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Accelerated Exponential Parameterization of T2
Relaxation with Model-Driven Low Rank and Sparsity

Priors (MORASA)

Xi Peng,"? Leslie Ying,” Yuanyuan Liu," Jing Yuan,* Xin Liu,"? and Dong Liang"**

Purpose: This work is to develop a novel image reconstruc-
tion method from highly undersampled multichannel acquisi-
tion to reduce the scan time of exponential parameterization
of T2 relaxation.

Theory and Methods: On top of the low-rank and joint-sparsity
constraints, we propose to exploit the linear predictability of the
T2 exponential decay to further improve the reconstruction of the
T2-weighted images from undersampled acquisitions. Specifi-
cally, the exact rank prior (i.e., number of non-zero singular values)
is adopted to enforce the spatiotemporal low rankness, while the
mixed L2-L1 norm of the wavelet coefficients is used to promote
joint sparsity, and the Hankel low-rank approximation is used to
impose linear predictability, which integrates the exponential
behavior of the temporal signal into the reconstruction process.
An efficient algorithm is adopted to solve the reconstruction prob-
lem, where corresponding nonlinear filtering operations are per-
formed to enforce corresponding priors in an iterative manner.
Results: Both simulated and in vivo datasets with multichannel
acquisition were used to demonstrate the feasibility of the pro-
posed method. Experimental results have shown that the newly
introduced linear predictability prior improves the reconstruc-
tion quality of the T2-weighted images and benefits the subse-
quent T2 mapping by achieving high-speed, high-quality T2
mapping compared with the existing fast T2 mapping methods.
Conclusion: This work proposes a novel fast T2 mapping
method integrating the linear predictable property of the expo-
nential decay into the reconstruction process. The proposed
technique can effectively improve the reconstruction quality of
the state-of-the-art fast imaging method exploiting image spar-
sity and spatiotemporal low rankness. Magn Reson Med
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INTRODUCTION

Quantitative evaluation of T2 relaxations have become
increasingly important in a variety of research studies
and clinic applications, such as iron overload (1), carti-
lage disease (2), multiple sclerosis (3), and carotid pla-
que characterization (4). However, commercial T2
relaxometry techniques acquire multiple images at vari-
ous echo times (TEs) resulting a relative long scan time,
which is a major bottleneck in clinic utility.

To solve this problem, reduced encoding techniques
grounded on the theory of parallel imaging (5) and
sparse sampling (6,7) have been extensively developed
and shown promising potential in accelerating MR
acquisition. Among them, parallel imaging techniques
(8—10) are the earlier ones being successfully adopted in
various parameter mapping experiments for efficient
acquisition. Besides, considering the intrinsic low degree
of freedom of the target image series, additional con-
straints have recently been used in an extensive body of
work for improved reconstruction, such as the sparsity
constraint of the T2-weighted images (11,12) imposing
spatial smoothness, the temporal sparsity penalty of the
T2-decay (13) penalizing the temporal nonsmoothness
and the low-rank property of the image series (14-17)
promoting spatiotemporal redundancy. These constraints
are relatively general and also suitable for many imaging
applications, such as dynamic imaging. With parametric
model involved, Doneva et al (18,19) developed a model-
based dictionary to enable efficient sparse representation
in the parametric-encoding dimension. Sénégas et al (20)
derived a GRAPPA-like kernel based on a mono expo-
nential model to exploit the data correlation in k-t space.
We conjecture that further taking advantage of the
knowledge of the parametric model would improve the
reconstruction of the state-of-the-art methods.

In this work, we proposed a novel method that explic-
itly exploits the linear predictability of the T2 decay,
which can be modeled as a linear combination of L
exponentials, as prior information on top of the standard
sparsity and spatiotemporal low-rank constrained recon-
struction. Specifically, a linear combination of L expo-
nentials is linearly predictable to the L-th order, which
can further translate in the low-rankness of a Hankel



matrix. Linear predictability has been investigated in the
Cadzow enhancement algorithm (21) and demonstrated
useful in MRSI data denoising (22). An iterative nonlin-
ear filtering framework was adopted to impose these
three priors to the target images by performing corre-
sponding filtering iteratively. Both simulated and in vivo
experimental data from multichannel acquisition were
used to substantiate the feasibility of the proposed tech-
nique in improving the quality of fast T2 mapping with
respect to the state-of-the-art methods.

THEORY
Review: Low-Rank and Joint Sparsity Priors

The spatiotemporal function of the T2-weithed images
I(r,t) is known to be partially separable as (7):

J
I= E d;(r);(t) (1]
=

where ¢;(t) denotes the temporal subspaces and ¢;(r) is
the corresponding spatial coefficients. The above equa-
tion assumes that the profiles of the T2 decay at all spa-
tial locations are highly redundant for small J, because
they are linear combinations of a few ] temporal basis
functions with spatial varying weights. Accordingly, the
Casorati matrix:

I(I‘l,tl) I(r17t2) I(r],tM)
I I(rz,t1)  I(rz,t2) I(rz, ty) (2]
I(rN7t1) I(rN7t2) I(rN7tM)

will have a rank at most of J (] < M). On the other hand,
the redundancy assumption also suggests that the image
function at each TE (i.e., columns of I) will have similar
anatomical structure, thus sharing analogous coefficient
sparsity in terms of support and intensity distribution.
This prior information, which has been exploited in dis-
tributed compressed sensing (23), is known as joint spar-
sity. Consequently, the image reconstruction could use
both low-rank and joint-sparsity priors which is formu-
lated as:

I = argmin ||WI||, , + N|I||, s.t.||Ful — d||> < ¢®  [3]
I

where IeCN*M is the matrix form of the desired T2-

weighted image function with N the total number of
image pixels and M the echo train length (ETL), F,
€ CY*N is the undersampled Fourier encoding matrix
with U< N, deCYM is the undersampled k-space
data, and ¥ € C¥*V is the sparsifying operation matrix
(Daubechies 4 wavelet in this work). To promote joint
sparsity and low rankness, both the mixed L2-L1 norm

of the ||‘1Hz,1 =>aV2m ||0‘an2

(anm = ¥, I(tn) and ¢, denotes the n-th sparsifying basis
function) and the nuclear norm of I (i.e., summation of
singular values, which is the closest convex relaxation of

sparse coefficients
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the rank penalty) are usually minimized. Data consis-
tency is exploited as an additional constraint, where o?
is proportional to the noise level controlling the toler-
ance in measurement consistency.

Linear Predictability of Linear Exponential Combinations

Consider a discrete time domain signal (i.e.,
m=1,2,3,...) as a linear combination of L exponential
functions with the general form of

L
solm] =) oye Pt [4]
I=1

where At is the sampling interval, ; denotes the combi-
nation weight and B; is the decay rate. An important
property of Eq. [4] is that the discrete signal so[m] is line-
arly predictable to the L-th order (21):

L
solm] = yjsolm — I]. (5]
I=1

Namely, the current intensity of so[m] can be predicted
as linear summation of its previous L values. vy, repre-
sents the summation weight. Thereby, the Hankel matrix
formed by so[m]

So(1) So(2) so(K)
H[SO] _ 50(2) 50(3) SO(K =+ 1)
So(M—K+1) So(M—K+2) So(M)

6]

will have a low rank of L as long as so[m] has the form of
Eq. [4]. The proof of linear predictability and Hankel
low-rankness can be found in the Appendix.

Proposed Formulation

The temporal signal I(r,t,) of a T2-weighted image
series generated by a Carr-Purcell-Meiboom-Gill (CPMG)
spin echo sequence can be written in a general form as:

L
I(r,ty) = Z p;(r)exp[if(r)]exp[—mAt/T,(r)] [7]

I=1

where p,(r) and T, represent the proton density distribu-
tion function and the T2 relaxation values of the I-th tis-
sue compartment, respectively. 6 denotes the image
phase supposed to be shared at all TEs. r indicates spa-
tial coordinate. t,, = mAt stands for the m-th TE with At
the echo spacing. L is the number of linearly combined
exponential terms (i.e., tissue compartments), which is
application (or tissue) dependent. For instance, in the
three-pool model of white matter, the white matter tissue
is comprised of a myelin water pool, a myelinated axon
water pool and a mixed water pool, yielding L=3.
Actually Eq. [7] can be written in the form of Eq. [4]
such that I(r, t;) is L-th order linear predictable:
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L
I(x,tm) = > yiI(X, t_p). [8]
1=1

Thus, a Hankel matrix can be formed for vVr e Q (Q
denotes the region of interest)

I(r,ty) I(r,t3) I(r, tx)
H[I(I‘)] _ I(I‘7 tZ) I(r7 t3) I(r7 t:K+1) [9]
I(r, ty—x+1) (T, tv—k+2) I(r, ty)

which has a low rank of L. Generally, the Hankel matrix
is designed as square as possible such that we chose K
as the nearest integer greater than or equal to half of the
ETL.

In practice, the T2 decay in some most commonly
used T2 mapping sequences (e.g., turbo spin echo) is not
exactly exponential due to the interference of stimulated
and indirect echoes (24). Thus, the temporal evolution
may deviate from the model in Eq. [7]. This issue is sim-
ilar to the one in MR spectroscopy where the spectrum
deviates from Lorentzian lineshape due to magnetic field
inhomogeneity, limited spatial resolution, etc., but still
can be fitted using a linear combination of more Lorent-
zian basis functions (25,26). Because the temporal evolu-
tion and the spectrum are related by Fourier transform,
the temporal evolution could also be represented as a
linear combination of more exponential decays. There-
fore, Eq. [7] is still valid mathematically yet with the
compromise that L is larger than the number of physi-
cally true water pools but usually smaller than half of
the ETL in practice. Thus, the Hankel matrix could still
be low-rank. A real in vivo brain dataset obtained with
turbo spin echo will be used to demonstrate the low-
rankness of the Hankel matrix in the experiment section.

With this knowledge, we can use such Hankel low-
rankness as an essential prior of I(r,t) for sparse recon-
struction (denoted as LP hereafter):

I = argmin ||F,I — d||2, s.t. mnk(H[z(r)]) =Lvr. [10]
I

Equation [10] can be reformulated by means of mini-
mizing the relaxed convex counterpart, namely the
nuclear norm of the Hankel matrix over all spatial
locations:

I =argmin ) "[|H[I(r)]||, s.t.[|[Fu - d|; <o®.  [11]

re)

It is worth noting that the Casorati low-rankness con-
siders the signal jointly by assuming that the temporal
variations at various spatial locations are considerably
similar (i.e., resulting in redundant information) while
the Hankel low-rank approximation treats the signal vari-
ation at each spatial location independently, each fol-
lowing an exponential decay, which agrees with the T2
imaging model. Therefore, it is natural to integrate the
Casorati low rankness with the Hankel low-rank approxi-
mation, while enforcing the joint sparsity prior. We pro-
pose to reconstruct the T2-weighted image functions

with Model-driven
(MORASA):

low rank and sparsity priors

I= argmin II||q + NI + ) [HE®)]],

re()

[12]
S.£Y |[FuSe @1 —dclf5 < co?

where S, € CV*! indicates the sensitivity map of the c-th
coil, d; corresponds to the c-th coil data. Operator ® con-
ducts point-wise multiplication of S, with each column of
I. The term model-driven low rank refers in particular to the
Hankel low-rank approximation because it is driven by the
linear predictability of the exponential parametric model.

To solve Eq. [12], we propose to use an efficient itera-
tive nonlinear filtering (27) algorithm as described in
Algorithm 1 assuming exact data consistency (i.e.,
F,S. ®1=d.). Because the cost function in Eq. [12] is
convex (note that the operation of Hankel matrix forma-
tion H[] is linear), the iterative algorithm could achieve
convergence to the global minimum under the simple
assumptions that all iterations of the algorithm lie within
a bounded domain (28). Specifically, in each iteration,
three nonlinear filtering operations are performed to
enforce three corresponding priors, which is mathemati-
cally equivalent to minimizing a cost function promoting
both the priors and the fidelity to the previous estimate.
We use joint soft thresholding in the wavelet domain to
enforce the joint sparsity. To promote low-rankness
along the parametric direction in a simple way, we per-
form hard thresholding to empirically preserve the first
2~3 singular values or principal components (15) of the
image Casorati matrix. Additionally, for the Hankel low-
rank prior, we enforce the general low-rankness and
Hankel structure alternately. First, we perform soft-
thresholding on the singular values to promote low rank-
ness, because the optimal rank of the Hankel matrix may
vary from location to location and hard thresholding
could be sensitive to spatial signal contamination due to
undersampling. Second, the Hankel structure can be
restored by taking the mean of all the antidiagonal ele-
ments and replacing each element by its mean value. We
denote this operation as:

H= Hankelize(I:IO). [13]

Afterward, the corresponding elements of H can be
extracted to update the signal estimate I(r) for each spa-
tial location. When enforcing data consistency, coil sensi-
tivities from multichannel acquisitions are incorporated
into the reconstruction (29). In addition, we enforce data
consistency right after each nonlinear filtering to prevent
any bias during a nonlinear filtering from propagating to
the next one. At convergence, this iterative algorithm
finds an approximated minimum of the constrained opti-
mization problem in Eq. [12]. The entire diagram of the
proposed MORASA method is illustrated in Figure 1.

METHODS

Both simulated and in vivo experimental datasets were
used to validate the proposed method. In the in vivo



Algorithm 1. Iterative Nonlinear Filtering Approach for MORASA

MORASA

Input:
Initialization:

Iteration:

Undersampled multichannel data d.; Estimate the sensitivity maps S..
Initial image estimate /o = Z(F:'dc) © S;; iteration index k = 0.
c
do {
1. sparsity prior
a) ax = Vi, a1 = JointSoftThresh(ak, 1), lk+1 = \I,iw(xk+1, where

M M
JointSoftThresh(anm, ) = apm/ Z Ha,,mHg -max(0, Z ||oc,,,,,H§ — 1), n and m are the indexes of sparsifying
m=1 m=1
basis function and timeframe, respectively. Function max(-) returns the larger value of the two inputs.

2. data consistency: Iy, 1 = Z [F;‘FV(I;M ®S¢) + Ffjdc} ©® S;, F, denotes the Fourier encoding operation at
c
nonacquired k-space locations.
3. low rank prior J
a) [US V] = SVD(lks1), ki1 = 21:1 us,v

4. Data consistency as step 2.
5. Linear predictability prior, for Vr € Q)
a) [uov] = SVD (H[Ik g (r)]), o = max(c — v,0)

b) H(r) = Hankelize(uav"), extract I 1(r) from H(r)
6. Data consistency as step 2, k =k + 1.
} till convergence or maximum number of iterations.
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The flow diagram of the proposed MORASA method for exponential parameterization of T2 relaxation.
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FIG. 2. The simulated brain phantom dataset. a: The ground truth T2 weighted image at the third TE (30 ms) and the T2 map. b: Singu-
lar values of the Casorati image matrix. c: The first, second and third singular values (from left to right) of the Hankel variant of the tem-
poral decay at all spatial locations. d: The undersampling pattern adopted in this work for T2 mapping. The vertical direction indicates
phase encodings and the horizontal direction denotes temporal dimension with 16 short intervals representing frequency encodings at

various TEs.

experiments, informed consent was obtained from the
imaging subject in compliance with the Institutional
Review Board policy. The subject was immobilized by
foam pads and requested to hold as still as possible to
prevent motion artifacts. All the methods in comparisons
were tuned to provide their best performance and all
algorithms were implemented in Matlab (The Math-
works, Natick, MA). To estimate the T2 values, standard
nonlinear least square fitting method was performed in
the selected region-of-interest on a pixel-by-pixel basis.
T2 relaxation values outside the reasonable range were
excluded from the T2 map.

Simulation

For the simulation, we used a realistic digital brain
phantom (30) which is synthesized as a linear combina-
tion of various tissue compartments. A series of spin
echo T2-weighted images was generated (image matrix
220 x 180, ETL 16, first TE 10 ms and echo spacing
10ms) using the default brain tissue parameters. Specifi-
cally, for tissues such as cerebrospinal fluid (CSF)
(similar for gray matter, fat, muscle skin, skin, skull and
glial), we wused the monoexponential model (i.e.,
Scsr = pesp[l — exp(—TR/T1csr)|exp[—TE/T2¢sr]), where
pcsps Tlesr, T2csp are default proton density, T1, and
T2 values of CSF, respectively, provided in Pruessmann
et al (29). For white matter, we used the biexponential
model (i.e., Swm = pwm[l — exp(—TR/T1wm)][exp(—TE/
T2wm) + exp(—TE/T2wmz)]) with T2wym; = 40ms and
T2wmz = 130ms. Finally, the brain phantom was
obtained as the summation of all the tissue compart-
ments. The T2-weighted image at the third TE (30 ms)
along with the T2 relaxation maps calculated by means

of the monoexponential least-square fitting are displayed
in Figure 2a. The singular values of the Casorati image
matrix are plotted in Figure 2b, confirming the low
rankness.

Figure 2c shows (from left to right) the map of the
first, second, and third singular values of the Hankel
matrixes at all spatial locations. As can be seen, the tem-
poral variation at most spatial locations contains at least
one dominant T2 component (i.e., corresponds to the
first singular value) and at some locations (i.e., mostly
while matter in this case) consists of another insignifi-
cant T2 component (i.e., corresponds to the second sin-
gular value). The appearance of the second T2
component can also be resulted from the superposition
of different tissue compartments. Figure 2c demonstrates
that the temporal evolution indeed possesses a low-rank
property in its Hankel variant. For the multi-channel
acquisition case, each T2-weighted image was modulated
by the sensitivity maps of an eight-channel head coil
(complex valued) that were simulated based on the Biot-
Savart’s law (31). Spatial Fourier transform was applied
to the simulated brain phantom to generate the full k-
space data.

Retrospective undersampling was then performed to
obtain the undersampled data. The undersampling pat-
tern adopted in this work is shown in Figure 2d, which
fully samples the central k-space region at the first TE
and randomly samples the entire k-space with DC
included at the other TEs (17). The same number of lines
were acquired for each TE. This sampling pattern
acquires a larger central region in the first echo to
increase signal-to-noise ratio (SNR) of the reconstructed
T2-weighted image series (17). And the uniform random
undersampling at the other TEs caters to the incoherency



required in sparse reconstruction. Besides, in the context
of parallel imaging, the broad fully sampled central
region at the first TE can provide a better estimate of the
coil sensitivity. With this dataset, we aim to comprehen-
sively demonstrate the advantage of using the linear pre-
dictability prior in T2 mapping and the superiority of
the proposed technique to the state-of-the-art methods at
various reduction factors and noise levels.

Effectiveness of Linear Predictability Prior

We demonstrated the advantage of linear predictability
prior over other constraints using a simulated single-
channel brain phantom dataset at a reduction factor of 3.
To enforce linear predictability, we tested three con-
strained reconstructions denoted as LP1, LP1&2, and
LP*, respectively. For LP1, we solved the optimization
problem in Eq. [10] with L=1 for all spatial locations,
namely only Hankel matrix with explicit rank 1 con-
straint. For LP1&2, we still solved Eq. [10] but with L=2
for white matter (i.e., as shown in the second map of Fig-
ure 2c, the T2 decay in white matter is exactly 2"%-order
linear predictable) and L =1 for other regions. For LP*,
we solved the optimization problem in Eq. [11], mini-
mizing the nuclear norm of the Hankel matrix with soft
thresholding of the singular values for all spatial loca-
tions (i.e., iteratively conducted step 5 to step 6 in Algo-
rithm 1).

Reconstructions with standard low-rank (LR) con-
straint and sparsity and low-rank (SLR) constraint were
also implemented for comparison. Specifically, for LR
constrained reconstruction, we used hard thresholding of
the singular values of the Casorati matrix (i.e., iteratively
conducted step 3 and step 4 in Algorithm 1). For SLR
constrained reconstruction, we further integrated joint
soft thresholding of the wavelet coefficients of the T2-
weighted images (i.e., iteratively conducted step 1 to
step 4 in Algorithm 1).

Finally, we integrated LP* with SLR (denoted as SLR-
LP) to substantiate the ability of LP in improving the
state-of-the-art method. To clarify, SLR-LP is the single
coil version of the proposed method. LP*, LR, and SLR
are also reconstructions for single coil data here. Thus,
to implement these methods, the data consistency step
in Algorithm 1 should be adjusted to the single coil ver-
sion accordingly. To achieve the best performance, over-
estimated rank constraint (i.e., ] = 2) was adopted for the
conventional LR and SLR method. While for the pro-
posed SLR-LP method, we chose J = 3. The threshold of
the wavelet coefficients T and the threshold of the singu-
lar values of the Hankel matrixes v were set to be 0.01
and 0.1, respectively.

Method Comparison with Multichannel Acquisitions

We compared the reconstructed images and T2 maps of
different methods using the simulated multichannel
brain phantom data at various reduction factors (R=3, 4,
6, 8) for both noiseless and noisy circumstances. Com-
plex Gaussian noise was added to the brain phantom to
simulate a low SNR situation (SNR=20) where SNR is
defined as the ratio of the mean signal intensity of the
T2-wighted image series to the noise standard deviation.

Peng et al.

A low-rank based method k-t PCA/SENSE (14) and a
state-of-the-art sparsity and low-rank based method
(denoted as SLR/SENSE hereafter) were both used for
comparison. For k-t PCA/SENSE, regular downsampling
in k-t space was adopted as described in the original
paper (14). For SLR/SENSE and MORASA, the under-
sampling shown in Figure 2d was adopted. All methods
used the same sensitivity maps. To accurately estimate
the principal components in the k-t PCA/SENSE method,
the central region of k-space (i.e., the same amount of
lines as is used to estimate the sensitivity map) was
assumed available at all the TEs so as to ensure its best
performance. Additionally, the SLR/SENSE method was
implemented in the same framework as depicted in
Algorithm 1 except that the linear predictability con-
straint was not performed. The optimal parameters are
consistent for all the reduction factors. Specifically, we
set J=3,v=0.1, 7=0.01 and 7 = 0.02 for the noiseless
and low SNR case, respectively.

In Vivo Experiment
Human Brain T2 Mapping

To validate the proposed method in vivo, a fully
sampled multicontrast brain dataset was acquired on a 3
Tesla (T) scanner (MAGNETOM Trio, SIEMENS, Ger-
many) using a turbo spin echo sequence with a 12-
channel head coil array [matrix size =192 x 192, field of
view (FOV)=192mm x 192 mm, slice thick-
ness=3.0mm, ETL=15, ATE=8.8 ms, repetition time
(TR)=4000 ms, bandwidth=362Hz/pixel]. The total
scan time is 12min and 54 s. The undersampled data
were retrospectively obtained using the sampling pattern
shown in Figure 2d at reduction factors of 4, 6, and 8.
The SLR/SENSE method was conducted for comparison.
Other experiments settings were similar to those in the
brain phantom case. We set /=3, 7=0.005 and v
= 0.02 for the proposed method with all the reduction
factors. As mentioned before, we use this in vivo dataset
to validate the Hankel low-rankness in the case where
the T2 decay may be affected by the stimulated and indi-
rect echoes. Typically, we adaptively combined the fully
sampled multichannel data into a single-channel com-
plex dataset using the adaptive combine method (32).
Then we computed the singular values of the Hankel
matrixes at all spatial locations and showed the first
three singular value maps in Figure 7a. As can be seen,
the first singular values (i.e., corresponding to a single
exponential component) dominate at most spatial loca-
tions indicating that the Hankel matrix formed from the
T2 decay of real T2-weighted image series is approxi-
mately low-rank at most spatial locations.

Human Knee T2 Mapping

To validate the proposed technique, a human knee
experiment was also conducted on a 3T scanner (MAG-
NETOM Trio, Siemens) using a multicontrast turbo spin
echo sequence with an eight-channel flexible coil array
(matrix size=128 x 128, FOV=128mm x 128 mm, slice
thickness =3.0mm, ETL=10, TE=17 ms~93.5 ms with
ATE 8.5 ms, TR=1500 ms, bandwidth =355 Hz/pixel).
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FIG. 3. The reconstruction results of various constrained methods based on the single channel version of the brain phantom data at a
reduction factor of 3. The percentage numbers denotes the NnRMSEs of corresponding T2-weighted image series and T2 maps.

The total scan time is 6 min and 29 s with over-samplings
along the phase encoding direction. Undersampled k-space
data was retrospectively obtained using the sampling pat-
tern shown in Figure 2d at reduction factors of 4, 6, and 8.
The coil sensitivity maps were estimated from the acquired
k-space data at the first TE (17 ms) and assumed to be the
same for all the TEs which were then used for both SLR/
SENSE and the proposed MORASA methods. We set ] = 2,
7 =0.02, and v = 0.06 for the proposed method with all the
reduction factors. Three cartilage regions of interest were
selected (Figure 8. Bottom left) to quantitatively access the
performance of the reconstruction methods by comparing
the mean value and the standard deviation.

Evaluation

Both the quality of the reconstructed image series and
the subsequent estimated T2 map can be quantified with
the normalized root-mean-square error (nRMSE):

- 2
|15 — soll;

5= % 100%
IEM

e= [11]

where 5§ and s, denote the reconstructions from under-
sampled and fully sampled data, respectively. Moreover,
the T2 maps were masked before computing the nRMSE
to restrict our evaluation to the tissue of interest and
exclude unmeaningful values.

RESULTS
Simulation
Effectiveness of Linear Predictability Constraint

Reconstructions of the single-channel brain phantom using
different constraints are shown in Figure 3. We first com-
pared different implementations of the LP prior, named
LP1, LP1&2, and LP*. As can be seen, although the LP1&2
constraint exploits the biexponential model in the white
matter, the LP1-constrained method still performs much
better than the LP1&2-constrained method in terms of both

reconstruction error and T2 relaxation error. This is prob-
ably because the smaller singular value of the Hankel
matrix (reflecting a short T2 component) is prone to severe
contamination by the larger singular value of the Hankel
matrix (mainly reflecting a long T2 component) at an adja-
cent voxel due to undersampling. Even if a high-quality
initial value (e.g., the reconstruction of the SLR method) is
used (results not shown here), LP1 is still superior to
LP1&2. Moreover, compared with LP*, both LP1 and
LP1&2 reconstructions present obvious aliasing artifacts in
the T2-weighted image and T2 map, which suggests that
directly restricting the order (i.e., hard-thresholding) of lin-
ear predictability of the T2 decay is quite sensitive to spa-
tial signal contamination in sparse reconstruction.
Therefore, we propose to minimize the nuclear norm of the
Hankel matrix (i.e., using soft-thresholding), which is
shown to effectively alleviate the aliasing artifacts in both
the T2-weighted images and the T2 map.

Compared with the LP* constraint, the LR constraint
leads to severer aliasing artifacts in the T2-weighted
image and the T2 relaxation map. With the additional
joint sparsity constraint (i.e., SLR reconstruction), the
aliasing artifacts are alleviated but still noticeable.
Finally, with additional LP constraint, the aliasing arti-
facts are visually suppressed and the reconstruction
errors are significantly reduced, suggesting that the lin-
ear predictability prior is actually complementary to the
sparse and low-rank priors and is capable of improving
the state-of-the-art methods in T2 mapping.

Method Comparison with Multichannel Acquisitions

The estimated T2 maps using k-t PCA/SENSE, SLR/
SENSE and the proposed MORASA methods at various
reduction factors are shown in Figure 4 (noiseless case)
and Figure 5 (low SNR case). We can see that k-t PCA/
SENSE produces noticeable aliasing artifacts in the T2
map (red arrow) even at a low reduction factor of R=3.
As the reduction factor increases, the estimation error
increases. The SLR/SENSE method is able to suppress
the aliasing artifacts and preserve more image details at
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FIG. 4. Estimated T2 maps from the reconstructions of k-t PCA/SENSE, SLR/SENSE and MORASA methods using the multichannel
brain phantom dataset (noiseless) at reduction factors of R=3, 4, 6, and 8. The percentage numbers are the nRMSEs of the corre-

sponding T2 maps.

low reduction factors, but the T2 estimation error starts
to increase at R=6 and R=8 (shown as inhomogeneous
region indicated by red arrows). The proposed MORASA
method outperforms the other two methods in terms of
suppressed artifacts and improved T2 accuracy at all
reduction factors. In particular, the aliasing artifact in
the T2 map is considerably suppressed even at R=8. In
the noisy circumstance, the proposed MORASA method
also exhibits superior performance to the other two
methods at all reduction factors. Figure 6 plots the T2-
weighted image reconstruction error of the SLR/SENSE
and MORASA methods as a function of iteration num-
bers at R=6 in the noiseless case where the convergence
of the proposed method can be observed. Moreover, the
proposed MORASA method also converges faster (i.e., at
the 15" iteration approximately) than the SLR/SENSE
method (i.e., at the 80" iteration approximately). How-
ever, the computational cost per iteration is increased
due to the LP constraint. The computer running time of
the k-t PCA/SENSE, SLR/SENSE and the proposed
MORASA method are 120 (50 CG iterations), 323 (80
iterations), and 302 (15 iterations) seconds, respectively.

In Vivo Experiment
Human Brain T2 Mapping

The estimated T2 maps of the human brain data (two sli-
ces) using the state-of-the-art SLR/SENSE and the pro-

posed MORASA method are shown in Figures 7b,c. In
general, the proposed MORASA method outperforms the
SLR/SENSE method in terms of T2 accuracy and sup-
pressed aliasing artifacts at all reduction factors. Specifi-
cally, the SLR/SENSE method provides good results at
R=4 and R=6 visually. Detail loss and aliasing artifacts
become severe and unacceptable as the reduction factor
increases to 8. In contrast, the proposed MORASA
method maintains more details and exhibits less aliasing
artifacts in the T2 map than the SLR/SENSE method,
thus generating consistently smaller T2 nRMSE at all
reduction factors. Even at R=8, the proposed method
produces rather accurate T2 estimations. The means and
standard deviations of the T2 values in selected regions
of interest (ROIs) (indicated by the red rectangular box
in Figures 7b,c) are presented in Table 1.

Human Knee T2 Mapping

The reconstructed T2 maps of the human knee are
shown in Figure 8. nRMSE in regions with T2 value
ranging from 30 to 45 ms have also been calculated.
Besides, we selected three cartilage ROIs and compared
the mean and standard deviation (SD) of the T2 values
in Table 2. We can see that the proposed MORASA
method consistently surpasses the state-of-the-art SLR/
SENSE method at all reduction factors in terms of
smaller nRMSEs and more accurate mean and standard
deviation within all ROIs. Similar conclusion can be
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FIG. 5. Estimated T2 maps from the reconstructions of k-t PCA/SENSE, SLR/SENSE and MORASA methods using the multichannel
brain phantom dataset (low SNR) at reduction factors of R=3, 4, 6, and 8. The percentage numbers are the nRMSEs of the corre-

sponding T2 maps.

made as in the previous simulation and human brain T2
mapping case that the proposed MORASA method can
provide more accurate T2 estimation than the state-of-
the-art SLR/SENSE method.

DISCUSSION
Relationship with Existing Method

This work proposed a novel image reconstruction
method for parameterization of T2 relaxation. Distin-

0.35

guished from previous sparse reconstruction methods
which only take advantage of general priors of the image
series such as joint sparsity and spatiotemporal low-
rankness, we proposed to incorporate priors directly
from the parametric model into the reconstruction,
namely the linear predictability of the exponential decay,
to enable improved image reconstruction and more accu-
rate parameter fitting. The LP constraint offers prior
information complementary to the existing sparse and
low-rank constraint, exhibiting superior performance to

0.3

0.25

FIG. 6. The nRMSE of the T2-weighted
image series of the SLR/SENSE and
MORASA methods using the multichannel
brain phantom dataset as a function of
iteration numbers at a reduction factor of
6.
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10.65%
reference

MORASA

8.36%
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FIG. 7. a: The first three singular value maps (from left to right) of the Hankel matrix formed from the T2 decay of the human brain data-
set. b,c: The estimated T2 maps of the human brain (slice 8 and slice 3) from the reconstruction of SLR/SENSE and MORASA methods
at reduction factors R=4, 6, 8. The percentage numbers are the NRMSEs of the corresponding T2 maps. The reference T2 map is esti-
mated from the fully sampled k-space data.

the state-of-the-art methods. However, the proposed The newly introduced LP constraint also causes an
method needs to tune an additional parameter to enforce increase of reconstruction time compared with conven-
the Hankel low-rankness, which may vary from different tional method. Enforcing the LP constraint for a single
applications. pixel is fast (i.e., operating on small sized matrix), while
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Table 1
Means and SDs of the T2 Values in Selected ROIs of the Human Brain Dataset
R=4 R=6 R=8 R=4 R=6 R=8
Gold standard Mean (std) 3rd Slice 81.46 (4.53) 8th Slice 78.77 (2.62)
SLR/SENSE 81.87 (4.55) 84.02 (4.72) 83.38 (4.08) 80.21 (3.16) 81.28 (3.01) 82.87 (4.10)
MORASA 81.24 (4.42) 81.79 (4.16) 81.66 (3.97) 78.60 (3.29) 78.62 (3.15) 79.17 (3.14)

enforcing it over all spatial locations could be time-
consuming. Theoretically, parallel computing can be
adopted to accelerate this process. Besides, due to the
effectiveness of the LP constraint, the proposed method
would converge with much less iterations (i.e., five times
fewer iterations for the brain phantom) than the conven-
tional method. Thus, by means of using parallel comput-
ing and early termination, the increase of reconstruction
time of the proposed method should be tolerable
practically.

As another fast parameter mapping approach using the
parametric model, model-based reconstruction (33-39)
methods directly estimate the parameter maps from
undersampled k-space data and, therefore, have much
reduced degree of freedom. The major difference between
model-based reconstruction and the proposed method is
that the former directly regularizes the sparsity of the
relaxation map (34), while the latter takes advantage of
the exponential parametric model in a relaxed sense to
balance the trade-off between the data consistence and
the exponential structure. Thus, the proposed method is
suitable for cases where the T2-weighted image series is
also of significant diagnosis interest. Besides, the model-
based methods will be computational expensive when
being extended to a multiexponential model.

Parameter Selection

To solve Eq. [12], we proposed an iterative nonlinear fil-
tering approach as describe in Algorithm 1. Specifically,

three parameters in this approach need to be carefully
selected: the rank of the Casorati matrix J, the threshold
of the wavelet coefficients T and the threshold of the sin-
gular values of the Hankel matrixes v. As shown in pre-
vious work (14,15,17), explicit rank constraint is
effective enough to be adopted to enforce low-rankness
along the parametric direction. Besides, rank selection is
relatively simple compared with tuning the soft thresh-
old in various cases. In general, the selection of J could
differ from applications. We found empirically that set-
ting J = 3 enables the best reconstruction quality for the
in vivo brain dataset, while the optimal choice for the in
vivo knee dataset is J = 2. Besides, the optimal | may
also vary with the reduction factor for different methods.
For the in vivo brain dataset, /] = 2 is necessary for the
SLR/SENSE method to provide the best performance at
high reduction factors (6 and 8), while J =3 is optimal
for the proposed MORASA method at all reduction fac-
tors, manifesting the capability of the LP constraint.

In addition to J, we need to select 7, which controls
the strength of sparsity enforced in the reconstruction. =
can be decided by means of visual inspection from the
results of using various threshold values. We observed
that both SLR/SENSE and MORASA methods are quite
stable with a relatively large range of threshold values.
In practice, one useful way to select 7 is to set it on the
same order of magnitude as the noise power which can
be estimated from the background of the image. Besides,
we found empirically that the SLR/SENSE and MORASA
methods in most cases share a similar value of .

FIG. 8. The estimated T2 maps of the human knee using SLR/SENSE and MORASA reconstruction method at reduction factors of 4, 6,
8. Three ROIs were selected to quantitatively access the performance of the reconstruction methods. The percentage numbers are the

nRMSEs in the regions with T2 value ranging from 30-45 ms.
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Table 2

Means and SDs of the T2 Values in Selected ROls of the Human Knee Dataset

ROI 3 36.61 (7.91)

ROI 2 33.75 (4.41)

ROI 1 41.45 (7.63)

Gold Mean (std)
SLR/SENSE
MORASA

40.36 (8.09)
35.51 (6.57)

40.90 (8.07)
36.79 (6.21)

38.34 (7.39)
36.98 (7.41)

37.60 (5.53)
34.64 (4.70)

35.92 (4.17)

34.76 (4.27)
32.81 (4.34)

56.18 (15.80)
52.57 (13.68)

51.89 (13.49)
48.34 (11.67)

45.35 (9.26)
43.38 (8.28)

33.31 (3.89)

Peng et al.

Last but not the least, we have to chose a proper v to
enforce the Hankel low-rankness. Theoretically, a proper
v is determined by the underlying T2 relaxation values,
which would vary from applications. Empirically, we set
v on the same order of magnitude as the signal power in
the “noise-like” region (e.g., the region indicated by the
red box in Figure 7a) of the second singular map of the
Hankel matrixes.

Requirement of the Hankel Low-Rankness

The low-rank property of the Hankel matrix declared in
Eq. [6] does not require a shared proton distribution by
all exponential decays, but does require equal TE spac-
ing. With unequal TE spacing, the rank of the Hankel
matrix will increase accordingly. Fortunately, we can
always design protocols with equal TE spacing in most
cases.

Iteratively Conducting Image Reconstruction and
Parameter Mapping

The idea of the proposed technique is similar to con-
ducting image reconstruction and parameter mapping
iteratively (40,41). Actually, in the original Cadzow
enhancement algorithm (21), Hankel low-rank approxi-
mation is achieved by performing Eq. [8] and Eq. [9]
alternately for infinite times (or till convergence). If we
strictly enforce Hankel low rankness, the resulting signal
extracted from the Hankel matrix will strictly obey expo-
nential decay, which is equivalent to performing T2
mapping. However, the proposed method only performs
Eq. [8] and Eq. [9] once per iteration (denote as inexact
Hankel low-rank approximation), which still generates
good results. This is probably because at the very begin-
ning of the algorithm, the reconstruction may contain a
lot of aliasing artifacts such that a strict Hankel low-rank
approximation may cause severe fitting error besides the
increased computing burden, while the inexact Hankel
low-rank approximation is able to gradually impose lin-
ear predictability with iterations.

Limitation and Future Work

One limitation of the proposed method is that a uniform
threshold is used to enforce the Hankel low-rankness
over all spatial locations. However, it would be desirable
to adopt spatially adaptive thresholds because the T2
relaxation values may vary significantly with spatial
locations. Future work will also investigate applications
in multiexponential parameterization and other exponen-
tial decay models such as T1rho mapping (42).

CONCLUSIONS

This work proposed to incorporate the exponential priors
into the reconstruction of the T2-weighted image series
from undersampled k-space data. The reconstruction
problem was solved using an alternating nonlinear filter-
ing method. Both simulation and in vivo results demon-
strated the superiority of the proposed method to the
state-of-the-art image reconstruction methods at different
reduction factors and noise levels.
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APPENDIX
Proof of Linear Predictability

We say a discrete signalsy[m)] is linear predictable to the
L-th order if and only if it satisfies:

L
solm] = yiso[m — 1] [A1]
I=1

L
Let us assume sp[m] = Z aje PmAL and substitute it in
Eq. [A1]: 1=1

L
> ouz" = y150[m — 1] + y,80[m — 2] + -+ + yp8o[m — L
=

L L L
= —ylzalefﬁl(mflmt + vzzal(;ﬁz(mfz)ﬁf 4. "YLZOL1878’(HPL)N
I=1 I=1 I1=1

L
—1 —2 —L
= Zal'hzfn +apy,z T ey
=1

[A2]

where z; = e P4, For the summation in Eq. [A2] holds,
we could expect the equality holds for each I, yielding:

OLIan = 0‘1'\’1an_1 + OLI'YZZ;H_2 +oe OLI'YLZ;H_L [A3]
Dividing «;zi"© on both side of Eq. [A3], we get:

Zi =z v (A4]

To this end, if we could find coefficients v,,v,, -,y

satisfy Eq. [A4] for each I, the proof is done.

Actually, Eq. [A4] suggest that z;,z,, -,z are exactly
the L solutions of the polynomial function
zl =y, 28" + 4,272 + ... + y,. Thus, we can rewrite Eq.
[A4] as (z—z1)(z—23)---(z—2z,) =0 and consequently
find the linear predictable weights.

Proof of Hankel Low-Rankness

The Hankel matrix can be decomposed using matrix fac-
torization as:

So[l] 30[2] So [K]
I T sof3) sl 1| _
So[M—K+ 1] S(][M—K-‘rz} S()[M]

13
1 1 1 o
24 Zy Z, oy
where Q = | # 72 z |, 2= ,
ZMK MK ZM-K ar,
z, 7 zy
2 K L
Z, Z5 - Z
2 2 2
P= ,Solm] = Zouz}”
=1
2 K
2L 2L 7
As long as o; # «;,Vi # j, rank(H) = rank(3) = L
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