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ABSTRACT

Although being high-dimensional, dynamic magnetic
resonance images usually lie on low-dimensional manifolds.
Nonlinear models have been shown to capture well that
latent low-dimensional nature of data, and can thus lead to
improvements in the quality of constrained recovery
algorithms. This paper advocates a novel reconstruction
algorithm for dynamic magnetic resonance imaging (dMRI)
based on nonlinear dictionary learned from low-spatial but
high-temporal resolution images. The nonlinear dictionary is
initially learned using kernel dictionary learning, and the
proposed algorithm subsequently alternates between sparsity
enforcement in the feature space and the data-consistency
constraint in the original input space. Extensive numerical
tests demonstrate that the proposed scheme is superior to
popular methods that use linear dictionaries learned from the
same set of training data.

Index Terms — Sparse coding, kernel dictionary
learning, compressed sensing, dynamic MRI

1. INTRODUCTION

Accelerated dMRI is desirable for high-temporal and spatial
resolutions [1][2]. Compressed sensing (CS) has shown
potential in addressing the tradeoff between temporal and
spatial resolutions in dMRI. Both sparsity [3][4][5] and/or
low-rank [6][7] properties have been widely exploited as
prior constraints in CS recovery. Among sparsity-cognizant
MRI recovery methods, learning dictionaries have shown
advantages over many fixed sparsifying transforms [8]-[12].
Lately, few works have studied kernel-based nonlinear
dictionary learning (DL) [13]-[19] to capture the intrinsic
nonlinear correlations in signals often neglected by classical
linear models. Among these works, kernel CS [19] not only
learns the dictionary but also reconstructs the signal in the
feature space, and then finds the pre-image in the original
space. However, as with most machine learning algorithms,
a sufficient number of training data is very important for
kernel CS. In MRI, only low-spatial but high-temporal
resolution images (or vice versa) are available as training
data. However, those data are not rich enough to capture the
features of the high-spatial and temporal resolution images.
As such, kernel CS faces severe obstacles when applied to
dMRI
Recent works [20]-[23] investigated applying kernel
principal component analysis (PCA) to reconstruct MR or

dynamic MR images and showed improvements over linear
(conventional) PCA. Motivated by the success of kernel K-
SVD in yielding more compact signal representations than
kernel PCA [14], this paper studies the use of kernel DL in
dMRI recovery. A novel dMRI reconstruction method is
advocated based on nonlinear DL and kernel K-SVD.
Similar to the conventional linear-dictionary-based dMRI
reconstruction methods, nonlinear dictionaries are learned in
a high-dimensional feature space using the high-temporal
but low-spatial resolution dynamic images acquired in the
original input space. Our method comprises nonlinear
dictionary learning, sparsity enforcement in the feature
space, and preimaging back to the input space for data
consistency.

The rest of the paper is organized as follows. In section 2
the proposed method and a detailed description of its steps
are presented. Section 3 provides numerical tests, and
section 4 concludes the paper.

2. THEORY AND METHODS

As in CS with linear dictionary learning, we are interested in
reconstructing an image series while a nonlinear dictionary
is learned from training data. Since the computational
complexity of DL algorithms is usually high, practical
reconstruction models often enforce ‘patch-level’ sparsity.
Data patches can be extracted along the spatial direction, the
temporal direction, or both. Given the nonlinear transform
¢:y—>H, §:X—> @(X), from the input space y to the
high-dimensional feature space H, and using R; to represent
the operator for extracting the /" patch, the vector of the
dynamic image series x can be reconstructed by the
following kernel-based DL task
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where the first term is the total variation (TV) of the image
series, y is the undersampled k-space data, F, is the Fourier
transform with undersampling, ¢, is the sparse coefficient,

and ¢D)= [ #(d)),$(d,),.. .,¢(dN)] is the dictionary in

the feature space. To solve the optimization problem in (1),
the following three steps are taken: 1) nonlinear DL; 2)



sparsity enforcement; and 3) preimaging under the data-
consistency constraint.

2.1 Nonlinear dictionary learning

Let P=[p; p2, ..., Pr] be a set of T training signals. Here,
we use the temporal signal at a certain spatial location of a
set of high-temporal, low-spatial resolution dynamic images
as the training signal p, Accordingly, R, in (1) extracts the
temporal signal at a particular spatial location of dMRI.
Consequence of the Representer’s theorem, the learned
dictionary ¢(D) should lie in the subspace spanned by the
training data, the dictionary in the feature space can be
represented as @(D) = @(P)B. In the DL step, our objective

is to find B and W={m,} such that
min > I¢(®)-gPYBW s.t. oo, < 7. )
> t

However, it is not computationally feasible to solve this
problem because of two major restrictions: i) In most of the
cases the nonlinear map ¢ is not explicitly defined, and ii)

the dimension of feature space is prohibitively large, even
infinite. Let a polynomial kernel function be

k(p .p)=(p,.p,)+c) =(¢(@ )¢®;) and the kernel

k(p,,p,) k(p,,p;)

matrix K, = : Based on
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Mercer’s theory, (2) takes the form of
2
l¢(P)— 4PBW][,. - r(1-BW) K ,(1-BW)), (3)

rendering computations free from explicit transformation.
The DL step alternates between the calculation of B
(dictionary update) and W (nonlinear sparse encoding).
Nonlinear sparse encoding: This step is similar to classical
orthogonal matching pursuit (OMP) [27] in feature space
termed as Kernel OMP [16]. In this step, the overcomplete
dictionary B is fixed and our objective is to find the
coefficients ®,,Vt, corresponding to 7 columns of B. Let

I, denote the set of selected columns of B, p. be the

approximation, r, the residual, at i"™ iteration,

Proj,(r' ) =(k,, —K,(p' )" )b,, g2 1, (4)
where, k =[k(p,,p,).k(p,;,P,)>--- k(P P;)], at i=0, 1=0,
f)‘; =0 and r;’, = ¢(p,) . The index set I is updated as
1=1 uargmaxq|Projq|. Letting B~ denote the set of
columns of B indexed by /,, then, the coefficient vector
a)i at i" iteration is calculated as

@ =B'K,B ) k,B)". (5)

The approximation is updated as p, =B @, .The process
then repeats 7 times for each of the training signal.
Dictionary update: The dictionary update process is carried
out in a similar fashion as in K-SVD [24]. Given W from
the nonlinear sparse encoding step, the dictionary
approximation penalty is calculated as
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where E_- LI—Z b,m’J . M- (b,®"). b, is q" column of
J#q

B, and @’is the q" row of W. Similarly as in [24], the

shrinked-error and contribution matrices are estimated as

E*=E o M‘=M a , respectively, where Q is the
q 9 9 q 7 9 q

shrinkage matrix with binary entries. Hence the penalty term
in (6) is reduced to

o, g | - Joeres - 0] )

Based on the principle that ¢(P)quj§ is rank-1 matrix, as
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in KSVD, and relating the SVD of ¢(P)Eq as the Eigen-
decomposition of kernel matrix as,

(ER)'K,(Ef) = VAV', ®)
the optimal solution bq, o’of (7) can be obtained as,
of=Av] and b, = (NA) "' Elv,, where Ais the

Eigen-value corresponding to the first Eigen-vector in (8) .
It should be noted here that, the dictionary update is carried
out for each column of B. The sparse encoding and
dictionary update process is then iterated.

2.2 Sparsity enforcement

Given the learned nonlinear dictionary B from Section 2.1,
nonlinear sparse encoding enforces the sparsity constraints
on the desired dynamic image sequence. For the desired
image x, we find the sparse representation coefficients E ={
@, }, such that

min [4RX)—¢(P)Ba; st |af,<rv. (9

We can see that this problem is similar to the nonlinear
sparse encoding step in the section 2.1. Letting it =Rx,

we modify (4) and (5) as
Proj, (r')=(k, —K, (X)) )b, g2 1,, (10)
o =B'KB) k,B)" (1n
k., =[k(x,,p,),k(X,,p,),- .. k(X,,p;)] and

> ilt = B”af , and the sparse coefficient can be computed

where

=i

pt
using the same step as in nonlinear sparse encoding.



2.3 Preimaging for data consistency

From section 2.1 we computed the basis ¢(P)B, which is a
nonlinear function of training data from input space, and
sparse coefficient ¢, from section 2.2 for the sparse
representation of dynamic images in features space such that
the dictionary penalty term (9) is satisfied. However, from
(2) and (9) it should be noted the sparse coefficients are in
the feature space whereas the image data and hence the data
consistency term is in the input space. So it is obligatory to
project the sparsity enforced images from feature space back
into the input space, the so called preimaging. Let T" be
defined such thatT"=BE . For a polynomial kernel function

with ¢>0and d = odd ,there exists an invertible function
f, such that, k(x,x )= f({(x,x)). Then the preimage

Z, ey of ¢()~(n) can be calculated as,

7,= 27, = 17 (k(z,,£)) . Hence,

i=1 i=1

7, = ka (27," k(p,,s‘,)) g

t=1

(12)

where y is the coefficient of #(X,) on the ¢(p,), given
by 7' =I(t,n), and & is any orthonormal basis in the

input space. Once we obtain z_ at all spatial locations, we

then use the Bregman alternating direction method of
multipliers [26] to alternate between the conjugate gradient
and TV enforcement.

Finally step 2 and step 3 are repeated until convergence.
The steps involved in the proposed method are summarized
in algorithm 1.

3. SIMULATIONS AND RESULTS

We used two data sets to evaluate the proposed method:
Simulated data from a numeric liver phantom, and the in-
vivo cardiac ASL data. Data matrix: 120 x120 x 25,
100x120x12; reduction factor R = 5, 3; 1-D random under
sampling, c=5,

d=3; # training signals =1,500, 2,000; overcomplete
dictionary size = 1,500, 2,000 were used for liver phantom
and cardiac data, respectively. Figure 1 shows the simulation
results for numeric liver phantom. We compare our results
with linear dictionary learning method based on K-SVD.
Results show that our method outperforms the conventional
linear method. For the phantom results, the linear method is
not able to remove the aliasing artifacts as effectively as the
nonlinear method. Figure 2 shows the results for the
myocardial region of the cardiac data. Due to space
constraints, we present only frames 2 and 5. It can be seen
that the proposed method is able to preserve more spatial
structures and reduce more aliasing artifacts than the linear
method as indicated by the yellow pointers.

Algorithm 1.
Step 1: Nonlinear Dictionary Learning.
a. Nonlinear Sparse Encoding.
For, T times

Calculate: Sparse Coefficients (ut using (8)

" =i i
Calculate i" approximation: pt = Bﬁm‘

Update column index set [
I
b. Dictionary Update.
Update: bq = (V)L)il E}v, and @} =1 V;r

Iterate a. and b,
Step 2: Sparsity Enforcement.

For each undersampled signal i[
For,i=1: T
Calculate: Proj, ( rj{ )
Calculate: Sparse Coefficients:
o =(B,'"K B )'(k,B)".
Calculate i™ approximation:

i', _Bao

it
Update column index set [
1

End
End
Step 3: Preimaging for Data Consistency

Calculate: I’'=BE
For each desired sparse signal:
Calculate preimage i"

Use ADMM to enforce conjugate gradient and TV
Iterate : Step 2 and Step 3.

Reference Linear Dictionary Proposed

Frame 3

Frame 9

Figure 1 Phantom results comparison

Proposed

Reference Linear Dictionary

Frame 3

Frame 5

Figure 2 Reconstruction results comparison for cardiac ASL data
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Figure 3 Temporal Intensity Curve

Kinetic information is also equally important in ASL
imaging to provide the perfusion map. For better
visualization we show the temporal curve of a particular
ROI (shown in inset picture) from myocardium region in
Figure 3. We can see that the proposed method follows the
reference curve more consistently than the conventional
linear method.

4. CONCLUSION

In this paper, we proposed a novel nonlinear dictionary
learning method within the framework of kernel methods for
dynamic MRI. The proposed method integrates the
principles of kernel dictionary learning and sparse
representation in the feature space to find efficient sparse
bases for dynamic MR images. Numerical tests have shown
promising results. At this stage, a single predefined kernel
was used to capture nonlinear correlations. However, we are
currently examining the more challenging case of multiple-
kernel learning, as well as the combination of both linear
and nonlinear kernels, to capture inherent linear
correlations, intrinsic nonlinear features, and to construct a
generalized nonlinear learning framework for various types
of dMRI signals.
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