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Abstract. We consider variants of the Minimum Circuit Size Problem
MCSP, where the goal is to minimize the size of oracle circuits comput-
ing a given function. When the oracle is QBF, the resulting problem
MCSPQBF is known to be complete for PSPACE under ZPP reductions.
We show that it is not complete under logspace reductions, and indeed
it is not even hard for TC0 under uniform AC0 reductions. We obtain
a variety of consequences that follow if oracle versions of MCSP are
hard for various complexity classes under different types of reductions.
We also prove analogous results for the problem of determining the
resource-bounded Kolmogorov complexity of strings, for certain types
of Kolmogorov complexity measures.
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1. Introduction

The Minimum Circuit Size Problem (MCSP) asks to decide, for
a given truth table f of a Boolean function and a parameter s,
whether f is computable by a Boolean circuit of size at most s.
MCSP is a well-known example of a problem in NP that is widely
believed to be intractable, although it is not known to be NP-
complete. MCSP is known to be hard for the complexity class
SZK under BPP-Turing reductions (Allender & Das 2014), which
provides strong evidence for intractability. On the other hand,
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Kabanets & Cai (2000) showed that if MCSP is NP-complete un-
der the “usual” sort of polynomial-time reductions, then EXP 6⊆
P/poly. This can not be interpreted as strong evidence against NP-
completeness – since it is widely conjectured that EXP 6⊆ P/poly
– but it does indicate that it may be difficult to provide an NP-
completeness proof.

However, there are other ways to define what the “usual” sort
of reductions are: e.g., logspace, (uniform) TC0, AC0, or NC0.
The overwhelming majority of problems that are known to be NP-
complete are, in fact, NP-complete under very restricted kinds of
reductions. Can we rule out NP-hardness of MCSP under such
reductions?

Very recently, Murray & Williams (2015) have shown that MCSP
is not even P-hard under uniform NC0 reductions. Can MCSP be
NP-hard under slightly stronger reductions, e.g., uniform AC0 re-
ductions? We suspect that the answer is ‘No’, but so far we (like
Murray and Williams) can only show that P-hardness of MCSP
under uniform AC0, TC0, or logspace reductions would imply new
(likely) complexity lower bounds (in the spirit of (Kabanets & Cai
2000)).

The main focus of the present paper is an oracle version of
MCSP, denoted MCSPA for a language A, which asks to decide for
a given truth table f and a parameter s if f is computable by an A-
oracle circuit of size at most s. We prove a number of implications
of hardness of MCSPA for various choices of the oracle A, and
various reductions. In particular, we prove for a PSPACE-complete
A that MCSPA is not P-hard under uniform AC0 reductions. (See
Theorem 3.9.)

The results presented here (along with the results recently re-
ported by Murray & Williams (2015)) are the first results giving
unlikely consequences that would follow if variants of MCSP or the
various oracle circuit minimization problems are hard under a nat-
ural notion of reducibility. We also show that analogous results
hold in the Kolmogorov complexity setting due to the correspon-
dence between circuit size and Kolmogorov complexity, using the
minimum-KT complexity problem defined in this paper.

Below we provide a summary of our main results.
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1.1. Our results. Most of our results follow the template:

If MCSPA is hard for a complexity class C under reduc-
tions of type R, then complexity statement S is true.

Table 1.1 below states our results for different instantiations of A,
C, R, and S; note that S = ⊥ means that the assumption is false,
i.e., MCSPA is not C-hard under R-reductions. Throughout, we
assume that the reader is familiar with complexity classes such as
NP,PP, PSPACE, NEXP, etc. We denote the polynomial hierarchy
by PH, and its linear-time version (linear-time hierarchy) by LTH.
The Counting Hierarchy, denoted CH, is the union of the classes
PP,PPPP, etc. CH was defined by Torán (1991) and arises fre-
quently in complexity investigations. LTH was studied by Wrathall
(1978), who showed that it coincides with the Rudimentary sets of
Smullyan (1961). LTH has been studied, for instance, in (Allender
& Gore 1991, 1993; Fortnow 2000; McKenzie et al. 2010).

Table 1.1: Summary of main results: If MCSPA is C-hard under
R, then S. The last column shows the theorem where the result is
stated in the paper.

oracle A class C reductions R statement S Theorem
PH-hard TC0 uniform AC0 ⊥ Theorem 3.9

any TC0 uniform AC0 LTH 6⊆ io−SIZEA[2Ω(n)] Lemma 3.10

any TC0 uniform AC0 NPA 6⊆ SIZEA[poly] Corollary 3.13
any in CH P uniform TC0 P 6= PP Corollary 3.2
∅ P logspace P 6= PSPACE Corollary 3.3

QBF P logspace EXP = PSPACE Corollary 3.7
QBF NP logspace NEXP = PSPACE Theorem 3.6
QBF PSPACE logspace ⊥ Corollary 3.8

EXP-complete NP polytime NEXP = EXP Theorem 3.4

For the most restricted reductions, uniform AC0, we get that
MCSPA is not TC0-hard for any oracleA such that PH ⊆ SIZEA[poly]
(Theorem 3.9), e.g., for A = ⊕P (Corollary 3.12). For any oracle A,
we conclude new circuit lower bounds for the linear-time hierarchy
and for NPA (Lemma 3.10 and Corollary 3.131).

1Prior to our work, Murray & Williams (2015) have shown that if

SAT≤AC0

m MCSP, then NP 6⊆ P/poly. Their result is similar to (and is implied
by) our Corollary 3.13 for the case of A = ∅.
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If MCSP is P-hard under uniform TC0 or logspace reductions,
then P is different from PP or from PSPACE (Corollary 3.2 and
Corollary 3.3).

One of the more interesting oracle circuit minimization prob-
lems is MCSPQBF. It was shown by Allender et al. (2006) that
MCSPQBF is complete for PSPACE under ZPP-Turing reductions,
but the question of whether it is complete for PSPACE under more
restrictive reductions was left open. For most natural complexity
classes C above PSPACE, there is a corresponding oracle circuit
minimization problem (which we will sometimes denote MCSPC)
that is known to be complete under P/poly reductions, but is not
known to be complete under more restrictive reductions (Allender
et al. 2006). For the particular case of C = PSPACE, we denote
this as MCSPQBF. We show that MCSPQBF is not PSPACE-complete
under logspace reductions (Corollary 3.8). Furthermore, it is not
even TC0-hard under uniform AC0 reductions (Theorem 3.9).

Finally, for even more powerful oracles A, we handle even gen-
eral polynomial-time reductions. We show that if SAT≤pmMCSPEXP,
then EXP = NEXP (Theorem 3.4).

We believe that MCSP is not TC0-hard under even nonuniform
AC0 reductions. While we are unable to prove this, we can rule out
restricted AC0 reductions for a certain gap version of MCSP. Define
gap-MCSP as follows: Given a truth table f and a parameter s,
output ‘No’ if f requires circuit size s, and output ‘Yes’ if f can
be computed by a circuit of size at most s/2. Call a mapping from
n-bit strings to m-bit strings α(n)-stretching if m ≤ n · α(n), for
some function α : N→ R≥0.

We prove that gap-MCSP is not TC0-hard under nonuniform
AC0 reductions that are n1/31-stretching (Theorem 3.17).

1.2. Related work. The most closely related is the recent paper
by Murray & Williams (2015), which also considers the question
whether MCSP is NP-complete under weak reductions, and proves
a number of conditional and unconditional results. The main un-
conditional result is that MCSP is not TC0-hard under uniform
NC0 reductions (or more generally, under O(n1/2−ε)-time projec-
tions, for every ε > 0); we give an alternative proof of this result
(Theorem 3.15). For conditional results, Murray & Williams (2015)
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show that if MCSP is NP-hard under uniform AC0 reductions, then
NP 6⊂ P/poly and E 6⊂ io−SIZE[2Ω(n)] (also implied by our Corol-
lary 3.13 and Lemma 3.10), and that NP-hardness of MCSP under
general polynomial-time reductions implies EXP 6= ZPP.

MCSP, MCSPQBF and other oracle circuit minimization prob-
lems are closely related to notions of resource-bounded Kolmogorov
complexity. Briefly, a small (oracle) circuit is a short description
of the string that represents the truth-table of the function com-
puted by the circuit. Notions of resource-bounded Kolmogorov
complexity that are roughly equivalent to (oracle) circuit size were
presented and investigated by Allender et al. (2006).

In particular, there is a space-bounded notion of Kolmogorov
complexity, KS, such that the set of KS-random strings (denoted
RKS) is complete for PSPACE under ZPP reductions. It is shown in
(Allender et al. 2006) that RKS is not even hard for TC0 under AC0

reductions, and RKS is not hard for PSPACE under logspace-Turing
reductions. The proof of this non-hardness result also carries over
to show that a set such as {f : f is the truth table of a function on n
variables that has QBF circuits of size at most 2n/2} is also not hard
for TC0 under AC0 reductions, and is not hard for PSPACE under
logspace-Turing reductions. However it does not immediately carry
over to MCSPQBF, which is defined as {(f, i) : f is the truth table
of a function on n variables that has QBF circuits of size at most
i}; similarly it does not carry over to the set {(x, i) : KS(x) ≤
i}. Also, the techniques presented in (Allender et al. 2006) have
not seemed to provide any tools to derive consequences assuming
completeness results for oracle circuit minimization problems for
oracles less powerful than PSPACE. We should point out, however,
that (Allender et al. 2006) proves a result similar to (and weaker
than) our Lemma 3.10 in the context of time-bounded Kolmogorov
complexity: if RKT is TC0-hard under AC0 many-one reductions,

then PH 6⊆ SIZE
[
2n

o(1)
]
.

1.3. Our techniques. To illustrate our proof techniques, let us
sketch a proof of one of our results: If MCSP is P-hard under
uniform logspace reductions, then P 6= PSPACE (Corollary 3.3).

The proof is by contradiction. Suppose that P = PSPACE. Our
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logspace reduction maps n-bit instances of QBF to nc-bit instances
(f, s) of MCSP so that each bit of f is computable in O(log n)
space.

1. Imagine that our reduction is given as input a succinct ver-
sion of QBF, where some poly(log n)-size circuit D on each
log n-bit input 1 ≤ i ≤ n computes the ith bit of the QBF in-
stance. It is not hard to see that our reduction, given the cir-
cuit D, can compute each bit of f in poly(log n) space. Thus
the Boolean function with the truth table f is computable
by a PSPACE = P algorithm (which also has the circuit D as
an input). It follows that this function f is computable by
some polynomial-size Boolean circuit.

2. Next, since we know that f has at most polynomial circuit
complexity, to decide the MCSP instance (f, s), we only need
to consider the case where s < poly (since for big values of
s, the answer is ‘Yes’). But deciding such MCSP instances
(which we call succinct MCSP) is possible in Σp

2: guess a
circuit of size at most s, and verify that it agrees with the
given polynomial-size circuit for f on all inputs.

3. Finally, since Σp
2 ⊆ PSPACE = P, we get that our succinct

MCSP instances can be decided in P. The reduction from suc-
cinct QBF to succinct MCSP is also in PSPACE = P. Hence,
succinct QBF is in P. But, succinct QBF is EXPSPACE-
complete, and so we get the collapse EXPSPACE = P, con-
tradicting the hierarchy theorems.

In step (1) of the sketched proof, the uniformity of an assumed
reduction to MCSP is used to argue that the truth table f produced
by the reduction is in fact “easy” to compute uniformly. The uni-
form complexity of computing the function f is roughly the “expo-
nential” analogue of the uniform complexity of the reduction. For
circuit classes such as AC0 and TC0, we use the well-known con-
nection between the “exponential” analog of uniform AC0 and PH,
and between the “exponential” analog of uniform TC0 and CH.

We use the uniform easiness of the function f to conclude that
f has small circuit complexity (and hence our reduction actually
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outputs instances of succinct MCSP). To get that conclusion, we
need to assume (or derive) the collapse to P/poly of the uniform
complexity class that contains f ; in our example above, we got it
from the assumption that PSPACE = P.

Step (2) exploits the fact that succinct MCSP does not become
“exponentially harder” (unlike the usual succinct versions of hard
problems), but is actually computable in Σp

2.
In Step (3), we combine the algorithm for our reduction and

the algorithm for succinct MCSP to get an “efficient” algorithm
for the succinct version of the input problem (succinct QBF in our
example). Since the succinct version of the input problem does be-
come exponentially harder than its non-succinct counterpart, we
get some impossible collapse (which can be disproved by diagonal-
ization).

We use this style of proof for all our results involving reductions
computable by uniform TC0 and above. However, for the case
of uniform AC0 (and below), we get stronger results by replacing
the diagonalization argument of Step (3) with the nonuniform AC0

circuit lower bound for PARITY (H̊astad 1989).

Remainder of the paper. We state the necessary definitions
and auxiliary results in Section 2. Our main results are proved in
Section 3, and some generalizations are given in Section 4. We give
concluding remarks in Section 5.

2. Definitions

Definition 2.1. The minimum circuit size problem MCSP, as de-
fined in (Kabanets & Cai 2000), is

{(f, s) | f has circuits of size s},

where f is a string of length 2m encoding the entire truth-table of
some m-variate Boolean function. (Versions of this problem have
been studied long prior to (Kabanets & Cai 2000). See (Allender &
Das 2014; Trakhtenbrot 1984) for a discussion of this history.) We
will also consider the analogous problem for circuits with oracles,
the Minimum A-Circuit Size problem MCSPA, defined analogously,
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where instead of ordinary circuits, we use circuits that also have
oracle gates that query the oracle A. When A is a standard com-
plete problem for some complexity class C, we may refer to this as
MCSPC. Note that, for any oracle A, MCSPA ∈ NPA.

We will not need to be very specific about the precise definition of
the “size” of a circuit. Our results hold if the “size” of a circuit
is the number of gates (including oracle gates), or the number
of “wires”, or the number of bits used to describe a circuit in
some standard encoding. It is perhaps worth mentioning that the
different versions of MCSP that one obtains using these different
notions of “size” are not known to be efficiently reducible to each
other.

Circuit size relative to oracle A is polynomially-related to a
version of time-bounded Kolmogorov complexity, denoted KTA,
which was defined and studied by Allender et al. (2006).

Definition 2.2. KTA(x) = min{|d| + t | ∀b ∈ {0, 1, ∗}∀i ≤ |x| +
1 UA(d, i, b) runs for at most t steps, and accepts iff xi = b}.
Here, U is some fixed universal Turing machine, which has random
access to the oracle A and to the input string (or “description”) d;
xi denotes the i-th symbol of x, where x|x|+1 = ∗.

By analogy to MCSPA, we define the “minimum KT problem”:

Definition 2.3. MKTPA = {(x, i) | KTA(x) ≤ i}.

All of our results that deal with MCSPA also apply to MKTPA.
We wish to warn the reader that one’s intuition can be a poor

guide, when judging how MCSPA and MCSPB compare to each
other, for given oracles A and B. For instance, it is known that
MCSPSAT ZPP-Turing reduces to MCSPQBF (Allender et al. 2006),
but no deterministic reduction is known. Similarly, no efficient re-
duction of any sort is known between MCSP and MCSPSAT. Some
of our theorems derive consequences from the assumption that
MCSPSAT is hard for some complexity class under AC0 reductions.
Although one might suspect that this is a weaker hypothesis than
assuming that MCSP is hard for the same complexity class under
AC0 reductions – certainly the best upper bound for MCSPSAT is
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worse than the best known upper bound for MCSP – nonetheless
we are not able to derive the same consequences assuming only
that MCSP is hard. For essentially all time- and space-bounded
complexity classes C that contain PSPACE, MCSPC is complete for
C/poly under P/poly reductions (Allender et al. 2006, 2010), but
uniform reductions are known only for two cases (Allender et al.
2006): when C = PSPACE (MCSPQBF is complete for PSPACE un-
der ZPP reductions) and when C = EXP (MCSPEXP is complete for
EXP under NP-Turing reductions).

2.1. Succinct Problems. The study of succinct encodings of
computational problems was introduced by Galperin & Wigderson
(1983); Papadimitriou & Yannakakis (1986), and has been studied
since then by Balcázar et al. (1992); Wagner (1986), among others.
Succinct encodings play an important role in the proofs of our main
results.

Definition 2.4. Given a language L, we define the succinct ver-
sion of L (denoted succ.L) to be the language {C | tt(C) ∈ L}
where C is a Boolean Circuit and tt(C) is the truth-table for C.

It will be necessary for us to consider “succinctly-presented”
problems, where the circuit that constitutes the succinct descrip-
tion is itself an oracle circuit:

Definition 2.5. Given a language L and an oracle A, we define
the A-succinct version of L (denoted A-succ.L) to be the language
{C | tt(C) ∈ L} where C is a Boolean Circuit with oracle gates,
and tt(C) is the truth-table for C, when it is evaluated with oracle
A. If A = ∅, we denote this language as succ.L.

The typical situation that arises is that the succinct version
of a problem A has exponentially greater complexity than A. In
particular, this happens when A is complete for a complexity class
under “logtime reductions”.

Definition 2.6. We say that a function f can be computed in
logarithmic time if there exists a random-access Turing machine
that, given (x, i), computes the ith bit f(x) in time O(log |x|).
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Building on prior work of (Galperin & Wigderson 1983; Pa-
padimitriou & Yannakakis 1986; Wagner 1986), Balcázar et al.
(1992) presented a large list of complexity classes (C1, C2), where
C1 is defined in terms of some resource bound B(n) and C2 is de-
fined in the same way, with resource bound B(2n), such that if a
set A is complete for C1 under logtime reductions, then succ.A is
complete for C2 under polynomial-time many-one reductions. In
particular, we will make use of the fact that succ.SAT is complete
for NEXP, succ.MajSAT is complete for probabilistic exponential
time, succ.QBF is complete for EXPSPACE, and succ.CVP is com-
plete for EXP.

Somewhat surprisingly, the complexity of succ.MCSP appears
not to be exponentially greater than that of MCSP. (Related ob-
servations were made earlier by Williams (2012).)

Theorem 2.7. succ.MCSP ∈ Σp
2

Proof. We present an algorithm in Σp
2 that decides succ.MCSP.

Given an instance of succinct MCSP C, note that C ∈ succ.MCSP
iff z is a string of the form (f, s) ∈ MCSP, where z = tt(C). By
definition, |z| must be a power of 2, say |z| = 2r, and |f | must also
be a power of 2, say |f | = 2m for some m < r. Note also that
if s > |f | = 2m, then (f, s) should obviously be accepted, since
every m-variate Boolean function has a circuit of size 2m. To be
precise, we will choose one particular convention for encoding the
pair (f, s); other reasonable conventions will also yield a Σp

2 upper
bound. Let us encode (f, s) as a string of length 2m+1, where the
first 2m bits give the truth table for f , and the second 2m bits
give s in binary. Note that this means that C has m + 1 input
variables, and hardwiring the high-order input bit of C to 0 results
in a circuit C ′ for f (of size at most |C|).

Using this encoding, the “interesting” instances (f, s) are of the
form where the second half of the string is all zeros, except possi-
bly for the low-order m bits (encoding a number s ≤ 2m = |f |).
The low-order m bits can be computed deterministically in poly-
nomial time, given C, by evaluating C on inputs 1m+1−logm0logm,
1m+1−logm0−1+logm1, . . . , 1m+1. Let the number encoded by the
low-order m bits be s′. Then C (an encoding of (f, s)) is in
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succ.MCSP iff

◦ there is some bit position j corresponding to one of the high-
order 2m −m bits of s such that C(j) = 1, or

◦ there exists a circuit D of size at most s′ such that, for all
i,D(i) = C ′(i). (Note that s′ ≤ s.)

It is easily seen that this can be checked in Σp
2. �

Because this proof relativizes, we obtain:

Corollary 2.8. Let A and B be oracles such that B≤pTA. Then
B-succ.MCSPA is in (Σp

2)A.

Proof. We use the same encoding as in Theorem 2.7. Thus, an
oracle circuit C encoding an instance (f, s) (where f is an m-ary
function) has m+1 input variables, and hardwiring the high-order
input bit of C to 0 results in an oracle circuit C ′ (with oracle B)
for f (of size at most |C|). But if B≤pTA, then this also gives us
an oracle circuit C ′′ (with oracle A) for f (of size at most |C|k for
some k), where we can obtain C ′′ from C in polynomial time.

Then C (an encoding of (f, s)) is in B-succ.MCSPA iff

◦ there is some bit position j corresponding to one of the high-
order 2m −m bits of s such that CB(j) = 1, or

◦ there exists a circuit D of size at most s′ such that, for all
i,DA(i) = C ′′A(i).

It is easily seen that this can be checked in (Σp
2)A. �

An analogous result also holds for MKTPA.

Theorem 2.9. Let A and B be oracles such that B≤pTA. Then
B-succ.MKTPA is in (Σp

2)A.

Proof. Given an instance of B-succ.MKTPA C, note that C ∈
B-succ.MKTPA only if z is a string of the form (x, i), where z =
tt(C). Let us settle on a suitable encoding for pairs; the number
i should be at most 2|x| (a generous overestimate of how large
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KTA(x) could be), and thus should consist of at O(log |x|) bits.
In order to mark the location of the “comma” separating x and i,
we use the familiar convention of doubling each bit of i, and using
the symbols 10 to mark the position of the “comma”. Thus, given
a circuit C with n variables, a (Σp

2)B machine can compute the
length of the encoded string x as follows:

1. Using nondeterminism, guess a position ` and verify that
CB(`) = 1 and CB(`+ 1) = 0.

2. Using co-nondeterminism, verify that for all `′ > ` it is not
the case that CB(`′) = 1 and CB(`′ + 1) = 0. (If this test
passes, then the tt(C) is of the form (x, i) for some x and i,
although it allows the possibility that absurdly large numbers
i are provided.)

3. Reject if the number of bits used in the encoding of i is more
than 4n (which is greater than 4 log |x|).

This (Σp
2)B computation can be simulated by a (Σp

2)A, by our as-
sumption that B≤pTA.

The rest of the algorithm follows closely the algorithm that we
presented for MCSP. Given a circuit C, guess the number ` such
that tt(C) = (x, i) for some string x of length `. Without loss of
generality, we can assume that the universal Turing machine used
to define KT takes a description of a program and the input to the
program and runs the program on that input. The universal oracle
machine U , given a description d of length |C|+ |`|+ O(1), along
with (i, b) can output ∗ if i > ` and otherwise can use oracle A to
simulate CB(i) and accept iff the answer is b. The running time
will be at most (|C| + |`|)k for some k, which gives us an upper
bound on KTA(x).

The (Σp
2)A algorithm for B-succ.MKTPA is thus:

1. Guess and verify ` as above, and in parallel:

2. Evaluate CB(j) for the 4n largest positions j < 2n (using
oracle A), and thus obtain the encoding of i.

3. Accept if i ≥ (|C|+ |`|)k.
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4. Guess a description d′ of length at most i. Reject if UA(d, `+
1, ∗) does not accept.

5. Using co-nondeterminism, verify that for all j ≤ ` and all
b ∈ {0, 1}, UA(d, j, b) accepts iff CB(j) = b.

�

2.2. Constant-Depth Reductions.

Proposition 2.10. Suppose that f is a uniform AC0 reduction
from a problem A to a problem B. Let C be an instance of succ.A.
Then, the language

{(C, i) | the ith bit of f(tt(C)) is 1}
is in LTH (the linear-time hierarchy).

Proof. Consider the unary version of the above language:

{1(C,i) | the ith bit of f(tt(C)) is 1};
we claim that this language is in uniform AC0. To see this, note
that after computing the length of the input (in binary), and thus
obtaining a description of C (of length log n), an AC0 algorithm
can compute each bit of tt(C). For instance, the ith bit of tt(C)
can be computed by guessing a bit vector of length log n recording
the value of each gate of C on input i, and then verifying that all
of the guessed values are consistent. Once the bits of tt(C) are
available, then the AC0 algorithm computes f(tt(C)).

The result is now immediate, from (Allender & Gore 1993,
Proposition 5), which shows that the rudimentary languages (that
is, the languages in the linear-time version LTH of the polynomial-
time hierarchy PH) are precisely the sets whose unary encodings
are in Dlogtime-uniform AC0. �

By an entirely analogous argument, we obtain:

Proposition 2.11. Suppose that f is a uniform TC0 reduction
from a problem A to a problem B. Let C be an instance of succ.A.
Then, the language

{(C, i) | the ith bit of f(tt(C)) is 1}
is in CH.
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3. Main Results

3.1. Conditional collapses and separations of complexity
classes. Our first theorem shows that significant conclusions fol-
low if MCSP is hard for P under AC0 reductions. (Note that a
stronger result appears later in the paper, as Corollary 3.13.)

Theorem 3.1. If there is any set A in the polynomial hierarchy
such that MCSPA (or MKTPA) is hard for P under uniform AC0

reductions, then P 6= NP.

Proof. We present only the proof for MCSPA; the proof for
MKTPA is identical. Suppose that P = NP and MCSPA is hard
for P under AC0 reductions. Thus, there is a family {Cn} of AC0

circuits reducing SAT to MCSPA, such that Cn(φ) = f(φ), where
f is the reduction function and φ is an instance of SAT.

Now we claim that succ.SAT≤pmsucc.MCSPA. To see this, con-
sider an instance D of succ.SAT (that is, a circuit D on n variables
that, when given input i, outputs the ith bit of a SAT instance
of size 2n). This problem has been shown to be complete for
NEXP(Papadimitriou 2003). By Proposition 2.10, we have that
the language

{(D, i) | the ith bit of f(tt(D)) is 1}

is in PH. By our assumption that P = NP, we have that this lan-
guage is in P. Let {Em} be a family of circuits deciding this lan-
guage. The function that takes input D and outputs E|(D,n)| (with
D hardwired in) is a polynomial-time reduction from succ.SAT to
succ.MCSPA, which is in (Σp

2)A, by Corollary 2.8. Since A ∈ P (by
our assumption that P = NP), we have that NEXP ⊆ P, which is a
contradiction. �

Corollary 3.2. If there is any set A ∈ CH such that MCSPA (or
MKTPA) is hard for P under TC0 reductions, then P 6= PP.

Proof. The proof is similar to that of the preceding theorem.
If P = PP, and there is a TC0 reduction f from SAT to MCSPA,
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then the language

{(D, i) | the ith bit of f(tt(D)) is 1}

is in CH (by Proposition 2.11), and hence is in P.
Now, just as above, we use the circuit family recognizing this

language to construct a polynomial-time reduction from succ.SAT
to succ.MCSPA, leading to the contradiction that NEXP = P. �

Corollary 3.3. Suppose that MCSP (or MKTP) is hard for P
under logspace many-one reductions. Then P 6= PSPACE.

Proof. The proof proceeds along similar lines. Assume P =
PSPACE. Consider an instance D of succ.SAT, where there is a
reduction f computable in logspace reducing SAT to MCSP. Then
the language

{(D, i) | the ith bit of f(tt(D)) is 1}

is in PSPACE, since polynomial space suffices in order to compute f
on an exponentially-large input. (We don’t need to store the string
tt(D), the bits of tt(D) can re-computed when they are needed.)
By our assumption that P = PSPACE, this language is in P, and
hence is recognized by a uniform circuit family {Em}.

Now, as above, the function that maps D to E|(D,n)| (with D
hardwired in) is a polynomial-time reduction from succ.SAT to
succ.MCSP, which yields the contradiction that NEXP = P. �

Theorem 3.4. Suppose MCSPEXP is NP-hard under polynomial-
time reductions. Then NEXP = EXP.

Proof. Let f be the reduction taking an instance of SAT to an
instance of MCSPEXP. We construct a reduction from succ.SAT to
B-succ.MCSPEXP for some B ∈ EXP.

Consider the language

L = {(C, i) | the ith bit of f(φC) is 1},

where φC is the formula described by the circuit C, viewed as an
instance of succ.SAT with n input variables. We can decide L
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in exponential time because we can write down φC in exponen-
tial time, and then we can compute f(φC) in exponential time be-
cause f is a poly-time reduction on an exponentially large instance.
Let {Dm} be a family of oracle circuits for L, using an oracle for
an EXP-complete language B. Thus the mapping C 7→ D|C|+n is

a polynomial-time reduction from succ.SAT to B-succ.MCSPEXP,
which is in (Σp

2)EXP = EXP (see, e.g., (Allender et al. 2010, Theo-
rem 24)), and thus EXP = NEXP. �

Corollary 3.5. For Levin’s time-bounded Kolmogorov complex-
ity measure Kt (Levin 1984), suppose that {(x, i) | Kt(x) ≤ i} is
NP-hard under polynomial-time reductions. Then NEXP = EXP.

Proof. As discussed in (Allender et al. 2006), there is essentially
no difference between Kt(x) and KTEXP(x). Thus the proof is
immediate, given the proof of Theorem 3.4. �

Theorem 3.6. If MCSPQBF or MKTPQBF is hard for NP under
logspace reductions, then NEXP = PSPACE.

Proof. Let f be the reduction taking an instance of SAT to an
instance of MCSPQBF. We construct a reduction from succ.SAT to
QBF-succ.MCSPQBF.

Consider the language

L = {(C, i) | the ith bit of f(φC) is 1},

where φC is the formula described by the circuit C, viewed as an
instance of succ.SAT with n input variables. We can decide L in
PSPACE, because we can compute f(φC) by building the bits of
φC as they are needed. Let {Dm} be a family of oracle circuits for
L, using an oracle for QBF. Thus the mapping C 7→ D|C|+n is a

polynomial-time reduction from succ.SAT to QBF-succ.MCSPQBF,
which is in (Σp

2)QBF = PSPACE, implying NEXP = PSPACE. �
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Corollary 3.7. If MCSPQBF (or MKTPQBF) is hard for P under
logspace reductions, then EXP = PSPACE.

Proof. The proof is identical to the proof of the preceding the-
orem, with NP replaced by P, and with NEXP replaced by EXP,
resulting in a reduction from succ.CVP to QBF-succ.MCSPQBF. �

If we carry out a similar argument, replacing NP with PSPACE,
we obtain the contradiction EXPSPACE = PSPACE, yielding the
following.

Corollary 3.8. None of MCSPQBF and MKTPQBF is PSPACE-
hard under logspace reductions.

3.2. Impossibility of uniform AC0 reductions.

Theorem 3.9. For any language A that is hard for PH under
P/poly reductions, MCSPA is not hard for TC0 under uniform AC0

reductions.

The theorem will follow from the next lemma. Recall that LTH
(linear-time hierarchy) stands for the linear-time version of the
polynomial-time hierarchy PH.

Lemma 3.10. Suppose that, for some language A, MCSPA is TC0-
hard under uniform AC0 reductions. Then LTH 6⊆ io−SIZEA[2Ω(n)].

Proof. It is shown in (Agrawal 2011, Theorems 5.1 and 6.2)
that if a set is hard for any class C that is closed under TC0 reduc-
tions under uniform AC0 reductions, then it is hard under length-
increasing (uniform AC0)-uniform NC0 reductions. (Although The-
orems 5.1 and 6.2 in (Agrawal 2011) are stated only for sets that are
complete for C, they do hold also assuming only hardness (Agrawal
2014), using exactly the same proofs.) Here, a (uniform AC0)-
uniform NC0 reduction is a family {Fn}n≥0 of functions such that
each Fn is an NC0 circuit with the property that the direct connec-
tion language DCL = {(n, t, i, j)| gate i of Fn has type t and has an
edge leading from gate j} with n in unary is in Dlogtime-uniform
AC0.
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Hence, if MCSPA is hard for TC0 under uniform AC0 reductions,
then we get that PARITY is reducible to MCSPA under a length-
increasing (uniform AC0)-uniform NC0 reduction. Such a reduction
R maps PARITY instances x ∈ {0, 1}n to MCSPA instances (f, s),
where f is the truth table of a Boolean function, f ∈ {0, 1}m, for
some m such that n ≤ m ≤ nO(1), and s is the size parameter in
binary. Since every Boolean function with an m-bit truth table is
computable by a Boolean circuit of size at most m, we may assume
that 0 ≤ s ≤ m, and hence |s| ≤ O(log n).

Being the output of an NC0 reduction, the binary string s de-
pends on at most O(log n) bits in the input string x. Imagine fixing
these bits in x to achieve the minimum value of the parameter s.
Denote this minimum value of s by v. (We do not need v to be
efficiently computable in any sense.) We get a nonuniform NC0 re-
duction from PARITY on n−O(log n) ≥ n/2 bit strings to MCSPA

with the size parameter fixed to the value v.

Claim 3.11. For any language A and any 0 ≤ v ≤ m, MCSPA on
inputs f ∈ {0, 1}m, with the size parameter fixed to v, is solved by
a DNF formula of size m · 2O(v2 log v).

Proof (Claim 3.11). Each A-oracle circuit of size v on logm in-
puts can be described by a binary string of length at mostO(v2 log v),
since each of v gates has at most v inputs. Thus, there are at most
2O(v2 log v) Boolean functions on logm inputs that are computable
by A-oracle circuits of size at most v. Checking if any one of these
truth tables equals to the input truth table f can be done by a
DNF, where we take an OR over all easy functions, and for each
easy function we use an AND gate to check equality to the input
f . �

We conclude that PARITY on n/2-bit strings is solvable by AC0

circuits of depth 3 and size m · 2O(v2 log v). Indeed, each bit of the
truth table f is computable by an NC0 circuit, and hence by a DNF
(and a CNF) of constant size. Plugging in these DNFs (or CNFs)
for the bits of f into the DNF formula from Claim 3.11 yields the
required depth-3 AC0 circuit for PARITY on inputs of length at
least n/2.
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Next, since PARITY on m-bit strings requires depth-3 AC0 cir-
cuits of size at least 2Ω(

√
m) (H̊astad 1989), we get that v ≥ n1/5.

Hence, on input 0n, our uniform NC0 reduction produces (f, s)
where f is the truth table of a Boolean function on r-bit inputs
that has A-oracle circuit complexity at least v ≥ n1/5 ≥ 2εr, for
some ε > 0.

Finally, since the NC0 reduction is (uniform AC0)-uniform, we
get that the Boolean function whose truth table is f is computable
in LTH. �

Proof (Theorem 3.9). Towards a contradiction, suppose that
MCSPA is TC0-hard under uniform AC0 reductions. Then, by
Lemma 3.10, there is a language L ∈ PH that requires A-oracle
circuit complexity 2Ω(n) almost everywhere. However, since A is
PH-hard under P/poly reductions, we get that L ∈ SIZEA[poly]. A
contradiction. �

Corollary 3.12. MCSP⊕P is not TC0-hard under uniform AC0

reductions.

Proof. By Toda’s theorem (Toda 1991), PH ⊆ BPP⊕P, which
in turn is contained in the class of problems P/poly-reducible to
the standard complete problem for ⊕P. The result then follows by
Theorem 3.9. �

Corollary 3.13. Suppose that, for some oracle A, MCSPA is
TC0-hard under uniform AC0 reductions. Then NPA 6⊆ SIZEA[poly].

Proof. If NPA ⊆ SIZEA[poly], then PHA ⊆ SIZEA[poly]. Now
the result follows from Lemma 3.10. �

Remark 3.14. Murray & Williams (2015) prove results similar
to (and implied by) our Lemma 3.10 and Corollary 3.13 for the
case of the empty oracle A = ∅. Namely, they show that if MCSP
is NP-hard under uniform AC0 reductions, then NP 6⊆ P/poly and
E 6⊆ io−SIZE[2Ω(n)].
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Finally, we note that the ideas in our proof of Lemma 3.10 yield
an alternate proof of the result by Murray & Williams (2015) that
PARITY is not reducible to MCSP via “local” O(n1/2−ε)-time re-
ductions. We prove the version for polylogtime-uniform NC0 reduc-
tions, but the same argument applies also to the “local” reductions
of (Murray & Williams 2015).

Theorem 3.15 (Murray & Williams 2015). No polylogtime-
uniform NC0 reduction exists from PARITY to MCSP.

Proof. Suppose there is such a reduction. Similarly to the proof
of Lemma 3.10, we conclude that this NC0 reduction maps 0n to
an MCSP instance (f, s) where f is the truth table of a Boolean
function on r := O(log n) inputs that requires exponential circuit
size s ≥ 2Ω(r). On the other hand, since our NC0 reduction is
polylogtime-uniform, the Boolean function with the truth table f
is computable in P, and hence in SIZE[poly]. A contradiction. �

3.3. Gap MCSP. For 0 < ε < 1, we consider the following gap
version of MCSP, denoted ε-gap MCSP: Given (f, s), output ‘No’
if f requires circuits of size at least s, and output ‘Yes’ if f can be
computed by a circuit of size at most (1− ε)s.

For α : N → R+, call a mapping R : {0, 1}n → {0, 1}m α-
stretching if m ≤ α(n) · n. We will prove that there is no nδ-
stretching nonuniform AC0 reduction from PARITY to ε-gap MCSP,
for certain parameters 0 < ε, δ < 1. First, we rule out nonuniform
NC0 reductions.

Theorem 3.16. For every n−1/6 < ε < 1 and for every constant
δ < 1/30, there is no nδ-stretching (nonuniform) NC0 reduction
from PARITY to ε-gap MCSP.

Proof. Towards contradiction, suppose there is an nδ-stretching
NC0 reduction from PARITY on inputs x ∈ {0, 1}n to ε-gap MCSP
instances (f, s). Fix to zeros all O(log n) bit positions in the string
x that determine the value of the size parameter s. As in the proof
of Lemma 3.10, we get an NC0 reduction from PARITY on at least
n/2 bits y to the ε-gap MCSP instance with the size parameter
fixed to some value at least v ≥ n1/5. (Recall that v ≥ n1/5 is
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the minimum value of the size parameter s on any input x; so, in
particular, we get at least this value v on the string of all zeros in
the positions that determine the value of s.)

By our assumption, |f | ≤ n · nδ. Since each bit of f is com-
putable by an NC0 circuit, we get that each bit of f depends on at
most c bits in the input y. The total number of pairs (i, j) where
fi depends on bit yj is at most c · |f |. By averaging, there is a
bit yj, 1 ≤ j ≤ n/2, that influences at most c|f |/(n/2) ≤ 2cnδ bit
positions in the string f .

Fix y so that all bits are 0 except for yj (which is set to 1).
This y is mapped by our NC0 reduction to the truth table f ′ that
is computable by a circuit of size at most (1 − ε)v. On the other
hand, flipping the bit yj to 0 forces the reduction to output a
truth table f ′′ of circuit complexity at least v. But, yj influences
at most 2cnδ positions in f ′, and so the circuit complexity of f ′′

differs from that of f ′ by at most O(nδ log n) gates (as we can just
construct a “difference” circuit of that size that is 1 on the at most
2cnδ affected positions of f ′). We get εv ≤ O(nδ log n), which is
impossible when δ < 1/30. �

Now we extend Theorem 3.16 to the case of nonuniform AC0

reductions.

Theorem 3.17. For every n−1/7 < ε < 1 and for every constant
δ < 1/31, there is no nδ-stretching (nonuniform) AC0 reduction
from PARITY to ε-gap MCSP.

Proof. Towards contradiction, suppose there is a nδ-stretching
AC0 reduction from PARITY on n-bit strings to the ε-gap MCSP.
We will show that this implies the existence of an NC0 reduction
with parameters that contradict Theorem 3.16 above.

Claim 3.18. For every constant γ > 0, there exist a constant
a > 0 and a restriction of our AC0 circuit satisfying the following:

(i) each output of the restricted circuit depends on at most a
inputs, and

(ii) the number of unrestricted variables is at least n1−γ.
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Proof (Claim 3.18). Recall that a random p-restriction of n
variables x1, . . . , xn is defined as follows: for each 1 ≤ i ≤ n,
with probability p, leave xi unrestricted, and with probability 1−
p, set xi to 0 or 1 uniformly at random. By H̊astad’s Switching
Lemma (H̊astad 1989), the probability that a given CNF on n
variables with bottom fan-in at most t does not become a decision
tree of depth at most r after being hit with a random p-restriction
is at most (5pt)r.

For an AC0 circuit of size nk and depth d, set

p := (5a)−1 · n−2k/a

for some constant a > 0 to be determined. Applying this random
p-restriction d times will reduce the original circuit to a decision
tree of depth a with probability at least

1− dnk(5pa)a > 3/4.

The expected number of unrestricted variables at the end of this
process is

pdn ≥ Ω(n/n2kd/a)

= Ω(n/nγ
′
),

for γ′ := 2kd/a. By Chernoff bounds, the actual number of unre-
stricted variables is at least 1/2 of the expectation with probability
at least 3/4.

Thus, with probability at least 1/2, we get a restriction that
makes the original AC0 circuit into an NC0 circuit on at least n/n2γ′

variables, where each output of the new circuit depends on at most
a input variables. Setting γ := 2γ′, we get that a = (4kd)/γ. �

We get an NC0 reduction from PARITY on n′ := n1−γ variables
to ε-gap MCSP. This reduction is at most (n′)(δ+γ)/(1−γ)-stretching.
But, for any 0 < γ < (1/31)2 so that (δ+γ)/(1−γ) < 1/30 and ε >
n−1/7 > (n′)−1/6, such a reduction cannot exist by Theorem 3.16. �

4. Generalizations

Theorem 3.1 gives consequences of MCSP being hard for P. The
property of P that is exploited in the proof is that the polynomial
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hierarchy collapses to P if NP = P. (This is required so that we
can efficiently obtain a circuit that computes bits of the reduction,
knowing only that it is in the polynomial hierarchy.)

The next theorem formalizes this observation:

Theorem 4.1. Let C be any class such that if NP = C, then PH =
C. If there is a set A ∈ PH that is hard for C under ≤pT reductions
such that MCSPA (or MKTPA) is hard for C under uniform AC0

reductions, then NP 6= C.

Proof. Suppose that NP = C, and MCSPA is hard for C. Then,
there exists a reduction from SAT to MCSPA computable in AC0.
As in the proof of Theorem 3.1, we can use this to construct a ≤pT
reduction from succ.SAT to B-succ.MCSPA for some B in PH; and
thus B is in C by our assumption. Thus B≤pTA. By Corollary 2.8
this implies that succ.SAT is in (Σp

2)A, which is in the polynomial
hierarchy, and hence is in NP.

However, this implies NEXP ⊆ NP, which contradicts the Non-
deterministic Time Hierarchy Theorem (Seiferas et al. 1978). �

Corollary 4.2. Let A be any set in the polynomial hierarchy. If
MCSPA (or MKTPA) is hard for AC0[6] under AC0 reductions, then
AC0[6] 6= NP.

Recall that SZK denotes the class of languages with Statistical
Zero-Knowledge proofs.

Corollary 4.3. Let A be any set in the polynomial hierarchy
that is hard for SZK under ≤pT reductions. If MCSPA is hard for
SZK under AC0 reductions, then SZK 6= NP.

Proof. SZK is closed under complementation (Goldreich et al.
1998; Okamoto 2000). Thus if NP is equal to the class of languages
in SZK, then coNP = NP = SZK and PH collapses to SZK. Thus
SZK satisfies the hypothesis of Theorem 4.1. �

Similarly, we can state the following theorem about TC0 reduc-
tions.
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Theorem 4.4. Let C be any class such that if PP = C, then CH =
C. If there is a set A ∈ CH that is hard for C under ≤pT reductions
such that MCSPA (or MKTPA) is hard for C under uniform TC0

reductions, then PP 6= C.

Proof. Suppose that PP = C, and that MCSPA is hard for
C. Then, there exists a reduction from Maj.SAT (the standard
complete problem for PP) to MCSPA computable in TC0. Similarly
to Corollary 3.2, this gives us a ≤pT reduction from succ.MajSAT
to B-succ.MCSPA for some B ∈ CH; and thus B is in C. Then,
B≤pTA, and thus succ.MajSAT is in (Σp

2)A, which is in CH, and
hence is in PP. However, succ.MajSAT is complete for probabilistic
exponential time, and hence is not in PP. �

Fenner et al. (1994) introduced several complexity classes, in-
cluding SPP and WPP that are “low for PP”, in the sense that
PP = PPSPP = PPWPP. Thus we obtain the following corollary:

Corollary 4.5. Let A be any set in the counting hierarchy that
is hard for WPP under ≤pT reductions. If MCSPA is hard for WPP
(or SPP) under uniform TC0 reductions, then WPP 6= PP (respec-
tively SPP 6= PP).

5. Discussion

The contrast between Theorem 3.1 and Corollary 3.7 is stark. The-
orem 3.1 obtains a very unsurprising consequence from the as-
sumption that MCSP is hard for P under a very restrictive class
of reductions, while Corollary 3.7 obtains a very unlikely collapse
from the assumption that the apparently much harder problem
MCSPQBF is hard for P under a much less restrictive class of re-
ductions. Yet, the absence of any known efficient reduction from
MCSP to MCSPQBF means that we have been unable to obtain any
unlikely consequences by assuming that MCSP is hard for P. We
believe that it should be possible to provide evidence that MCSP
is not hard for P, and we pose this as an open question for further
research.
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