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Abstract: During the normal aging process, cytoskeletal changes such as a reduction in density or
disruption of cytoskeletal components occur that can affect neuronal function. As aging is the biggest
risk factor for Alzheimer's disease (AD), this study sought to determine how microtubule (MT)
modification influences cellular response upon exposure to B-amyloid1-42 (AP1-42), which is
implicated in AD. The MT networks of hypothalamic GT1-7 neurons were modified by common
disrupting or stabilizing drugs, and then the physical and mechanical properties of the modified
neurons were determined. The MT modified neurons were then exposed to Af1-42 and the ability of
the neurons to cope with this exposure was determined by a variety of biochemical assays. Flow
cytometry studies indicated that MT disruption reduced the binding of AP1-42 to the plasma
membrane by 45% per cell compared to neurons with stabilized or unaltered MTs. Although the cells
with disrupted MTs experienced less peptide-membrane binding, they experienced similar or
increased levels of cytotoxicity caused by the AB1-42 exposure. In contrast, MT stabilization delayed
toxicity caused by AB1-42. These results demonstrate that MT modification significantly influences
the ability of neurons to cope with toxicity induced by AB1-42.
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1. Introduction

The cytoskeleton plays a critical role in the complex morphology of neurons, intra- and
intercellular signaling, and organelle transport [1]. In neurons, there are three major cytoskeletal
components, neurofilaments, actin, and microtubules [2]. Neurofilaments (NFs) are found within the
axon and dendrites, where they provide structural support, aid in axonal transport, and regulate axon
diameter [3,4]. The inner plasma membrane of neurons is lined with short fragments of filamentous
actin (F-actin), while the dendrites and synaptic terminals are rich in F-actin bundles and lattices [1].
Lastly, microtubules (MTs) span the length of the axon and protrude into the base of dendrites, where
they provide structural support, and function as tracks for organelle transport [5]. Importantly, each
of these cytoskeletal components experience dysfunction with aging that can alter cellular
functioning [2,6—12].

There are many examples of age-related microtubule modification throughout the
body [10,13—-16]. In neurons, exposure to the lipid peroxidation product 4-hydroxy-2(E)-nonenal
(HNE, a common product of age-related oxidative stress) causes extensive MT disruption, and HNE
adduction with tubulin prevented polymerization [17]. In human studies, tissue biopsied from
cognitively healthy adults show an age-dependent decrease in the microtubule density of pyramidal
neurons [18]. Together, these findings demonstrate that neuronal MTs are critically affected during
aging. This may have implications for the development of Alzheimer's disease (AD), as AD brains
display a significant reduction in pyramidal neuron density [19]. MT modification is associated with
mitochondrial abnormalities [20,21], and reduced axonal transport resulting from MT disruption
could also contribute to the loss of synaptic connectivity between neurons that causes cognitive
impairments in AD [18,22]. Considering that aging is the major risk factor for AD [23], it would be
beneficial to gain a more complete understanding of how age-related MT modification in neurons
may contribute to disease.

Two pathological hallmarks of AD are extracellular plaques of amyloid-B (Ap) and
intraneuronal ~ neurofibrillary  tangles  (NFTs)  containing the  hyperphosphorylated
microtubule-associated protein Tau (Tau) [24]. AP is a 38-43 amino acid long residue that is
produced from sequential cleavages of the amyloid precursor protein (APP) [25], but AB1-40 and
APB1-42 are the most abundant forms. AP aggregates themselves are toxic, but their presence is also
thought to trigger a cascade of events leading to the formation of NFTs [25-27], which ultimately
causes the deterioration of the neuronal processes and cell death [28-33].

In the brains of AD individuals, age-related neuronal modifications are amplified in selectively
vulnerable regions of the brain, such as the hippocampus and closely related limbic and cortical
structures [23,34,35]. These changes can contribute to the increased production or decreased
clearance of AP, resulting in AB-induced neurotoxicity [23]. Specifically, impaired axonal transport,
a consequence of age-related MT disruption, has been shown to stimulate the production and
accumulation of AP [36]. Therefore, although it is well known that AP has downstream effects on
Tau and subsequently MT stability, age-related MT disruption may actually be a causative factor in
AD. Due to the relationship between aging, A, and AD, we sought to determine how microtubule
modification influences the cellular response to toxicity caused by aggregates of AP1-42. To
accomplish this goal, GT1-7 neurons were treated with a variety of MT stabilizing or destabilizing
agents, and toxicity associated with exposure to AP1-42 aggregates was examined. This work
provides insight into how MT modification, which is a common feature of the natural aging process,
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may contribute to the development of AD.
2. Materials and Methods
2.1. Cell Culture

GT1-7 hypothalamic neurons were obtained from Dr. Susan Mayo at the University of
California, San Diego. Neurons were grown in DMEM medium supplemented with 4.5 g/L glucose,
110 mg/L sodium pyruvate, 1% penicillin-streptomycin (stabilized with 10,000 units penicillin and
10 mg streptomycin/mL), 2 g/L. sodium bicarbonate, 584 mg/L L-glutamine (Sigma-Aldrich, St.
Louis, MO), 5 mM HEPES (Fisher BioReagents, Waltham, MA) and 10% HyClone® fetal bovine
serum (Thermo Scientific, Waltham, MA) [37—41]. Cultures were maintained at 37 °C and 5% CO,.
For all cell-based experiments, serum concentration was reduced to 5%.

2.2. Microtubule treatments and Ap1-42 Preparation

Colchicine, nocodazole, and paclitaxel (Fisher Scientific) were dissolved in dimethyl sulfoxide
(DMSO, Fisher Scientific) and further diluted in the appropriate buffer or medium to a final
concentration of 0.1-10 uM. Neurons were exposed to a microtubule (MT) modifier for 4 hours prior
to AP exposure to ensure cytoskeletal modification. AP peptides (AB1-42 and FAM-labeled APB1-42)
were purchased from AnaSpec Inc., Fremont, CA. Lyophilized peptides were stored at —20 °C and
allowed to equilibrate to room temperature for 30 minutes before resuspension in
1,1,1,3,3,3-hexafluoro-2-propanol (HFIP, Fisher Scientific) to 1 mM. The peptide solution was
sonicated for 10 minutes at room temperature and aliquoted into microcentrifuge tubes. The solution
was dried and the peptide films were stored at —20 °C until use. Directly before use, HFIP-treated
peptide films were dissolved in DMSO by pipette mixing, vortexing, and sonication for 10 minutes
at 37 °C [42]. Peptide solutions were then diluted into the appropriate buffer or medium to a final
concentration of 5 uM. DMSO exposure to cells never exceeded 1%.

2.3. Cellular mechanical evaluation via AFM

Cells were seeded on poly-D-lysine coated glass coverslips and allowed to incubate overnight.
Neurons were treated with a MT-altering drug or vehicle for 4 hours and then exposed to AP for 30
minutes. Cells were washed and fixed in a glutaraldehyde solution [43]. Coverslips were mounted
onto the AFM stage and imaged in buffer with a NanoScope V MultiMode scanning probe
microscope (Veeco, Santa Barbara, CA) equipped with a closed-loop vertical engage J-scanner.
Experiments were conducted in contact and force volume imaging modes. All images were acquired
using a VISTAprobe contact mode short cantilever (Nanoscience Instruments, Inc., Phoenix, AZ),
where the tip radius was 10 nm and the spring constant was calculated via the thermal tuning method
[38,44]. The same probe was used for all results presented. Scan speed for topography images was
0.5 Hz with a pixel resolution of 512 x 512. Force curves were acquired at 10 Hz, and force volume
images had a resolution of 128 x 128 curves. Young's modulus (E) was evaluated using NanoScope
Analysis software v1.5 (Bruker, Santa Barbara, CA). A Hertz model was applied to determine E,
where Poisson's ratio was v = 0.5 [37,43]. A minimum of 9 cells were evaluated for each sample. E
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values were extracted from both the soma and processes. Histograms were produced in MATLAB
(Math Works Inc., Natick, MA) and values are given as mean * standard deviation. Statistical
significance was analyzed using an unpaired t-test, where a difference at p < 0.05 was considered
statistically significant. The soma region of the cell was determined from corresponding topography
images by finding the tallest pixel within the cell body and defining a sampling zone where the
height of the cell remained within 20% of the height of this tallest pixel. Care was taken to make sure
that the coverslips on which the cells were attached remained fully hydrated during mounting to the
AFM.

2.4. Assessment of Af;.42 aggregation state

To determine the AP aggregate morphology, AP was prepared as described above and diluted in
PBS to 5 uM. The solution was spotted onto freshly cleaved mica after 0, 24, and 48 hours of
incubation at 37 °C. Mica was rinsed with ultrapure water and immediately dried under a gentle
stream of nitrogen. Ex situ images were acquired via tapping mode AFM with a VISTAprobe silicon
cantilever with a nominal spring constant of 40 N/m and a resonance frequency of ~300 kHz. AFM
image analysis was performed using the image processing toolbox of Matlab, as previously described
[45]. The images were imported into Matlab and flattened to correct for background curvature. Using
a height threshold, a binary map of the surface was created to locate individual aggregates and by
implementing pattern recognition algorithms to the binary map, aggregate features were measured
(height, volume, etc.).

The SensoLyte® Thioflavin T (ThT) AP aggregation kit (AnaSpec, Fremont, CA) was used to
confirm the absence of fibrillar aggregates in the 5 uM AP solution over a 48 hour period. 5 uM AP
was prepared as earlier described and added to an untreated 96 well plate containing a ThT solution.
Pretreated AP from the supplier that is known to rapidly form fibrils was prepared as recommended
and used as a positive control. The fluorescence intensity was monitored via an Infinite M1000 Pro
microplate reader (Tecan US, Raleigh, NC) at Ex/Em of 440/484 nm every 10 minutes over 48 hours
at 37 °C with no shaking to mimic assay conditions.

2.5. Flow cytometry

Neurons were seeded in 6-well plates and allowed to incubate overnight. A 4 hour MT or
vehicle treatment was followed by an 80 minute exposure to FAM-AP [46,47]. Samples were
thoroughly washed to remove any unbound peptide and they were lifted from the surface using a
0.25% trypsin solution. Neurons were then rinsed and resuspended in cold sorting buffer (1x D-PBS,
25 mM HEPES at pH 7.0, 2.5 mM EDTA, and 1% bovine serum albumin). The fluorescence
intensity per cell was assessed with a BD FACSCalibur cytometer and BD FACSDiva v8.0 software
(BD Biosciences, Franklin Lakes, NJ).

2.6. Plasma membrane degradation assay
Neurons were seeded at 10,000 cells/100 uL. medium on a tissue culture-treated 96-well plate

and allowed to incubate for 24 hours. Cells received a MT modifying pretreatment, followed by an
AP exposure for an additional 24 or 48 hours. Ethidium homodimer-1 (EthD-1, Molecular Probes,
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Grand Island, NY) was used to evaluate plasma membrane degradation according to the
manufacturer's protocol. EthD-1 enters neurons with compromised membranes to produce a bright
red fluorescence upon binding to nucleic acids. As a control, a group of vehicle-treated cells received
a treatment with 70% methanol 30 minutes prior to EthD-1 exposure. A 6 uM stock of EthD-1 was
prepared in Dulbecco's phosphate buffered saline (D-PBS, Fisher Scientific) and 100 uL was added
to each well for a final concentration of 3 uM. The samples were incubated for 45 minutes at room
temperature and the fluorescence intensity was measured at Ex/Em of 495/635 nm. All assay
measurements were performed at least in triplicate.

2.7. MTT reduction assay

Samples were prepared exactly as described for the plasma membrane degradation assay, and
MTT reduction was evaluated via the MTT assay kit (Abnova, Walnut, CA). The MTT assay
involves the conversion of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) to
insoluble formazan crystals. The tetrazolium salt MTT reduction is dependent on reducing agents,
NADH and NADPH, produced by metabolically active cells. MTT reagent was added to each well
according to the manufacturer's protocol and the samples were incubated for 4 hours at 37 °C. The
crystals were solubilized by adding 100 puL of the provided buffer solution to each well with gentle
shaking for 1 hour at room temperature. The absorbance was measured at 570 nm.

2.8. Statistical analysis

Plasma membrane degradation and MTT reduction was analyzed using GraphPad Prism v5
software (GraphPad Software Inc., La Jolla, CA). Statistical significance was determined using a
one-way analysis of variance (ANOVA) with Turkey's multiple comparison test. Differences at p <
0.05 were considered statistically significant. All assay data is plotted as a ratio of value/baseline
(vehicle control) where error bars reflect standard error of the mean.

3. Results
3.1. Microtubule modification alters the physical and mechanical properties of neurons

To determine how the MT network influences the ability of AB1-42 aggregates to cause toxicity,
it was first necessary to induce MT modification by common disrupting or stabilizing treatments.
Hypothalamic GT1-7 neurons were treated with a MT disruptor (colchicine or nocodazole) or
stabilizer (paclitaxel) for four hours at 0.1, 1.0, and 10.0 uM. Both colchicine and nocodazole cause
MT depolymerization at high concentrations [48], while paclitaxel mechanically stabilizes MTs by
binding to B-tubulin [49]. After four hours of treatment, the physical and mechanical properties of the
neurons were examined. Neurons with chemically disrupted MTs displayed morphological changes,
specifically in reducing extensions of the plasma membrane that are commonly considered to model
neurites in the GT1-7 cell line (Figure 1). This observation is in agreement with other studies that
reported MT disruption induced morphological alterations in the periphery of PC-12 and endothelial
cells [50-52]. Cells treated with paclitaxel did not display a reduction in extensions of the plasma
membrane, as would be expected with stabilization of MTs.
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Figure 1. Morphological changes of GT1-7 neurons treated with MT modifiers. Neurons
were exposed to the vehicle, a MT-depolymerizers (colchicine and nocodazole), or a
MT-stabilizer (paclitaxel) for 4 hours. Phase contrast microscopy images reveal
morphological differences in live neurons with the various treatments. Blue arrows
indicate the presence of extensions of the plasma membrane.

To determine the mechanical impact of MT modification, the Young's modulus (E, a measure of
stiffness) of individual neurons was mapped by AFM-based force volume imaging (Figure 2A). After
four hours of treatment with a MT-modifier, neurons were fixed with glutaraldehyde to effectively
preserve cell surface features [53]. Fixation was necessary due to instrumental limitations, i.e., the
length of time required to produce a force map, but it is common practice for AFM-based cellular
experiments, as it improves image resolution and consistency in  mechanical
measurements [43,54-61]. Fixation is known to increase cellular stiffness [43,54]; therefore, these
studies reflect the relative changes in E. That is, the values of E reported in this study are not
biologically accurate, but fixation allows for fair comparisons of stiffness across samples whereas the
properties of living cells may change during the mapping process. Relative values of E were
determined by extracting individual force-distance curves from the mechanical surface maps. Curves
were selected from two neuronal regions, the soma and the extended processes, to produce E
histograms for each sample (Figure 2B-C). Histograms represent E data extracted from a minimum
of 9 neurons for each treatment.

Treatment with 10 uM colchicine for four hours significantly decreased E in the somatic region
by 31% (Figure 2B). Literature reports on the mechanical effect of colchicine are conflicting. For
instance, neutrophils treated with similar concentrations of colchicine experienced significant
stiffening [62]. In NRK fibroblasts, however, no mechanical alteration or change in stress fibers was
observed after treatment with 100 uM colchicine [63]. Furthermore, vascular smooth muscle cells
exhibited a significant decrease in cell stiffness when treated with colchicine [64]. Thus, the
influence of colchicine on cellular mechanics is highly dependent on cell type, the state of cell
division, and even on the region of the cell. Unlike the somatic region, after colchicine treatment the
rigidity of the neuronal processes was not significantly different than that of the vehicle-treated
control (1.8% difference). The effect of softening in the somatic region while retaining stiffness in
the processes can be related to previous studies on fibroblasts. When aged hamster fibroblasts were
treated with a microtubule disruptor, centrifugal depolymerization occurred and MT remnants were
found in the cortical areas [14]. The reasoning for this effect is unknown and could be attributed to
several factors (aging may disrupt the centrosome, reverse the polarity of MTs, alter the stability of
the anchorage to the membrane, etc.) [14].
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Figure 2. Measuring the Young's modulus of neurons treated with MT modifiers. (a)
Examples of Young's modulus (E) maps obtained by force volume imaging. Histograms
of the average value of E were constructed by extracting values from the (b) soma or (c)
processes of neurons treated with: the vehicle or MT-altering drug (colchicine,
nocodazole, paclitaxel) for 4 hours. Measurements represent the mean E + standard
deviation. The ellipses represent regions from which the soma measurements were
sampled and the arrows indicate where measurements of the processes were sampled.

Unlike colchicine, when cells were treated with 10 uM nocodazole, the stiffness of the soma
and processes increased by 39% and 50%, respectively, as compared to the vehicle-treated control
(Figure 2B-C). This is in agreement with findings from similar studies on L929 fibroblast-like cells
where an increase in cellular stiffness was observed after treatment with nocodazole [65]. This was
attributed to the reorganization of the cytoskeletal network after MT depolymerization. Cytoskeletal
reorganization after injury was observed in Swiss 3T3 cells; when cells were treated with MT
disruptors, actin polymerization occurred in a dose- and time-dependent manner [66]. These findings
demonstrate that cell stiffening after nocodazole-induced MT disruption is a consequence of actin
polymerization. The discrepancy in mechanical changes between colchicine and nocodazole treated

AIMS Biophysics Volume 3, Issue 2, 261-285.



268

neurons may arise from the binding mechanisms to tubulin. Although nocodazole binds tubulin more
rapidly than colchicine, colchicine binding is irreversible [67], which may explain the variation in
cellular stiffness between the two treatments.
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Figure 3. Assessment of the AB1-42 aggregation state. (a) Oligomeric aggregates were
observed when 5 uM AB1-42 was spotted onto freshly cleaved mica and analyzed via ex
situ AFM imaging after 0, 24 or 48 hours of incubation at 37 °C in a physiologically
relevant buffer. (b) The thioflavin T assay was performed to detect the presence of
B-sheet, a characteristic of fibrils. The red line corresponds to 5 uM AP which was
prepared as described in the methods section, and the black line represents 47 uM
AB1-42 obtained from the SensoLyte® Aggregation kit and prepared as recommended by
the manufacturer. (c) Fibrillar aggregates were observed when 47 uM AB1-42 was
imaged via ex situ AFM after 48 hours of incubation.

When neurons were treated with 10 uM paclitaxel, rigidity increased by 101% and 89% in the
somatic region and the processes, respectively, compared to the vehicle-treated control sample
(Figure 2B-C). Our results are consistent with a similar study, in which cellular stiffening occurred in
cortical neurons when treated with 10 uM paclitaxel [68]. Although other studies have demonstrated
that MT-disruption may produce an increase in cellular stiffness by activating a secondary response
of actin polymerization, paclitaxel-mediated MT stabilization was not reported to stimulate actin
production [66,69]. Therefore, the increase in cellular stiffness is likely due to the mechanical
stabilization of the MT network. Taken together, these studies confirmed that a four hour exposure to
MT modifiers altered the morphology and the mechanical stiffness of neurons.
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3.2. Microtubule disruption reduces AP1-42 binding to the cell membrane

Before investigating how MT modification influences AP1-42-induced cytotoxicity, it was
necessary to characterize aggregation state of AB1-42 that the cells would be exposed to in this study.
This is critical because the extent of membrane affinity [70,71] and the resulting toxicity [72] is
dependent on A aggregation state. A fresh AB1-42 solution was prepared from lyophilized peptide
using the Stine preparation method [42]. The solution was diluted to 5 uM, and the aggregation state
of the peptide was determined by ex situ AFM imaging at 0, 24, and 48 h of incubation (Figure 3A).
Over the 48 h incubation, only oligomeric aggregates were observed (even at 0 h of incubation);
however, these oligomers increased in number over 24 h. After 24 h, the number of oligomers
remained relatively steady. Oligomers increased in size from an average height of 3.0 = 1.3 nm to 4.2
+ 1.2 nm over the 48 h period as well. The size of AB1-42 oligomers can vary considerably
depending on the preparation method, but the height is consistent with previously observed large
AB1-42 oligomers [73—75]. Elongated fibrillar aggregates were not observed in any 5 uM sample
within 48 h. The absence of fibrils in the 5 uM solution was confirmed by a Thioflavin T (ThT)
fluorescence assay, which is based on the interaction between ThT and B-sheet secondary structure, a
characteristic of amyloid fibrils (Figure 3B). As a positive control, ThT assays were performed on a
solution of 47 uM AP1-42 guaranteed to form fibrils by the manufacturer, and this solution caused an
immediate increase in fluorescence intensity, consistent with rapid fibril formation and elongation.
Fibril formation within the 47 puM AB1-42 solution was confirmed by AFM (Figure 3C). Cells were
only exposed to freshly-prepared 5 uM monomeric/oligomeric Af1-42 solutions.

It has been demonstrated that cells may exhibit resistance to AB-membrane binding based on
specific cellular characteristics, such as the presence of apoptotic signaling molecules, cell size, stage
of the cell cycle, and cytosolic ATP levels [46]. Specifically, when PC-12 cells or GT1-7 neurons
were exposed to FITC-AB1-42, the cells could be divided into three distinct subpopulations based on
their susceptibility to AP binding (those with no binding affinity, high binding affinity, or extra-high
binding affinity) [46]. Considering this, we wanted to determine if altered neuronal morphology and
mechanical stiffness from MT modification altered the susceptibility of GT1-7 cells to Ap1-42
binding. GT1-7 cells were pretreated with a MT-modifier or a vehicle control (DMSO) for four hours
and then were exposed to 5 uM FAM-AB1-42 solution for 80 minutes. The FAM-AB1-42 solution
contained a mixture of monomer and oligomers, but no fibrils. Pretreatments were not removed from
the culture medium during the additional 80 minute incubation to prevent MT recovery. After the 80
minute FAM-AB1-42 exposure, aggregate-membrane binding was evaluated by flow cytometry
(Figure 4A). Approximately 0.2% of the vehicle-treated control had positive staining, which may be
attributed to the natural fluorescence of the living neurons, likely due to flavoproteins that have a
similar emission wavelength as FAM-AB1-42 (~ 521 nm) [76]. Excluding the vehicle-treated control
which received no FAM-AP1-42 exposure, the vast majority of the neurons in each sample
population had membrane bound FAM-AB1-42 (Figure 4A); however, AP binding for the entire
sample population was slightly lower for neurons pretreated with colchicine (95.2 + 0.5%, p < 0.01
to 0.001) and nocodazole (96.5 = 0.1%, p < 0.001) than those treated with the FAM-AB1-42 only
(98.4 £ 0.1%). The population of neurons pretreated with paclitaxel experienced a similar level of
aggregate-membrane binding (98.5 = 0.1%, p > 0.05) as the FAM-AP1-42 control. This contrasts
results from the previously mentioned study [46], and the discrepancy between the
aggregate-membrane binding is likely due to the peptide preparation technique, as it has been
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demonstrated that different aggregate species elicit distinctive membrane interactions [77].

While FAM-AB1-42 bound over 95% of cells with or without modified MT networks, the
amount of FAM-AB1-42 bound per cell was affected by MT modification (Figure 4B). Pretreatment
with paclitaxel did not significantly alter the amount of FAM-AB1-42 bound per cell compared to
control cells with unaltered MT networks; however, neurons pretreated with colchicine and
nocodazole were bound by approximately 45% less peptide per cell. This decrease in
peptide-membrane binding likely occurred due to the compromised state of neurons with disrupted
MT networks. Although the extended processes of the MT disrupted cells were morphologically
altered (Figure 1), the reduced amount FAM-AB1-42 per cell does not appear to be a consequence of
reduced cellular surface area available for binding due to altered cell size and shape associated with
MT disruption. The available cellular surface area for cells with unaltered or altered MT networks
was estimated by measuring the area occupied by cells using fluorescence microscopy and no
statistical difference was observed between treatments.
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Figure 4. The extent of aggregate-membrane binding determined by flow cytometry. (a)
The percentage of cells in each population that had membrane bound AB1-42. (b) The
amount of aggregate-membrane binding per cell. Neurons were treated with a vehicle or
various MT-altering drugs (colchicine, nocodazole, paclitaxel) for 4 hours followed by an
80 minute incubation with FAM-AP (with the exception of the vehicle control). Cells
were extensively rinsed in physiological buffer to remove any unbound AP before
analysis. Measurements were made in triplicate, with 20,000 events per sample. Marker
(*) represents intensities found to be statistically different (p < 0.05) from the AP control
and error bars represent standard error of the mean (SEM).
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Figure 5. Measuring the Young's modulus of neurons treated with a MT modifier and
AB1-42. (a) Maps of Young's modulus obtained by force volume imaging. Histograms of
the average value of E were constructed by extracting values from the (b) soma or (c)
processes of neurons treated with: the vehicle or MT-altering drug (colchicine,
nocodazole, paclitaxel) for 4 hours followed by a 30 minute exposure to oligomeric
APB1-42. Measurements represent the mean E + standard deviation. The ellipses represent
regions from which the soma measurements were sampled and the arrows indicate where
measurements of the processes were sampled.

3.3. Exposure to AP1-42 alters neuronal rigidity

Numerous studies have demonstrated that AP causes membrane disruption, which can lead to

structural and functional cellular changes [78-84]. To determine if AP1-42 binding affects the
mechanical stability of neurons, surface maps of E were produced by force volume imaging. Neurons
were pretreated with a MT modifier or vehicle (DMSO) for four hours prior to a 30 minute exposure
to fresh preparations of 5 uM AP1-42. The preparations of AB1-42 consisted of a mixture of
monomeric and oligomeric species but did not contain fibrils. Again, the MT modifiers were not
removed from the culture medium to prevent MT recovery. For all sample populations, the E of the
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soma and processes significantly increased upon AB1-42 exposure compared to control cells that
were treated similarly in regards to their MT networks but not exposed to AP (Figure 5, which can be
compared directly with Figure 2, and Table 1). Interestingly, stiffening occurred regardless of the
initial state of the MT network at the time of exposure. A similar stiffening effect was reported
previously, where an increase in cell stiffness was observed after exposure to 5 uM oligomeric
AB1-42 solutions for 30 minutes [85].

Table 1. Percent difference in Young's modulus (E) after 30 minute exposure to Ap1-42.

Soma (% change) Processes (% change)
Control 142 154
+ Colchicine 143 29
+ Nocodazole 69 19
+ Paclitaxel 88 77

Percent differences were calculated for both the soma and neuronal processes. E increased
significantly in each neuronal region after treatment, with p <0.001

3.4. Microtubule disruption reduces the ability of neurons to cope with AB1-42 exposure

Next, we examined the influence of MT disruption on the ability of GT1-7 cells to cope with
exposure to AB1-42. Plasma membrane (PM) degradation and MTT reduction assays were used, as
these assays are effective tools for assessing A-induced toxicity [72,86-90]. Neurons were
pretreated with an MT-disruptor (colchicine or nocodazole) or the vehicle (DMSQO), at concentrations
ranging from 0.1 to 10 uM for 4 hours, and then AB1-42 (5 uM final concentration) was added to the
culture medium for an additional 24 to 48 hours. Again, the preparations of AB1-42 consisted of a
mixture of monomeric and oligomeric species but did not contain fibrils. As an important note, the
amount of PM degradation or MTT reduction for each sample is plotted relative to the control, i.e.,
the total amount of PM degradation or MTT reduction for neurons that were treated with only the
vehicle (DMSO).

When neurons were exposed to 0.1-10 uM colchicine, there was no statistical difference in the
PM degradation induced by the various colchicine concentrations at each respective time point
(white bars to the left, Figure 6A). However, when neurons were pretreated with colchicine at each
concentration and then exposed to AB1-42 for an additional 24 or 48 hours (gray bars in the center),
PM degradation significantly increased by 2.25-3.02 times as compared to the neurons that received
only a colchicine treatment for 28 or 52 hours. In some cases, neurons with a coexposure to both
colchicine and AP1-42 (gray bars in the center), experienced 1.30—1.59 times more PM degradation
than samples exposed to AP1-42 alone (black bars to the right). This demonstrates that MT
disruption by colchicine enhances the toxicity of AB1-42 aggregates, especially considering that the
neurons with disrupted MTs were bound by half as much AP compared to neurons without MT
disruption as assessed by flow cytometry (Figure 4B).
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Figure 6. Cellular response to AB1-42 after colchicine treatment. (a) PM degradation and
(b) MTT reduction was evaluated after neurons were pretreated with the vehicle (DMSO),
or MT-destabilizing drug (colchicine) followed by a 24 or 48 hour exposure to 5 uM AP.
Bars are plotted as relative to the vehicle control (1.0). White bars represent neurons
treated with colchicine only, gray bars represent treatment with both colchicine and
APB1-42, and black bars represent treated with AB1-42 only. The concentration of the drug
treatment is shown in the legend of (a). The (*) represents samples found to be
statistically different from neurons only treated with colchicine, and the (+) indicates
samples that are statistically different from the AB1-42 exposed control (p < 0.05). Error
bars represent standard error of the mean (SEM). PM degradation or MTT reduction for
each sample is plotted relative to the total amount of PM degradation or MTT reduction

for neurons that were treated with only the vehicle (DMSO).

There was little difference in MTT reduction of the neurons exposed to 0.1 uM colchicine,
APB1-42, or coexposure to both agents after 24 hours of treatment (Figure 6B). However, with
exposure to higher concentrations of colchicine (or longer exposures to 0.1 uM colchicine) with or
without the presence of AB1-42, the MTT response significantly decreased by 22—77% compared to
neurons that were exposed only to AB1-42. This supports the findings from the plasma membrane
degradation study; MT disruption by colchicine reduces neuronal viability, and therefore, the neurons
are unable to efficiently cope with even low levels of membrane bound AP1-42 as was determined by
flow cytometry (Figure 4B).
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Figure 7. Cellular response to AB1-42 after nocodazole treatment. (a) PM degradation
and (b) MTT reduction was evaluated after neurons were pretreated with the vehicle
(DMSO), or MT-destabilizing drug (nocodazole), followed by a 24 or 48 hour exposure
to 5 uM AB1-42. Bars are plotted as relative to the vehicle control (1.0). White bars
represent neurons treated with nocodazole only, gray bars represent treatment with both
nocodazole and AB1-42, and black bars represent neurons treated with AB1-42 only. The
concentration of the drug treatment is shown in the legend of (a). The (*) represents
samples found to be statistically different from neurons only treated with nocodazole,
and the (+) indicates samples that are statistically different from the AB1-42 exposed
control (p < 0.05). Error bars represent standard error of the mean (SEM). PM
degradation or MTT reduction for each sample is plotted relative to the total amount of
PM degradation or MTT reduction for neurons that were treated with only the vehicle
(DMSO).

Neurons that received treatment with nocodazole experienced slight increases in PM
degradation as the concentration increased from 0.1-10.0 uM, but that amount was not statistically
different (white bars to the left, Figure 7A). When neurons pretreated with nocodazole for four hours
were exposed to AP1-42 aggregates for an additional 24 or 48 hours, PM degradation increased
significantly by 2.00—4.62 times for cells treated with 0.1 and 1.0 uM nocodazole at 24 and 48 hours,
as compared to the neurons receiving only a 0.1 or 1.0 uM nocodazole treatment. Neurons pretreated
with 10 uM nocodazole followed by an exposure to AB1-42 for an additional 24 hours did not
experience a statistically significant increase in PM degradation as compared to those exposed to 10
UM nocodazole alone. This result is likely due to the fact that 10 uM nocodazole itself is
considerably more toxic than the lower concentrations of the drug.

Interestingly, the MTT reduction of neurons exposed to nocodazole, AB1-42, or a combination
thereof for 24 hours was essentially analogous (Figure 7B). After 48 hours of coexposure to 1.0 uM
nocodazole and AP1-42 (gray bar in the center), MTT response decreased nearly by half, as
compared to the neurons treated with AB1-42 only (black bars to the right). Considering that neurons
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pretreated with nocodazole experienced only half as much aggregate-membrane binding as assessed
by flow cytometry (Figure 4B), this indicates that neurons with disrupted MTs had a reduced ability
to cope with exposure to toxic AB1-42. After 48 hours, treatment with 10 uM nocodazole alone or a
combination of nocodazole and AB1-42 reduced MTT response by over half of that caused by
treatment with only AB1-42, indicating that nocodazole itself can cause a large reduction in MTT
response at high concentrations.

Overall, nocodazole decreased the ability of GT1-7 cells to cope with exposure to AP in a
similar fashion as colchicine; however, the toxic effects were less severe in the nocodazole treated
samples. This could be attributed to the different binding mechanisms of the MT disruptors to tubulin,
which produce distinct mechanical responses, or a reduction in axonal transport and signaling caused
by the breakdown of MTs. In any case, the MT disrupted samples treated with AB1-42 aggregates
experienced just as much, or in some instances, greater toxicity than neurons treated with Ap1-42
alone, despite having a reduced amount of AP directly interacting with the cell (reduced membrane
binding, Figure 4B). This result suggests that MT disruption interferes with the cellular response
mechanisms to AB1-42-mediated toxicity, impairing a cell’s ability to efficiently cope with exposure
to AP1-42.

3.5. Microtubule stabilization delays the onset of Ap1-42-induced toxicity

Next, we determined the effect of MT stabilization on the ability of GT1-7 cells to cope with
exposure to AB1-42. Neurons were pretreated with paclitaxel at concentrations ranging from 0.1-10
puM for 4 hours, and then 5 uM AB1-42 was added to the culture medium for an additional 24 to 48
hours. The preparations of AB1-42 consisted of a mixture of monomeric and oligomeric species but
did not contain fibrils. Control cells were treated with the DMSO vehicle prior to exposure to AB1-42.
Neurons receiving treatment with paclitaxel alone did not experience any statistical difference in PM
degradation (white bars to the left, Figure 8A). However, PM degradation significantly increased by
2.88—4.31 times when neurons were pretreated with paclitaxel and then exposed to AB1-42 (gray bars
in the center). Interestingly, at 24 hours, the PM degradation caused by coexposure to paclitaxel and
APB1-42 was half of that induced by AB1-42 alone (black bars to the right). This effect was lost after
48 hours of treatment. This indicates that MT-stabilization by paclitaxel may be able to delay the
onset of cytotoxicity mediated by AB1-42.

There was no statistical difference in the MTT reduction of neurons exposed to paclitaxel at 0.1
or 1.0 uM, AB1-42, or a combination thereof (Figure 8B). However, the MTT response of neurons
treated with 10 uM paclitaxel was 1.30-2.33 times higher than any other population after 24 and 48
hours. This likely occurred because the MT network is highly associated with mitochondrial shape,
movement and function [91-94], and its stabilization could promote mitochondrial activity. For
example, hyperphosphorylation of Tau, which is a critical component to MT stabilization, inhibited
mitochondrial function in PC-12 cells and mouse brain cortical neurons [95]. Thus, it is not
unreasonable to observe an increase in MTT response after MT-stabilization. Nevertheless, there was
no significant difference in MTT reduction between neurons coexposed to paclitaxel (at all
concentrations) and AB1-42, or neurons treated with the peptide solution only. Combined with results
of the plasma membrane degradation assay, this data suggests that MT-stabilization can improve the
cellular response mechanisms ability to cope with the AB1-42 exposure, as the amount of A bound
per cell treated with paclitaxel was similar to control cells as was assessed by flow cytometry (Figure
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Figure 8. Cellular response to AB1-42 after paclitaxel treatment. (a) PM degradation and
(b) MTT reduction was evaluated after neurons were pretreated with the vehicle (DMSO),
or MT-stabilizing drug (paclitaxel) followed by a 24 or 48 hour exposure to 5 uM
APB1-42. Bars are plotted as relative to the vehicle control (1.0). White bars represent
neurons treated with paclitaxel only, gray bars represent treatment with both paclitaxel
and oligomeric AB1-42, and black bars represent neurons treated with AB1-42 only. The
concentration of the drug treatment is shown in the legend of (a). The (*) represents
samples found to be statistically different from neurons only treated with paclitaxel, and
the (+) indicates samples that are statistically different from the AB1-42 exposed control
(p < 0.05). Error bars represent standard error of the mean (SEM). PM degradation or
MTT reduction for each sample is plotted relative to the total amount of PM degradation
or MTT reduction for neurons that were treated with only the vehicle (DMSO)

4. Discussion

Our studies sought to determine the role of MT modification on cytotoxicity mediated by
APB1-42 in a non-fibrillar form. That is, preparations of AB1-42 used in this study were mixtures of
monomeric and oligomeric forms of the peptide. While the number of oligomers increased over 24
hours, fibrils were not observed in the preparations AP1-42 for up to 48 h. The role of MT
modifications on cytotoxicity was accomplished by examining the effects of MT disruption and
stabilization in GT1-7 neurons exposed to 5 uM AB1-42. Although over 95% of neurons in each
sample treatment group had membrane bound AB1-42, MT disruption by colchicine and nocodazole
significantly reduced the extent of AB-membrane binding per cell. The reduction of AB-membrane
binding likely occurred due to the compromised nature of the neurons that received an MT disrupting
treatment. Alterations in neuronal rigidity caused by MT alterations did not appear to affect
AB-membrane binding; specifically, colchicine reduced neuronal rigidity and nocodazole increased
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neuronal rigidity compared to neurons with unaltered MTs. This contrasting effect was unexpected,
considering that both colchicine and nocodazole cause MT depolymerization at high
concentrations [96], but the discrepancy could be due to the differing binding affinities of each drug
to tubulin, and/or their mechanisms of action. Literature reports on the tubulin binding site(s) for
nocodazole or colchicine are conflicting based on the species which the tubulin was derived from,
and experimental designs [67,97-102]; however, a common finding is that nocodazole-tubulin
binding is reversible, whereas colchicine-tubulin binding is essentially
irreversible [67,96,98,103—105]. Accordingly, the tight binding of colchicine to tubulin likely
contributed to the significant softening of the cells, and to the reduced neuronal viability, compared
to nocodazole treated neurons. In any case, the reduction in neuronal viability caused by either MT
disruptor enhanced the neurotoxicity of AP1-42 in a synergistic way. This is supported by the
observation that neurons with unaltered MTs had double the amount of membrane bound AP per cell
as determined by flow cytometry, but experienced similar or decreased levels of PM degradation
compared to the neurons with disrupted MT networks (Figure 9). On the contrary, MT stabilization
by paclitaxel had a protective effect against AB1-42, as there was reduced toxicity after 24 h
exposure to AB1-42 despite having similar amounts of AP bound to the cell (Figure 9).
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Figure 9. A comparison of the relative PM degradation associated with exposure to
AB1-42 of cells pretreated with MT altering drugs (10 uM treatment) to cells with no
drug treatment to the amount of AP bound per cell as measured by flow cytometry. The
arrows demonstrate how the relative PM degradation changes from 24 h to 48 h for cells
treated with colchicine (blue), nocodazole (red), or paclitaxel (green). As the data is
plotted relative to the measurements associated with cells that were not treated with
drugs, the position of the untreated cells + AB1-42 remains at position (1.0, 1.0).

The protective effect of MT stabilization against AB-induced cytotoxicity on primary neuronal
cultures has been previously observed [88,106,107]. There, neurons were treated with 0.1 uM
paclitaxel for 2 hours before exposure to either 10 uM AP1-42 or AB25-35. Importantly, the AP
solutions used in those studies were prepared by incubations at 37 °C for 24 hours in 10 mM
Tris-HCI, a preparation technique that is known to produce fibrillar aggregates [42,108]. Furthermore,
only peptide solutions with greater than 70% [-sheet conformation were utilized in that study, as

AIMS Biophysics Volume 3, Issue 2, 261-285.



278

confirmed by circular dichroism [88,106,107]. Taken together, the observations that
paclitaxel-mediated MT stabilization was only able to delay toxicity induced by nonfibrillar
aggregates of AB1-42, but protected against higher concentrations of fibril-induced toxicity for 48
hours supports the literature that smaller aggregates exert a more toxic effect than their fibrillar
counterparts [72,86,109].

Regardless of the MT state (disrupted vs. stabilized), neuronal stiffness significantly increased
after exposure to AP1-42. This increase in stiffness can be related to the previous point that MT
stabilization only delayed AP oligomer-induced toxicity compared to a more sustained protective
effect against fibrillar aggregates. Studies have demonstrated that oligomeric AP1-42 aggregates
caused higher stiffness in neurons than fibrillar AB1-42 [85]; therefore, AB1-42-induced increases in
cell stiffness may be directly related to increased toxicity, as AB1-42 oligomers have been shown to
produce a more toxic effect than fibrils [72,86,109]. The mechanism of increased neuronal stiffness
can be explained by findings from model membranes and neuronal studies. When model membranes
were exposed to AB1-40, the aggregates caused extensive membrane disruption and decreased the
mechanical stiffness of the bilayer [110]. In neurons, a mechanical stiffening occurred after N2a
neuroblastoma cells and HT22 hippocampal neurons were exposed to 5 uM oligomeric AB1-42
solutions for 30 minutes [85]. The observation of mechanical contrast between model membranes
and whole cells after AP exposure is not unjustified, as mechanical measurements on cells account
for the entire cell system rather than just the membrane. Thus, while the plasma membrane of a cell
may become disrupted and less stiff after A exposure, overall cell stiffening may be observed due to
several factors, or a combination thereof. For example, AP aggregates may interact with the
membrane thereby altering the fluidity or creating pores, which could increase intracellular osmotic
pressure by unregulated ion influx [78,79,83-85]. Furthermore, studies have demonstrated that in
primary hippocampal neurons, APB23-35 and APB1-42 (at concentrations greater than 5 uM) exposure
stimulated the production of stress fibers through the activation of p38MAPK (mitogen-associated
protein kinase) [111], which could also contribute to overall cell stiffening. Taken together, these
findings demonstrate that AP-membrane interactions may reduce membrane stiffness while
increasing the overall mechanical rigidity of neurons through a variety of mechanisms.

MT disruption, a consequence of the normal aging process, enhanced the toxicity of AB1-42
compared to neurons with unaltered or stabilized MTs. This has further pathological implications for
the cell, as both synthetic and human-derived aggregates of AB1-42 stimulated Tau phosphorylation
in a variety of cell cultures [26,112,113]. Additionally, in vivo studies have demonstrated that
injection of AP1-42 aggregates into the brains of mice and rhesus monkeys caused Tau
phosphorylation and the formation of NFTs [114,115]. Considering that the physiological role of Tau
is to modulate MT assembly and stability, AB1-42 aggregate-induced phosphorylation disrupts the
proper functioning of Tau thereby destabilizing MTs. This essentially creates a self-sustaining
feedback mechanism, where age-related MT disruption enhances the toxic ability of AB1-42
aggregates to trigger the phosphorylation of Tau and further degrade MTs. This mechanism
eventually causes synaptic dysfunction, neuronal death, and the breakdown of neuronal networks that
leads to the clinical symptoms of AD. Given the evidence that MTs play such a critical role in AD
pathology, MT stabilization has been explored as a potential treatment strategy [88,106,107,116—118].
Here, we found that treating neurons with the MT stabilizer, paclitaxel, delayed the onset of toxicity
induced by nonfibrillar AB1-42 aggregates, which correlates well with studies demonstrating that MT
stabilization has a more prolonged protective effect against AB1-42 fibrils.
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5. Conclusion

We have provided evidence that altered MT networks influence a cell’s ability to cope with
exposure to oligomeric aggregates of AB1-42. While disrupting the MT network decreased the
amount of AP that actually bound to cells, toxicity of Af was enhanced by destabilizing MT. In
contrast, stabilizing MTs resulted in a protective effect. Regardless of the MT state (disrupted vs.
stabilized vs. unaltered), exposure to AP1-42 aggregates resulted in cell stiffening. Our results
demonstrate that MT modifications can have a direct influence on the toxicity of small Ap1-42
aggregates.
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