
Magnetic Resonance Imaging 33 (2015) 1106–1113

Contents lists available at ScienceDirect

Magnetic Resonance Imaging

j ourna l homepage: www.mr i journa l .com
Image reconstruction from phased-array data based on multichannel

blind deconvolution
Huajun She a, Rong-Rong Chen a, Dong Liang b, Yuchou Chang c, Leslie Ying d,⁎
a Department of Electrical and Computer Engineering, University of Utah, Salt Lake City, UT 84112
b Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory for MRI, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen, P.R. China
c Neuroimaging Research, Barrow Neurological Institute, Phoenix, AZ 85013
d Department of Biomedical Engineering, Department of Electrical Engineering, The State University of New York at Buffalo, Buffalo, NY 14260
⁎ Corresponding author at: Department of Biomedica
Electrical Engineering, The State University of New Yo
Buffalo, NY 14260. Tel.: +1 716 645 1609.

E-mail address: leiying@buffalo.edu (L. Ying).

http://dx.doi.org/10.1016/j.mri.2015.06.008
0730-725X/© 2015 Elsevier Inc. All rights reserved.
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 14 January 2015
Revised 4 June 2015
Accepted 20 June 2015

Keywords:
Phased array coils
Non-uniform intensity
Multichannel blind deconvolution
Regularization
Image restoration
In this paper we consider image reconstruction from fully sampledmultichannel phased arrayMRI data without
knowledge of the coil sensitivities. To overcome the non-uniformity of the conventional sum-of-square
reconstruction, a new framework based on multichannel blind deconvolution (MBD) is developed for joint
estimationof the image functionand the sensitivity functions in imagedomain. Theproposedapproachaddresses
the non-uniqueness of the MBD problem by exploiting the smoothness of both functions in the image domain
through regularization. Results using simulation, phantom and in vivo experiments demonstrate that the
reconstructions by the proposed algorithm are more uniform than those by the existing methods.
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1. Introduction

MRI using phased array coils has emerged as a powerful technique
to improve signal-to-noise ratio (SNR) of an image [1], reduce image
acquisition time [2–4], or remove artifacts [5].With phased array coils,
the acquired images usually have non-uniform intensity due to the coil
sensitivity weighting. Removal of the sensitivity weighting for the
original image requires prior knowledge of the sensitivities of the
receiver coils [1,6,7]. A typicalmethod to reconstruct theoriginal image
without such prior information is the sum-of-squares (SOS) method
[1]. Other combination approaches [8–10] have also been proposed to
improve SNR. For the SOSmethod, the reconstructed image is obtained
by taking the square root of the sum of the absolute squares of the
multiple images acquired with phased array coils. The SOS method
effectively removes the spatially varying sensitivity weighting under
the key assumption that the sum of the absolute squares of all
sensitivity functions is spatially uniform. This assumption, however, is
usually violated with surface coils, and the reconstructed image tends
to be dark at locations further away fromall coils (e.g., the center of the
array). The non-uniformity of the image intensity greatly complicates
further automatic analysis such as registration and tissue segmenta-
tion [11]. Although non-uniform intensity of single-coil images has
been addressed by numerousworks (e.g., [11] and references therein),
few [12,13] have studied the issue in the context of multi-coil images.
In [12], an lp norm was used in replace of the l2 norm in the SOS
reconstruction to improve the uniformity, based on the assumption
that the lp norm of the sensitivity is uniform. The accuracy of such
assumption, however, depends on specific coil structures. Another
method in [13] is based on amultichannel blind deconvolution (MBD)
framework [14–16], treating both the original image and the
sensitivity functions as unknowns to be reconstructed simultaneously.
It adopts a subspace-based MBDmethod to perform deconvolution in
the image domain and assumes a polynomial model for the sensitivity
functions. A limitation of themethod is that it is sensitive to noise, and
typically high-SNR acquisitions are needed for uniform reconstruc-
tions. Compared to [12], theMBDapproach in [13]does not imposeany
uniformity constraint on the combined coil sensitivities.

In this paper, we propose a new approach to reconstruct the
original uniform image using fully sampled multichannel data.
Inspired by an approach developed previously for image super-
resolution [17], the proposedmethod uses regularizations to address
the non-uniqueness of the solutions, which utilize the prior
information that the image and sensitivity functions are smooth in
the image domain.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mri.2015.06.008&domain=pdf
http://dx.doi.org/10.1016/j.mri.2015.06.008
mailto:leiying@buffalo.edu
http://dx.doi.org/10.1016/j.mri.2015.06.008
http://www.sciencedirect.com/science/journal/0730725X
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2. Theory

2.1. Summary of the MBD structure

In MRI with phased array coils, the k-space data are acquired
simultaneously from L receiver coils with different sensitivities. The
acquired data are the Fourier transform of the sensitivity-weighted
images. The imaging equation is given by

Yi kx; ky
� �

¼ ∬ f x; yð Þhi x; yð Þe− j2π kxxþkyyð Þdxdy; ð1Þ

where (x,y) are image domain coordinates, f(x,y) is the desired
object image, hi(x,y) are the sensitivity functions for the i-th coil
(i = 1,2,⋯,L), (kx,ky) are k-space domain coordinates, Yi(kx,ky) are
the k-space sampling data collected from the i-th coil. The
discretized sensitivity-weighted image represented by

yi m;nð Þ ¼ f m;nð Þhi m;nð Þ ð2Þ

can beobtainedby taking the inverse discrete Fourier transform (IDFT)
of the acquired k-space data sampled above the Nyquist rate. When
both the original image f(m,n) and the sensitivity functions hi(m,n) are
unknown, the problem of reconstructing the original image from the
output yi(m,n) can be handled in the MBD framework.

2.2. Subspace approach and maximum-likelihood approach

Two approaches are widely used for MBD image reconstruction.
The first approach is the maximum-likelihood method [14], named
ML-MBDhere, which utilizes the data consistency inmeasurements in
Eq. (2). The second one for MBD is the subspace method [15,16],
named Subspace-MBD here, which utilizes the property, referred to as
the cross-relation, that in the absence of noise, if the output of the i-th
channel is put into the j-th channel, then the signal generated is the
same as that generated by putting the output of the j-th channel into
the i-th channel. According to the properties of DFT, these k-space data
are the circular convolution of the original image and the sensitivity
functions, both in k-space:

Yi km; knð Þ ¼ F km; knð Þ � Hi km; knð Þ; ð3Þ

where “*” denotes 2-D circular convolution. Thereforemathematically,
we have

Yi � Hj−Y j � Hi ¼ 0; ð4Þ

where Hi and Hj are Fourier transform of hi and hj, and “*” is the
convolution operator. Combining Eq. (3) for all (i, j) pairs,we obtain a set
of equations which can be used to solve for the sensitivity functions Hi

given the acquired data. The Subspace-MBD approach was adopted in
[13] where the sensitivity functions are modeled as polynomials in the
image domain. Since multiplication of polynomials becomes a linear
convolution between the polynomial coefficients, the Subspace-MBD
methodwasemployed.However, theSubspace-MBDapproach isknown
tobe sensitive tonoise,which is alsodemonstrated in theResults section.

For our case of interest, we observe that the solutions to both
Eqs. (3) and (4) are not unique. To see this, we first show that the
SOS reconstruction is always a solution to Eqs. (3) and (4). Let us
consider the SOS reconstruction

f sos m;nð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

yi m;nð Þj j2
vuut ; ð5Þ
and the corresponding sensitivity function given by

hsos;i m;nð Þ ¼ yi m;nð Þ
f sos m;nð Þ ; i ¼ 1;⋯; L: ð6Þ

It follows that

yi m;nð Þ ¼ f sos m;nð Þhsos;i m;nð Þ; ð7Þ

and equivalently in k-space

Yi km; knð Þ ¼ Fsos km; knð Þ � Hsos;i km; knð Þ: ð8Þ

This verifies that the SOS reconstruction is a solution to Eq. (3).
One can further verify that the following cross- relation holds:

Y j km; knð Þ � Hsos;i km; knð Þ ¼ Yi km; knð Þ � Hsos; j km; knð Þ; ð9Þ

which suggests that the SOS reconstruction is also a solution to the
cross-relation Eq. (4). It is easily seen that when we multiply a
particular pixel of the SOS image fsos(m,n) by γ, and multiply the
corresponding pixel of sensitivity function hsos,i(m,n) by 1/γ to
obtain a new pair of f(m,n) and hi(m,n), the new pair is still a solution
to Eqs. (3) and (4). This confirms the non-uniqueness of both the
ML-MBD and Subspace-MBD methods for our case of interest.

2.3. P-norm approach

Thep-normapproach is ageneralizationof the traditional SOSmethod.
SOS is simple to implement and has nearly optimal SNR, butmay still lead
to inhomogeneous images. The p-norm combination is given by

f pnorm m;nð Þ ¼
XL
i¼1

yi m;nð Þj jp
!1=p

: ð10Þ

After the p-norm combination is computed, a constrained
optimization problem is solved to estimate the vectorized optimal
sensitivity function h

!
:

arg min
h
!

i

XL
i¼1

diag f
!

pnorm

� �
h
!

i− y!i

��� ���2 þ λ
XL
i¼1

R h
!

i

� �
; ð11Þ

where y!i is the vectorized image data, f
!

pnorm is the vectorized p-norm
combination, diag(•) denotes putting thevector into thediagonal of the
matrix, and h

!
i is the vectorized sensitivity function, and Rð h!iÞ is the

total variation regularization term of the sensitivity functions. Then the
estimated sensitivities are used to compute the weights:

wi m;nð Þ ¼ h�i m;nð ÞX
i

hi m;nð Þj j2
; ð12Þ

where (·)* is the conjugate operator. These weights are finally used to
compute the optimal linearly combined image [1]

f opt m;nð Þ ¼
X
i

wi m;nð Þyi m;nð Þ: ð13Þ

The p-norm combination may improve image homogeneity in
noise free environment [12]. However, with image noise, SNR of fopt
is degraded after the p-norm combination [12].



Fig. 1. Simulation results for a 128 × 128 image reconstructed from a set of 8-channel data. The first row shows the true image and the reconstructed images using the proposed
MAP-MBD, p-norm, Subspace-MBD andML-MBDmethods. The nRMSE is shown on each subfigure. The second row shows the difference images between each reconstruction and
the true image. It is observed that the SOS reconstruction is the darkest in the central region and thus it exhibits the largest difference from the true image. The difference image of
the Subspace-MBD method is also quite noticeable. Since this simulated dataset is noise free, the proposed MAP-MBD method, the p-norm method and the ML-MBD method
perform similarly in both the visual image quality and the nRMSE.
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2.4. MAP-MBD approach

Given the non-uniqueness of the ML-MBD approach, we propose
a new approach which employs regularization in the maximum
likelihood method to resolve the ambiguity in non-unique solutions.
Two regularization terms are used with one for the image function
and the other for the sensitivity functions, both incorporating
smoothness constraint in the image domain. The proposed method
can be equivalently regarded as a maximum a posteriori (MAP)
method with known prior [18], and is thereby named the MAP-MBD
approach. To estimate the vectorized image f

!
and sensitivity

functions h
!

i,i = 1,…,L, we minimize an objective function defined as

E f
!
; h
!

i

� �
¼
XL
i¼1

diag h
!

i

� �
f
!− y!i

��� ���2 þ αR f
!� �

þ β
XL
i¼1

R h
!

i

� �
: ð14Þ

The first data consistency term measures the fidelity to the data
and comes from the acquisition model in Eq. (2). The last two
regularization terms utilize the smoothness of the image and the
sensitivity functions in the image domain. Rð f!Þ is the l2 norm of the
finite difference of the image defined as

R f
!� �

¼ f
!H

Λ f
!
; ð15Þ

where Λ is a positive semi-definite block tri-diagonal Laplacian
matrix. The parameters α and β are adjusted to control the
convergence and smoothness of the solution to Eq. (14).
Fig. 2. Images for the sum-of-squares of the true and estimated sensitivity functions obt
p-norm and ML-MBD methods show similar spatial variation to the true one, while those
suggested by the nRMSE.
2.5. Alternative minimization

It follows fromEq. (14) that the objective function can bewritten as

E f
!
; h
!

i

� �
¼
XL
i¼1

diag h
!

i

� �
f
!− y!i

��� ���2 þ α f
!T

Λ f
!þ β

XL
i¼1

h
!T

i Λ h
!

i: ð16Þ

Asa functionofboth f
!

and h
!

i, theobjective functionE inEq. (16) isnot
aconvex function.However,E is convexwithrespect to f

!
if h
!

i isfixedand is
also convexwith respect to h

!
i if f

!
isfixed. Thus, the optimization problem

can be solved by an alternative minimization (AM)method [17,19], which
computesaminimizationsequenceð f!

m
; h
!m

i Þalternatively. In the following
two-step approach we compute the derivatives with respect to f

!
and h

!
i,

respectively, and set them to be zero to find the minimizing values. After
initialized with f

!0
and h

!0
, them-th iteration is performed as follows

f-step:

f
!m ¼ arg min

f
! E f

!
; h
!m−1

� �
⇒

∂E

∂ f
!

¼ 0⇔
XL
i¼1

2 diag h
!

i
m−1

� �h i�
diag h

!
i
m−1

� �
f
!
− y!i

� �
þ αΛ f

!¼ 0;

ð17Þ

h-step:

h
!

i
m ¼ arg min

h
!

i

E f
!m; h

!
i

� �
⇒

∂E

∂ h
!

i

¼ 0⇔2 diag f
!m
� �h i�

diag f
!m
� �

h
!

i− y!i

� �
þ βΛ h

!
i ¼ 0;

ð18Þ
where (·)* is the conjugate operator.
ained from various methods. The combined sensitivity functions from the proposed,
from the SOS and Subspace-MBD methods are not as close, as seen visually and also



Fig. 3. Experimental results from a set of phantom data. The image intensity of the proposed MAP-MBDmethod is more uniform than that of the SOS, p-norm, Subspace-MBD and
ML-MBD methods.
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3. Methods

TheproposedMAP-MBDmethodwasevaluatedon fourT1-weighted
datasets: simulated data, phantom data, in vivo brain data, and in vivo
cardiac data. All reconstructionmethods were implemented inMATLAB
(MathWorks, Natick, MA) on a workstation (Hewlett-Packard, Palo
Alto, CA). The SOS reconstruction, the p-norm reconstruction, the
Subspace-MBD reconstruction and the ML-MBD reconstruction are
provided for comparison. All reconstructed images for the same
dataset are normalized and shown individually on the same scale for
visual evaluations of uniformity in intensity.

3.1. Simulation

A 128 × 128 MR image is used as the original image. The
simulated k-space data (noise free) were generated by Fourier
transforming the images weighted by a set of eight sensitivity
functions. The sensitivity functions were simulated using the Biot–
Savart law [20]. The objective of this simulation experiment is to
study the effectiveness of the proposed method under noise-free
measurements. The proposed method is compared with the SOS,
Subspace-MBD, p-norm and ML-MBD methods with the true image
as the reference. The values for the regularization parameters are:
α = 1 × 10−5, β = 1 × 10−2 for the proposed method.

3.2. Phantom experiment

The objective of the phantom experiment is to demonstrate that
the proposed method can generate uniform intensity in reconstruc-
tions. A phantom that is piecewise-constant was used for easy
identification of non-uniformity. A T1-weighted scan was performed
on the phantom using a two-dimensional spin echo sequence on a
3 T commercial scanner (GE Healthcare, Waukesha, WI) with an
four-channel torso coil (echo time/pulse repetition time = 11/300 ms,
FOV = 18 × 18 cm, matrix = 256 × 256, slice thickness = 1.7 mm).
For comparison, SOS, MAP-MBD, Subspace-MBD with polynomial
model, p-norm and ML-MBD methods were used for reconstruction.
Fig. 4. Experimental results from a set of in vivo sagittal brain data. The higher level of uniformity in the proposed method makes image details more visible in the central uppe
part of the brain image when compared with the SOS method. The Subspace-MBD reconstruction is very dark towards the neck. The p-norm and ML-MBD reconstructions are
much noisier than the MAP-MBD reconstruction.
The regularization parameters are: α = 1 × 10-5, β = 1 × 102 for the
proposed method.

3.3. In vivo human brain imaging experiment

This experiment is to examine the performance of the proposed
method when applied to in vivo data. One set of sagittal in vivo human
brain data was acquired. The sagittal data set was on a GE 3 T scanner
(GEHealthcare,Waukesha,WI)with a four-channel head coil and a 3D
T1-weighted spoiled gradient echo sequence (TE = minimum full,
TR = 7.5 ms, FOV = 24 × 24 cm, matrix = 256 × 256, slice thick-
ness = 1.7 mm). Informed consent was obtained from the volunteer
in accordancewith the institutional review board policy. Similar to the
phantom study, the SOS, MAP-MBD, Subspace-MBD, p-norm and
ML-MBDmethods were used for performance comparison. The values
for the regularization parameters are:α = 1 × 10−5,β = 1 × 104 for
the proposed method.

3.4. In vivo cardiac imaging experiment

This experiment is to examine the performance of the proposed
method when applied to one frame of in vivo cardiac data, where
air-tissueboundariesmight inducesharp transitions in theestimatedcoil
sensitivities for traditionalmethods. The datasetwas acquired froma3 T
scanner (Siemens Trio, Erlangen, Germany), with a 12 channel phased
array coil (combined to 4 coils), using a 2D true FISP sequence
(TE = 1.87 ms, TR = 29.9 ms, BW = 930, flip = 50°, FOV =
34 × 28.6875 cm, matrix = 256 × 216, slice thickness = 6 mm).
The SOS, MAP-MBD, Subspace-MBD, p-norm and ML-MBD methods
wereused forperformance comparison. The values for the regularization
parameters are:α = 1 × 10−4, β = 1 × 104 for the proposedmethod.

3.5. Parameters selection

For the proposedmethod, different regularization parameters are
needed for optimization. Regarding the choice of parameters, we
find: (a) the parameters should be chosen such that the three terms
r



Fig. 5. Experimental results from a set of in vivo cardiac data. The top row compares the reconstructions and the bottom row compares the sensitivities of a coil near the air-tissue
interface for all methods. The central regions of the SOS reconstruction and the Subspace-MBD reconstruction are both darker than that of the proposed MAP-MBD method. The
higher level of uniformity in the MAP-MBD method makes image details around the heart more visible (indicated by the lower white arrow) than that of the SOS and the
Subspace-MBD methods. The p-norm and ML-MBD reconstructions are noisier than that of the MAP-MBD method, especially at the front and back of the chest (indicated by the
upper white arrow). The MAP-MBD provides a smooth and clean estimation of the sensitivity, which agrees with the physical property of receiver coils.

1110 H. She et al. / Magnetic Resonance Imaging 33 (2015) 1106–1113
in Eq. (16) are roughly in the same order. (b) Since the sensitivity
function is in general smoother than the image, the parameter β
should be orders of magnitude larger than α to impose a stronger
smoothness constraint.

4. Results

4.1. Simulation

To study the effectiveness of the proposed method under
noise-free measurements, we have compared the SOS, MAP-MBD,
p-norm, Subspace-MBD, and ML-MBD methods using simulated
data. Fig. 1 presents the true image and the reconstructed images
obtained from the SOS, MAP-MBD, p-norm, Subspace-MBD and
ML-MBD methods, together with the difference images between each
reconstructed imageand the true image. Fig. 2 showsthesum-of-squares
of the corresponding sensitivity functions. It is observed in Fig. 1 that the
center part of the SOS reconstruction ismuch darker compared to that of
theothermethods. This is because theSOS reconstruction is basedon the
assumption that the sum of square of the sensitivity functions is a
constant. However, as shown in Fig. 2, this assumption is clearly violated
for the sensitivity functions. Similarly, neither the image nor the
sensitivities obtained by the Subspace-MBD method resemble the true
Fig. 6. Comparison of random initialization and p-norm initialization. Both initialization methods lead to similar reconstructions.
ones. In contrast, the sum-of-squares of the estimated sensitivity
functions obtained by the MAP-MBD, p-norm and ML-MBD methods is
non-uniform and resembles that of the true one. It suggests that in the
noise-free case, the proposed method performs similar to the p-norm
and ML-MBD methods.

4.2. Phantom experiment

For the phantom data, Fig. 3 presents the reconstructed images
using four different methods. We observe that the intensity of
reconstruction using the proposed method is more uniform across
the whole image, when compared with the SOS reconstruction,
which is very dark in the center, the p-norm method, which is
non-uniform around the center, the Subspace-MBD method, which
is clearly non-uniform along the vertical direction, and the ML-MBD
method, which is also non-uniform around the center.

4.3. In vivo human brain imaging experiment

Reconstructions for the in vivo human brain data are shown in
Fig. 4. The intensity of the reconstruction by the proposedMAP-MBD
method is more uniform across the whole image, when compared
with those by the SOS, p-norm, Subspace-MBD, and ML-MBD



Fig. 7. Comparison of image-domain and k-space reconstructions. Image domain method provides more uniform intensity across the image.
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methods. In particular, the central upper region of the brain image is
sharper than that in the SOS reconstruction. The Subspace-MBD
method is unable to provide a uniform reconstruction, possibly due
to its lack of robustness to noise. The p-norm and ML-MBD
reconstructions are seen to be much noisier compared with the
proposed MAP-MBD reconstruction.

4.4. In vivo cardiac imaging experiment

Reconstructions for the in vivo cardiac data are shown in Fig. 5.
The intensity of the reconstruction by the proposed MAP-MBD
method is more uniform across the image, when compared with
those by the SOS and Subspace-MBD methods. The p-norm and
ML-MBD reconstructions are much noisier than those of the
proposed method. The sensitivity reconstructions of one coil near
the air–tissue interface for all methods are also shown in Fig. 5.
While the true sensitivity is unknown, the MAP-MBD estimation
gives a smoother and cleaner estimation of the sensitivity than that
of the other methods over the entire FOV. This agrees with the
physical property of the receiver coil sensitivity [3,13,19].

5. Discussion

5.1. Relation to previous works

As introduced earlier, the proposed MAP-MBD method is a
regularized version of ML-MBD method. When the regularization
parameters α and β of MAP-MBD method are set to be zero, the
MAP-MBD method becomes ML-MBD. Without the regularization
Fig. 8. Reconstructions of the proposedmethod for the 1st, 4th, 6th, and 10th iterations. After the 1st iteration, the reconstruction is seen to be close to the p-norm result, and after
4 iterations, the uniformity is improved. Further iterations do not improve the uniformity much.
terms, the solution of ML-MBD method may reach some local
minimum which might be far away from the true image. The
comparisons of MAP-MBD and ML-MBD reconstructions in Figs. 1–5
demonstrate the superior performance of MAP-MBD over ML-MBD.

It is also worth noting that the first iteration of proposed method
is similar to the p-norm method. Both methods aim to find the
optimal sensitivities among the infinitely many possible solutions.
However, the p-norm method terminates without further utilizing
the reconstructed image to improve the sensitivities or vice versa. In
contrast, the proposed method improves the image and sensitivities
through AM iterations. Such AM optimization method can be proved
to converge to a local minimum [21], which gives a suboptimal
solution to the original nonconvex problem.

5.2. Initialization

The proposed method is robust to different initializations. We
have studied random initialization with noise like image and
sensitivities as well as initialization with the p-norm combination.
Fig. 6 compares the results of random initialization and p-norm
initialization. We can see that both initialization methods lead to
similar reconstructions.

5.3. Convergence and computation complexity

The proposed method converges fast and only needs 6–8 AM
iterations. In the reconstruction of the sagittal brain dataset, the
computer running time is around 120 s (for 6 AM iterations). We
have also previously investigated the k-space implementation of the



Fig. 9. Convergence curve showing the value of the objective function of the proposed
method is decreasing more rapidly at the first few iterations, but remains almos
unchanged afterwards.

ig. 10. Simulation results based onmodified in vivo cardiac data used in Fig. 5. The to
lightly smaller than the selected object, causing a small overlap in the acquired ima
ages than the p-norm and ML-MBD methods, and more uniform images than t

ensitivities in the entire FOV.

1112 H. She et al. / Magnetic Resonance Imaging 33 (2015) 1106–1113
t

proposed method, which was partially reported in [22]. The k-space
method takes more than 600 s for the same set of sagittal brain data.
The reconstruction results of the image domain method and the
k-space method are also compared in Fig. 7. We can see that, for this
phantom dataset, the image-domain method improves the recon-
struction uniformity when compared with the k-space method. In
addition, the objective function decreases rapidly during the
beginning iterations. After that the algorithm converges and further
iterations do not improve the quality of reconstruction. This is
demonstrated in Fig. 8 for the in vivo brain data, where the first
iteration still gives inhomogeneous and noisy image, while the 4th
iteration reconstruction appears uniform, and the 6th iteration and
10th iteration show little difference from the 4th iteration. Fig. 9
shows the objective function Eð f!; h

!
iÞ versus the number of

iterations for the optimization. Eð f!; h
!

iÞ decreases till convergence
after 6 iterations, which matches the observation in Fig. 8.
5.4. Signal-to-noise ratio

In addition to the uniformity of intensity, the SNR of the final
reconstruction is also improved over the SOS, p-norm and ML-MBD
p row shows the reconstructions and the bottom row shows the sensitivity maps. The FOV is
ge (at the top and bottom). The proposed MAP-MBD method can still reconstruct less noisy
he Subspace-MBD method. The MAP-MBD method also gives a smooth estimation of coil
F
s
im
s

reconstructions due to the regularization terms for both image and
sensitivities in the proposed method. We can observe the improve-
ment of SNR for the proposed method over SOS, p-norm andML-MBD
reconstructions in Figs. 4 and 5 as discussed in the Results section.

5.5. Smaller FOV imaging

In practice, sometimes the field of view (FOV) is slightly smaller
than the selected object, causing a small overlap in the acquired
image [23,24]. In this case, the estimated coil sensitivities might have
sharper features than those of the case with full FOV. In the
following, we simulate such a scenario based on the cardiac data in
Fig. 5. First, we shift each coil’s image up and down by several pixels
and then add the shifted images to the original image. Next, we
truncate the summation images to a reduced FOV to construct a case
in which the FOV is slightly smaller than the selected object and thus
aliasing occurs. The reconstructions are shown in Fig. 10, where the
overlap occurs at the top and bottom of the image. The conclusion
remains the same that the proposed MAP-MBD method can still
reconstruct cleaner images than those of the p-norm and ML-MBD
methods, and more uniform images than the Subspace-MBD
method. The estimated sensitivity map by the MAP-MBD method
also gives a smooth estimation over the entire FOV, which agrees
with the physical property of receiver coils.

6. Conclusion

In this paper, we develop a regularized MAP-MBD method for
image reconstruction using multichannel phased-array MRI data.
The proposed method is compared with SOS, Subspace-MBD,
p-norm, and ML-MBD methods using phantom and in vivo
experiments. The results demonstrate that the proposed method
reconstructs more uniform images than the SOS does. It is also more
robust than the Subspace-MBD approach in the presence of
measurement noise. The proposed method provides more uniform
images than the SOS and Subspace-MBDmethods, and improves SNR
of the p-norm and ML-MBD methods.
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