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ABSTRACT 
Although being high-dimensional, dynamic magnetic 
resonance images usually lie on low-dimensional manifolds. 
Nonlinear models have been shown to capture well that 
latent low-dimensional nature of data, and can thus lead to 
improvements in the quality of constrained recovery 
algorithms. This paper advocates a novel reconstruction 
algorithm for dynamic magnetic resonance imaging (dMRI) 
based on nonlinear dictionary learned from low-spatial but 
high-temporal resolution images. The nonlinear dictionary is 
initially learned using kernel dictionary learning, and the 
proposed algorithm subsequently alternates between sparsity 
enforcement in the feature space and the data-consistency 
constraint in the original input space. Extensive numerical 
tests demonstrate that the proposed scheme is superior to 
popular methods that use linear dictionaries learned from the 
same set of training data.   

Index Terms — Sparse coding, kernel dictionary 
learning, compressed sensing, dynamic MRI 

1. INTRODUCTION

Accelerated dMRI is desirable for high-temporal and spatial 
resolutions [1][2]. Compressed sensing (CS) has shown 
potential in addressing the tradeoff between temporal and 
spatial resolutions in dMRI. Both sparsity [3][4][5] and/or 
low-rank [6][7] properties have been widely exploited as 
prior constraints in CS recovery. Among sparsity-cognizant 
MRI recovery methods, learning dictionaries have shown 
advantages over many fixed sparsifying transforms [8]-[12].  

Lately, few works have studied kernel-based nonlinear 
dictionary learning (DL) [13]-[19] to capture the intrinsic 
nonlinear correlations in signals often neglected by classical 
linear models. Among these works, kernel CS [19] not only 
learns the dictionary but also reconstructs the signal in the 
feature space, and then finds the pre-image in the original 
space. However, as with most machine learning algorithms, 
a sufficient number of training data is very important for 
kernel CS. In MRI, only low-spatial but high-temporal 
resolution images (or vice versa) are available as training 
data. However, those data are not rich enough to capture the 
features of the high-spatial and temporal resolution images. 
As such, kernel CS faces severe obstacles when applied to 
dMRI. 
Recent works [20]-[23] investigated applying kernel 
principal component analysis (PCA) to reconstruct MR or 

dynamic MR images and showed improvements over linear 
(conventional) PCA. Motivated by the success of kernel K-
SVD in yielding more compact signal representations than 
kernel PCA [14], this paper studies the use of kernel DL in 
dMRI recovery. A novel dMRI reconstruction method is 
advocated based on nonlinear DL and kernel K-SVD. 
Similar to the conventional linear-dictionary-based dMRI 
reconstruction methods, nonlinear dictionaries are learned in 
a high-dimensional feature space using the high-temporal 
but low-spatial resolution dynamic images acquired in the 
original input space. Our method comprises nonlinear 
dictionary learning, sparsity enforcement in the feature 
space, and preimaging back to the input space for data 
consistency.   
The rest of the paper is organized as follows. In section 2 
the proposed method and a detailed description of its steps 
are presented. Section 3 provides numerical tests, and 
section 4 concludes the paper. 

2. THEORY AND METHODS

As in CS with linear dictionary learning, we are interested in 
reconstructing an image series while a nonlinear dictionary 
is learned from training data. Since the computational 
complexity of DL algorithms is usually high, practical 
reconstruction models often enforce ‘patch-level’ sparsity. 
Data patches can be extracted along the spatial direction, the 
temporal direction, or both. Given the nonlinear transform

: ,H    : ( )x x , from the input space χ to the 
high-dimensional feature space H, and using Rt to represent 
the operator for extracting the tth patch, the vector of the 
dynamic image series x can be reconstructed by the 
following kernel-based DL task 
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where the first term is the total variation (TV) of the image 
series, y is the undersampled k-space data, Fu is the Fourier 
transform with undersampling, ct is the sparse coefficient, 
and  1 2( )  ( ), ( ), , ( )[ ]N   D d d d=  is the dictionary in 
the feature space. To solve the optimization problem in (1), 
the following three steps are taken: 1) nonlinear DL; 2) 



sparsity enforcement; and 3) preimaging  under the data-
consistency constraint. 
 
2.1 Nonlinear dictionary learning 
Let P = [p1 p2 , …, pT] be a set of T training signals. Here, 
we use the temporal signal at a certain spatial location of a 
set of high-temporal, low-spatial resolution dynamic images 
as the training signal pt. Accordingly, Rt in (1) extracts the 
temporal signal at a particular spatial location of dMRI. 
Consequence of  the Representer’s theorem, the learned 
dictionary ϕ(D) should lie in the subspace spanned by the 
training data, the dictionary in the feature space can be 
represented as ( ) ( ) D P B= . In the DL step, our objective 
is to find B and W={ωi} such that  

 
0

2
min
,

( )- ( ) . . .t
t

F s t  
B W

P P BW ω   (2) 

However, it is not computationally feasible to solve this 
problem because of two major restrictions: i) In most of the 
cases the nonlinear map   is not explicitly defined, and ii) 
the dimension of feature space is prohibitively large, even 
infinite. Let a polynomial kernel function be
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Mercer’s theory, (2) takes the form of   
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rendering computations free from explicit transformation.  
The DL step alternates between the calculation of B 
(dictionary update) and W (nonlinear sparse encoding).  
Nonlinear sparse encoding: This step is similar to classical 
orthogonal matching pursuit (OMP) [27] in feature space 
termed as Kernel OMP [16]. In this step, the overcomplete 
dictionary B is fixed and our objective is to find the 
coefficients t , t , corresponding to  columns of B. Let 

iI denote the set of selected columns of B, i

t
p  be the 

approximation, 
t

i
pr  the residual, at ith iteration, 
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i
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argmax Proj
i i -1 q q=I I  . Letting

Ii
B  denote the set of 

columns of B  indexed by iI , then, the coefficient vector 
i
t  at ith iteration is calculated as 
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The approximation is updated as 
Ii

i i
t tp B  .The process 

then repeats τ times for each of the training signal.  
Dictionary update: The dictionary update process is carried 
out in a similar fashion as in K-SVD [24]. Given W from 
the nonlinear sparse encoding step, the dictionary 
approximation penalty is calculated as 
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B , and q is the qth row of W . Similarly as in [24], the 
shrinked-error and contribution matrices are estimated as  

,=R R
q q q qq q E E M M , respectively, where q  is the 

shrinkage matrix with binary entries. Hence the penalty term 
in (6) is reduced to 
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Based on the principle that ( ) q
Rq P b   is rank-1 matrix, as 

in KSVD, and relating the SVD of ( ) q P E  as the Eigen-

decomposition of kernel matrix as,  
 ( ) ( ) ,q T q T

R p R  E K E V V   (8) 

the optimal solution qb , q of (7) can be obtained as, 

1
q T
R  v  and 1

1( ) q
q R b E v , where  is the 

Eigen-value corresponding to the first Eigen-vector in (8) . 
It should be noted here that, the dictionary update is carried 
out for each column of B.  The sparse encoding and 
dictionary update process is then iterated.   

2.2 Sparsity enforcement 

Given the learned nonlinear dictionary B from Section 2.1, 
nonlinear sparse encoding enforces the sparsity constraints 
on the desired dynamic image sequence. For the desired 
image x, we find the sparse representation coefficients ={

t }, such that 
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We can see that this problem is similar to the nonlinear 
sparse encoding step in the section 2.1. Letting = R tt

x x , 
we modify (4) and (5) as  
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p x B  , and the sparse coefficient can be computed 

using the same step as in nonlinear sparse encoding.   






