
The Complexity of Resilience and Responsibility
for Self-Join-Free Conjunctive Queries

Cibele Freire Wolfgang Gatterbauer Neil Immerman Alexandra Meliou
University of Massachusetts Carnegie Mellon University University of Massachusetts University of Massachusetts

cibelemf@cs.umass.edu gatt@cmu.edu immerman@cs.umass.edu ameli@cs.umass.edu

ABSTRACT
Several research thrusts in the area of data management
have focused on understanding how changes in the data af-
fect the output of a view or standing query. Example ap-
plications are explaining query results, propagating updates
through views, and anonymizing datasets. An important
aspect of this analysis is the problem of deleting a mini-
mum number of tuples from the input tables to make a given
Boolean query false, which we refer to as “the resilience of
a query.” In this paper, we study the complexity of re-
silience for self-join-free conjunctive queries with arbitrary
functional dependencies. The cornerstone of our work is the
novel concept of triads, a simple structural property of a
query that leads to the several dichotomy results we show
in this paper. The concepts of triads and resilience bridge
the connections between the problems of deletion propa-
gation and causal responsibility, and allow us to substan-
tially advance the known complexity results in these topics.
Specifically, we show a dichotomy for the complexity of re-
silience, which identifies previously unknown tractable fam-
ilies for deletion propagation with source side-effects, and
we extend this result to account for functional dependen-
cies. Further, we identify a mistake in a previous dichotomy
for causal responsibility, and offer a revised characterization
based purely on the structural form of the query (presence
or absence of triads). Finally, we extend the dichotomy for
causal responsibility in two ways: (a) we account for func-
tional dependencies in the input tables, and (b) we compute
responsibility for sets of tuples specified via wildcards.

1. INTRODUCTION
As data continues to grow in volume, the results of rela-

tional queries become harder to understand, interpret, and
debug through manual inspection. Data management re-
search has recognized this fundamental need to derive ex-
planations for query results and surprising observations [4,
33–35], to assist users and administrators in better under-
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Users

uid name

u1 1 Alice
u2 2 Bob
u3 3 Charlie

Requests

type details

r1 IMAP email (in)
r2 SMTP email (out)
r3 DB data access

Access log

uid type server

a1 1 IMAP yoda
a2 2 DB yoda
a3 1 SMTP yoda
a4 1 DB yoda
a5 3 IMAP loki
a6 3 DB yoda
a7 2 SMTP loki
a8 1 DB homer

Figure 1: The Computer Science department needs to retire an
old server, yoda. To perform the migration efficiently, IT should
transfer Alice to a different email server, and migrate databases
from yoda to one of the other servers.

standing their data and resolving problems effectively and
efficiently.

Example 1 (System migration). The computer sci-
ence department needs to retire an old server called “yoda”
(see Fig. 1). The IT department needs to understand if and
how the server is currently used, to perform the migration
to other servers more efficiently. More formally, the ad-
ministrator wants to understand why the following query q
evaluates to true:

q :−Users(x, n),AccessLog(x, y, ‘yoda’),Requests(y, d)

Detailed analysis of the data reveals that q is true due to
(a) email-related requests by Alice, and (b) data access re-
quests by several users. Thus, to perform the migration,
the IT department should transfer user Alice to a different
email server, and migrate the databases residing on yoda to
a different server.

An explanation that is simple and concise is more likely
to be correct and to provide an efficient resolution to a po-
tential problem. In Example 1, there are many changes to
the data that could “correct” the outcome of query q, but
the smallest intervention (removing tuples u1 and r3) is the
one that provides better clues for the underlying context.
Interventions are not explicit recommendations for a par-
ticular action (e.g., IT would not actually remove a user),
but they give indications for possible actions (e.g., update a
user’s settings).

There are two closely related research problems that have
explicitly studied the impact of such interventions to a query
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(d) View-side effects: min |∆|

SJ : Queries with selections and joins PTIME
[7]

PJ : Queries with projections and joins NP-complete1

“Key-preserving” SPJ queries PTIME
[11]

All other SPJ queries NP-complete1

“Triad-free” SPJ queries PTIME

All other SPJ queries NP-complete
this paper

“FD-induced triad-free” SPJ queries PTIME

All other SPJ queries NP-complete
this paper

(e) Source-side effect problem: prior and our dichotomy results

SJ : Queries with selections and joins PTIME
[7]

PJ : Queries with projections and joins NP-complete

“Key-preserving” SPJ queries PTIME
[11]

All other SPJ queries NP-complete

“Head-dominated” SPJ queries PTIME
[29]

All other SPJ queries NP-complete

“Functional head-dominated” SPJ queries PTIME
[28]

All other SPJ queries NP-complete

(f) View-side effect problem: prior dichotomy results

Figure 2: This paper contains dichotomy results for (a) deletion propagation with source-side effects, (b) resilience, and (c) responsibility
for causality. Besides others, they imply a complete dichotomy for the source side-effect problem for the class of self-join-free conjunctive
queries in the presence of functional dependencies (e). Thus, this part of our work is similar in scope to [29] and [28] for the problem of
view-side effects (f). We derive these results by analyzing a simpler concept: the resilience of Boolean queries. In addition (not shown
in the figure), we provide a correction to a prior dichotomy result for causal responsibility and then extend it in two ways: responsibility
for tables with functional dependencies and responsibility for tuples with wildcards, e.g., (∗, 5, 7).

output: causal responsibility and deletion propagation. Caus-
al responsibility [31] seeks, for a given query q and a specified
input tuple t, a minimum set of other input tuples Γ that, if
deleted, would make t “counterfactual,” i.e., the query would
be true with that tuple present, or false if the tuple was also
deleted. In Example 1, tuple r3 becomes counterfactual if
tuple u1 is deleted (Fig. 2c). In contrast, deletion propaga-
tion with source side-effects [7,14] seeks an overall minimum
set of tuples that, if deleted, would remove a particular tuple
from the result (e.g., tuples u1 and r3 in Fig. 2a).

Unfortunately, existing work in both these problems fails
to address scenarios like Example 1 effectively. The issue, at
a high level, is that the known results do not lead to efficient
solutions: (a) causal responsibility results in inefficiencies
because it needs to be computed for every tuple in the input;
(b) the known complexity results for deletion propagation
with source side-effects (which is the relevant variant here)
are too coarse-grained and classify even simple scenarios,
such as Example 1, as NP-complete (Fig. 2e).

In this paper, we bridge the connections between these
two problems and advance the existing complexity results
with improved dichotomies and additional tractable classes.
We achieve this by taking a step back and re-examining
how particular interventions (tuple deletions) in the input
of a query impact its output. Specifically, we study how
“resilient” a Boolean query is with respect to such interven-
tions. Resilience is a variant of deletion propagation for the
case of Boolean queries: It identifies the smallest number of
tuples to delete from the input to make the query false (e.g.,
Fig.2b). A method that provides a solution to resilience can
immediately also provide an answer to the deletion propa-
gation with source-side effects problem by defining a new
Boolean query and database, replacing all head variables

1In this paper we show that a big subclass of PJ queries are in fact
in PTIME. The difference arises from the fact that previous work
classified query families based on their operators (e.g., projections
and joins). In contrast, we characterize query families based on the
query structure, leading to additional tractable cases.

in the view with constants of the output tuple. We will
show that characterizing the complexity of resilience allows
us to study the complexities of both deletion propagation
with source-side effects and causal responsibility.

The work we present in this paper characterizes the com-
plexity of resilience using the novel concept of a triad, a
simple query structure that is sufficient to determine a full
dichotomy for resilience, in the case of conjunctive queries
without self-joins and with possible functional dependencies.
The results we present in this paper have three important
implications to existing results in both deletion propagation
and causal responsibility. (1) They advance the known com-
plexity results for deletion propagation with source side-
effects by identifying a new large class of tractable cases.
(2) They correct and refine the known complexity results on
causal responsibility by replacing the complex, procedural
criterion of weak linearity with the much simpler, structural
criterion of triads. (3) They extend both results to account
for possible functional dependencies in the input datasets.

1.1 Contributions of our work
In this paper, we study the problem of minimal inter-

ventions with respect to the resilience of a Boolean query.
Resilience is a variant of deletion propagation with source
side-effects, where we seek the minimum number of input
tuples that need to be deleted in order to make a Boolean
query false. We define our results in terms of “resilience”
since the notion of resilience has obvious analogies to uni-
versally known minimal set cover problems. In addition,
resilience helps bridge the connection between prior work in
causal responsibility and deletion propagation with source
side-effects.

The core concept of triads. Our first contribution,
and the core of our complexity results, is the novel concept
of triads, a simple structural property of the query hyper-
graph that elegantly separates the hard from the polynomial
queries. A triad is a triple of points with robust connectivity
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output: causal responsibility and deletion propagation. Caus-
al responsibility [31] seeks, for a given query q and a specified
input tuple t, a minimum set of other input tuples Γ that, if
deleted, would make t “counterfactual,” i.e., the query would
be true with that tuple present, or false if the tuple was also
deleted. In Example 1, tuple r3 becomes counterfactual if
tuple u1 is deleted (Fig. 2c). In contrast, deletion propaga-
tion with source side-effects [7,14] seeks an overall minimum
set of tuples that, if deleted, would remove a particular tuple
from the result (e.g., tuples u1 and r3 in Fig. 2a).
Unfortunately, existing work in both these problems fails

to address scenarios like Example 1 effectively. The issue, at
a high level, is that the known results do not lead to efficient
solutions: (a) causal responsibility results in inefficiencies
because it needs to be computed for every tuple in the input;
(b) the known complexity results for deletion propagation
with source side-effects (which is the relevant variant here)
are too coarse-grained and classify even simple scenarios,
such as Example 1, as NP-complete (Fig. 2e).
In this paper, we bridge the connections between these

two problems and advance the existing complexity results
with improved dichotomies and additional tractable classes.
We achieve this by taking a step back and re-examining
how particular interventions (tuple deletions) in the input
of a query impact its output. Specifically, we study how
“resilient” a Boolean query is with respect to such interven-
tions. Resilience is a variant of deletion propagation for the
case of Boolean queries: It identifies the smallest number of
tuples to delete from the input to make the query false (e.g.,
Fig.2b). A method that provides a solution to resilience can
immediately also provide an answer to the deletion propa-
gation with source-side effects problem by defining a new
Boolean query and database, replacing all head variables

1In this paper we show that a big subclass of PJ queries are in fact
in PTIME. The difference arises from the fact that previous work
classified query families based on their operators (e.g., projections
and joins). In contrast, we characterize query families based on the
query structure, leading to additional tractable cases.

in the view with constants of the output tuple. We will
show that characterizing the complexity of resilience allows
us to study the complexities of both deletion propagation
with source-side effects and causal responsibility.

The work we present in this paper characterizes the com-
plexity of resilience using the novel concept of a triad, a
simple query structure that is sufficient to determine a full
dichotomy for resilience, in the case of conjunctive queries
without self-joins and with possible functional dependencies.
The results we present in this paper have three important
implications to existing results in both deletion propagation
and causal responsibility. (1) They advance the known com-
plexity results for deletion propagation with source side-
effects by identifying a new large class of tractable cases.
(2) They correct and refine the known complexity results on
causal responsibility by replacing the complex, procedural
criterion of weak linearity with the much simpler, structural
criterion of triads. (3) They extend both results to account
for possible functional dependencies in the input datasets.

1.1 Contributions of our work
In this paper, we study the problem of minimal inter-

ventions with respect to the resilience of a Boolean query.
Resilience is a variant of deletion propagation with source
side-effects, where we seek the minimum number of input
tuples that need to be deleted in order to make a Boolean
query false. We define our results in terms of “resilience”
since the notion of resilience has obvious analogies to uni-
versally known minimal set cover problems. In addition,
resilience helps bridge the connection between prior work in
causal responsibility and deletion propagation with source
side-effects.

The core concept of triads. Our first contribution,
and the core of our complexity results, is the novel concept
of triads, a simple structural property of the query hyper-
graph that elegantly separates the hard from the polynomial
queries. A triad is a triple of points with robust connectivity



— a sort of super cycle (Def. 13). While previous results in
causal responsibility [31] alluded to the presence of such a
structure, it was not discovered, nor characterized in prior
work. Triads are significant for two reasons: (1) They define
a simple structural criterion that determines query complex-
ity. In contrast, previous related results for causal responsi-
bility were procedural, defining a series of transformations to
obtain a canonical query form. (2) Our findings so far indi-
cate that triads are a very fundamental and general concept,
and we believe they can be used to characterize dichotomies
for broader classes of queries. The concept of triads also pro-
vides new tractable solutions to the otherwise hard minimum
hypergraph vertex cover problem. Our PTIME classes for re-
silience define families of hypergraphs for which minimum
vertex cover is also always in PTIME. As such, resilience
provides an intuitive definition that can draw analogies to
problems even outside the database community. However,
these implications are outside the scope of this paper.

Our complexity results on resilience automatically trans-
late to new results in the problem of deletion propagation
with source side-effects. Further, we were able to use the
concept of triads to improve and extend known results in
causal responsibility. Thus, we state our contributions with
respect to these two problems.

Contributions to deletion propagation.
Our results on resilience imply a refinement for the complex-
ity of deletion propagation with minimum source side-effects
(DPsource). Our work advances previous results in two ways:

New tractable cases. The previous known results char-
acterized all PJ queries as NP-complete [7] (Fig.2e), because
they analyzed the complexity at the level of relational oper-
ators. In this paper, however, by analyzing the query struc-
ture and using the concept of triads, we show additional
tractable cases: for the class of self-join-free conjunctive
queries, resilience (and by extension DPsource) is NP-complete
if the query contains a triad, and PTIME otherwise (Sect.3).
Determining whether a query contains a triad can be done
very efficiently, in polynomial time with respect to query
complexity. This implies that DPsource can always be solved
in PTIME for the query of Example 1, even though the pre-
viously known results [7] classify it as NP-complete. These
results are analogous to the results of Kimelfeld et al. [29]
for the view-side effect problem. In addition, our dichotomy
criterion also allows the specification of “forbidden” tables
(called exogenous tables) that do not allow deletions. This
is an extension to the traditional definition of the deletion
propagation problem and affects the complexity of queries in
non-obvious ways (defining a table as exogenous can make
both easy queries hard, and hard queries easy).

Functional dependencies. Our work also provides a
complete dichotomy result for the class of self-join-free CQs
with Functional Dependencies (Sect. 4). These results are
analogous to the results of [28] for the view-side effect prob-
lem. At a high-level, we define a new transformation driven
by FDs, called induced rewrite (Def. 30), and show that it
preserves the complexity of resilience (Lemma 31). Our sec-
ond main result shows a dichotomy for resilience in the pres-
ence of FDs: if after applying all induced rewrites, the query
contains a triad, then it is NP-complete (Theorem 35).

Contributions to causality.
Causal responsibility is closely related to resilience, but we

show that it is a more intricate notion, with higher com-
plexity (Lemma 7). In particular, we show query qrats in
Fig. 3b for which resilience is in PTIME (Cor. 23), whereas
responsibility is NP-complete (Prop. 37). We discover that
triads can help characterize the complexity of responsibility,
and advance previous known results in four ways:

Correction of dichotomy. We found that responsibil-
ity is a more subtle concept than we previously thought. In
particular, we identified an error in the existing dichotomy
for responsibility [31], which classified certain hard queries
into the polynomial class of queries. The problem is that the
existing notion of “domination” is not sufficient to charac-
terize the dichotomy. In Sect. 5, we provide a refinement of
domination called “full domination” that solves this issue.
In addition, we show that by transforming sj-free CQ into
a different normal form, computing responsibility is again
NP-complete in the presence of triads and PTIME otherwise
(Theorem 49). Using triads makes the dichotomy character-
ization more elegant than the previous result, as it is based
on a simple structural property of the query, rather than a
series of transformations.

Functional dependencies. We prove that the existence
of triads also determines a dichotomy for responsibility in
the presence of FDs (Theorem 51).

Generalization to tuple groups. Further, we show
that the last two dichotomies still hold for the responsibility
of groups of input tuples, that can be expressed via wild
cards. E.g., R(a, ∗) denotes the set of all tuples R(a, b) for
any possible b (Theorems 49 and 51).

Using resilience instead of responsibility. Finally,
we show how to harness the reduced complexity of resilience
to derive the set of tuples with the highest responsibility for
a query (Sect. 5.5). This makes resilience a better choice
than responsibility in many practical settings.

Outline.
Section 2 defines all notions mentioned here more formally
and discusses the connections of resilience with deletion prop-
agation and causal responsibility. Sections 3 and 4 contain
our two main technical contributions for the problem of re-
silience, while Sect.5 corrects the dichotomy of responsibility
and extends it to the case of tuples with wildcards and func-
tional dependencies. Section 6 reviews the related work, and
Sect.7 discusses implications, open problems, and future di-
rections. Due to space restrictions, some of our proofs are
omitted. For these, please refer to the full version of this
paper [19].

2. FORMAL SETUP AND CONNECTIONS
This section introduces our notation, defines resilience,

and formalizes the connections between the problems of re-
silience, deletion propagation, and causal responsibility.

General notations. We use boldface (e.g., x = (x1, . . . , xk))
to denote tuples or ordered sets. A self-join-free conjunctive
query (sj-free CQ) is a first-order formula q(y) = ∃x (A1 ∧
. . . ∧ Am) where the variables x = (x1, . . . , xk) are called
existential variables, y = (y1, . . . , yc) are called the head
variables (or free variables), and each atom Ai represents a
relation Ri(zi) where zi ⊆ x ∪ y.2

2We assume w.l.o.g. that zi is a tuple of only variables without con-
stants. This is so, because for any constant in the query, we can
first apply a selection on each table and then consider the modified



The term “self-join-free” means that no relation symbol
occurs more than once. We write var(Aj) for the set of
variables occurring in atom Aj . The database instance is
then the union of all tuples in the relations D =

⋃
iRi.

As usual, we abbreviate a non-Boolean query in Datalog
notation by q(y) :−A1, . . . , Am. where q has head variables
y. For tuple t of the same length as y, we write D |= q[t/y]
to mean that t is in the query result of the query q(y) over
database D. The set of such results is denoted by q(y)D.

Unless otherwise stated, a query in this paper denotes a
sj-free Boolean conjunctive query q (i.e., y = ∅). Because
we only have sj-free CQ we do not have two atoms referring
to the same relation, so we may refer to atoms and relations
interchangeably. We write D |= q to denote that the query q
evaluates to true over the database instance D, and D 6|= q
to denote that q evaluates to false. We call a valuation
of all existential variables that is permitted by D and that
makes q true, a witness w.3 The set of witnesses of D |=
∃x (A1∧. . .∧Am) is the set

{
w
∣∣ D |= (A1∧. . .∧Am)[w/x]

}
.

A database instance may contain some “forbidden” tu-
ples that may not be deleted. Since we are interested in
the data complexity of resilience, we specify at the query
level which tables contain tuples that may or may not be
deleted. Those atoms from which tuples may not be deleted
are called exogenous4 and we write these atoms or relations
with a superscript “x”. The other atoms, whose tuples may
be deleted, are called endogenous. We may occasionally at-
tach the superscript “n” to an atom to emphasize that it is
endogenous. Moreover, we can refer to a database as a par-
tition of its tables into its exogenous and endogenous parts,
D = Dx ∪Dn.

2.1 Query resilience
In this paper, we focus on determining the resilience of a

query with respect to changes in Dn. Given D |= q, our mo-
tivating question is: what is the minimum number of tuples
to remove to make the query false? In order to study the
complexity of resilience, we focus on the decision problem
(rather than the optimization problem).

Definition 2 (Resilience Decision). Given a query q
and database D, we say that (D, k) ∈ RES(q) if and only if
D |= q and there exists some Γ ⊆ Dn such that D − Γ 6|= q
and |Γ| ≤ k.

In other words, (D, k) ∈ RES(q) means that there is a set
of k or fewer endogenous tuples whose removal makes the
query false. Observe that since q is computable in PTIME,
RES(q) ∈ NP. We will show that there is a dichotomy for
sj-free CQs: for all such queries q, either RES(q) ∈ PTIME
or RES(q) is NP-complete (Theorem 25).

We next compare resilience with deletion propagation with
source side-effects.

2.2 Deletion propagation: source side-effects
Deletion propagation generally refers to non-Boolean que-

ries. Given a non-Boolean query, q(y) :−A1, . . . , Am, and

query with a column removed (see the transformation from resilience
to source side-effects for details).
3Notice that our notion of witness slightly differs from the one com-
monly seen in provenance literature where a “witness” refers to a
subset of the input database records that is sufficient to ensure that
a given output tuple appears in the result of a query [9].
4In other words, tuples in these atoms provide context and are outside
the scope of possible “interventions” in the spirit of causality [21].

database D, let t ∈ q(y)D. The goal is to determine the
minimum number of tuples that must be removed from the
database, D (the source), so that t is no longer in the query
result [7,14]. The motivation is that q is a view from which
we want to remove t with minimal change to the database
D. We next define the decision version of this problem in
our notation:

Definition 3 (Source side-effects Decision). Given
a query q(y), database D, and an output tuple t ∈ q(y)D,
we say that (D, t, k) ∈ DPsource(q(y)) iff there exists some
Γ ⊆ D such that t 6∈ q(y)D−Γ and |Γ| ≤ k.

There is a close correspondence between resilience and
source side-effects: Given non-boolean query, q(y), database
D, and an output tuple t ∈ q(y)D, we can construct the
boolean query q[t/y] over database D′ in which new rela-
tions R′ are constructed via the substitution y → t. It is
obvious that for any k, the two problems are equivalent:

(D, t, k) ∈ DPsource(q(y)) ⇔ (D′, k) ∈ RES(q′) .

Proposition 4 (Resilience & Source side-effects).
Every source side-effect problem can be trivially transformed
into an equivalent resilience problem.

Thus, any results on the complexity of resilience, immedi-
ately translate to the complexity of deletion propagation
with source side-effects. We prefer to present our results us-
ing the notion of resilience, as there are several applications
beyond view updates that relate to these problems. Exam-
ples include robustness of network connectivity (identifying
sets of nodes and edges that could disconnect a network),
deriving explanations for query results (finding the lineage
tuples that have most impact to an output), and problems
related to set cover.

View side-effects. The problem of deletion propaga-
tion with view side-effects has a different objective than re-
silience: it attempts to minimize the changes in the view
rather than the source. We describe the existing results for
this variant of the problem in Sect. 6.

2.3 Causal responsibility
A tuple t is a counterfactual cause for a query if by remov-

ing it the query changes from true to false. A tuple t is an
actual cause if there exists a set Γ, called the contingency
set, removing of which makes t a counterfactual cause. De-
termining actual causality is NP-complete for general formu-
las [15], but there are families of tractable cases [16]. Specif-
ically, causality is PTIME for all conjunctive queries [31].
Responsibility measures the degree of causal contribution of
a particular tuple t to the output of a query as a function of
the size of a minimum contingency set: ρ = 1

1+min Γ
. These

definitions stem from the work of Halpern and Pearl [21],
and Chockler and Halpern [10], and were adapted to queries
in previous work [31]. Even though responsibility (ρ) was
originally defined as inversely proportional to the size of the
contingency set Γ, here we alter this definition slightly to
draw parallels to the problem of resilience.

Definition 5 (Responsibility Decision). Given query
q, we say that (D, t, k) ∈ RSP(q) if and only if D |= q and
there is Γ ⊆ Dn such that D − Γ |= q and |Γ| ≤ k but
D − (Γ ∪ {t}) 6|= q.



In contrast to resilience, the problem of responsibility is
defined for a particular tuple t in D, and instead of finding
a Γ that will leave no witnesses for D − Γ |= q, we want to
preserve only witnesses that involve t, so that there is no
witness left for D − (Γ ∪ {t}) |= q. This difference, while
subtle, is significant, and can lead to different results. In
Example 1, the resilience of query q has size 2 and contains
tuples u1 and r3. However, the solution to the responsibility
problem depends on the chosen tuple: the contingency set
of u1 has size 1, while the contingency set of u2 has size 2.
Furthermore, we show that the problems differ in terms of
their complexity.

For completeness, we briefly recall the notions of reduction
and equivalence in complexity theory:

Definition 6 (Reduction (≤) and Equivalence (≡)).
For two decision problems, S, T ⊆ {0, 1}∗, we say that S is
reducible to T (S ≤ T ) if there is an easy to compute
reduction f : {0, 1}∗ → {0, 1}∗ such that

∀w ∈ {0, 1}∗
(
w ∈ S ⇔ f(w) ∈ T

)
.

The idea is that the complexity of S is less than or equal
to the complexity of T because any membership question for
S (i.e., whether w ∈ S) can be easily translated into an
equivalent question for T , (i.e., whether f(w) ∈ T ). “Easy
to compute” can be taken as expressible in first-order logic5.
We say that two problems have equivalent complexity (S ≡
T ) iff they are inter-reducible, i.e., S ≤ T and T ≤ S.

The problem of calculating resilience can always be re-
duced to the problem of calculating responsibility.

Lemma 7 (RES ≤ RSP). For any query q, RES(q) ≤ RSP(q),
i.e., there is a reduction from RES(q) to RSP(q). Thus, if
RES(q) is hard (i.e., NP-complete) then so is RSP(q). Equiv-
alently, if RSP(q) is easy (i.e., PTIME) then so is RES(q).

Later we will see a query, qrats, for which RES(qrats) ∈
PTIME (Cor. 23) but RSP(qrats) is NP-complete (Prop. 37).
Thus (assuming P 6= NP), RSP(q) is sometimes strictly harder
than RES(q).

3. COMPLEXITY OF RESILIENCE
In this section we study the data complexity of resilience.

We prove that the complexity of resilience of a query q can
be exactly characterized via a natural property of its dual
hypergraph H(q) (Def. 8). In Sect. 3.1, we begin by show-
ing that the resilience problem for two basic queries, the
triangle query (q4) and the tripod query (qT) are both NP-
complete. We then generalize these queries to a feature of
hypergraphs that we call a triad (Def. 13), which is a set of
3 atoms that are connected in a special way in H(q). We
then prove that if H(q) contains a triad, then RES(q) is NP-
complete, i.e., determining resilience is hard. Conversely,
we show in Sect. 3.2 that if H(q) does not contain any triad,
then RES(q) ∈ PTIME. We prove this by showing how to
transform a triad-free sj-free CQ into a linear query q′ of
equivalent complexity. The resilience of linear queries can
be computed efficiently in polynomial time using a reduction
5All reductions in this paper are first-order, i.e., when we write S ≤ T
we mean S ≤fo T . First-order reductions are natural for the rela-
tional database setting and they are more restrictive than logspace
reductions, which in turn are more restrictive than polynomial-time
reductions (S ≤fo T ⇒ S ≤log T ⇒ S ≤p T ) [25].

to network flow that was proposed by previous work [31].
Our dichotomy theorem for the resilience of sj-free CQ then
follows (Theorem 25).

3.1 Triads make resilience hard
In this section, we present our first main contribution

which is the novel concept of triads (Def. 13): we prove that
if the dual hypergraph of a query q contains a triad, then
the resilience problem RES(q) is NP-complete (Lemma 16).
Triads were inspired by a set of queries previously studied in
causal responsibility [31], but the particular structure was
not discovered, nor characterized in prior work. In order to
lead to the concept of triads, we have to review some basic
results and queries that were initially introduced in causal
responsibility [31]. While these intermediate results seem
on the surface similar to those that appeared in prior work,
their proofs follow different reductions that are important in
understanding the proof of our main result in Lemma 16 [19].

We first define the (dual) hypergraph H(q) of query q.
The hypergraph of a query q is usually defined with its ver-
tices being the variables of q and the hyperedges being the
atoms [1]. In this paper we use only the dual hypergraph:

Definition 8 (Dual Hypergraph H(q)). Let q :−A1,
. . . , Am be a sj-free CQ. Its dual hypergraph H(q) has ver-
tex set V = {A1, . . . , Am}. Each variable xi ∈ var(q)
determines the hyperedge consisting of all those atoms in
which xi occurs: ei = {Aj |xi ∈ var(Aj)}.

For example, Fig. 3 shows the dual hypergraphs of four
important queries defined in Example 9. In this paper we
only consider dual hypergraphs, so we use the shorter term
“hypergraph” from now on. In fact we will think of a query
and its hypergraph as one and the same thing. Further-
more, when we discuss vertices, edges and paths, we are
referring to those objects in the hypergraph of the query
under consideration. Thus, a vertex is an atom, an edge is
a variable, and a path is an alternating sequence of vertices
and edges, A1, x1, A2, x2, . . . , An−1, xn−1, An, such that for
all i, xi ∈ var(Ai) ∩ var(Ai+1), i.e., the hyperedge xi joins
vertices Ai and Ai+1. We explicitly list the hyperedges in
the path, because more than one hyperedge may join the
same pair of vertices.

Furthermore, since disconnected components of a query
have no effect on each other, each of several disconnected
components can be considered independently. We will thus
assume throughout that all queries are connected. Similarly,
WLOG we assume no query contains two atoms with exactly
the same set of variables.6

Example 9 (Important queries). Before we precisely
define what a triad is, we identify two hard queries, q4, qT
and two related queries, qrats, qbrats (see Fig. 3 for drawings
of their hypergraphs).

q4 :−R(x, y), S(y, z), T (z, x) (Triangle)

qrats :−A(x), R(x, y), S(y, z), T (z, x) (Rats)

qbrats :−A(x), R(x, y), B(y), S(y, z), T (z, x) (Brats)

qT :−A(x), B(y), C(z),W (x, y, z) (Tripod)

We now prove that q4 and qT are both hard, i.e., their re-
silience problems are NP-complete. This will lead us to the
6If two atoms A,B appear in q with the identical set of variables, we
can replace A by A ∩ B and delete B.
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Figure 3: Example 9: The hypergraphs of queries q4, qrats, qbrats,
qT. {R,S, T} is a triad of q4; {A,B,C} is a triad of qT.

definition of triads, the hypergraph property that implies
hardness. Later, we will see that qbrats is easy for both re-
silience and responsibility. However, counter to our initial
intuition, qrats is easy for resilience but hard for responsibil-
ity.

Proposition 10 (Triangle q4 is hard). RES(q4) and
RSP(q4) are NP-complete.

We next show that the tripod query qT is also hard. We
do this by reducing the triangle to the tripod.

Proposition 11 (Tripod qT is hard). RES(qT) and
RSP(qT) are NP-complete.

Understanding the reduction q4 ≤ qT is useful for under-
standing the proof of our main result. Since we omit the
proof of Prop. 11, we provide an example of the reduction:

Example 12. The reduction q4 ≤ qT maps any pair (D, k)
to a pair (D′, k′) such that (D, k) ∈ RES(q4) iff (D′, k′) ∈
RES(qT). The mapping produces the tables A,B,C,W from
the tables R,S, T . For each tuple R(a, b) ∈ D, we include
a tuple A(〈ab〉) into D′. Similarly from tables S and T ,
we create B and C. Finally, each witness (a, b, c) such that
D |= q4 is mapped to the tuple W (〈ab〉, 〈bc〉, 〈ca〉) ∈ D′.

This reduction gives a 1:1 correspondence between mini-
mum contingency sets for D and those for D′. We never
need to have tuples from W in Γ as their effect would be just
to remove a witness (i, j, k) of D′ |= qT, what can be done
by putting one of A(i), B(j), or C(k) into Γ. We will see
that W is (dominated) by A,B,C (Def. 14).

In Fig. 4, the minimum contingency set {R(1, 2), S(4, 5)}
corresponds to the set {A(〈12〉), B({45})}, which is a mini-
mum contingency set for D′.

While q4 and qT appear to be very different, they share
a key common structural property, which we define next.

Definition 13 (triad). A triad is a set of three endoge-
nous atoms, T = {S0, S1, S2} such that for every pair i, j,
there is a path from Si to Sj that uses no variable occurring
in the other atom of T .

R S T

X Y Y Z Z X

1 2 2 5 5 1

3 4 2 6 5 3

4 5 6 1

A B C W

X Y Z X Y Z

〈12〉 〈25〉 〈51〉 〈12〉 〈25〉 〈51〉
〈34〉 〈26〉 〈53〉 〈12〉 〈26〉 〈61〉

〈45〉 〈61〉 〈34〉 〈45〉 〈53〉

Figure 4: Database D and database D′ defined by the reduction.

Intuitively, a triad is a triple of points with robust connec-
tivity. Observe that atoms R,S, T form a triad in q4 and
atoms A,B,C form a triad in qT (see Fig. 3). For example,
there is a path from R to S in q4 (across hyperedge y) that
uses only variables (here y) that are not contained in the
other atom (here y 6∈ var(T )).

A triad is composed of endogenous atoms. Some atoms
such as W in qT are given as endogenous, but are not needed
in contingency sets. We will simplify the query by making
all such atoms exogenous.

Definition 14 (Domination). If a query q has endoge-
nous atoms A,B such that var(A) ⊂ var(B), then we say
that A dominates B.7

We already saw an example in Example 12: in qT, each of
the atoms A,B,C dominates W . The following proposition
was proved in [31]. Unfortunately however, it was claimed
to hold with respect to responsibility rather than resilience.
As we will see later, this proposition fails for responsibility
because the tuple we are computing the responsibility of
may interfere with domination (Prop. 37).

Proposition 15 (Domination for resilience). Let q
be an sj-free CQ and q′ the query resulting from label-
ing some dominated atoms as exogenous. Then RES(q) ≡
RES(q′).

When studying resilience, we follow the convention that
all dominated atoms should become exogenous, and we con-
sider that the normal form of a query. For example, A dom-
inates R and S in the query qrats, and B dominates R and
S in the query qbrats. We thus transform the queries so that
the dominated atoms are exogenous. Exogenous atoms have
the superscript “x”.

q′rats :−A(x), Rx(x, y), S(y, z), T x(z, x)

q′brats :−A(x), Rx(x, y), B(y), Sx(y, z), T x(z, x)

By Prop.15, RES(qrats) ≡ RES(q′rats) and RES(qbrats) ≡ RES(q′brats).
We now state our first main result.

Lemma 16 (Triads make RES(q) hard). Let q be an sj-
free CQ where all dominated atoms are exogenous. If q has
a triad, then RES(q) is NP-complete.

3.2 Polynomial algorithm for linear queries
We just showed that resilience for queries with triads is

NP-complete. Next we will prove a strong converse: re-
silience for triad-free queries is in PTIME. We start by defin-
ing a class of queries for which resilience is known to be in
PTIME.
7Recall that for A 6= B, we never have that var(A) = var(B).
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Figure 5: Def. 17: Linear query q :−A(x), R(x, y, z), S(y, z).

Definition 17 (Linear Query). A query q is linear if
its atoms may be arranged in a linear order such that each
variable occurs in a contiguous sequence of atoms.

Example 18 (Linear Query). Geometrically, a query
is linear if all of the vertices of its hypergraph can be drawn
along a straight line and all of its hyperedges can be drawn as
convex regions. For example, the following query is linear,
q :−A(x), R(x, y, z), S(y, z) (see Fig. 5).

The responsibility of linear queries is known to be in
PTIME [31] and thus by Lemma 7, resilience of linear queries
is in PTIME as well.

Fact 19 (Linear queries in PTIME [31]). For any lin-
ear sj-free CQ q, RSP(q) (and thus also RES(q)) are in
PTIME.

The proof of Fact 19 is that RES(q) may be computed
in a natural way using network flow. The same is true for
computing the responsibility of tuple t for D |= q. In the
latter case, we consider each possible extensions, e of t that
is a witness of D |= q, and use network flow to compute the
minimum size contingency set Γ for t such that e remains
a witness of D − Γ |= q. The responsibility of t for D |= q
is the minimum over all such extensions e of the size of the
minimum contingency set that preserves e.

If all queries without a triad were linear, then this would
complete the dichotomy theorem for resilience. While this
is not the case, we will show that any triad-free query can
be transformed into a query of equivalent complexity that is
linear.

Recall that when studying resilience, we make atoms which
are dominated, exogenous (Prop.15). This was done, for ex-
ample, to the rats and brats queries to transform them into
the q′rats and q′brats queries. Neither of q′rats or q′brats is linear.
However they can be transformed to linear queries without
changing their complexity via the following transformation
from [31]:

Definition 20 (Dissociation). Let Ax be an exogenous
atom in a query q, and v ∈ var(q) a variable that does not
occur in Ax. Let q′ be the same as q except that we add v
to the arguments Ax. This transformation is called dissoci-
ation.

Example 21 (Dissociation). The above queries q′rats
and q′brats have no triads but they are not linear. However,
by applying certain dissociations, we obtain the following
linear queries:

q′′rats :−A(x), Rx(x, y, z), S(y, z), T x(x, y, z)

q′′brats :−A(x), Rx(x, y, z), B(y), Sx(x, y, z), T x(x, y, z)

Note also that q′′rats and q′′brats have duplicate atoms which we
finally delete, without affecting their complexity:

q′′′rats :−A(x), Rx(x, y, z), S(y, z)

q′′′brats :−A(x), Rx(x, y, z), B(y)

The key fact is that dissociation can increase, but never
decrease the complexity of resilience or responsibility.8

Lemma 22 (Dissociation increases complexity [31]).
If q′ can be obtained from q through dissociation, then
RES(q) ≤ RES(q′).

It follows from Lemma 22 that if q can be dissociated into
a linear query, then RES(q) ∈ PTIME. In particular, the
above dissociations of q′rats and q′brats prove that RES(q′rats)
and RES(q′brats) are in PTIME. Thus, since the transfor-
mations from qrats to q′rats and qbrats to q′brats preserve the
complexity of resilience, we conclude that RES(qrats) and
RES(qbrats) are easy. Later we will see that, for responsi-
bility, RSP(qbrats) ∈ PTIME but RSP(qrats) is NP-complete
(Prop. 37).

Corollary 23. RES(qrats) and RES(qbrats) are in PTIME.

Later we will see that it is also true that dissociation does
not decrease the complexity of responsibility, but the proof
is more subtle (Sect. 5.3).

Now we are ready to show that RES(q) is easy if q is triad-
free. We will show that for every triad-free query, we can
linearize the endogenous atoms and use some dissociations
to make the exogenous atoms fit into the same order.

Lemma 24 (Queries without triads are easy). Let
q be an sj-free CQ that has no triad. Then RES(q) is in
PTIME.

3.3 Dichotomy of resilience
Combining Lemma 16 and Lemma 24 leads to our first

dichotomy result on the complexity of resilience:

Theorem 25 (Dichotomy of resilience). Let q be an
sj-free CQ and let q′ be the result of making all dominated
atoms exogenous. If q′ has a triad, then RES(q) is NP-
complete, otherwise it is in PTIME.

Note that it is easy to tell whether q has a triad. Checking
whether a given triple of atoms is a triad consists of three
reachability problems – is there a path from Si to Sj not
using any of the edges in var(Sk) – and is thus doable in
linear time. An exhaustive search of all endogenous triples
thus provides a PTIME algorithm:

Corollary 26. We can check in polynomial time in the
size of the query q whether RES(q) is NP-complete or PTIME.

4. FUNCTIONAL DEPENDENCIES
Functional dependencies (FDs), such as key constraints,

restrict the set of allowable data instances. In this section,
we characterize how these restrictions affect the complexity
of resilience. We first show that FDs cannot increase the
complexity of the resilience of a query (Prop. 27). Next
we introduce a transformation of queries suggested by a
given set of FDs call induced rewrites (Def. 30). We show
that induced rewrites preserve the complexity of resilience
(Lemma 31).

8For example, the query ` :−A(x),W x
1 (x, y), B(y),W x

2 (y, z), C(z) is
linear, but by dissociating W1 and W2, we can transform it into qT.



We call a query closed if all possible induced rewrites have
been applied (Def.30). We conjectured that induced rewrites
capture the full power of FDs with respect to the complexity
of resilience, in other words, the complexity of the resilience
of a closed query is unchanged if we remove its FDs (Con-
jecture 33).

We prove that the complexity of resilience for closed queries
that have triads is NP-complete (Lemma 34). On the other
hand, even without its FDs, we know that a closed query
that has no triads has an easy resilience problem (Lemma 24).
We thus conclude that in the presence of FDs, the dichotomy
– still determined by the presence or absence of triads, but
now in the closure of the query – remains in force (Lemma 24).
It follows as a corollary that Conjecture 33 holds.

4.1 FDs can only simplify resilience
We write RES(q; Φ) to refer to the resilience problem for

query q, restricted to databases satisfying the set of FDs
Φ. Note that since we are always considering conjunctive
queries, any particular FD either holds or does not hold on
the whole query, so it is not necessary to mention which
atom the FD is applied to.

First we observe that FDs cannot make the resilience
problem harder:

Proposition 27 (FDs do not increase complexity).
Let q be an sj-free CQ and Φ a set of functional dependen-
cies. Then RES(q; Φ) ≤ RES(q).

Corollary 28 (Triad-free queries are still easy).
If q is an sj-free CQ that has no triad, and therefore RES(q)
is in PTIME, then RES(q; Φ) is also in PTIME.

We next show that for some queries, FDs do in fact reduce
the complexity of resilience. Recall that the tripod query, qT
is hard (Prop. 11). However, qT becomes polynomial when
we add the FD ϕ = x→ y.

Proposition 29. RES(qT; {x→ y}) ∈ PTIME .

We will prove Prop. 29 along the way, as we learn about
the effect of FDs. Recall that the tripod query qT has the
triad {A,B,C}. Notice that the FD x → y “disarms” this
triad because A and B are no longer independent. More ex-
plicitly, once we know x, we also know y. Thus RES(qT; {x→
y}) ≡ RES(r) where r :−A′(x, y), B(y), C(z),W x(x, y, z)
(Lemma 31). Furthermore, since B dominates A′ in r, A′

becomes exogenous: r′ :−A′x(x, y), B(y), C(z),W x(x, y, z).
Query r′ has no triad and thus is easy.

4.2 Induced rewrites preserve complexity
We call the transformation (qT; {x→ y}) ; (r; {x→ y})

an induced rewrite9. Induced rewrites are key to under-
standing the effect of FDs on the complexity of resilience.

Definition 30 (induced rewrite: ;, closed query).
Given a set of functional dependencies Φ and a query q,
we write (q; Φ) ; (q′; Φ) to mean that q′ is the result of
adding the dependent variable u to some relation that con-
tains all the determinant variables v for some v → u ∈ Φ.

We use
?; to indicate zero or more applications of ;. If

(q; Φ)
?; (q∗; Φ) and no more induced rewrites can be ap-

plied to (q∗; Φ), then we call (q∗; Φ) a closed query and we
say that (q∗; Φ) is the closure of (q; Φ).
9Transformations of queries called rewrites were defined in [31]. An
induced rewrite is a rewrite that is induced by an FD.

This paper began as an attempt to determine whether
the dichotomy for responsibility of sj-free CQs [31] contin-
ues to hold in the presence of FDs. In studying the effect of
FDs, we defined induced rewrites and proved that induced
rewrites preserve the complexity of responsibility. We con-
jectured that once we have reached a closed query, all the
effect of the FDs on the complexity of responsibility has
been exhausted and thus there is no further change if we
delete all the FDs. We were able to prove this conjecture
for unary FDs, i.e., those of the form v → u where v is a
single variable.

However we had great difficulty proving this conjecture
for all FDs. We studied the responsibility problem more
carefully and found that responsibility is quite delicate. In
particular, we discovered an error in Lemma 4.10 of [31],
namely that Prop. 15 (in the present paper) does not hold
for responsibility.

We identified resilience as a better-behaved notion than
responsibility and we characterized the complexity of re-
silience via triads. Once we had done that, we were able
to use the notion of triads to prove our conjecture about
closed queries and thus prove the dichotomy theorem for
resilience in the presence of arbitrary FDs.

With our improved insight from resilience, we went back
and proved the dichotomy for responsibility (Theorem 49)
and finally showed that it holds as well in the presence of
FDs (Theorem 51).

We first show that induced rewrites preserve the complex-
ity of resilience.

Lemma 31 (Induced rewrites preserve complexity).
Let q be a query, Φ a set of functional dependencies, and q′

the result of an induced rewrite, i.e., (q; Φ) ; (q′; Φ). Then
RES(q′; Φ) ≡ RES(q; Φ).

It follows immediately that applying any set of induced
rewrites preserves the complexity of resilience:

Corollary 32. If (q; Φ)
?; (q′; Φ), then RES(q′; Φ) ≡

RES(q; Φ).

4.3 For closed queries, FDs are superfluous
Recall that our current goal is to determine whether the

dichotomy of the complexity of resilience remains true in
the presence of FDs. The following is a natural conjecture
which would given an affirmative answer to this question.

Conjecture 33 (Induced rewrites suffice). Let
(q∗; Φ) be a closed query, i.e., it is closed under induced
rewrites. Then RES(q∗; Φ) ≡ RES(q∗).

It is fairly easy to see that Conjecture 33 holds when all
the FDs in Φ are unary, i.e., of the form v → u, with u
a single variable. However we were stumped about how to
prove this for general FDs. This lead to our more careful
analysis of the complexity of responsibility, our definition
of resilience, and our characterization of the complexity of
resilience via triads (Theorem 25). Now we will use that
analysis to prove that the complexity of a closed query is
NP-complete if it contains a triad, and in PTIME otherwise.
Thus Conjecture 33 is true and the dichotomy for the com-
plexity of resilience remains true in the presence of FDs.

Lemma 34 (Closed queries with triads are hard).
Let (q∗; Φ) be a closed sj-free CQ all of whose dominated
atoms are exogenous. If q∗ has a triad, then RES(q∗; Φ) is
NP-complete.



4.4 Dichotomy of resilience with FDs
Recall that FDs cannot increase the complexity of re-

silience and thus if q has no triad, then RES(q; Φ) ∈ PTIME
(Cor.28). Thus, we have succeeded in proving the dichotomy
for resilience in the presence of FDs:

Theorem 35 (FD Dichotomy). Let (q; Φ) be a sf-free
CQ with functional dependencies. Let (q∗,Φ) be its closure
under induced rewrites, and such that all dominated atoms
of q∗ are exogenous. If q∗ has a triad then RES(q; Φ) is NP-
complete. Otherwise, RES(q; Φ) ∈ PTIME.

Note that we have also proved Conjecture 33:

Corollary 36 (Induced rewrites suffice). Let (q; Φ)
be an sj-free CQ with functional dependencies, and let q∗ be
the closure of q under induced rewrites. Then, RES(q; Φ) ≡
RES(q∗; Φ) ≡ RES(q∗).

5. COMPLEXITY OF RESPONSIBILITY
We now develop and prove the analogous characteriza-

tions of the complexity of responsibility. As we will see,
responsibility is a bit more delicate than resilience; yet, in
the end, the final theorems are similar.

We first concentrate on the difference between resilience
and responsibility. Recall the following two queries:

qrats :−A(x), R(x, y), S(y, z), T (z, x)

q′rats :−A(x), Rx(x, y), S(y, z), T x(z, x)

We saw earlier that RES(qrats) is in PTIME (Cor. 23). The
reason is that atom A dominates R and T and thus the
complexity of RES(qrats) is unchanged when we make R and
T exogenous (Prop. 15), i.e., RES(qrats) ≡ RES(q′rats). Ob-
viously q′rats is triad-free. Thus, by Theorem 25, RES(q′rats)
and RES(qrats) are in PTIME. We now show, however, that
RSP(qrats) is NP-complete.

Proposition 37. RSP(qrats) is NP-complete.

The proof of Prop. 37 shows that domination does not
work the same way for responsibility as it does for resilience.
In particular, the analogy of Prop. 15 (Domination for Re-
silience) does not hold for responsibility.

We next show that a modified version of domination still
works for responsibility. Recall the query qbrats and define
the query qbrxats as follows:

qbrxats :−A(x), Rx(x, y), B(y), S(y, z), T (z, x) .

Notice that var(A) ⊂ var(R) and var(B) ⊂ var(R) and
that also var(R) ⊆ var(A) ∪ var(B).

Proposition 38 (RSP(qbrats)). The complexity of respon-
sibility for qbrats is unchanged if we make R exogenous, i.e.,
RSP(qbrats) ≡ RSP(qbrxats) .

We are now ready to formalize “full domination”, the ver-
sion of domination that works for responsibility the way that
domination works for resilience. For example, in the query

qbrats, the relation R is fully dominated because every vari-
able in var(R) is “covered” by some other endogenous rela-
tion (Prop. 38).10 Here are three more examples where R is
fully dominated (s1, s2, s3) and one where it is not (n4):

s1 :−A(x), R(x, y, w), B(y), S(y, z), T (z, x)

s2 :−A(x), R(x, y, w), Qx(w), B(y), S(y, z), T (z, x)

s3 :−A(x), R(x, y, w), Qx(w, x), B(y), S(y, z), T (z, x)

n4 :−A(x), R(x, y, w), Qx(w, z), B(y), S(y, z), T (z, x)

In a query q, we call a variable w ∈ var(R) “solitary” if
it cannot reach another endogenous atom without following
one of the edges in var(R)−{w}. Then, in each of s1, s2, s3,
the variable w is solitary, but w is not solitary in n4.

Definition 39 (Full domination). Let F be an atom
of query q. F is fully dominated iff for all non-solitary
variables y ∈ var(F ) there is another atom A such that y ∈
var(A) ⊂ var(F ).

Observe that relation R is fully dominated in qbrats, as well
as in s1, s2, s3, but not in n4. On the other hand, R is not
fully dominated in qrats because y is connected to S(y, z)
and thus not solitary and not covered by any smaller atom.

We now show that fully dominated atoms may be made
exogenous.

Lemma 40 (Full domination). Let F be a fully domi-
nated atom in an sj-free CQ q. Let q′ be the modified query
in which F is made exogenous. Then RSP(q) ≡ RSP(q′).

5.1 Triads and hardness
Now that we have established that fully dominated atoms

can be made exogenous without changing the complexity of
the responsibility problem of a query, we proceed to prove a
complexity dichotomy for responsibility.

When studying responsibility, we will insist from now on
that every fully dominated atom is exogenous, and anal-
ogously to the resilience case, this will be considered the
normal form of a query. For example, qrats has no fully
dominated atoms, so it is already in its normal form and
it has a triad: {R,S, T}. Note that we cannot have two
elements in a triad such that var(S1) ⊂ var(S2) because
removing var(S2) would isolate S1. Thus {R,S, T} is the
unique triad of qrats. On the other hand, R is fully domi-
nated in qbrats, so we transform it to triad-free qbrxats:

qbrxats :−A(x), Rx(x, y), B(y), S(y, z), T (z, x) .

We now show that RSP(q) is NP-complete if q has a triad.

Lemma 41 (Triads make RSP(q) hard). Let q be an sj-
free CQ where all fully dominated atoms are exogenous. If
q has a triad, then RSP(q) is NP-complete.

5.2 The polynomial case
As we saw in the previous section, the presence of triads

in a query makes the responsibility problem NP-complete.
In the responsibility setting, we require full domination to
make an atom exogenous. This means that more atoms
may remain endogenous, so there can be more triads. The
query qrats is an example: for resilience we use domina-
tion and after applying domination, qrats has no triads and

10 Contrast this with the definition of domination (Def. 14) which
only requires that some subset of the variables is covered by another
relation.



thus RES(qrats) ∈ PTIME. However, if we may only apply
full domination, then qrats keeps the triad R,S, T and thus
RSP(qrats) is NP-complete.

We now want to prove the polynomial case for responsi-
bility. Recall that in the proof of Lemma 24, we showed the
following:

Corollary 42. Let q be a CQ that has no triad. Then
we can transform q, via a series of dissociations, to a linear
query q′.

Then, since dissociations cannot make the resilience problem
of a sj-free CQ easier (Lemma 22), it followed that RES(q) ∈
PTIME for any such triad-free query, q.

To prove that for any triad-free, sj-free CQ q, RSP(q) ∈
PTIME, it suffices to prove that dissociations cannot make
the responsibility problem of such queries easier. As we see
next, there is a surprising complication to this proof, which
gives us an unexpected bonus result.

5.3 A generalization of responsibility
We want to prove that if q′ is obtained from q through dis-

sociation, then RSP(q) ≤ RSP(q′). In the proof of the similar
result for resilience we did the following. We let Rx(z) be
the atom that was changed to Rx′(z, v). We then reduced
RES(q) to RES(q′) by mapping (D, k) to (D′, k) where D′ is
the same as D with the exception that we let R′ =

{
(t, d)

∣∣
R(t) ∈ D; d ∈ dom(D)

}
. This transformation does not

change the witness set nor the contingency sets, because, by
the way we formed R′ from R, the conjunct R′(z, v) places
the same restriction on D′ that R(z) places on D.

This proof goes through fine for responsibility except in
one case, namely if the tuple t that we are computing the re-
sponsibility of belongs to R, the exogenous relation to which
we have added the new variable v.11

When t ∈ R, we would like to transform it to t′ ∈ R′ by
appending a value, ai, corresponding to the new variable, v.
However, this will change responsibility in an unclear way.
In particular, the responsibility of t does not correspond to
the responsibility of (t, a) for any particular a. It rather
corresponds to the responsibility of (t, a) for all possible a’s.

To solve our problem, we need to generalize the notion of
responsibility to include wildcards.

Definition 43 (tuples with wildcards). Let D be a
database containing a relation, R(x1, . . . , xc). Let τ =
(s1, . . . , sc) be a tuple such that each si ∈ dom(D)∪{∗}, i.e.,
τ may have elements in the domain in some attributes and
the wildcard ∗ in others. We call τ a “ tuple with wildcards.”
We say that a tuple (a1, . . . , ac) ∈ R “ matches” τ iff for all
i, ai = si or si = ∗. When D and R are understood, τ repre-
sents a set of tuples from R, 〈τ〉 =

{
a ∈ R

∣∣ a matches τ
}

.

For example, the tuple with wildcard (a, ∗) matches all pairs
from R whose first coordinate is a. We generalize responsi-
bility to allow us to compute the responsibility of a set of
tuples denoted by a tuple with wildcards:

Definition 44 (RSP∗). Let D be a database containing a
relation R, q a query for D, and τ a tuple with wildcards.
Then (D, τ, k) ∈ RSP∗(q) iff there exists a contingency set Γ
of size k such that (D − Γ) |= q and (D − (Γ ∪ 〈τ〉)) 6|= q.

11The reader may wonder why we might need to compute the respon-
sibility of an exogenous tuple. The answer is that the tuple originally
might have come from an endogenous relation which we transformed
to an exogenous one using full domination.

Since RSP∗(q) is just a generalization of RSP(q), it is imme-
diate that RSP(q) ≤ RSP∗(q). Thus, RSP∗(q) is NP-complete
whenever RSP(q) is:

Corollary 45 (RSP∗ hardness). Let q be an sj-free CQ
all of whose fully dominated atoms are exogenous. If q has
a triad then RSP∗(q) is NP-complete.

From our previous discussion, it now follows that dissocia-
tion does not make RSP∗(q) easier:

Lemma 46 (Dissociation and RSP∗). If q′ is obtained
from q through dissociation, then RSP∗(q) ≤ RSP∗(q′).

Furthermore, linear queries are still easy for responsibility:

Lemma 47 (Linear queries and RSP∗). For any linear
sj-free CQ q, RSP∗(q) is in PTIME.

Corollary 48. If q has no triad, then RSP∗(q) can be
made linear by using dissociations, and is thus in PTIME.
Therefore so is RSP(q).

We have thus proved our desired dichotomy for responsibil-
ity, and as a bonus, we have proved it for groups of tuples
with wildcards as well:

Theorem 49 (Responsibility Dichotomy). Let q be
an sj-free CQ, and let q′ be the result of making all fully
dominated atoms exogenous. If q′ contains a triad then
RSP(q) and RSP∗(q) are NP-complete. Otherwise, RSP(q)
and RSP∗(q) are PTIME.

It follows from Cor. 48 and Cor. 45 that RSP∗(q) ≡ RSP(q)
for all sj-free CQ, q. Note that it is not at all clear how
one would build a reduction from RSP∗(q) to RSP(q). How-
ever, our characterization of the complexity of RSP(q) and
RSP∗(q) gives us this result: After all fully dominated atoms
are made exogenous, if there is a triad, then RSP(q) is NP-
complete, thus so is RSP∗(q). If there is no triad, then
RSP∗(q) ∈ PTIME, thus so is RSP(q):

Corollary 50. For all sj-free CQ q, RSP(q) ≡ RSP∗(q).

5.4 Dichotomy for responsibility with FDs
Our final theorem is that the dichotomy for responsibility

continues to hold in the presence of FDs:

Theorem 51 (FD Responsibility Dichotomy). Let
(q; Φ) be an sj-free CQ with functional dependencies. Let
(q∗,Φ) be its closure under induced rewrites, and such
that all fully dominated atoms of q∗ are exogenous. If
q∗ has a triad then RSP(q; Φ) is NP-complete. Otherwise,
RSP(q; Φ) ∈ PTIME.

5.5 Using resilience to compute responsibility
more efficiently

We now show that in applications where we wish to find
those tuples of highest responsibility, we can find them more
efficiently by computing resilience instead of responsibility.

Responsibility provides a measure of the causal contribu-
tion of an input tuple to a query output. In prior work [31,
32], in order to identify likely causes, we ranked input tu-
ples based on their responsibilities: tuples at the top of the
ranking are the most likely causes, whereas tuples low in
the ranking are less likely. Producing this ranking entails
computing the responsibility of every tuple in the database



that is a cause for the query. This is computationally expen-
sive, and, ultimately, unnecessary: Since most applications
only care about the top-ranked causes, we only need to find
the set Sρ consisting of the tuples of highest responsibility.
Computing the responsibility of other tuples is unnecessary.
Using this insight, we can employ resilience to compute Sρ
more efficiently than by calculating the responsibility of ev-
ery tuple in the database.

Even though resilience is strictly easier to compute than
responsibility, we can compute Sρ, the set of tuples of high-
est responsibility, by repeatedly computing resilience. The
first observation is that any minimum contingency set for
resilience is contained in Sρ.

Proposition 52. Let Sρ be the set of tuples of highest
responsibility for database D and Boolean query q. Let Γ be
a minimum contingency set for (q,D). Then all tuples in Γ
have maximum responsibility for D |= q, i.e., Γ ⊆ Sρ.

Proof. Let q,D, Sρ,Γ be as in the statement of the propo-
sition. Let k = |Γ|. Let t be any element of Γ. Note that
Γ − {t} is a contingency set of size k − 1 for the respon-
sibility of (q,D, t). Suppose for the sake of contradiction
that some tuple t′ had strictly greater responsibility than
t. Then there must be a contingency set Γ′ for the respon-
sibility of (q,D, t′) such that |Γ′| < k − 1. However, this
means that Γ′ ∪ {t′} is a contingency set for the resilience
of (q,D) of size less than k, contradicting the fact that Γ is
a minimum contingency set.

Therefore, all tuples in a minimum contingency set for
resilience have maximum responsibility. However, there may
be additional tuples with maximum responsibility that are
not part of the selected resilience set Γ. These can also
be derived by a simple algorithm based on the following
observation.

Observation 53. Let q,D, Sρ,Γ, k be as in the proof of
Prop. 52 and let t′ be any tuple in D. Let Γ′ be a minimum
contingency set for the resilience of (q,D − {t′}). Then
t′ ∈ Sρ iff |Γ′| = k − 1. Furthermore, if |Γ′| = k − 1 then
Γ′ ⊆ Sρ.

Thus, even though responsibility is harder to compute than
resilience (Lemma 7), the following algorithm computes the
set of tuples of maximum responsibility by repeatedly com-
puting resilience.

Algorithm 54. (Compute max responsibility set)
1. Let C be the set of causes of D |= q
2. Let Γ be a minimum contingency set for (q,D)
3. k := |Γ|; S := Γ
4. for each c ∈ C − S:
5. Let Γ′ be a minimum contingency set for (q,D−{c})
6. if |Γ′| = k − 1: S := S ∪ Γ′ ∪ {c}
7. return(S)

6. RELATED WORK
Sections 1 and 2 have extensively discussed prior work and

the connections between resilience, deletion propagation and
responsibility [7, 11]. In this section, we discuss additional
related work.

Data provenance. Data provenance studies formalisms
that can characterize the relation between the input and
the output of a given query [6,9,13,20]. Among the kinds of

provenance, “Why-provenance” is the most closely related
to resilience in databases. The motivation behind Why-
provenance is to find the “witnesses” for the query answer,
i.e., the tuples or group of tuples in the input that can pro-
duce the answer. Resilience, searches to find a minimum set
of input tuples that can make a query false.

View updates. The view update problem is a classical
problem studied in the database literature [3, 11, 12, 14, 18,
26]. In its general form, the problem consists of finding the
set of operations that should be applied to the database in
order to obtain a certain modification in the view. Resilience
and deletion propagation are a special cases of view updates.

Deletion propagation: view side-effects. The prob-
lem of deletion propagation with view side-effects does not
directly relate to our results, because it has a different ob-
jective than resilience: it attempts to minimize the changes
in the view rather than the source.

The complexity results from Buneman et al. [7] extend to
the case of DPview(q), and the same is true for key preserva-
tion [11]. Later, Kimelfeld et al. [29] defined a dichotomy
for the view side-effect problem by providing a characteri-
zation that uses the query structure: DPview(q(y)) is PTIME
for queries that are head dominated, and NP-complete oth-
erwise. Head domination checks for the components of the
query that are connected by the existential variables, where
all head variables contained in the atoms of that component
appear in a single atom in the query.

Kimelfeld [28] augmented the dichotomy on DPview(q) for
cases where functional dependencies (FDs) hold over the
data instance D. The tractability condition for this case
checks whether the query has functional head domination,
which is an extension of the notion of head domination. We
provide similar extensions in this paper for the problem of
DPsource(q(y)): our dichotomy for the case of FDs checks for
triads after the query is structurally manipulated through a
process we call induced rewrites.

Cong et al. [11] also studied a variant of deletion propa-
gation that aims to remove a group of tuples from the view.
Their results classify all conjunctive queries as NP-complete,
but recently, Kimelfeld et al. [30] provided a trichotomy for
the class of sj-free CQs that extends the notion of head dom-
ination, classifying queries into PTIME, k-approximable in
PTIME, and NP-complete.

Explanations in Databases. Providing explanations
to query answers is important because it can help identify
inconsistencies and errors in the data, as well as understand
the data and queries that operate on it. Causality can pro-
vide a framework for explanations of query results [31, 32],
but it relies on the computation of responsibility, which is a
harder problem than resilience. Other work on explanations
also applies interventions, but on the queries instead of the
data [34, 37]. These approaches, try to understand how the
deletion, addition, or modification of predicates may affect
the result of a query. There are also other approaches on
deriving explanations that focus on specific database appli-
cations [2,4,5,17,27,35]. Finally, the problem of explaining
missing query results [8, 22–24, 36] is a problem analogous
to deletion propagation, but in this case, we want to add,
rather than remove tuples from the view.

7. DISCUSSION AND OUTLOOK
Summary. This paper presents dichotomy results for the

resilience and responsibility of sj-free conjunctive queries.



Our results extend and generalize previous complexity re-
sults on the problem of deletion propagation with source
side-effects and causal responsibility.

Approximation for resilience of sj-free conjunctive
queries. The dichotomy results we establish in this work
define sets of queries for which we can solve resilience in
polynomial time, and sets of queries for which the problem
is NP-complete. We cannot hope to find an efficient algo-
rithm for the latter, unless P = NP, but we can look for
an approximation for the optimal solution. In particular, a
constant factor approximation might be also useful for find-
ing a good approximation for the responsibility problem (see
Section 5.5).

Conjunctive queries with self-joins. In order to com-
plete the study of the complexity of resilience for conjunctive
queries, we need to investigate the complexity of queries with
self-joins. It is known that the problem is NP-complete for a
query as simple as q :−S(x), R(x, y), S(y) [31]. We suspect
that the insights using triads to characterize the complexity
of resilience in the absence of self-joins may still be useful in
the presence of self-joins.

Unions of conjunctive queries. It would also be quite
interesting to understand the complexity of computing the
resilience for queries that are unions of conjunctive queries,
i.e., disjunctions of conjunctions. This is a natural extension
which we started to explore when trying to generalize our
results about resilience to responsibility. In particular, there
is a natural way to view the responsibility of a query as the
resilience of a union of related queries.
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[30] B. Kimelfeld, J. Vondrák, and D. P. Woodruff. Multi-tuple
deletion propagation: Approximations and complexity.
PVLDB, 6(13):1558–1569, 2013.

[31] A. Meliou, W. Gatterbauer, K. F. Moore, and D. Suciu.
The complexity of causality and responsibility for query
answers and non-answers. PVLDB, 4(1):34–45, 2010.

[32] A. Meliou, W. Gatterbauer, S. Nath, and D. Suciu. Tracing
data errors with view-conditioned causality. In SIGMOD,
pp. 505–516, 2011.

[33] A. Meliou, S. Roy, and D. Suciu. Causality and
explanations in databases. PVLDB, 7(13):1715–1716, 2014.

[34] S. Roy and D. Suciu. A formal approach to finding
explanations for database queries. In SIGMOD, pp.
1579–1590, 2014.

[35] S. Thirumuruganathan, M. Das, S. Desai, S. Amer-Yahia,
G. Das, and C. Yu. Maprat: meaningful explanation,
interactive exploration and geo-visualization of
collaborative ratings. PVLDB, 5(12):1986–1989, 2012.

[36] Q. T. Tran and C.-Y. Chan. How to conquer why-not
questions. In SIGMOD, pp. 15–26, 2010.

[37] E. Wu and S. Madden. Scorpion: Explaining away outliers
in aggregate queries. PVLDB, 6(8):553–564, 2013.

http://arxiv.org/pdf/1507.00674

	1 Introduction
	1.1 Contributions of our work

	2 Formal setup and connections
	2.1 Query resilience
	2.2 Deletion propagation: source side-effects
	2.3 Causal responsibility

	3 Complexity of resilience
	3.1 Triads make resilience hard
	3.2 Polynomial algorithm for linear queries
	3.3 Dichotomy of resilience

	4 Functional dependencies
	4.1 FDs can only simplify resilience
	4.2 Induced rewrites preserve complexity
	4.3 For closed queries, FDs are superfluous
	4.4 Dichotomy of resilience with FDs

	5 Complexity of Responsibility
	5.1 Triads and hardness
	5.2 The polynomial case
	5.3 A generalization of responsibility
	5.4 Dichotomy for responsibility with FDs
	5.5 Using resilience to compute responsibility more efficiently

	6 Related Work
	7 Discussion and outlook
	8 References

