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Abstract—In this paper we evaluate the effect of noise on
community scoring and centrality-based parameters with respect
to two different aspects of network analysis: (i) sensitivity, that is
how the parameter value changes as edges are removed and (ii)
reliability in the context of message spreading, that is how the
time taken to broadcast a message changes as edges are removed.

Our experiments on synthetic and real-world networks and
three different noise models demonstrate that for both the aspects
over all networks and all noise models, permanence qualifies
as the most effective metric. For the sensitivity experiments
closeness centrality is a close second. For the message spreading
experiments, closeness and betweenness centrality based initiator
selection closely competes with permanence. This is because
permanence has a dual characteristic where the cumulative
permanence over all vertices is sensitive to noise but the ids
of the top-rank vertices, which are used to find seeds during
message spreading remain relatively stable under noise.

I. INTRODUCTION

Network analysis has become an ubiquitous tool for under-
standing the behavior of various complex systems [9]. The
vertices in the network represent the entities of the complex
system and the edges represent their pairwise interactions.

However, in the practical context, due to the limitations in
data gathering, not all interactions can be observed. Conse-
quently, the network can be potentially incomplete, as mani-
fested by missing edges. It is therefore important to determine
the effect of this incompleteness or noise on different network
parameters and rank them according to how they behave under
noise.

In this paper we study the effect of noise on two important
classes of network analysis metrics — (i) centrality measures
and (ii) community scoring functions. Centrality measures
are key to applications that rely on node ranking, and the
community scoring functions determine the quality of clus-
ters/communities that are used in many applications requiring
unsupervised classification.
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We evaluate these metrics based on two orthogonal qualities.
The first is sensitivity, that is whether the change in the
value of the metric is commensurate with percentage of edges
removed. If a metric is sensitive then it can serve as a good
indicator of how much the network has been changed (see
Section III).

The second metric is reliability, that is whether certain
operations in the network can be performed efficiently in spite
of the missing edges. If a metric is reliable then it guarantees
good performance even under noise. Here we select message
spreading as the candidate operation. The seed nodes that
initiate message spreading are selected from the high valued
entities of different metrics. A metric has high reliability if the
time for message spreading under noise does not significantly
degrade if its high valued entities are selected as seeds (see
Section IV). In contrast to previous work [1, 7, 11], which
focused on single noise models and primarily on centrality
metrics, to the best of our knowledge this is the first compar-
ative study encompassing several centrality and community-
scoring parameters and different types of noise models.

Overview of Experiments (Section IT) Among the central-
ity measures we consider closeness, betweenness and Pagerank
and among the community scoring functions we consider
modularity, cut-ratio and conductance. We also include a third
type of metric, permanence [2]. Although permanence is a
community scoring metric, unlike the others it is vertex based.
Therefore permanence can also be considered as a centrality
measure.

We apply three different noise models on real-world and
synthetic networks. We empirically evaluate the above metrics
to estimate their sensitivity to varying levels of noise. We also
measure their reliability by observing whether high valued
vertices of these metrics can serve as effective seeds for
message spreading.

In all our experiments, we ensure that in spite of the
noise, the underlying community structure is not significantly
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Fig. 1. Sensitivity of the different quality metrics for varying levels of noise
(in steps of 2%) with x-axis as the noise level and y-axis as the metric values.
The first and the second panels are for the football and railway the networks
respectively. The third panel is for the LFR network (u = 0.3).

disrupted from its original form and the giant component of
the network remains connected. Nevertheless, as we shall see,
even this constrained noise can significantly affect the analysis.
Key Results (i) For both the objectives — sensitivity and
reliability and for all the given noise models and networks,
permanence proves to be the most sensitive and most reliable
metric in majority of the cases. (ii) The other centrality
metrics can be ranked in a partial order. The only other metric
that exhibits sensitivity is closeness. For reliability, when a
difference in the performance can be observed, closeness and
betweenness also show high reliability. (iii) For all sensitivity
experiments, and for most reliability experiments, the partial
ordering of metrics is relatively independent of the noise model
and type of network. Community scoring metrics,apart from
permanence, are not sensitive.

Rationale for the behavior of permanence (Section V).
At a quick glance it would seem that sensitivity and reliability
are mutually opposing properties. Sensitivity is used as an
indicator of noise, whereas reliability is used to guarantee good
performance in spite of noise. It is therefore surprising that
permanence is both the most sensitive as well as the most
reliable among all the metrics that we investigate.

We believe that this is because permanence encompasses
both community-like and centrality-like properties. While the
cumulative value of permanence is sensitive to the level of
noise, satisfying the sensitivity criterion, its high rank vertices
are stable under noise and therefore serve as effective seeds in
the noisy versions of the networks. We compute the Jaccard
Index (JI) for the high ranked vertices between the original
and noisy networks. Permanence exhibits the highest JI and
therefore the set of its high ranked vertices change the least.

II. EXPERIMENTAL SETUP

Datasets. Here is a brief description of the different networks
we used (see Table I for properties of real-world networks).

Network | #Nodes | #Edges | <k> | kmaz | [c] [ n@*™ | nI*™

Football 115 613 10.57 12 12 5 13

Railway 301 1224 6.36 48 21 1 46
ABLE T

DATASET STATISTICS. |c| DENOTES THE NUMBER OF COMMUNITIES IN
THE GROUND-TRUTH, n**"* AND n**®* DENOTE THE NUMBER OF NODES
IN THE SMALLEST AND THE LARGEST SIZE COMMUNITIES RESPECTIVELY.

LFR Benchmark: We use the benchmark LFR model [8] that
generates different networks and ground-truth communities
of various quality. We use n = 1000, u© = 0.3 keeping
all other parameters to the default values of the original
implementation .

Railway: has been taken from Ghosh et al. [4].

Football: has been taken from Girvan et al. [5].

Noise Models. We experiment with three noise models —
uniform, crawled and censored (see [11] for detailed de-
scription), — to simulate real-world sources of noise. We
do not allow formation of disconnected components while
introducing noise. We vary noise levels in steps of 2% from
0 to 30 in all our experiments.

Metrics. Our set of network parameters for evaluation in-
clude community-scoring metrics namely, modularity, cut-
ratio, and conductance, and centrality metrics namely between-
ness, closeness and Pagerank. For the definitions of these
metrics the reader is referred to [10]. We also include a
recently introduced metric permanence [2], that serves both
as a community scoring function as well as a measure of
centrality.

III. SENSITIVITY OF THE METRICS

A sensitive parameter is one whose change is commensurate
with the amount of noise applied. For small amounts of noise,
the change in the parameter values should be low, whereas,
as the noise increases, the change should be much higher. A
sensitive parameter can function as a good indicator of whether
a network significantly changed from its original topology.
QOur goal is to rank the network parameters by the extent
to which they are sensitive to the noise level.

Methodology. We apply the three noise models on the
one synthetic LFR network (¢ = 0.3), and two real-world,
railway and football, networks. For each increasing level
of noise we compute the value of the parameters. For the
vertex-based metrics we take the average over all vertices.
We compute the value of the community-scoring parameters
based on the ground-truth community assignment from the
original network. Our rationale is that because community
detection is expensive, therefore, re-computing the community
after each noise addition would defeat the purpose of quickly
ascertaining the change in the network. Further, our selected
noise level is low enough such that it does not significantly
change the original ground-truth community. Our results are
averaged over ten simulation runs.

Results. The results in Fig. 1 show that the change in
permanance has the highest slope with respect to increasing
noise. This indicates that permanence is most sensitive to noise
as compared to the other parameters. However, there are some

Thttps://sites.google.com/site/santofortunato/inthepress2
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Metrics Railway Football LFR (0.3)
Permanence (0.12, -0.08) (0.261, 0.091) (0.121, 0.003)
Closeness (0.019, 0.0048) (0.176, 0.041) (0.336, 0.301)
Betweenness  (0.038, 0.043) (0.394, 0.358) (0.12, 0.1099)
Pagerank (0.0033, 0.0034)  (0.008, 0.008) (0.001, 0.001)
Modularity (0.467, 0.464) (0.555, 0.557) (0.661, 0.658)
Conductance  (0.552, 0.551) (0.407, 0.4003)  (0.303, 0.3)
CutRatio (0.012, 0.0098) (0.038, 0.027) (0.004, 0.003)
Permanence (0.116, -0.028) (0.355, 0.165)  (0.109, -0.09)
Closeness (0.02, 0.004) (0.176, 0.037)  (0.336, 0.293)
Betweenness  (0.041, 0.065) (0.39, 0.40) (0.162, 0.303)
Pagerank (0.0033, 0.0034)  (0.008, 0.008)  (0.001, 0.001)
Modularity (0.467, 0.502) (0.555, 0.548)  (0.661, 0.659)
Conductance  (0.548, 0.513) (0.406, 0.401)  (0.303, 0.301)
CutRatio (0.012, 0.0098) (0.038, 0.027)  (0.004, 0.003)
Permanence (0.09, -0.016) (0.25, 0.066) (0.129, -0.097)
Closeness (0.02, 0.001) (0.183, 0.047)  (0.336, 0.137)
Betweenneness  (0.038, 0.031) (0.391, 0.198)  (0.106, 0.072)
Pagerank (0.0033, 0.0033)  (0.008, 0.008)  (0.001, 0.001)
Modularity (0451, 0.4) (0.549, 0.526)  (0.657, 0.644)
Conductance (0.583, 0.576) (0.407, 0.441)  (0.304, 0.327)
CutRatio (0.012, 0.0098) (0.038, 0.027)  (0.004, 0.003)

TABLE IT
RANGE OF METRIC VALUES FOR UNIFORM NOISE (1ST ROW), CENSORED
NOISE (2NP ROW) AND CRAWLED NOISE (3RP ROW). THE NUMBERS IN
BOLD SHOWS THE RANGE THAT HAS THE LARGEST SEPARATION.

cases, e.g., the football network where the closeness centrality
is also quite sensitive. While betweeness is slightly sensitive in
the LFR networks, it shows an opposite trend, i.e. increase in
value with noise for censored noise in the real-world networks.
The rest of the metrics remain constant. We report the range
of the average of each metric obtained for each noise model
as a tuple — (average metric value at 2% noise level, average
metric value at 30% noise level) — in Table II. In this table,
permanence shows the largest separation.

IV. RELIABILITY OF THE METRICS

In message spreading [3], a set of source vertices (seed
nodes) start sending a message. At every time step, a vertex
containing the message transfers the message uniformly at
random to one of its neighbors who does not have the message.
The algorithm terminates when all vertices have received the
message. The selection of the seed nodes is critical to how
quickly the message spreads. A reliable metric is one whose
high ranked nodes, if used as seeds, can spread the message
quickly even under noise.

Methodology. For each of the centrality metrics, closeness,
betweeeness and Pagerank, and also for permanence we select
a small fraction of the highest ranked nodes as the seed. We
also select seeds (a) uniformly at random and (b) based on
highest degree as baselines for the spreading experiments.

For different levels of noise, we compute the the number
of iterations required to broadcast the message in the whole
network and compare the values across the different centrality
metrics, permanence and the two baselines.

Results: In Fig. 2, we plot the time required to broadcast
for different levels of noise. For each noise level the results are
averaged over ten different runs. The results can be divided
into three groups.

All metrics perform equally well: Crawled noise in the LFR
and the football network.

Metrics perform differently based on the noise level, but
no clear winner: Uniform noise in the railway and football
networks and censored noise in the football.
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Fig. 2. Time required to broadcast a message for different seed node selection
mechanisms (permanence, closeness, betweenness, Pagerank) and varying
noise levels (in steps of 2%). LFR network (n = 0.3, first panel), railway
network (second panel) and football network (third panel). The first column
of figures represents results for uniform noise, the middle column represents
results for censored noise and the last column represents results for the crawled
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Fig. 3. The variation in the different components of permanence and
modularity when the noise levels are varied for the football network.

One metric performs better in most of the noise levels: For
uniform and censored noise for the LFR network and censored
noise for the railway network permanence takes the least time
to spread messages. For crawled noise in the railway network,
betweenness takes the least time.

We therefore see that for the larger and scale-free LFR
networks permanence is either the most reliable or all the
metrics perform equally well. The only time permanence is
significantly outperformed is in the case of crawled noise on
railway network. We believe that this is because unlike the
other networks railway is a technological, almost tree-like,
network. Therefore vertices with high betweenness centralities
would be key connection points. This feature is exaggerated in
the crawled noise since the network created using BFS-search
has become tree-like.

V. ANALYSIS OF PERFORMANCE

In this section, we explore the characteristics of permanence
that make it such a strong measure under noise.
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A. Sensitivity of permanence

We compare the sensitivity of permanence with other com-
munity scoring metrics. We break the permanence formula
into two parts Pl = EI((:)(U) X ﬁ and ¢;, (v), and observe
how they change for the different noise models. The results
in Fig. 3 show that PI remains relatively constant, whereas
the internal clustering coefficient is the major contributor to
the change in permanence. When we contrast this result with
the main factors in modularity (Fig. 3), namely the internal
and external edges, we see that each factor remains relatively
constant. A similar observation holds when we consider the
other scoring metrics conductance and cut ratio.

B. Rank of high permanence vertices under noise

We compare the centrality metrics and permanence to check
how their top ranking vertices alter under noise models. We
identify the top 20 of the high valued vertices for each
metric. Then for each noise level we compute the new top
ranked vertices. We compute the Jaccard Index [6] between
the original vertex set and the new one obtained from the
noisy network. A high Jaccard index (maximum value 1)
indicates that most of the top ranked vertices are retained
under noise, and a low value (minimum 0) indicates that the
set has changed completely. As can be seen in Fig. 4, the
Jaccard Index deteriorates much more slowly for permanence,
than the other centrality metrics in most of the cases. This
indicates that the ids of the high valued permanence vertices
remain relatively constant under noise.

These experiments together provide a rationale of why
permanence is effective both in evaluating noise through
sensitivity and also reliable for message spreading.
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Fig. 4. The Jaccard Index between the top vertices of the original and the
noisy networks for varying noise levels. We show the football (top), the
railway (middle) and the LFR (1 = 0.3, bottom) networks respectively.

VI. CONCLUSION

In this work, we have done rigorous experiments to under-
stand the effect of noise in complex networks and compared

different community scoring and centrality metrics in terms
of sensitivity and reliability. A key observation is that in a
majority of cases permanence worked better than all the other
competing measures investigated. The central lesson is that
while permanence is appropriately sensitive to different noise
levels, the high permanence nodes are almost unaffected by
the application of noise thus making the measure at the same
time very reliable.

In future we would like to investigate the analytical reasons
for the stability of high permanence nodes and, thereby,
propose an algorithm to automatically identify the level of
noise up to which this stability persists.

The data and the code are available in the public domain
(https://github.com/Sam131112/Noise_Models.git).
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