
Inter-App Communication between Android Apps
Developed in App-Inventor and Android Studio

Lance A. Allison
Dept. of Computer Science

Winston-Salem State University
Winston-Salem, NC 27110

Phone: 1-336-7502480
lallison114@rams.wssu.edu

Mohammad Muztaba Fuad
Dept. of Computer Science

Winston-Salem State University
Winston-Salem, NC 27110

Phone: 1-336-7503325
fuadmo@wssu.edu

ABSTRACT
Communications between mobile apps are an important aspect of
mobile platforms. Android is specifically designed with inter-app
communication in mind and depends on this to provide different
platform specific functionalities. Android Apps can either be
designed with the help of Android SDK and using IDEs such as
Android Studio or by using a browser based platform called App
Inventor. These two development platforms provide their own
technique for inter-app communication in the same platform,
however lack an established method of inter-app communication
when apps are developed using the two seperate development
platforms. This paper provides the missing information required for
the app communications and presents the method for sending and
receiving arguments between apps developed in these two
platforms. The paper also outlines the significance of the result, and
examines their limitations.

CCS Concepts
• Ubiquitous and mobile computing Ubiquitous and mobile
computing design and evaluation methods • Software creation
and management Software development techniques

Keywords
Android, App Inventor, Android Studio, Mobile apps.

1. INTRODUCTION
Applications (apps) in Android can be developed using either
MIT’s App Inventor 2 (AI) [3] or by using IDEs such as Android
Studio (AS) [1] with the help of Android SDK. MIT’s AI is the
second version of the Google’s original App Inventor, which is a
web browser based development environment for a simpler way to
develop android apps. With little to no knowledge of programming,
one can develop and deploy an android app using AI. However,
this simplicity comes at a price; AI does not provide all of
Android’s advanced features and most apps developed in AI have
to follow a specific design template. To access all of Android’s
features, one needs to develop apps using tools such as Android
Studio, which is provided by Google as a full-fledged development
environment for Android development, debugging, testing, and
packaging. While communications between any two Android apps

developed in either AI or AS are fairly straightforward; apps
developed by these two development platform separately do not
have a similar way to communicate with each other. To define the
problem, suppose we have two AI apps AI1 and AI2, along with two
AS apps AS1, AS2. Now also consider, P1 is the process through
which AI1 communicates with AI2 and P2 is the process through
which AS1 communicates with AS2. Then it is known that P1 ≠ P2.
This results in no established process, Px, that will allow apps
developed by AS to communicate with apps developed by AI. This
paper will present this process Px, which will allow apps developed
in two different platforms to communicate with each other
programmatically. Obvious questions arise, as to why we need to
generate this process given that AI apps do not have advanced
features. Since AI provides faster lead time in developing apps than
AS, having a backend system developed by AS on which AI apps
can run, would give developers a faster way of developing new app
ecosystems. One such situation is presented below.

Since 2013, Winston-Salem State University has begun
implementing a Mobile Response System (MRS) [4]-[6]. MRS is a
mobile learning environment that enhances class room engagement
by creating a responsive environment where students solve
problems in an interactive way that communicates solutions
directly and immediately to their instructor. This is performed
through Android powered mobile devices, which have interactive
activities in which students learn principles of their subject with
immediate feedback. This mobile platform is used by the faculty to
develop their own interactive activities to be used in the classroom.
However, currently, such interactive activities must be developed
by AS to be used with MRS. One way to alleviate this problem is
to allow the MRS to communicate with apps developed by both AI
and AS. That way, interactive apps developed by faculty from other
disciplines using AI can utilize MRS to deploy their activities in the
class.

2. DEVISED METHOD
Sending a String from an AS app to an AI app requires an intent,
with the preset extra key of “APP_INVENTOR_START” which the
AI application will recognize as the extra value. The challenge is to
find the qualified name of the AI app that we like to initiate.
Normally for AS apps, the name of the Java package concatenated
with the class name of the app activity is the qualified name to
locate an app in the device. However, there were no such
identifiable naming convention for AI apps, as no one can see the
source code. With the help of the Android Debug Bridge [2], we
identified that AI apps has the following qualified naming
convention for their apps:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
Mobilesoft ‘16, May 16–17, 2016, Austin, TX, USA.
ACM 978-1-4503-4178-3/16/05.

DOI: http://dx.doi.org/10.1145/2897073.2897117

With the help of the above information, the following block of code
shows the AS intent for launching an AI app and sending a string.

When the AI application initializes the screen, the app will set the
on screen text label (Label1) to the passed string value followed by
the activity starter blocks required to return the string back to the
original AS application. This is shown in Figure 1.

Figure 1. AI blocks to communicate with AS app.

After the AI application launches its intent to return the string, the
AS application will receive the original string as shown below:

For the reverse operation to be performed, the same string was sent
from an AI application to an AS app and then sent back to the
original AI app. This required much of the same blocks that are
depicted in figure 1. The random string was set to the label and
included in the activity starter’s extra value. Figure 2 shows the AI
intent blocks used to send the string.

Figure 2. AI application intent for AS application.

The AS application then receives the string, followed by the launch
intent for the original AI app. Again, the extra key must be set to
“APP_INVENTOR_START” being that AI applications will only
initialize values with this extra key. The block of code below
demonstrates the code used.

Finally, the original AI application would receive and initialize the
random string using the blocks as shown in Figure 3.

Figure 3. AI blocks required to receive starting arguments.

3. RESULTS
To investigate the cross platform communications, there were two
applications developed per platform. A randomly generated 100-
character string made up of both upper and lower case letters was
sent back and forth between two applications to measure the length
of time taken. This allowed us to check how to initiate apps, how
to pass values between them, how to handle Android lifecycle
events, and to determine whether there was any difference in
performance during execution.

Four sets of trials (AI to AI, AI to AS, AS to AS and AS to AI)
were performed measuring the time taken, with the AI to AI and
AS to AS trails used as the control variables. Each set of trials had
15 runs and then the times were averaged and shown in Table 1.

Table 1. Elapsed time during the string’s transfer trails.

Transfer paths Avg. Time (ms) Stand. Dev.
AI1 to AI2 back to AI1 189.8 7.3
AI1 to AS2 back to AI1 159.4 7.1
AS1 to AS2 back to AS1 154.6 6.8
AS1 to AI2 back to AS1 269.4 10.4

In situations where AI apps were at the receiving end, transfer times
were significantly longer. Alternatively, when AS applications
were on the receiving end transfer times were much lower. AI
communications may require more time to process because of its
use of the Kawa compiler. When AI apps are compiled their code
blocks are converted to byte code by Kawa compiler and then
interpreted to be executable. AS apps do not require this third party
program to convert the code, resulting in a more uniform
application with faster response times.

The application size has also been recorded for comparison and AI
apps were larger than AS apps even though the lines/blocks of code
required were similar. There are also some limitations to the
methods outlined above. Firstly, when receiving strings with AI
apps, there is only the option to initialize one string value. This
means that you cannot initialize multiple variables; AI apps will
only initialize the first received value. Secondly, AI apps can only
receive a string to its main activity. There is no ability to use an
intent filter to initiate a specific activity, which limits AI app’s
communications greatly compared to AS apps.

4. CONCLUSION AND FUTURE WORK
This paper presents a technique to provide Android inter-app
communications when apps are developed in two different
development platforms: Android Studio and App Inventor.
Performance data was provided and methods were compared to find
any limitations. In the future, the presented technique will be used
to extend MRS to other disciplines and will shed more light into
how larger and more complex apps will work together when they
are designed by two different Android development platforms.

5. ACKNOWLEDGMENTS
We would like to thank Winston-Salem State University’s
undergraduate research grant and NSF grant #1332531 for
supporting this work.

6. REFERENCES
[1] Android Studio,

http://developer.android.com/tools/studio/index.html.
[2] Android Debug Bridge, 2015, http://developer.android.com/

tools/help/adb.html.
[3] App Inventor, http://appinventor.mit.edu.
[4] Fuad M. M. and Deb. D., 2014, Design and Development of a

Mobile Classroom Response System for Interactive Problem
Solving, In Proceedings of 26th International Conference on
Software Engineering and Knowledge Engineering (SEKE),
Vancouver, Canada, July 1-3, 49-52.

[5] Fuad, M.M., Deb, D. and Etim, J., 2014, An Evidence Based
Learning and Teaching Strategy for Computer Science
Classrooms and Its Extension into a Mobile Classroom
Response System. In Proceedings of 14th IEEE Advanced
Learning Technologies Conference (ICALT), July 7-10,
Athens, Greece, 149-153. DOI:10.1109/ICALT.2014.52

[6] Mobile Response System, http://compsci.wssu.edu/MRS.

