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Abstract A common pathological hallmark in many neuro-

degenerative diseases, including Alzheimer’s disease,

Parkinson’s disease, and Huntington’s disease, is the forma-

tion of fibrillar protein aggregates referred to as amyloids. The

amyloidogenic aggregates were long thought to be toxic, but

mounting evidence supports the notion that a variety of amy-

loid aggregate intermediates to fibril formation, termed oligo-

mers, may in fact be the primary culprit leading to neuronal

dysfunction and cell death. While amyloid formation is a

complex, heterogeneous process, aggregates formed by di-

verse, diseases-related proteins share many conformational

similarities, suggesting common toxic mechanisms among

these diseases. Ideally, similar therapeutic strategies may be

applicable. This review focuses on the potential role of

amyloidogenic oligomers in neurodegenerative disease,

highlighting some promising therapeutic strategies.
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Introduction

Most neurodegenerative diseases, including Alzheimer’s

disease(AD), Parkinson’s diseases (PD), Huntington's disease

(HD), amyloidoses, α1-antitrypsin deficiency, and the prion

encephalopathies, are associated with extracellular or intracel-

lular proteinaceous aggregates [1, 2]. These aggregates are

predominately comprised of extended, β-sheet-rich fibril

structures that share several biochemical/biophysical proper-

ties, commonly referred to as amyloids. Many factors, includ-

ing mutations, increased concentration, environmental

stresses, or aging, can trigger amyloid protein aggregation

[3]. While there is no apparent correlation between amyloid-

forming proteins in size or primary amino acid sequence, the

common structural motif associated with protein deposits of

each disease may indicate a conserved mechanism of patho-

genesis associated with these phenotypically diverse diseases.

While sometimes a specific mutation or dysfunctional process

can be attributed to amyloid formation, the character and

location of protein aggregates in vivo highly depends on the

amyloids aberrant interaction with the proteome network.

Amyloid formation occurs via a variety of complex aggre-

gation pathways. Misfolded or partially abnormal protein

conformations initially form, leading to aberrant interactions

and a heterogeneous mixture of intermediate aggregate struc-

tures such as dimers, a variety of oligomers, and protofibrils

(Fig. 1) [4–6]. Protofibrils show amyloid-like structures with

elongated, filament like morphologies and are late-stage inter-

mediate precursors on the pathway to fibrillar amyloid forma-

tion. Using high resolution microscopic techniques, oligomers

have been detected in multimeric states mostly with globular,

spherical morphologies [7]. Oligomers vary in size, ranging

from dimers and trimers to much larger aggregates [8–10]. A

variety of aberrant structures and conformations are also ob-

served that are off-pathway to amyloid formation, including

annular aggregates of various size [11, 12].

While protein aggregation is a common feature of these

diseases, the exact role of the aggregates and their relative

importance is not fully elucidated. A common objection to the

importance of protein deposition in these diseases is that often

the number of plaques or inclusions does not correlate well

with symptoms. There is evidence that fibrillar aggregates
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associated with neurodegenerative disease are toxic [13–18];

however, increasing evidence suggests that, rather than being

pathogenic, fibrillar aggregates may be inert or potentially

protective. For example, older individuals without clinical

symptoms of AD often have amyloid aggregates present in

the brain [19], and correlation between disease severity and

Aβ neuritic plaque density is poor [20, 21]. However, the

concentration of soluble forms of Aβ correlates much better

with cognitive impairment [22–24]. In PD, neuropathological

analyses suggest that Lewy body (inclusions containing main-

ly the protein α-synuclein) formation preferentially occurs in

healthier neurons in comparison with adjacent cells that lack

inclusions [25]. In HD, the relationship between amyloid-like

inclusions and pathology is controversial because of several

observations. Massive cellular degeneration is observed in the

striatum along with the appearance of intracellular aggregates

comprised of mutant huntingtin (mHtt) containing an expand-

ed polyglutamine (polyQ) domain; however, the cerebral cor-

tex displays moderate degeneration with typically a much

larger number of aggregates [26]. Even within the striatum,

medium spiny neurons are selectively lost in HD compared to

large interneurons, but the interneurons typically have a larger

aggregate load [27]. In cell culture models of mHtt toxicity,

there is poor correlation between inclusion body formation

and toxicity [28]. In a classic study using live cell imaging to

track the fate of individual neurons in culture, cells expressing

similar levels of mHtt were more likely to survive if inclusion

bodies formed compared with cells in which mHtt remained

diffuse [29]. While correlation between the inclusion body

formation and cell survival suggests a protective role for

sequestering mHtt species into larger aggregates, the exact

nature of toxic species within diffuse mHtt is not fully

understood. Without further analysis of the diffuse popu-

lation of mHtt, the correlation with cell death does not

necessarily lead to causation. Clarifying the controversial

relationship between amyloid-like deposits with pathology

in HD is difficult as most studies use only a small

fragment of the entire Htt protein. While the precise

fragment of mHtt that accumulate in HD are unknown, a

recent study demonstrated that N-terminal fragments sim-

ilar to exon1 are detected in knock-in mouse models of

HD that express full-length Htt [30], and fragments slight-

ly larger than exon1 have been detected in HD patients

[31, 32], providing rationale for the use of exon1 as a

model system. Collectively, these studies suggest that

while some fibrils may possess toxic properties, another

aggregate form may play a larger role in disease

progression.

Another important aspect for toxic aggregate formation

of mHtt are, besides the expanded polyQ domain, the

flanking regions directly adjacent to the polyQ domain.

Mutations of flanking serines 13 and 16 with either aspartate

(phosphomimetic or SD) or alanine (phosphoresistant or

SA) in a transgenic HD mice model expressing full-length

mHtt, differentially resulted in alterations in pathogenicity

[33]. SD mutations abolished selective neurodegeneration in

mice with a reduction of inclusion formation, whereas the

SA mutations preserved HD-like phenotype in mice and

large inclusions were observed. Further, in vitro analysis

of aggregation of Htt exon1 fragments containing either

the SD or SA mutations demonstrated that the SD mutation

retards aggregation while SA mutations accelerate

Fig. 1 Generic aggregation

scheme for amyloid-forming

proteins. Fibrillization can

proceed via several potential

pathways that can populate

various intermediate aggregate

states, including oligomers and

protofibrils. These pathways are

not necessarily mutually

exclusive. Off-pathway

aggregates, annular aggregates

for example, may also form.

These aggregates eventually

accumulate to form the

hallmark amyloid plaques or

inclusions associated with each

disease. For any given amyloid-

forming protein, the

aggregation process can vary

considerably depending on

protein properties,

modifications, or environment
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aggregation [33]. At first glance, this study would seem to

be at odds with previous studies claiming a protective role

for inclusion body formation; however, the SD mutations

appear to promote a polymorphic aggregate form. Such an

aggregation pathway may circumvent specific toxic species;

therefore, negating the need to sequester diffuse Htt species.

Further, in vitro aggregation studies of Htt exon1-like peptides

containing phosphoryl-Ser residues at positions 13 and 16

further support reduced aggregation rates and atypical aggre-

gate morphologies associated with these mutations [34].

While understanding of the exact toxic entity associated

with protein aggregates in these diseases is still incomplete,

concerns must be raised in regard to therapeutic strategies

aimed at manipulating the aggregation pathway and/or

clearing pre-existing protein deposits. For example, if an

oligomeric aggregate is the most relevant toxic species for

a particular disease, any strategies that remove fibrils in such

a way that the pool of oligomers is augmented could very

well be counterproductive. As some studies indicate that

large inclusions may play a protective role by sequestering

diffuse aggregates, the possibility that promoting the forma-

tion of large inclusions, while bypassing the formation of

quickly sequestering oligomers, may have therapeutic ben-

efit. In this regard, a compound that promotes inclusion

formation in cellular models of HD and PD was shown to

reduce cellular pathology, further supporting a potential

protective role for inclusion formation [35]. Additional stud-

ies are required to further elucidate the complex relationship

between protein aggregation and toxicity.

Several studies support the notion that small, diffusible

oligomers might be the primary culprits in neuronal dysfunc-

tion and cell death. For example, soluble Aβ oligomers

microinjected into rat hippocampus inhibit the late phase of

long-term potentiation [36, 37]. Distinct toxic oligomers of

Aβ have been identified, including ADDLs [38] and Aβ*56,

a specific nonfibrillar, dodecameric Aβ assembly [39].

Aβ*56 caused memory deficits in hAPP mice (Tg2576) and

when infused into the brains of NTG rats [39]. Furthermore,

neurons with detection of low-molecular-weight conforma-

tional states of mHtt using specific antibodies strongly corre-

lated with neuronal death [40], suggesting that monomers and

possibly small oligomers may represent important toxic spe-

cies. Interestingly, there is a correlation of mHtt aggregation

and disease progression with polyQ length [41, 42], and it has

been demonstrated that the formation of mHtt oligomers is

polyQ length dependent [43, 44]. Importantly, oligomers of

mHtt are detected in a variety of cellular and mouse models

[45, 46]. Lentiviral infection of dopaminergic neurons in the

substantia nigra of rats with mutated α-synuclein that forms

oligomers were associated with significantly greater dopami-

nergic loss comparedwith fibril-formingmutants, demonstrat-

ing α-synuclein oligomer toxicity in vivo [47]. Further

evidence of the “oxic oligomer” hypothesis is provided by

the finding that a single monoclonal antibody recognizes a

common conformational epitope found in several disease-

associated oligomers, including Aβ, α-synuclein and polyQ-

containing peptides [48]. Interestingly, pre-incubation of anti-

oligomer antibodies with these oligomers blocks toxicity

when applied to cultured cells, indicating that oligomeric

structures formed by distinct disease proteins might confer

toxicity through a similar mechanism [48].

Structural heterogeneity in oligomers and their formation/

stability

Much is known concerning the structure of fibrils, as they

share a common cross-β structure [49]; however, variability in

the packing of intermolecular β-sheets can lead to distinct

amyloid fibril morphologies, even for the same protein, giving

rise to distinct fibril polymorphs [50]. Fibril polymorphs are

observed for Aβ [51], calcitonin [52], amylin [53], insulin

[54–56], and lysozyme [57]. Presumably, these polymorphic

fibrils will form from distinct aggregate intermediates, adding

to the heterogeneity of protein oligomers [58].

Compared to fibrils, the structural variety of oligomers is

less well understood. Characterization is made difficult by

oligomers typically occurring as metastable states that readily

convert into more favorable conformations; therefore, struc-

tural analyses of oligomers often requires trapping these meta-

stable intermediates [59]. There are Aβ oligomers comprised

predominately of random coil [60], and there are Aβ oligo-

mers that exhibit high β-sheet content [49, 59, 61]. Such

findings suggest that oligomerization represent a polymorphic

state. Antibodies specific for generic oligomeric epitopes have

been developed for at least two distinct types of amyloid

oligomers, classified as fibrillar and prefibrillar [58]. Aβ

prefibrillar oligomers can further be classified using monoclo-

nal antibodies into several more structural polymorphisms

[16]. A factor that contributes to the formation of specific

oligomers in vitro is variations in preparation protocols [58,

62]. However, oligomer heterogeneity can occur within the

same sample for some proteins and preparations [43, 63]. In

the case of expanded polyQ aggregation, associated with

diseases like HD, adjacent flanking sequences have profound

impact on the ability to form oligomeric aggregates [44, 64,

65]. The ability to form structurally distinct and varied oligo-

mer species is important because different oligomer structures

may exhibit different biological effects [58, 66, 67].

Polymorphic protein conformations and aggregates may

play a particularly important role in prion diseases. Prion

diseases are associated with the induced misfolding of a

normal cellular form of the prion protein (PrPC) by the

presence of an infectious disease-related form of a prion

protein (PrPSc) [68, 69]. Based on characteristic incubation

periods and neuropathological profiles associated with serial
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passages of PrPSc isolates from mice, there are distinct

metastable strains of PrPSc [70]. The basis of this strain

effect is likely a feature of the biochemical properties of

PrPSc, which can be related to its ability to form polymor-

phic aggregate species. Studies on transmissible mink en-

cephalopathy (TME) first indicated the strain phenomenon

as a single isolate of TME resulted in two distinct laboratory

strains [71], and these distinct phenotypes are related with

differences in the protease-resistant core fragment size of

PrP [72]. Since these initial observations, correlations be-

tween the biochemical properties of PrPSc and clinical phe-

notypes of a variety of prion diseases have been reported

[73–75]. Several other amyloid-forming proteins may have

prion-like infectious properties, including Aβ [76–78], tau

[79], and α-synuclein [80, 81], and such a phenomenon

appears to play a critical role in cell to cell translation of

the disease state [82–85]. Several small molecules and cock-

tails of these molecules have been identified that appear to

reverse the formation of polymorphic aggregates associated

with prion-like capabilities [86, 87], providing a potential

strategy to interfere with cell to cell transmission of disease.

Toxic mechanisms

Amyloid-associated diseases appear to predominantly result

from toxic gains of function [88, 89]. Several hypotheses are

under intensive investigation (Fig. 2). One prominent hypoth-

esis is that amyloidogenic oligomeric aggregates contain ex-

posed hydrophobic sites that facilitate aberrant interactions

and sequestration of other proteins, impairing their function

[1, 90]. Another hypothesis is that amyloidogenic oligomers

exasperate general protein folding defects via direct interfer-

ence with central protein quality control and clearance mech-

anisms [91–93]. A third hypothesis states that amyloidogenic

oligomers compromise the integrity of lipid membranes [11].

While evidence supports all of these hypotheses, as will be

discussed below, these mechanisms are not mutually exclu-

sive and may act synchronistically.

Sequestration and functional impairment of other

cellular key proteins

Many cell regulatory proteins co-localize in pathological pro-

tein aggregates, suggesting that aggregation of disease pro-

teins sequesters other important housekeeping proteins,

disabling their key functions including transcription, transla-

tion, trafficking, redox-homeostasis, and cytoskeletal organi-

zation [1, 90]. For example, mutated polyQ oligomers

aberrantly interact with other functional proteins with

polyQ-rich domains, including the transcriptions-factors

CBP, TBP, and Sp1, impairing their function [94, 95]. While

this may explain the complexity associated with polyQ-

mediated toxicity, it does not explain the aggregation and/or

sequestration of other key cellular or disease proteins lacking

these domains. A possible hint comes fromα-synuclein which

seems to preferentially exist in a metastable native conforma-

tion for functional flexibility; however, mutations or increased

levels of α-synuclein lead to pathogenic self aggregation

[96–100]. Interestingly, α-synuclein is also sequestered and

colocalized with Aβ, tau, and Htt aggregates, suggesting that

α-synuclein is particularly vulnerable to co-aggregation due to

its metastable structure [101–103]. This hypothesis is

supported by a recent quantitative proteomic study that ana-

lyzed the interactome of amyloidogenic oligomers in human

cells, demonstrating that endogenous, metastable proteins are

particularly vulnerable to sequestration by amyloidogenic

oligomers [104]. Most of these proteins are large in size,

unstructured, and show diverse functional flexibility to act as

relay-proteins in cell regulation and signaling. Although this

study used artificial amyloid-structured proteins, a range of

prefibrillar aggregation intermediates are populated with po-

tential toxic properties such as ANS-binding hydrophobic

Fig. 2 Potential mechanisms

for toxic gain of function

associated with protein

aggregates
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surfaces and A11 anti-oligomer reactivity. These observations

potentially explain the multi-factorial and severe toxicity as-

sociated with intracellular amyloidogenesis [105]. However, it

still remains unclear whether widespread aberrant interactions

with metastable proteins are engaged by protofibrils with

flexible hydrophobic surfaces, unpaired backbone structures,

or by advanced amyloid-structures with stable cross-β cores.

It is also an open question whether oligomers formed on a

non-amyloidogenic aggregation pathway show similar inter-

action and sequestration properties.

Interference with central protein quality control

and clearance mechanisms

An interesting correlation appears to exist between age-

dependent decline in protein quality control systems, the

generally observed late-onset of protein-conformational brain

diseases, and the sequestration of components of the degrada-

tion and protein quality control systems [91–93, 106, 107].

The irreversible co-localization of the proteasome, molecular

chaperones and/or other components of protein quality control

mechanisms indicate that, beyond simply responding to

amyloidogenic protein, these systems become overwhelmed

with age [106, 107]. Trapped quality control factors decrease

efficient clearance, which is particularly relevant as overall

capacity shrinks with aging. Resulting in a vicious cycle, the

down-regulation of protein quality systems accelerates the

onset of conformational diseases and has an age-dependent

effect on protein homeostasis. For example, the expression of

expanded polyQ protein results in the loss of function of a

diverse set of metastable proteins [93]. Interestingly, these

metastable proteins are not colocalized with the polyQ pro-

teins suggesting that, rather than a direct interaction,

misfolded polyQ proteins impact these proteins indirectly by

impairing factors that stabilize protein homeostasis. Although

this observation is in contrast to the direct toxic sequestration

hypothesis, both gain of toxic function are not mutually ex-

clusive and may act in parallel.

Evidence that multiple factors can cause toxicity is dem-

onstrated in studies with molecular chaperones an important

protein family to stabilize protein homeostasis. Oligomers

can directly interact with molecular chaperones, impairs

their function, and become sequestered into aggregates

[108, 109], suggesting a direct toxic sequestration-based

mechanism. However, decreased chaperone levels and re-

duced expression activity are observed in patients with

neurodegenerative diseases due to HSF1 dysregulation, the

major transcription factor for stress-inducible molecular

chaperones [110, 111]. These studies indicate a transcrip-

tional impairment of cellular quality control by misfolded

proteins rather than an overloading/sequestration-based

mechanism.

Additional cellular systems that preserve protein homeo-

stasis are the autophagy and the ubiquitin-proteosome system

(UPS), two important protein degradation systems [91].

Misfolded mHtt impairs cellular ubiquitin-proteosome activi-

ty in mouse models of HD prior to inclusion body formation

[112], raising the possibility that amyloidogenic Htt oligomers

in the cytosol interfere with ubiquitin-proteosome activity

before localizing into inclusions. Failure in cargo recognition

might be responsible for inefficient macroautophagy in HD

cell and animal models [113].

Compromised integrity of lipid membranes

Based on experiments with model membranes, growing evi-

dence supports the notion that absorption of amyloids modifies

membrane properties and lipid order, affecting the activities of

specific membrane proteins and possibly disruptingmembrane

integrity [5, 11, 114–116]. Oligomeric assemblies of several

amyloid-forming proteins interact with phospholipid bilayers,

modifying membrane structure and ion permeability [117].

While the underlying mechanism remains unclear, it appears

that anionic lipidmembranes can preferentially induce amyloid

formation and toxic aggregation [117–119]. This is supported

from observations in Alzheimer's disease patients where high

level of anionic phospholipids in the neuronal membranes are

detected [120]. Another membrane associated hypothesis

concerning a potential toxic mechanism is that amyloid-

forming proteins form unregulated, membrane-spanning pores

or channels. A sub-population of early, ring-shaped protein

oligomers that penetrate the cell membrane, resulting in non-

specific pores, has been observed to form from a variety of

amyloid-forming proteins [5, 11, 121]. For example, in vitro

aggregation studies performed with Aβ, α-synuclein, ABri,

ADan, serum amyloid A, and amylin demonstrated the forma-

tion of ion-channel-like structures that elicit single ion-channel

currents [122]. However, the in vivo detection of such struc-

tures remains to be demonstrated, and the cellular defects

associated with protein aggregation are so complex that it is

difficult to attribute them to non-specific membrane dysfunc-

tion alone [105].

Targeting oligomers for therapeutic purposes

Modulation of amyloid aggregation has achieved benefi-

cial therapeutic effects in some cellular and preclinical

animal models of neurodegenerative diseases, suggesting

such approaches may eventually become a medically sig-

nificant strategy for treatments (Fig. 3). Here, we briefly

discuss potential therapeutic strategies targeting the aggre-

gation pathway to inhibit formation of toxic oligomeric

aggregates

J Mol Med (2013) 91:653–664 657



Lowering disease protein level by RNAi and antisense

therapy

The manifestation of polyQ diseases has been reversed by

blocking the mutant protein expression in conditional mice

models [123, 124], suggesting that the reduction of the

causative amyloidogenic protein level provides a promising

aggregation and disease-modifying strategy. Two oligonu-

cleotide approaches based on RNAi and antisense oligonu-

cleotides are under intensive investigation to intervene

directly with the production of amyloid-proteins [125].

Challenges to both approaches are the selective and potent

suppression of the causative proteins and local delivery of

the oligonucleotides into the brain [125]. For example,

current oligonucleotide-based approaches in HD models

are not selective enough to target the mutant alleles with

CAG repeat expansions. On the upside, viral delivery of

inhibitory shRNA into striatum of HD transgenic mice

models resulted in robust, but not complete suppression, of

mutant and wild-type Htt mRNAs and strikingly rescued

most aspects of pathology [126]. These are important find-

ings because partially silencing nonallele-specific Htt might

be sufficient to avoid side-effects and to improve HD pa-

thology despite significant suppression of wild-type Htt. To

optimize delivery of oligonucleotides into the brain, preclin-

ical studies in animal models of HD have confirmed that

direct CNS administration in saline or in a viral package is a

promising approach to silence the mutant protein and ame-

liorate neuropathology [125]. Taken together, selective and

potent oligonucleotides combined with sufficient delivery

into the brain and the development of quantitative assays to

evaluate and monitor target activity are key for translational

success. Successful proof-of-concept studies in patients

would have far reaching implication for the treatment of

protein-conformational disease.

Anti-aggregation drugs

Another promising approach to target protein aggregation is

the identification of small molecules that inhibit and/or

reverse the formation of toxic oligomers. Several com-

pounds that directly affect aggregation have been identified

[109, 127–131]. Some stabilize native conformations, others

prevent abnormal β-sheet formation (β-sheet breaker) or

interact directly with mature fibrillar structure resulting in

their destabilization and disassembly. However, most of

these compounds have been demonstrated to be ineffective

in vivo. This disappointing outcome might be due to lack of

quantitative methodologies to detect toxic oligomers in vivo

leading to insufficient pharmacodynamic read-out on the

right oligomeric target. Another explanation might be that

some of the formed aggregates are the wrong targets and are

not associated with the disease pathway. A less specific and

less selective compound methylene blue modulates aggre-

gation of Aβ and has shown promising results in a Phase II

clinical trial for Alzheimer’s disease [132]. Arguably, the

most promising results for effective small molecules treat-

ment of amyloid aggregation have been obtained for

transthyretin familial amyloid polyneuropathy, a rare but

Fig. 3 Potential therapeutic

strategies with specific targets

indicated based on aggregation

state
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fatal neurodegenerative disorder characterized by progres-

sive sensory, motor and autonomic impairment [130, 133].

Pathogenic mutations in the transthyretin (TTR) protein lead

to destabilization of its tetrameric structure and subsequent

formation of amyloid aggregates [130]. Tafamidis (Pfizer), a

small-molecule inhibitor, binds selectively to TTR and sta-

bilizes the tetrameric structure, reducing pathology and sig-

nificantly slowing down disease progression in patients. It

has already been approved by the European Commission for

the treatment of the disease, and it is currently under review

by the FDA [133].

Posttranslational modification and clearance

Another interesting therapeutic approach is to target post-

translational modification of amyloids needed for degrada-

tion. Modified sites by acetylation, phosphorylation,

sumoylation, ubiquitation, and palmitoylation are detected

in several disease proteins and seem to play an important

role in protein aggregation. Therapeutic modulation of these

sites may avoid aggregate formation and may increase deg-

radation of toxic proteins. For example, acetylation of mHtt

facilitates its trafficking to autophagosomes and improves

clearance by macroautophagy [134]. The CREB binding

protein (CBP), a histone acetyl-transferase, increases mHtt

acetylation [135], whereas HDAC1, a histone deacetylase,

strongly decreases its acetylation. Therefore, targeting acet-

ylation may be an interesting mechanism that promotes

degradation of mHtt by autophagy. Similar approaches

might be interesting for other diseases. In AD, the abnormal

acetylation and phosphorylation of tau protein accelerates its

aggregation [135–137] leading to loss of its function and

gain of toxic functions. Interfering with these posttransla-

tional modifications might ameliorate disease progression.

Upregulation and activation of molecular chaperones

Most amyloidogenic aggregates also sequester molecular chap-

erones, a protein family that assist in folding, re-folding, stabi-

lization and processing of client proteins including misfolded

proteins in neurodegenerative diseases. Molecular chaperone

modulation has achieved remarkable therapeutic effects in

some cellular and preclinical animal models of protein-

conformational diseases [109], raising hope for chaperone-

based therapeutic strategies. Today, the best characterized drugs

inhibit Hsp90/HSPD function and target its ATP-binding do-

main. Blocking ATP hydrolysis causes degradation of client

proteins but also induces the cell-protective cellular stress re-

sponse, which includes general chaperone expression [131,

138]. Both strategies are being considered for treating neuro-

degenerative diseases. For example, HSPD inhibition protects

against α-synuclein and other amyloidogenic protein toxicity

[139, 140] via stress response and increased levels of other

chaperones including Hsp70 and Hsp40 members (HSPA8 and

DNAJB1) [138, 140]. Also, mHtt protein is a Hsp90 client, and

ATP-site inhibitors disrupt the HSPD-mHtt interaction, induc-

ing mHtt clearance via the UPS [141]. However, drugs that

target chaperone core sites, such as the ATP-binding pocket,

could cause undesirable side-effects, narrow the therapeutic

window, and limit translation into the clinic. Thus, other inter-

esting chaperone targets are worthy of consideration. The

chaperonins, small Hsps, Hsp70, and Hsp40 members are all

effective in inhibiting protein aggregation and ameliorate pa-

thology [108, 142, 143]. For example, the Hsp40 members,

DNAJB1 and DNAJB6, inhibit the aggregation and toxicity of

mHtt [108, 144]. DNAJA1 overexpression facilitates the deg-

radation of Tau, and DNAJB1 inhibits Tau aggregation

[145–147]. As a result, specifically targeting Hsp40s appears

to be a promising strategy to intervene therapeutically in

protein-conformational disorders.

Active and passive immunization

Active and passive immunization strategies have been success-

fully used to prevent amyloid aggregation in several neurode-

generative disease models, including AD, PD and prion

diseases [123]. For example, AD transgenic mice were actively

immunized against Aβ(1–42) by administration of synthetic

peptides [124]. These mice did not develop Aβ aggregates and

showed reduced pathology [124–126]. Passive immunization

has also been successfully applied by injection of antibodies

against Aβ leading to reduced aggregate load and pathology

[127]. This promising result suggests that applied antibodies

can cross the blood/brain barrier and bind to amyloids. Thus,

both therapeutic strategies, passive and active immunization,

have entered clinical trials to remove extracellular cerebral Aβ

amyloid in patients with AD [128, 129]. Although 6 % of the

patients in these trials developed severe cerebral inflammation,

a significant reduction in amyloid burden was detected and a

decline on cognitive malfunction on follow up studies of 30

patients observed. Although these results give hope that im-

munotherapy is a useful strategy to treat amyloidogenic dis-

eases, more investigation is necessary as recent clinical trials

using Aβ-targeting monoclonal antibodies (mAbs) have re-

vealed (bapineuzumab—Wyeth and Elan; solanezumab—Eli

Lilly; gantenerumab—Roche, etc.). For instance, the applica-

tion of bapineuzumab initially showed a positive response in

apoE non-carriers, but subsequent trials in apoE4 carriers were

halted due to lack of effect [148, 149]. Passive immunization

trials with solanezumab have been promising (LY2062430;

Ely Lilly) (www.clinicaltrials.gov). Although solanezumab al-

so failed to meet its primary and functional end points, pooled

data from phase III clinical trials demonstrated a small,

J Mol Med (2013) 91:653–664 659
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statistically significant decrease in cognitive decline

(Galimberti et al. 2013). As trials for both of these drugs were

performed with patients in late stages of AD, it may have been

too late to effectively intervene in the disease via passive

immunization. However, non-invasive and quantitative imag-

ing methods of aggregates using improved specific PET li-

gands have been developed, allowing for better and earlier

detection of aggregate species [131]. In combination with the

development of selective and potent conformation-specific

antibodies and optimized brain uptake, e.g. via transcytotic

target receptors [130], antibodies administration at pre-

manifest disease stages might be the potential therapeutic

strategy to trigger pharmacodynamic Parkinson's disease

changes on amyloidogenic protein aggregates that translates

into meaningful effects on protein fate and downstream neu-

rophysiological and clinical effects. Notably, an anti-Aβ anti-

body was also shown to alter CNS levels of Aβ when

administered peripherally without crossing the blood/brain

barrier, leading the peripheral sink hypothesis that states that

circulating antibodies sequester Aβ, resulting in an increased

efflux of Aβ from the CNS [132].

Another alternative immunization approach, beside Aβ-

targeting antibodies in AD, is the development of antibodies

generated against targets involved in the APP processing.

Here, the most prominent target is BACE-1 and its inhibition

leads to decreased Aβ level and improved clinical symptoms

in vivo [150]. A recent study has shown that a coding mutation

(A673T) in the APP gene protects against AD [151].

Interestingly, this substitution is adjacent to BACE-1 cleavage

site in APP, and results in an approximately 40 % reduction in

the formation of amyloidogenic peptides in vitro [151]. The

strong protective effect of the A673T substitution against

Alzheimer’s disease provides proof of principle for the hypoth-

esis that reducing the BACE-1 cleavage of APP and therefore,

lowering the level of amyloidogenic Aβ may protect against

the disease.

Finally, evidence is growing that several misfolded pro-

tein pathologies can spread and cause non-cell autonomous

damage [133, 134]. If this hypothesis can be confirmed in

patients, active and passive immunization might be an ef-

fective therapeutic strategy to halt disease progression and

to modify these fatal diseases.

Concluding remarks

Drugs targeting protein aggregation in the CNS have many

challenges in common with other CNS drugs, most impor-

tantly, getting across the blood/brain barrier, proof of effi-

cacy, safety and tolerability. Neurodegenerative diseases

generally show slow progression rates and therefore age-

dependent changes in protein quality control mechanisms

have to be taken into account when selecting patients for

proof-of-concept studies. Exposures of therapeutic anti-

bodies or small molecules in brain should suffice to trigger

pharmacodynamic Parkinson's disease changes on the

misfolded protein that translate into meaningful effects on

its fate, be it stabilization, functional recovery, or clearance,

and its downstream neurophysiological and clinical effects.
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