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Accelerated Exponential Parameterization of T2
Relaxation with Model-Driven Low Rank and Sparsity
Priors (MORASA)

Xi Peng,1,2 Leslie Ying,3 Yuanyuan Liu,1 Jing Yuan,4 Xin Liu,1,2 and Dong Liang1,2*

Purpose: This work is to develop a novel image reconstruc-

tion method from highly undersampled multichannel acquisi-

tion to reduce the scan time of exponential parameterization

of T2 relaxation.
Theory and Methods: On top of the low-rank and joint-sparsity

constraints, we propose to exploit the linear predictability of the

T2 exponential decay to further improve the reconstruction of the

T2-weighted images from undersampled acquisitions. Specifi-

cally, the exact rank prior (i.e., number of non-zero singular values)

is adopted to enforce the spatiotemporal low rankness, while the

mixed L2–L1 norm of the wavelet coefficients is used to promote

joint sparsity, and the Hankel low-rank approximation is used to

impose linear predictability, which integrates the exponential

behavior of the temporal signal into the reconstruction process.

An efficient algorithm is adopted to solve the reconstruction prob-

lem, where corresponding nonlinear filtering operations are per-

formed to enforce corresponding priors in an iterative manner.

Results: Both simulated and in vivo datasets with multichannel

acquisition were used to demonstrate the feasibility of the pro-

posed method. Experimental results have shown that the newly

introduced linear predictability prior improves the reconstruc-

tion quality of the T2-weighted images and benefits the subse-

quent T2 mapping by achieving high-speed, high-quality T2

mapping compared with the existing fast T2 mapping methods.
Conclusion: This work proposes a novel fast T2 mapping

method integrating the linear predictable property of the expo-

nential decay into the reconstruction process. The proposed

technique can effectively improve the reconstruction quality of

the state-of-the-art fast imaging method exploiting image spar-

sity and spatiotemporal low rankness. Magn Reson Med
000:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Quantitative evaluation of T2 relaxations have become
increasingly important in a variety of research studies
and clinic applications, such as iron overload (1), carti-
lage disease (2), multiple sclerosis (3), and carotid pla-
que characterization (4). However, commercial T2
relaxometry techniques acquire multiple images at vari-
ous echo times (TEs) resulting a relative long scan time,
which is a major bottleneck in clinic utility.

To solve this problem, reduced encoding techniques
grounded on the theory of parallel imaging (5) and
sparse sampling (6,7) have been extensively developed
and shown promising potential in accelerating MR
acquisition. Among them, parallel imaging techniques
(8–10) are the earlier ones being successfully adopted in
various parameter mapping experiments for efficient
acquisition. Besides, considering the intrinsic low degree
of freedom of the target image series, additional con-
straints have recently been used in an extensive body of
work for improved reconstruction, such as the sparsity
constraint of the T2-weighted images (11,12) imposing
spatial smoothness, the temporal sparsity penalty of the
T2-decay (13) penalizing the temporal nonsmoothness
and the low-rank property of the image series (14–17)
promoting spatiotemporal redundancy. These constraints
are relatively general and also suitable for many imaging
applications, such as dynamic imaging. With parametric
model involved, Doneva et al (18,19) developed a model-
based dictionary to enable efficient sparse representation
in the parametric-encoding dimension. S�en�egas et al (20)
derived a GRAPPA-like kernel based on a mono expo-
nential model to exploit the data correlation in k-t space.
We conjecture that further taking advantage of the
knowledge of the parametric model would improve the
reconstruction of the state-of-the-art methods.

In this work, we proposed a novel method that explic-
itly exploits the linear predictability of the T2 decay,
which can be modeled as a linear combination of L
exponentials, as prior information on top of the standard
sparsity and spatiotemporal low-rank constrained recon-
struction. Specifically, a linear combination of L expo-
nentials is linearly predictable to the L-th order, which
can further translate in the low-rankness of a Hankel
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matrix. Linear predictability has been investigated in the
Cadzow enhancement algorithm (21) and demonstrated
useful in MRSI data denoising (22). An iterative nonlin-
ear filtering framework was adopted to impose these
three priors to the target images by performing corre-
sponding filtering iteratively. Both simulated and in vivo
experimental data from multichannel acquisition were
used to substantiate the feasibility of the proposed tech-
nique in improving the quality of fast T2 mapping with
respect to the state-of-the-art methods.

THEORY

Review: Low-Rank and Joint Sparsity Priors

The spatiotemporal function of the T2-weithed images

Iðr; tÞ is known to be partially separable as (7):

I ¼
XJ

j¼1

fjðrÞwjðtÞ [1]

where wjðtÞ denotes the temporal subspaces and fjðrÞ is

the corresponding spatial coefficients. The above equa-

tion assumes that the profiles of the T2 decay at all spa-

tial locations are highly redundant for small J , because

they are linear combinations of a few J temporal basis

functions with spatial varying weights. Accordingly, the

Casorati matrix:

I ¼

Iðr1; t1Þ Iðr1; t2Þ � � � Iðr1; tM Þ

Iðr2; t1Þ Iðr2; t2Þ � � � Iðr2; tM Þ

� � � �

IðrN ; t1Þ IðrN ; t2Þ � � � IðrN ; tM Þ

2
666664

3
777775 [2]

will have a rank at most of J (J � M ). On the other hand,

the redundancy assumption also suggests that the image

function at each TE (i.e., columns of I) will have similar

anatomical structure, thus sharing analogous coefficient

sparsity in terms of support and intensity distribution.

This prior information, which has been exploited in dis-

tributed compressed sensing (23), is known as joint spar-

sity. Consequently, the image reconstruction could use

both low-rank and joint-sparsity priors which is formu-

lated as:

Î ¼ argmin
I

jjCI jj2;1 þ ljjI jj� s:t: jjFuI � djj22 � s2 [3]

where I2CN�M is the matrix form of the desired T2-

weighted image function with N the total number of

image pixels and M the echo train length (ETL), Fu

2 CU�N is the undersampled Fourier encoding matrix

with U � N , d 2 CU�M is the undersampled k-space

data, and C 2 CN�N is the sparsifying operation matrix

(Daubechies 4 wavelet in this work). To promote joint

sparsity and low rankness, both the mixed L2–L1 norm

of the sparse coefficients jjajj2;1 ¼
P

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
m jjanmjj2

q
(anm ¼ cnIðtmÞ and cn denotes the n-th sparsifying basis

function) and the nuclear norm of I (i.e., summation of

singular values, which is the closest convex relaxation of

the rank penalty) are usually minimized. Data consis-

tency is exploited as an additional constraint, where s2

is proportional to the noise level controlling the toler-

ance in measurement consistency.

Linear Predictability of Linear Exponential Combinations

Consider a discrete time domain signal (i.e.,

m ¼ 1; 2; 3; . . .) as a linear combination of L exponential

functions with the general form of

s0½m� ¼
XL

l¼1

ale
�blmDt [4]

where Dt is the sampling interval, al denotes the combi-

nation weight and bl is the decay rate. An important

property of Eq. [4] is that the discrete signal s0½m� is line-

arly predictable to the L-th order (21):

s0½m� ¼
XL

l¼1

gls0 m� l½ �: [5]

Namely, the current intensity of s0½m� can be predicted

as linear summation of its previous L values. gl repre-

sents the summation weight. Thereby, the Hankel matrix

formed by s0½m�

H s0½ � ¼

s0ð1Þ s0ð2Þ � � � s0ðKÞ

s0ð2Þ s0ð3Þ � � � s0ðK þ 1Þ

� � � �

s0ðM � K þ 1Þ s0ðM � K þ 2Þ � � � s0ðMÞ

2
666664

3
777775

[6]

will have a low rank of L as long as s0½m� has the form of

Eq. [4]. The proof of linear predictability and Hankel

low-rankness can be found in the Appendix.

Proposed Formulation

The temporal signal Iðr; tmÞ of a T2-weighted image

series generated by a Carr-Purcell-Meiboom-Gill (CPMG)

spin echo sequence can be written in a general form as:

Iðr; tmÞ ¼
XL

l¼1

rlðrÞexp iuðrÞ½ �exp �mDt=T2ðrÞ½ � [7]

where rlðrÞ and T2 represent the proton density distribu-

tion function and the T2 relaxation values of the l-th tis-

sue compartment, respectively. u denotes the image

phase supposed to be shared at all TEs. r indicates spa-

tial coordinate. tm ¼ mDt stands for the m-th TE with Dt

the echo spacing. L is the number of linearly combined

exponential terms (i.e., tissue compartments), which is

application (or tissue) dependent. For instance, in the

three-pool model of white matter, the white matter tissue

is comprised of a myelin water pool, a myelinated axon

water pool and a mixed water pool, yielding L¼ 3.

Actually Eq. [7] can be written in the form of Eq. [4]

such that Iðr; tmÞ is L-th order linear predictable:

2 Peng et al.



Iðr; tmÞ ¼
XL

l¼1

glIðr; tm�lÞ: [8]

Thus, a Hankel matrix can be formed for 8r 2 V (V
denotes the region of interest)

H IðrÞ½ � ¼

Iðr; t1Þ Iðr; t2Þ � � � Iðr; tK Þ

Iðr; t2Þ Iðr; t3Þ � � � Iðr; tKþ1Þ

� � � �

Iðr; tM�Kþ1Þ Iðr; tM�Kþ2Þ � � � Iðr; tM Þ

2
666664

3
777775 [9]

which has a low rank of L. Generally, the Hankel matrix
is designed as square as possible such that we chose K
as the nearest integer greater than or equal to half of the
ETL.

In practice, the T2 decay in some most commonly
used T2 mapping sequences (e.g., turbo spin echo) is not
exactly exponential due to the interference of stimulated
and indirect echoes (24). Thus, the temporal evolution
may deviate from the model in Eq. [7]. This issue is sim-
ilar to the one in MR spectroscopy where the spectrum
deviates from Lorentzian lineshape due to magnetic field
inhomogeneity, limited spatial resolution, etc., but still
can be fitted using a linear combination of more Lorent-
zian basis functions (25,26). Because the temporal evolu-
tion and the spectrum are related by Fourier transform,
the temporal evolution could also be represented as a
linear combination of more exponential decays. There-
fore, Eq. [7] is still valid mathematically yet with the
compromise that L is larger than the number of physi-
cally true water pools but usually smaller than half of
the ETL in practice. Thus, the Hankel matrix could still
be low-rank. A real in vivo brain dataset obtained with
turbo spin echo will be used to demonstrate the low-
rankness of the Hankel matrix in the experiment section.

With this knowledge, we can use such Hankel low-
rankness as an essential prior of Iðr; tÞ for sparse recon-
struction (denoted as LP hereafter):

Î ¼ argmin
I

jjFuI � djj22; s:t: rank
�

H IðrÞ½ �
�
¼ L;8r: [10]

Equation [10] can be reformulated by means of mini-
mizing the relaxed convex counterpart, namely the
nuclear norm of the Hankel matrix over all spatial
locations:

Î ¼ argmin
I

X
r2V

jjH IðrÞ½ �jj� s:t: jjFuI � djj22 � s2: [11]

It is worth noting that the Casorati low-rankness con-
siders the signal jointly by assuming that the temporal
variations at various spatial locations are considerably
similar (i.e., resulting in redundant information) while
the Hankel low-rank approximation treats the signal vari-
ation at each spatial location independently, each fol-
lowing an exponential decay, which agrees with the T2
imaging model. Therefore, it is natural to integrate the
Casorati low rankness with the Hankel low-rank approxi-
mation, while enforcing the joint sparsity prior. We pro-
pose to reconstruct the T2-weighted image functions

with Model-driven low rank and sparsity priors

(MORASA):

Î ¼ argmin
I

jjCI jj2;1 þ ljjI jj� þ g
X
r2V

jjH IðrÞ½ �jj�

s:t:
X

c

jjFuSc 	 I � dcjj22 � cs2
[12]

where Sc 2 CN�1 indicates the sensitivity map of the c-th

coil, dc corresponds to the c-th coil data. Operator 	 con-

ducts point-wise multiplication of Sc with each column of

I. The term model-driven low rank refers in particular to the

Hankel low-rank approximation because it is driven by the

linear predictability of the exponential parametric model.
To solve Eq. [12], we propose to use an efficient itera-

tive nonlinear filtering (27) algorithm as described in

Algorithm 1 assuming exact data consistency (i.e.,

FuSc 	 I ¼ dc). Because the cost function in Eq. [12] is

convex (note that the operation of Hankel matrix forma-

tion H ½�� is linear), the iterative algorithm could achieve

convergence to the global minimum under the simple

assumptions that all iterations of the algorithm lie within

a bounded domain (28). Specifically, in each iteration,

three nonlinear filtering operations are performed to

enforce three corresponding priors, which is mathemati-

cally equivalent to minimizing a cost function promoting

both the priors and the fidelity to the previous estimate.

We use joint soft thresholding in the wavelet domain to

enforce the joint sparsity. To promote low-rankness

along the parametric direction in a simple way, we per-

form hard thresholding to empirically preserve the first

2
3 singular values or principal components (15) of the

image Casorati matrix. Additionally, for the Hankel low-

rank prior, we enforce the general low-rankness and

Hankel structure alternately. First, we perform soft-

thresholding on the singular values to promote low rank-

ness, because the optimal rank of the Hankel matrix may

vary from location to location and hard thresholding

could be sensitive to spatial signal contamination due to

undersampling. Second, the Hankel structure can be

restored by taking the mean of all the antidiagonal ele-

ments and replacing each element by its mean value. We

denote this operation as:

Ĥ � HankelizeðĤ 0Þ: [13]

Afterward, the corresponding elements of Ĥ can be

extracted to update the signal estimate Î ðrÞ for each spa-

tial location. When enforcing data consistency, coil sensi-

tivities from multichannel acquisitions are incorporated

into the reconstruction (29). In addition, we enforce data

consistency right after each nonlinear filtering to prevent

any bias during a nonlinear filtering from propagating to

the next one. At convergence, this iterative algorithm

finds an approximated minimum of the constrained opti-

mization problem in Eq. [12]. The entire diagram of the

proposed MORASA method is illustrated in Figure 1.

METHODS

Both simulated and in vivo experimental datasets were

used to validate the proposed method. In the in vivo

Accelerated T2 Mapping with MORASA 3



Algorithm 1. Iterative Nonlinear Filtering Approach for MORASA

MORASA

Input: Undersampled multichannel data dc; Estimate the sensitivity maps Sc.

Initialization: Initial image estimate I0 ¼
X

c

ðFH
u dcÞ 	 S�c; iteration index k ¼ 0.

Iteration: do {

1. sparsity prior
a) ak ¼ CIk , akþ1 ¼ JointSoftThreshðak ; tÞ, Ikþ1 ¼ C�1akþ1, where

JointSoftThreshðanm; tÞ ¼ anm=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

jjanmjj22

vuut �maxð0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXM
m¼1

jjanmjj22

vuut � tÞ; n and m are the indexes of sparsifying

basis function and timeframe, respectively. Function maxð�Þ returns the larger value of the two inputs.

2. data consistency: Ikþ1 ¼
X

c

FH
v FvðIkþ1 	 ScÞ þ FH

u dc

� �
	 S�c, Fv denotes the Fourier encoding operation at

nonacquired k-space locations.
3. low rank prior

a) ½U S V� ¼ SVDðIkþ1Þ, Ikþ1 ¼
XJ

j¼1
UjSj; jV

H
j

4. Data consistency as step 2.
5. Linear predictability prior, for 8r 2 V

a) ½u s v� ¼ SVD
�

H½Ikþ1ðrÞ�
�

, s ¼ maxðs� y; 0Þ

b) ĤðrÞ ¼ HankelizeðusvHÞ, extract Ikþ1ðrÞ from ĤðrÞ
6. Data consistency as step 2, k ¼ k þ 1.
} till convergence or maximum number of iterations.

FIG. 1. The flow diagram of the proposed MORASA method for exponential parameterization of T2 relaxation.



experiments, informed consent was obtained from the

imaging subject in compliance with the Institutional

Review Board policy. The subject was immobilized by

foam pads and requested to hold as still as possible to

prevent motion artifacts. All the methods in comparisons

were tuned to provide their best performance and all

algorithms were implemented in Matlab (The Math-

works, Natick, MA). To estimate the T2 values, standard

nonlinear least square fitting method was performed in

the selected region-of-interest on a pixel-by-pixel basis.

T2 relaxation values outside the reasonable range were

excluded from the T2 map.

Simulation

For the simulation, we used a realistic digital brain

phantom (30) which is synthesized as a linear combina-

tion of various tissue compartments. A series of spin

echo T2-weighted images was generated (image matrix

220� 180, ETL 16, first TE 10 ms and echo spacing

10ms) using the default brain tissue parameters. Specifi-

cally, for tissues such as cerebrospinal fluid (CSF)

(similar for gray matter, fat, muscle skin, skin, skull and

glial), we used the monoexponential model (i.e.,

SCSF ¼ rCSF 1� expð�TR=T1CSFÞ½ �exp �TE=T2CSF½ �), where

rCSF, T1CSF, T2CSF are default proton density, T1, and

T2 values of CSF, respectively, provided in Pruessmann

et al (29). For white matter, we used the biexponential

model (i.e., SWM ¼ rWM 1� expð�TR=T1WMÞ½ � expð�TE=½
T2WM1Þ þ expð�TE=T2WM2Þ�) with T2WM1 ¼ 40ms and

T2WM2 ¼ 130ms. Finally, the brain phantom was

obtained as the summation of all the tissue compart-

ments. The T2-weighted image at the third TE (30 ms)

along with the T2 relaxation maps calculated by means

of the monoexponential least-square fitting are displayed
in Figure 2a. The singular values of the Casorati image
matrix are plotted in Figure 2b, confirming the low
rankness.

Figure 2c shows (from left to right) the map of the
first, second, and third singular values of the Hankel
matrixes at all spatial locations. As can be seen, the tem-
poral variation at most spatial locations contains at least
one dominant T2 component (i.e., corresponds to the
first singular value) and at some locations (i.e., mostly
while matter in this case) consists of another insignifi-
cant T2 component (i.e., corresponds to the second sin-
gular value). The appearance of the second T2
component can also be resulted from the superposition
of different tissue compartments. Figure 2c demonstrates
that the temporal evolution indeed possesses a low-rank
property in its Hankel variant. For the multi-channel
acquisition case, each T2-weighted image was modulated
by the sensitivity maps of an eight-channel head coil
(complex valued) that were simulated based on the Biot-
Savart’s law (31). Spatial Fourier transform was applied
to the simulated brain phantom to generate the full k-
space data.

Retrospective undersampling was then performed to
obtain the undersampled data. The undersampling pat-
tern adopted in this work is shown in Figure 2d, which
fully samples the central k-space region at the first TE
and randomly samples the entire k-space with DC
included at the other TEs (17). The same number of lines
were acquired for each TE. This sampling pattern
acquires a larger central region in the first echo to
increase signal-to-noise ratio (SNR) of the reconstructed
T2-weighted image series (17). And the uniform random
undersampling at the other TEs caters to the incoherency

FIG. 2. The simulated brain phantom dataset. a: The ground truth T2 weighted image at the third TE (30 ms) and the T2 map. b: Singu-

lar values of the Casorati image matrix. c: The first, second and third singular values (from left to right) of the Hankel variant of the tem-
poral decay at all spatial locations. d: The undersampling pattern adopted in this work for T2 mapping. The vertical direction indicates
phase encodings and the horizontal direction denotes temporal dimension with 16 short intervals representing frequency encodings at

various TEs.
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required in sparse reconstruction. Besides, in the context
of parallel imaging, the broad fully sampled central
region at the first TE can provide a better estimate of the
coil sensitivity. With this dataset, we aim to comprehen-
sively demonstrate the advantage of using the linear pre-
dictability prior in T2 mapping and the superiority of
the proposed technique to the state-of-the-art methods at
various reduction factors and noise levels.

Effectiveness of Linear Predictability Prior

We demonstrated the advantage of linear predictability
prior over other constraints using a simulated single-
channel brain phantom dataset at a reduction factor of 3.
To enforce linear predictability, we tested three con-
strained reconstructions denoted as LP1, LP1&2, and
LP*, respectively. For LP1, we solved the optimization
problem in Eq. [10] with L¼1 for all spatial locations,
namely only Hankel matrix with explicit rank 1 con-
straint. For LP1&2, we still solved Eq. [10] but with L¼2
for white matter (i.e., as shown in the second map of Fig-
ure 2c, the T2 decay in white matter is exactly 2nd-order
linear predictable) and L ¼ 1 for other regions. For LP*,
we solved the optimization problem in Eq. [11], mini-
mizing the nuclear norm of the Hankel matrix with soft
thresholding of the singular values for all spatial loca-
tions (i.e., iteratively conducted step 5 to step 6 in Algo-
rithm 1).

Reconstructions with standard low-rank (LR) con-
straint and sparsity and low-rank (SLR) constraint were
also implemented for comparison. Specifically, for LR
constrained reconstruction, we used hard thresholding of
the singular values of the Casorati matrix (i.e., iteratively
conducted step 3 and step 4 in Algorithm 1). For SLR
constrained reconstruction, we further integrated joint
soft thresholding of the wavelet coefficients of the T2-
weighted images (i.e., iteratively conducted step 1 to
step 4 in Algorithm 1).

Finally, we integrated LP* with SLR (denoted as SLR-
LP) to substantiate the ability of LP in improving the
state-of-the-art method. To clarify, SLR-LP is the single
coil version of the proposed method. LP*, LR, and SLR
are also reconstructions for single coil data here. Thus,
to implement these methods, the data consistency step
in Algorithm 1 should be adjusted to the single coil ver-
sion accordingly. To achieve the best performance, over-
estimated rank constraint (i.e., J ¼ 2) was adopted for the
conventional LR and SLR method. While for the pro-
posed SLR-LP method, we chose J ¼ 3. The threshold of
the wavelet coefficients t and the threshold of the singu-
lar values of the Hankel matrixes n were set to be 0.01
and 0.1, respectively.

Method Comparison with Multichannel Acquisitions

We compared the reconstructed images and T2 maps of
different methods using the simulated multichannel
brain phantom data at various reduction factors (R¼3, 4,
6, 8) for both noiseless and noisy circumstances. Com-
plex Gaussian noise was added to the brain phantom to
simulate a low SNR situation (SNR¼ 20) where SNR is
defined as the ratio of the mean signal intensity of the
T2-wighted image series to the noise standard deviation.

A low-rank based method k-t PCA/SENSE (14) and a
state-of-the-art sparsity and low-rank based method
(denoted as SLR/SENSE hereafter) were both used for

comparison. For k-t PCA/SENSE, regular downsampling
in k-t space was adopted as described in the original
paper (14). For SLR/SENSE and MORASA, the under-
sampling shown in Figure 2d was adopted. All methods
used the same sensitivity maps. To accurately estimate

the principal components in the k-t PCA/SENSE method,
the central region of k-space (i.e., the same amount of
lines as is used to estimate the sensitivity map) was
assumed available at all the TEs so as to ensure its best
performance. Additionally, the SLR/SENSE method was

implemented in the same framework as depicted in
Algorithm 1 except that the linear predictability con-
straint was not performed. The optimal parameters are
consistent for all the reduction factors. Specifically, we

set J ¼ 3, y ¼ 0:1, t ¼ 0:01 and t ¼ 0:02 for the noiseless
and low SNR case, respectively.

In Vivo Experiment

Human Brain T2 Mapping

To validate the proposed method in vivo, a fully
sampled multicontrast brain dataset was acquired on a 3
Tesla (T) scanner (MAGNETOM Trio, SIEMENS, Ger-
many) using a turbo spin echo sequence with a 12-
channel head coil array [matrix size¼ 192� 192, field of

view (FOV)¼ 192 mm� 192 mm, slice thick-
ness¼ 3.0 mm, ETL¼15, DTE¼ 8.8 ms, repetition time
(TR)¼ 4000 ms, bandwidth¼ 362 Hz/pixel]. The total
scan time is 12 min and 54 s. The undersampled data
were retrospectively obtained using the sampling pattern

shown in Figure 2d at reduction factors of 4, 6, and 8.
The SLR/SENSE method was conducted for comparison.
Other experiments settings were similar to those in the
brain phantom case. We set J ¼ 3, t ¼ 0:005, and y

¼ 0:02 for the proposed method with all the reduction

factors. As mentioned before, we use this in vivo dataset
to validate the Hankel low-rankness in the case where
the T2 decay may be affected by the stimulated and indi-
rect echoes. Typically, we adaptively combined the fully
sampled multichannel data into a single-channel com-

plex dataset using the adaptive combine method (32).
Then we computed the singular values of the Hankel
matrixes at all spatial locations and showed the first
three singular value maps in Figure 7a. As can be seen,
the first singular values (i.e., corresponding to a single

exponential component) dominate at most spatial loca-
tions indicating that the Hankel matrix formed from the
T2 decay of real T2-weighted image series is approxi-
mately low-rank at most spatial locations.

Human Knee T2 Mapping

To validate the proposed technique, a human knee
experiment was also conducted on a 3T scanner (MAG-
NETOM Trio, Siemens) using a multicontrast turbo spin
echo sequence with an eight-channel flexible coil array

(matrix size¼ 128� 128, FOV¼ 128mm�128 mm, slice
thickness¼3.0 mm, ETL¼ 10, TE¼ 17 ms
93.5 ms with
DTE 8.5 ms, TR¼1500 ms, bandwidth¼355 Hz/pixel).
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The total scan time is 6 min and 29 s with over-samplings

along the phase encoding direction. Undersampled k-space

data was retrospectively obtained using the sampling pat-

tern shown in Figure 2d at reduction factors of 4, 6, and 8.

The coil sensitivity maps were estimated from the acquired

k-space data at the first TE (17 ms) and assumed to be the
same for all the TEs which were then used for both SLR/

SENSE and the proposed MORASA methods. We set J ¼ 2,

t ¼ 0:02, and y ¼ 0:06 for the proposed method with all the

reduction factors. Three cartilage regions of interest were

selected (Figure 8. Bottom left) to quantitatively access the

performance of the reconstruction methods by comparing
the mean value and the standard deviation.

Evaluation

Both the quality of the reconstructed image series and

the subsequent estimated T2 map can be quantified with

the normalized root-mean-square error (nRMSE):

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjŝ � s0jj22
jjs0jj22

s
� 100% [11]

where ŝ and s0 denote the reconstructions from under-

sampled and fully sampled data, respectively. Moreover,

the T2 maps were masked before computing the nRMSE
to restrict our evaluation to the tissue of interest and

exclude unmeaningful values.

RESULTS

Simulation

Effectiveness of Linear Predictability Constraint

Reconstructions of the single-channel brain phantom using

different constraints are shown in Figure 3. We first com-

pared different implementations of the LP prior, named

LP1, LP1&2, and LP*. As can be seen, although the LP1&2

constraint exploits the biexponential model in the white
matter, the LP1-constrained method still performs much

better than the LP1&2-constrained method in terms of both

reconstruction error and T2 relaxation error. This is prob-
ably because the smaller singular value of the Hankel
matrix (reflecting a short T2 component) is prone to severe
contamination by the larger singular value of the Hankel
matrix (mainly reflecting a long T2 component) at an adja-
cent voxel due to undersampling. Even if a high-quality
initial value (e.g., the reconstruction of the SLR method) is
used (results not shown here), LP1 is still superior to
LP1&2. Moreover, compared with LP*, both LP1 and
LP1&2 reconstructions present obvious aliasing artifacts in
the T2-weighted image and T2 map, which suggests that
directly restricting the order (i.e., hard-thresholding) of lin-
ear predictability of the T2 decay is quite sensitive to spa-
tial signal contamination in sparse reconstruction.
Therefore, we propose to minimize the nuclear norm of the
Hankel matrix (i.e., using soft-thresholding), which is
shown to effectively alleviate the aliasing artifacts in both
the T2-weighted images and the T2 map.

Compared with the LP* constraint, the LR constraint
leads to severer aliasing artifacts in the T2-weighted
image and the T2 relaxation map. With the additional
joint sparsity constraint (i.e., SLR reconstruction), the
aliasing artifacts are alleviated but still noticeable.
Finally, with additional LP constraint, the aliasing arti-
facts are visually suppressed and the reconstruction
errors are significantly reduced, suggesting that the lin-
ear predictability prior is actually complementary to the
sparse and low-rank priors and is capable of improving
the state-of-the-art methods in T2 mapping.

Method Comparison with Multichannel Acquisitions

The estimated T2 maps using k-t PCA/SENSE, SLR/
SENSE and the proposed MORASA methods at various
reduction factors are shown in Figure 4 (noiseless case)
and Figure 5 (low SNR case). We can see that k-t PCA/
SENSE produces noticeable aliasing artifacts in the T2
map (red arrow) even at a low reduction factor of R¼ 3.
As the reduction factor increases, the estimation error
increases. The SLR/SENSE method is able to suppress
the aliasing artifacts and preserve more image details at

FIG. 3. The reconstruction results of various constrained methods based on the single channel version of the brain phantom data at a

reduction factor of 3. The percentage numbers denotes the nRMSEs of corresponding T2-weighted image series and T2 maps.
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low reduction factors, but the T2 estimation error starts

to increase at R¼ 6 and R¼8 (shown as inhomogeneous

region indicated by red arrows). The proposed MORASA

method outperforms the other two methods in terms of

suppressed artifacts and improved T2 accuracy at all

reduction factors. In particular, the aliasing artifact in

the T2 map is considerably suppressed even at R¼ 8. In

the noisy circumstance, the proposed MORASA method

also exhibits superior performance to the other two

methods at all reduction factors. Figure 6 plots the T2-

weighted image reconstruction error of the SLR/SENSE

and MORASA methods as a function of iteration num-

bers at R¼6 in the noiseless case where the convergence

of the proposed method can be observed. Moreover, the

proposed MORASA method also converges faster (i.e., at

the 15th iteration approximately) than the SLR/SENSE

method (i.e., at the 80th iteration approximately). How-

ever, the computational cost per iteration is increased

due to the LP constraint. The computer running time of

the k-t PCA/SENSE, SLR/SENSE and the proposed

MORASA method are 120 (50 CG iterations), 323 (80

iterations), and 302 (15 iterations) seconds, respectively.

In Vivo Experiment

Human Brain T2 Mapping

The estimated T2 maps of the human brain data (two sli-

ces) using the state-of-the-art SLR/SENSE and the pro-

posed MORASA method are shown in Figures 7b,c. In
general, the proposed MORASA method outperforms the

SLR/SENSE method in terms of T2 accuracy and sup-
pressed aliasing artifacts at all reduction factors. Specifi-
cally, the SLR/SENSE method provides good results at

R¼ 4 and R¼ 6 visually. Detail loss and aliasing artifacts
become severe and unacceptable as the reduction factor

increases to 8. In contrast, the proposed MORASA
method maintains more details and exhibits less aliasing
artifacts in the T2 map than the SLR/SENSE method,

thus generating consistently smaller T2 nRMSE at all
reduction factors. Even at R¼ 8, the proposed method

produces rather accurate T2 estimations. The means and
standard deviations of the T2 values in selected regions

of interest (ROIs) (indicated by the red rectangular box
in Figures 7b,c) are presented in Table 1.

Human Knee T2 Mapping

The reconstructed T2 maps of the human knee are

shown in Figure 8. nRMSE in regions with T2 value
ranging from 30 to 45 ms have also been calculated.

Besides, we selected three cartilage ROIs and compared
the mean and standard deviation (SD) of the T2 values

in Table 2. We can see that the proposed MORASA
method consistently surpasses the state-of-the-art SLR/
SENSE method at all reduction factors in terms of

smaller nRMSEs and more accurate mean and standard
deviation within all ROIs. Similar conclusion can be

FIG. 4. Estimated T2 maps from the reconstructions of k-t PCA/SENSE, SLR/SENSE and MORASA methods using the multichannel

brain phantom dataset (noiseless) at reduction factors of R¼3, 4, 6, and 8. The percentage numbers are the nRMSEs of the corre-
sponding T2 maps.
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made as in the previous simulation and human brain T2

mapping case that the proposed MORASA method can

provide more accurate T2 estimation than the state-of-

the-art SLR/SENSE method.

DISCUSSION

Relationship with Existing Method

This work proposed a novel image reconstruction

method for parameterization of T2 relaxation. Distin-

guished from previous sparse reconstruction methods
which only take advantage of general priors of the image
series such as joint sparsity and spatiotemporal low-
rankness, we proposed to incorporate priors directly
from the parametric model into the reconstruction,
namely the linear predictability of the exponential decay,
to enable improved image reconstruction and more accu-
rate parameter fitting. The LP constraint offers prior
information complementary to the existing sparse and
low-rank constraint, exhibiting superior performance to

FIG. 5. Estimated T2 maps from the reconstructions of k-t PCA/SENSE, SLR/SENSE and MORASA methods using the multichannel

brain phantom dataset (low SNR) at reduction factors of R¼3, 4, 6, and 8. The percentage numbers are the nRMSEs of the corre-
sponding T2 maps.

FIG. 6. The nRMSE of the T2-weighted

image series of the SLR/SENSE and
MORASA methods using the multichannel
brain phantom dataset as a function of

iteration numbers at a reduction factor of
6.
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the state-of-the-art methods. However, the proposed
method needs to tune an additional parameter to enforce
the Hankel low-rankness, which may vary from different
applications.

The newly introduced LP constraint also causes an
increase of reconstruction time compared with conven-
tional method. Enforcing the LP constraint for a single
pixel is fast (i.e., operating on small sized matrix), while

FIG. 7. a: The first three singular value maps (from left to right) of the Hankel matrix formed from the T2 decay of the human brain data-

set. b,c: The estimated T2 maps of the human brain (slice 8 and slice 3) from the reconstruction of SLR/SENSE and MORASA methods
at reduction factors R¼4, 6, 8. The percentage numbers are the nRMSEs of the corresponding T2 maps. The reference T2 map is esti-
mated from the fully sampled k-space data.
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enforcing it over all spatial locations could be time-

consuming. Theoretically, parallel computing can be

adopted to accelerate this process. Besides, due to the

effectiveness of the LP constraint, the proposed method

would converge with much less iterations (i.e., five times

fewer iterations for the brain phantom) than the conven-

tional method. Thus, by means of using parallel comput-

ing and early termination, the increase of reconstruction

time of the proposed method should be tolerable

practically.
As another fast parameter mapping approach using the

parametric model, model-based reconstruction (33–39)

methods directly estimate the parameter maps from

undersampled k-space data and, therefore, have much

reduced degree of freedom. The major difference between

model-based reconstruction and the proposed method is

that the former directly regularizes the sparsity of the

relaxation map (34), while the latter takes advantage of

the exponential parametric model in a relaxed sense to

balance the trade-off between the data consistence and

the exponential structure. Thus, the proposed method is

suitable for cases where the T2-weighted image series is

also of significant diagnosis interest. Besides, the model-

based methods will be computational expensive when

being extended to a multiexponential model.

Parameter Selection

To solve Eq. [12], we proposed an iterative nonlinear fil-

tering approach as describe in Algorithm 1. Specifically,

three parameters in this approach need to be carefully
selected: the rank of the Casorati matrix J, the threshold
of the wavelet coefficients t and the threshold of the sin-
gular values of the Hankel matrixes n. As shown in pre-
vious work (14,15,17), explicit rank constraint is
effective enough to be adopted to enforce low-rankness
along the parametric direction. Besides, rank selection is
relatively simple compared with tuning the soft thresh-
old in various cases. In general, the selection of J could
differ from applications. We found empirically that set-
ting J ¼ 3 enables the best reconstruction quality for the
in vivo brain dataset, while the optimal choice for the in
vivo knee dataset is J ¼ 2. Besides, the optimal J may
also vary with the reduction factor for different methods.
For the in vivo brain dataset, J ¼ 2 is necessary for the
SLR/SENSE method to provide the best performance at
high reduction factors (6 and 8), while J ¼ 3 is optimal
for the proposed MORASA method at all reduction fac-
tors, manifesting the capability of the LP constraint.

In addition to J, we need to select t, which controls
the strength of sparsity enforced in the reconstruction. t

can be decided by means of visual inspection from the
results of using various threshold values. We observed
that both SLR/SENSE and MORASA methods are quite
stable with a relatively large range of threshold values.
In practice, one useful way to select t is to set it on the
same order of magnitude as the noise power which can
be estimated from the background of the image. Besides,
we found empirically that the SLR/SENSE and MORASA
methods in most cases share a similar value of t.

Table 1
Means and SDs of the T2 Values in Selected ROIs of the Human Brain Dataset

R¼4 R¼6 R¼8 R¼4 R¼6 R¼8

Gold standard Mean (std) 3rd Slice 81.46 (4.53) 8th Slice 78.77 (2.62)

SLR/SENSE 81.87 (4.55) 84.02 (4.72) 83.38 (4.08) 80.21 (3.16) 81.28 (3.01) 82.87 (4.10)

MORASA 81.24 (4.42) 81.79 (4.16) 81.66 (3.97) 78.60 (3.29) 78.62 (3.15) 79.17 (3.14)

FIG. 8. The estimated T2 maps of the human knee using SLR/SENSE and MORASA reconstruction method at reduction factors of 4, 6,
8. Three ROIs were selected to quantitatively access the performance of the reconstruction methods. The percentage numbers are the

nRMSEs in the regions with T2 value ranging from 30–45 ms.
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Last but not the least, we have to chose a proper n to

enforce the Hankel low-rankness. Theoretically, a proper

n is determined by the underlying T2 relaxation values,

which would vary from applications. Empirically, we set

n on the same order of magnitude as the signal power in

the “noise-like” region (e.g., the region indicated by the

red box in Figure 7a) of the second singular map of the

Hankel matrixes.

Requirement of the Hankel Low-Rankness

The low-rank property of the Hankel matrix declared in

Eq. [6] does not require a shared proton distribution by

all exponential decays, but does require equal TE spac-

ing. With unequal TE spacing, the rank of the Hankel

matrix will increase accordingly. Fortunately, we can

always design protocols with equal TE spacing in most

cases.

Iteratively Conducting Image Reconstruction and
Parameter Mapping

The idea of the proposed technique is similar to con-

ducting image reconstruction and parameter mapping

iteratively (40,41). Actually, in the original Cadzow

enhancement algorithm (21), Hankel low-rank approxi-

mation is achieved by performing Eq. [8] and Eq. [9]

alternately for infinite times (or till convergence). If we

strictly enforce Hankel low rankness, the resulting signal

extracted from the Hankel matrix will strictly obey expo-

nential decay, which is equivalent to performing T2

mapping. However, the proposed method only performs

Eq. [8] and Eq. [9] once per iteration (denote as inexact

Hankel low-rank approximation), which still generates

good results. This is probably because at the very begin-

ning of the algorithm, the reconstruction may contain a

lot of aliasing artifacts such that a strict Hankel low-rank

approximation may cause severe fitting error besides the

increased computing burden, while the inexact Hankel

low-rank approximation is able to gradually impose lin-

ear predictability with iterations.

Limitation and Future Work

One limitation of the proposed method is that a uniform

threshold is used to enforce the Hankel low-rankness

over all spatial locations. However, it would be desirable

to adopt spatially adaptive thresholds because the T2

relaxation values may vary significantly with spatial

locations. Future work will also investigate applications

in multiexponential parameterization and other exponen-

tial decay models such as T1rho mapping (42).

CONCLUSIONS

This work proposed to incorporate the exponential priors

into the reconstruction of the T2-weighted image series

from undersampled k-space data. The reconstruction

problem was solved using an alternating nonlinear filter-

ing method. Both simulation and in vivo results demon-

strated the superiority of the proposed method to the

state-of-the-art image reconstruction methods at different

reduction factors and noise levels.Ta
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APPENDIX

Proof of Linear Predictability

We say a discrete signals0½m� is linear predictable to the

L-th order if and only if it satisfies:

s0½m� ¼
XL

l¼1

gls0 m� l½ � [A1]

Let us assume s0½m� ¼
XL

l¼1

ale
�blmDt and substitute it in

Eq. [A1]:

XL

l¼1

alz
m
l ¼ g1s0 m� 1½ � þ g2s0 m� 2½ � þ � � � þ gLs0 m� L½ �

¼ g1

XL

l¼1

ale
�blðm�1ÞDt þ g2

XL

l¼1

ale
�blðm�2ÞDt þ � � � gL

XL

l¼1

ale
�blðm�LÞDt

¼
XL

l¼1

alg1zm�1
l þ alg2zm�2

l þ � � �algLzm�L
l

[A2]

where zl ¼ e�blDt. For the summation in Eq. [A2] holds,

we could expect the equality holds for each l, yielding:

alz
m
l ¼ alg1zm�1

l þ alg2zm�2
l þ � � � þ algLzm�L

l [A3]

Dividing alz
m�L
l on both side of Eq. [A3], we get:

zL
l ¼ g1zL�1

l þ g2zL�2
l þ � � � þ gL [A4]

To this end, if we could find coefficients g1; g2; � � � ;gL

satisfy Eq. [A4] for each l, the proof is done.
Actually, Eq. [A4] suggest that z1; z2; � � � ; zL are exactly

the L solutions of the polynomial function

zL ¼ g1zL�1 þ g2zL�2 þ � � � þ gL. Thus, we can rewrite Eq.

[A4] as ðz � z1Þðz � z2Þ � � � ðz � zLÞ ¼ 0 and consequently

find the linear predictable weights.

Proof of Hankel Low-Rankness

The Hankel matrix can be decomposed using matrix fac-

torization as:

H ¼

s0½1� s0½2� � � � s0½K �

s0½2� s0½3� � � � s0 K þ 1½ �

� � � �

s0 M � K þ 1½ � s0 M � K þ 2½ � � � � s0½M �

2
666664

3
777775 ¼ QSP

where Q ¼

1 1 � � � 1

z1 z2 � � � zL

z2
1 z2

2 � � � z2
L

� � � �

zM�K
1 zM�K

2 � � � zM�K
L

2
666666664

3
777777775
, S ¼

a1

a2

. .
.

aL

2
6666664

3
7777775

,

P ¼

z1 z2
1 � � � zK

1

z2 z2
2 � � � zK

2

� � � �

zL z2
L � � � zK

L

2
666664

3
777775; s0½m� ¼

XL

l¼1

alz
m
l

As long as ai 6¼ aj ;8i 6¼ j, rankðHÞ ¼ rankðSÞ ¼ L
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