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Abstract—In this paper we evaluate the effect of noise on
community scoring and centrality-based parameters with respect
to two different aspects of network analysis: (i) sensitivity, that is
how the parameter value changes as edges are removed and (ii)
reliability in the context of message spreading, that is how the
time taken to broadcast a message changes as edges are removed.

Our experiments on synthetic and real-world networks and
three different noise models demonstrate that for both the aspects
over all networks and all noise models, permanence qualifies
as the most effective metric. For the sensitivity experiments
closeness centrality is a close second. For the message spreading
experiments, closeness and betweenness centrality based initiator
selection closely competes with permanence. This is because
permanence has a dual characteristic where the cumulative
permanence over all vertices is sensitive to noise but the ids
of the top-rank vertices, which are used to find seeds during
message spreading remain relatively stable under noise.

I. INTRODUCTION

Network analysis has become an ubiquitous tool for under-

standing the behavior of various complex systems [9]. The

vertices in the network represent the entities of the complex

system and the edges represent their pairwise interactions.

However, in the practical context, due to the limitations in

data gathering, not all interactions can be observed. Conse-

quently, the network can be potentially incomplete, as mani-

fested by missing edges. It is therefore important to determine

the effect of this incompleteness or noise on different network

parameters and rank them according to how they behave under

noise.

In this paper we study the effect of noise on two important

classes of network analysis metrics – (i) centrality measures

and (ii) community scoring functions. Centrality measures

are key to applications that rely on node ranking, and the

community scoring functions determine the quality of clus-

ters/communities that are used in many applications requiring

unsupervised classification.

We evaluate these metrics based on two orthogonal qualities.

The first is sensitivity, that is whether the change in the

value of the metric is commensurate with percentage of edges

removed. If a metric is sensitive then it can serve as a good

indicator of how much the network has been changed (see

Section III).

The second metric is reliability, that is whether certain

operations in the network can be performed efficiently in spite

of the missing edges. If a metric is reliable then it guarantees

good performance even under noise. Here we select message

spreading as the candidate operation. The seed nodes that

initiate message spreading are selected from the high valued

entities of different metrics. A metric has high reliability if the

time for message spreading under noise does not significantly

degrade if its high valued entities are selected as seeds (see

Section IV). In contrast to previous work [1, 7, 11], which

focused on single noise models and primarily on centrality

metrics, to the best of our knowledge this is the first compar-

ative study encompassing several centrality and community-

scoring parameters and different types of noise models.

Overview of Experiments (Section II) Among the central-

ity measures we consider closeness, betweenness and Pagerank

and among the community scoring functions we consider

modularity, cut-ratio and conductance. We also include a third

type of metric, permanence [2]. Although permanence is a

community scoring metric, unlike the others it is vertex based.

Therefore permanence can also be considered as a centrality

measure.

We apply three different noise models on real-world and

synthetic networks. We empirically evaluate the above metrics

to estimate their sensitivity to varying levels of noise. We also

measure their reliability by observing whether high valued

vertices of these metrics can serve as effective seeds for

message spreading.

In all our experiments, we ensure that in spite of the

noise, the underlying community structure is not significantlyIEEE/ACM ASONAM 2016, August 18-21, 2016,
San Francisco, CA, USA978-1-5090-2846-7/16/$31.00 c©2016 IEEE
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Fig. 1. Sensitivity of the different quality metrics for varying levels of noise
(in steps of 2%) with x-axis as the noise level and y-axis as the metric values.
The first and the second panels are for the football and railway the networks
respectively. The third panel is for the LFR network (µ = 0.3).

disrupted from its original form and the giant component of

the network remains connected. Nevertheless, as we shall see,

even this constrained noise can significantly affect the analysis.

Key Results (i) For both the objectives – sensitivity and

reliability and for all the given noise models and networks,

permanence proves to be the most sensitive and most reliable

metric in majority of the cases. (ii) The other centrality

metrics can be ranked in a partial order. The only other metric

that exhibits sensitivity is closeness. For reliability, when a

difference in the performance can be observed, closeness and

betweenness also show high reliability. (iii) For all sensitivity

experiments, and for most reliability experiments, the partial

ordering of metrics is relatively independent of the noise model

and type of network. Community scoring metrics,apart from

permanence, are not sensitive.

Rationale for the behavior of permanence (Section V).

At a quick glance it would seem that sensitivity and reliability

are mutually opposing properties. Sensitivity is used as an

indicator of noise, whereas reliability is used to guarantee good

performance in spite of noise. It is therefore surprising that

permanence is both the most sensitive as well as the most

reliable among all the metrics that we investigate.

We believe that this is because permanence encompasses

both community-like and centrality-like properties. While the

cumulative value of permanence is sensitive to the level of

noise, satisfying the sensitivity criterion, its high rank vertices

are stable under noise and therefore serve as effective seeds in

the noisy versions of the networks. We compute the Jaccard

Index (JI) for the high ranked vertices between the original

and noisy networks. Permanence exhibits the highest JI and

therefore the set of its high ranked vertices change the least.

II. EXPERIMENTAL SETUP

Datasets. Here is a brief description of the different networks

we used (see Table I for properties of real-world networks).

Network #Nodes #Edges <k> kmax |c| nmax
c nmin

c

Football 115 613 10.57 12 12 5 13
Railway 301 1224 6.36 48 21 1 46

TABLE I
DATASET STATISTICS. |c| DENOTES THE NUMBER OF COMMUNITIES IN

THE GROUND-TRUTH, nmin
c AND nmax

c DENOTE THE NUMBER OF NODES

IN THE SMALLEST AND THE LARGEST SIZE COMMUNITIES RESPECTIVELY.

LFR Benchmark: We use the benchmark LFR model [8] that

generates different networks and ground-truth communities

of various quality. We use n = 1000, µ = 0.3 keeping

all other parameters to the default values of the original

implementation 1.

Railway: has been taken from Ghosh et al. [4].

Football: has been taken from Girvan et al. [5].

Noise Models. We experiment with three noise models –

uniform, crawled and censored (see [11] for detailed de-

scription), – to simulate real-world sources of noise. We

do not allow formation of disconnected components while

introducing noise. We vary noise levels in steps of 2% from

0 to 30 in all our experiments.

Metrics. Our set of network parameters for evaluation in-

clude community-scoring metrics namely, modularity, cut-

ratio, and conductance, and centrality metrics namely between-

ness, closeness and Pagerank. For the definitions of these

metrics the reader is referred to [10]. We also include a

recently introduced metric permanence [2], that serves both

as a community scoring function as well as a measure of

centrality.

III. SENSITIVITY OF THE METRICS

A sensitive parameter is one whose change is commensurate

with the amount of noise applied. For small amounts of noise,

the change in the parameter values should be low, whereas,

as the noise increases, the change should be much higher. A

sensitive parameter can function as a good indicator of whether

a network significantly changed from its original topology.

Our goal is to rank the network parameters by the extent

to which they are sensitive to the noise level.

Methodology. We apply the three noise models on the

one synthetic LFR network (µ = 0.3), and two real-world,

railway and football, networks. For each increasing level

of noise we compute the value of the parameters. For the

vertex-based metrics we take the average over all vertices.

We compute the value of the community-scoring parameters

based on the ground-truth community assignment from the

original network. Our rationale is that because community

detection is expensive, therefore, re-computing the community

after each noise addition would defeat the purpose of quickly

ascertaining the change in the network. Further, our selected

noise level is low enough such that it does not significantly

change the original ground-truth community. Our results are

averaged over ten simulation runs.

Results. The results in Fig. 1 show that the change in

permanance has the highest slope with respect to increasing

noise. This indicates that permanence is most sensitive to noise

as compared to the other parameters. However, there are some

1https://sites.google.com/site/santofortunato/inthepress2
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Metrics Railway Football LFR (0.3)
Permanence (0.12, -0.08) (0.261, 0.091) (0.121, 0.003)

Closeness (0.019, 0.0048) (0.176, 0.041) (0.336, 0.301)
Betweenness (0.038, 0.043) (0.394, 0.358) (0.12, 0.1099)
Pagerank (0.0033, 0.0034) (0.008, 0.008) (0.001, 0.001)
Modularity (0.467, 0.464) (0.555, 0.557) (0.661, 0.658)
Conductance (0.552, 0.551) (0.407, 0.4003) (0.303, 0.3)
CutRatio (0.012, 0.0098) (0.038, 0.027) (0.004, 0.003)
Permanence (0.116, -0.028) (0.355, 0.165) (0.109, -0.09)

Closeness (0.02, 0.004) (0.176, 0.037) (0.336, 0.293)
Betweenness (0.041, 0.065) (0.39, 0.40) (0.162, 0.303)
Pagerank (0.0033, 0.0034) (0.008, 0.008) (0.001, 0.001)
Modularity (0.467, 0.502) (0.555, 0.548) (0.661, 0.659)
Conductance (0.548, 0.513) (0.406, 0.401) (0.303, 0.301)
CutRatio (0.012, 0.0098) (0.038, 0.027) (0.004, 0.003)
Permanence (0.09, -0.016) (0.25, 0.066) (0.129, -0.097)
Closeness (0.02, 0.001) (0.183, 0.047) (0.336, 0.137)
Betweenneness (0.038, 0.031) (0.391, 0.198) (0.106, 0.072)
Pagerank (0.0033, 0.0033) (0.008, 0.008) (0.001, 0.001)
Modularity (0.451, 0.4) (0.549, 0.526) (0.657, 0.644)
Conductance (0.583, 0.576) (0.407, 0.441) (0.304, 0.327)
CutRatio (0.012, 0.0098) (0.038, 0.027) (0.004, 0.003)

TABLE II
RANGE OF METRIC VALUES FOR UNIFORM NOISE (1ST ROW), CENSORED

NOISE (2ND ROW) AND CRAWLED NOISE (3RD ROW). THE NUMBERS IN

BOLD SHOWS THE RANGE THAT HAS THE LARGEST SEPARATION.

cases, e.g., the football network where the closeness centrality

is also quite sensitive. While betweeness is slightly sensitive in

the LFR networks, it shows an opposite trend, i.e. increase in

value with noise for censored noise in the real-world networks.

The rest of the metrics remain constant. We report the range

of the average of each metric obtained for each noise model

as a tuple – (average metric value at 2% noise level, average

metric value at 30% noise level) – in Table II. In this table,

permanence shows the largest separation.

IV. RELIABILITY OF THE METRICS

In message spreading [3], a set of source vertices (seed

nodes) start sending a message. At every time step, a vertex

containing the message transfers the message uniformly at

random to one of its neighbors who does not have the message.

The algorithm terminates when all vertices have received the

message. The selection of the seed nodes is critical to how

quickly the message spreads. A reliable metric is one whose

high ranked nodes, if used as seeds, can spread the message

quickly even under noise.
Methodology. For each of the centrality metrics, closeness,

betweeeness and Pagerank, and also for permanence we select

a small fraction of the highest ranked nodes as the seed. We

also select seeds (a) uniformly at random and (b) based on

highest degree as baselines for the spreading experiments.
For different levels of noise, we compute the the number

of iterations required to broadcast the message in the whole

network and compare the values across the different centrality

metrics, permanence and the two baselines.
Results: In Fig. 2, we plot the time required to broadcast

for different levels of noise. For each noise level the results are

averaged over ten different runs. The results can be divided

into three groups.
All metrics perform equally well: Crawled noise in the LFR

and the football network.
Metrics perform differently based on the noise level, but

no clear winner: Uniform noise in the railway and football

networks and censored noise in the football.
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Fig. 2. Time required to broadcast a message for different seed node selection
mechanisms (permanence, closeness, betweenness, Pagerank) and varying
noise levels (in steps of 2%). LFR network (µ = 0.3, first panel), railway
network (second panel) and football network (third panel). The first column
of figures represents results for uniform noise, the middle column represents
results for censored noise and the last column represents results for the crawled
noise.
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Fig. 3. The variation in the different components of permanence and
modularity when the noise levels are varied for the football network.

One metric performs better in most of the noise levels: For

uniform and censored noise for the LFR network and censored

noise for the railway network permanence takes the least time

to spread messages. For crawled noise in the railway network,

betweenness takes the least time.

We therefore see that for the larger and scale-free LFR

networks permanence is either the most reliable or all the

metrics perform equally well. The only time permanence is

significantly outperformed is in the case of crawled noise on

railway network. We believe that this is because unlike the

other networks railway is a technological, almost tree-like,

network. Therefore vertices with high betweenness centralities

would be key connection points. This feature is exaggerated in

the crawled noise since the network created using BFS-search

has become tree-like.

V. ANALYSIS OF PERFORMANCE

In this section, we explore the characteristics of permanence

that make it such a strong measure under noise.
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A. Sensitivity of permanence

We compare the sensitivity of permanence with other com-

munity scoring metrics. We break the permanence formula

into two parts PI = I(v)
Emax(v)

×
1

D(v) and cin(v), and observe

how they change for the different noise models. The results

in Fig. 3 show that PI remains relatively constant, whereas

the internal clustering coefficient is the major contributor to

the change in permanence. When we contrast this result with

the main factors in modularity (Fig. 3), namely the internal

and external edges, we see that each factor remains relatively

constant. A similar observation holds when we consider the

other scoring metrics conductance and cut ratio.

B. Rank of high permanence vertices under noise

We compare the centrality metrics and permanence to check

how their top ranking vertices alter under noise models. We

identify the top 20 of the high valued vertices for each

metric. Then for each noise level we compute the new top

ranked vertices. We compute the Jaccard Index [6] between

the original vertex set and the new one obtained from the

noisy network. A high Jaccard index (maximum value 1)

indicates that most of the top ranked vertices are retained

under noise, and a low value (minimum 0) indicates that the

set has changed completely. As can be seen in Fig. 4, the

Jaccard Index deteriorates much more slowly for permanence,

than the other centrality metrics in most of the cases. This

indicates that the ids of the high valued permanence vertices

remain relatively constant under noise.

These experiments together provide a rationale of why

permanence is effective both in evaluating noise through

sensitivity and also reliable for message spreading.
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Fig. 4. The Jaccard Index between the top vertices of the original and the
noisy networks for varying noise levels. We show the football (top), the
railway (middle) and the LFR (µ = 0.3, bottom) networks respectively.

VI. CONCLUSION

In this work, we have done rigorous experiments to under-

stand the effect of noise in complex networks and compared

different community scoring and centrality metrics in terms

of sensitivity and reliability. A key observation is that in a

majority of cases permanence worked better than all the other

competing measures investigated. The central lesson is that

while permanence is appropriately sensitive to different noise

levels, the high permanence nodes are almost unaffected by

the application of noise thus making the measure at the same

time very reliable.

In future we would like to investigate the analytical reasons

for the stability of high permanence nodes and, thereby,

propose an algorithm to automatically identify the level of

noise up to which this stability persists.

The data and the code are available in the public domain

(https://github.com/Sam131112/Noise Models.git).
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