order to extract binary images from original ones,
crack patterns were drawn manually on the original images using Adobe Photoshop, as
shown in Figure 9. A complete sequence of residual crack patterns for both SW1 and SW2

can be found in 2.



Figure 9. SW1-residual cracks after LS4: (a) original image (b) crack patterns >

Multifractal analysis results

The Chhabra method was used to calculate the multifractal singularity spectrum and
generalized dimension for the residual cracks mapped at the end of each load step. Images
were treated as binary images, composed of pixels which are either black or white. Each
image was partitioned into a grid of rectangular boxes of the same width-to-length ratio of
that specimen under investigation, and the box sizes ranging from the wall size to forty times
smaller ones. Binary images containing crack patterns were respectively of size 552 x 443

and 730 x 322 pixels for SW1 and SW2. Therefore, the smallest boxes have short edges of

at least 11 and 8 pixels respectively for SW1 and SW2.



Figure 10 illustrates B (l’ ) and 4; (q, r ) at scales¢ € {~1,0,1} , and for two box sizes, that is,

203.3x163.2mm, and101.7x81.6 mm, corresponding to partitioning the original image into
15 and 30 boxes, respectively (note a portion of each wall was under the braces and not
visible). As box sizes decreases, the overall area covered by the boxes decreases; as a result,
the shape of the filled boxes will approach to the original shape of the crack patterns.
Supposing that the mesh is large enough that all boxes are filled by at least one crack, and the
entire special domain is fully covered by filled boxes. As a finer mesh covers the domain,
regions having less density of cracks, are more likely to remain empty. Therefore, boxes with
lower density are more likely to lose part of their area when covered by a finer mesh. These

boxes are called rare events. Lower density in these boxes results in lower probability.
Negative ¢ magnifies these boxes, and eventually provides higher £4(g,7) . On the other

hand, boxes with higher density (e.g. where two cracks cross each other) are called smooth

events because they are less probable to loss area as box size reduces.
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Figure 11. Regression lines for SW1-LS4 crack patterns multifractal analysis. Note 7 is in
[mm]

Figure 11 shows regression lines fitted to data points obtained from SW1 at LS4 using
different box sizes. Each columns in this figure corresponds to a different value for ¢, and

rows correspond to regressions for different parameters. Figure 12 and Figure 13 show f(a)



and Dq curves for SW1 and SW2 respectively. It can be seen that, as the cracks patterns

extend and grow, f(«) and Dq curves move toward higher values, which was expected from

the preliminary analysis carried out on the synthetic data (see CASE 3). Multifractal analysis
tracks crack patterns changes in a spectrum of scales from local to global scales. Since cracks
are monotonically increasing a monotonic increase in local scaling is expected while global
changes are expected only after changes in cracking mechanism which results in generating

different patterns.

In order to correlate the multifractal parameters, with the mechanical behavior of the
specimens, the curves were clustered according to the trilinear backbone curve shown in
Figure 7. The three clusters (I, II, IIT) were superimposed in Figure 13. The following
observation can be made for SW1. First, significant changes for negative values of ¢, can be
observed between load steps 2 (LS2) and 3 (LS3), where the initial yielding of the wall
occurred. This may also indicate the occurrence of some minor localized cracks, similar to
the CASE 1 for the synthetic data. Then, significant changes can be seen for the entire range
of g (i.e., positive and negative), in the subsequent load steps in which significant yielding
and stiffness degradation occurred, similar to the results predicted for CASE 3. For SW2

changes on the multifractal parameters occurred in the entire range of ¢, with the most



significant changes corresponding to the initial concrete cracking (I), yielding of the

reinforcement (II), and ultimate strengths (III), observed at load steps at LS1, LS7 and LS9.
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Figure 12. Multifractal analysis of SW1 at different load steps, clusters are indicated with
circles and guidelines: (a) singularity spectrums, (b) generalized dimension
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Figure 13. Multifractal analysis of SW2 at different load steps, clusters are indicated with
circles and guidelines: (a) singularity spectrums, (b) generalized dimension
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Figure 14 shows information, and correlation dimensions at various load steps, and compares
them with the clusters. It can be observed that, both information and capacity dimensions of
crack patterns increase monotonically with load steps, and each jump in the curve could
indicate severe changes in the mechanical behavior of the structure. In addition, difference
between information and capacity dimension in region I has been notably less than other

regions.
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Figure 14. Capacity and information fractal dimentions at the end of each load step,
multifractal clusteres are indicated with background colors: (a) SWI, (b) SW2

Conclusions

Reinforced concrete shear walls (RCSW) are one of the most commonly used seismic
resisting systems in conventional buildings. Commonly, RCSWs are assessed visually by
tracking defects such as corrosion and spalling, and quantifying the length and the width of
existing cracks. Although manual visual inspection (VI) is a well-established method to
inspect RCSWs, it is time-consuming and depends heavily on the skills of the inspectors.
This paper presented an approach based on the multifractal analysis of 2D images taken in
the visible spectrum, to retrieve surface defect patterns that can provide a quantitative

measure of damage. Traditional multifractal parameters, including singularity spectrum and



generalized dimension curves, were first illustrated for synthetic crack patterns. Main
differences between monofractal and multifractal analysis were emphasized. The approach
was applied to a set of experimental data collected during testing of two large-scale RCSW
subjected to controlled reversed cyclic loading in the plane of their web. In particular, the
available data set included detailed records of crack images and structural performance for
each test specimen. The structural response data available for each specimen was used to link

the multifractal parameters with the structural performance of the two specimens. It was
observed that, as the cracks patterns extend and grow, f(a) and Dq curves move toward

higher values and jump as cracking mechanism changes. This trend was also predicted by

the preliminary analysis on the synthetic crack patterns.

It is conceivable that with the help of the multifractal analysis an automatic alarming system
could be implemented that will alert the appropriate engineers if the actual multifractal
spectrum deviates considerably from a critical multifractal curve representing "normal"
operating in a structure. However, more tests and investigations are needed to standardize
the approach and define a critical multifractal curve for each RCSWs based on their

specifications.
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