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Abstract

Sybil attacks present a significant threat to many Internet
systems and applications, in which a single adversary in-
serts multiple colluding identities in the system to compro-
mise its security and privacy. Recent work has advocated
the use of social-network-based trust relationships to defend
against Sybil attacks. However, most of the prior security
analyses of such systems examine only the case of social net-
works at a single instant in time. In practice, social network
connections change over time, and attackers can also cause
limited changes to the networks. In this work, we focus on
the temporal dynamics of a variety of social-network-based
Sybil defenses. We describe and examine the effect of novel
attacks based on: (a) the attacker’s ability to modify Sybil-
controlled parts of the social-network graph, (b) his ability
to change the connections that his Sybil identities main-
tain to honest users, and (c) taking advantage of the regular
dynamics of connections forming and breaking in the hon-
est part of the social network. We find that against some
defenses meant to be fully distributed, such as SybilLimit
and Persea, the attacker can make dramatic gains over time
and greatly undermine the security guarantees of the sys-
tem. Even against centrally controlled Sybil defenses, the
attacker can eventually evade detection (e.g. against Sybil-
Infer and SybilRank) or create denial-of-service conditions
(e.g. against Ostra and SumUp). After analysis and simula-
tion of these attacks using both synthetic and real-world so-
cial network topologies, we describe possible defense strate-
gies and the trade-offs that should be explored. It is clear
from our findings that temporal dynamics need to be ac-
counted for in Sybil defense or else the attacker will be able
to undermine the system in unexpected and possibly dan-
gerous ways.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General
– Security and Protection; K.4.1 [Computers and Soci-
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ety]: Public Policy Issues – Abuse and Crime Involving
Computers; K.6.5 [Management of Computing and In-
formation Systems]: Security and Protection – Authenti-
cation
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1. INTRODUCTION
In December of 2011, a political protest by Russian citi-

zens on the Twitter social network was swamped by spam
from thousands of bot accounts [14, 22]. Similarly, the Tor
anonymity network was infiltrated by a botnet in 2010 that
resulted in 25% compromised relays [1, 2], and more recent
attacks have been reported in which multiple relays, appar-
ently controlled by a single entity, attempted man-in-the-
middle attacks on users [32]. These incidents are examples of
Sybil attacks, in which a single entity controls many different
identities so as to overcome security mechanisms and attack
the system and its users [9]. Sybil attacks are a particular
concern for distributed systems, which lack a central author-
ity to vet identities and perform admission control. Many of
these designs assume a bound on the fraction of malicious
identities in the system for correct operations. For example,
byzantine consensus protocols, quorum-based systems, rep-
utation systems and distributed hash tables are designed to
tolerate only a bounded number of malicious identities. The
Twitter example, however, along with many other cases of
Sybil identities on online social networks [34, 23], shows that
even centralized systems have serious challenges with such
attacks.

An important thread of research proposes to defend against
Sybil attacks using social-network-based trust relationships [36,
35, 8, 15, 18, 4, 19, 26, 27, 16]. The key insight in these de-
fenses is that it is hard for an adversary to set up trust
relationships with honest users (called attack edges), partic-
ularly when user interactions are used to infer strong social
ties [11, 31] (see Section 2). Using a wide range of mecha-
nisms, a bound on the number of attack edges is translated
into a bound on the number of malicious Sybil identities that
an adversary can insert in the system. For example, Sybil-
Limit [35], a well-known distributed Sybil defense, offers a
proof of security based on this assumption. Given g attack
edges between honest users and an adversary, SybilLimit
claims that an adversary cannot insert more than g ·w Sybil
identities, where w is the mixing time of the social network.

While most Sybil defense mechanisms in the literature



have been analyzed theoretically or using experiments on
synthetic or real data, they have all been developed and
evaluated from the perspective of a static social network, in
which the trust relationships are established and unchang-
ing. Social networks, however, are constantly evolving as
new relationships are formed and others fade out [13], partic-
ularly when using the more dynamic interaction-based net-
works that are critical for strong Sybil defense [31]. Further,
attackers are not limited to attacking a system at a single
point in time and may be able to improve an attack’s ef-
fectiveness with persistent effort. These temporal dynamics
of Sybil defense systems have received very little attention
in the research community, and it is thus unclear whether
Sybil defenses provide any security guarantees over time.

Contributions:
In this paper, we begin to address this issue by investi-

gating the temporal dimension of Sybil defense systems and
its impact on system security. In particular, we examine the
following questions:

• What kinds of temporal dynamics do social networks
and Sybil defense systems have?

• What are the possible attacks that leverage these tem-
poral dynamics and how effective are they?

• What defense mechanisms that account for temporal
dynamics, or even leverage them, could be used to pre-
vent these attacks?

We identify three main temporal aspects of social net-
works that are relevant to Sybil defense: (a) churn among
the Sybil identities, in which the attacker replaces some iden-
tities with others; (b) churn in attack edges, in which the
attacker changes which honest users he targets for creating
an attack edge; and (c) churn among the honest users in the
social network.

We propose a general attack model that leverages these
temporal dynamics, and identify a number of possible at-
tacks on previously published Sybil defense systems. We
first examine a new attack on SybilLimit [35] based on churn
in Sybil identities—the counter elevation attack—that greatly
reduces the effectiveness of a key defense mechanism, a set
of counters used to track who is validating whom. We then
examine attacks based on churn in attack edges, including
attacks on SybilInfer [8], SybilRank [7], and a powerful at-
tack that undermines the effectiveness of the Persea Sybil-
resistant DHT [4]. Third, we examine how the Ostra [16]
and SumUp [27] systems can be leveraged by attackers to
conduct denial-of-service attacks when the attacker creates
churn in the Sybil identities.

Finally, we discuss possible countermeasures to these at-
tacks. While careful design may overcome some of the is-
sues that we explore in this paper, developing theoretically
backed defenses that explicitly address our temporal attacks
remains an important open problem for future work.

2. BACKGROUND AND RELATED WORK

2.1 Sybil Attack Problem
Consider a social network topology G = (V,E), compris-

ing a set V of nodes with a set E of edges. In the network
topology, a node v ∈ V denotes an identity, and an edge
(u, v) ∈ E denotes a relationship between two identities u

Benign Region Sybil Region

Attack Edges

Figure 1: Sybil attack problem.

and v. We only consider mutual relationships; hence G is
an undirected graph, and an edge exists in G only if both
nodes on that edge trust each other (bidirectional trust).
Every node v ∈ V in the network represents either an hon-
est (benign) user or a Sybil (malicious) identity. We denote
n to be the number of honest nodes in G, and denote m to
be the number of edges between honest nodes.

Figure 1 depicts the Sybil attack problem in social net-
works, in which an adversary can create an unlimited num-
ber of Sybil nodes and set up edges between them arbitrar-
ily. We denote the subnetwork comprising all honest nodes
to be the honest region, denote the subnetwork comprising
all Sybil nodes to be the Sybil region, and denote the edges
that connect the honest region and Sybil region to be the
attack edges. We denote g to be the number of attack edges.

2.2 Social Sybil Defenses
An important thread of research has investigated the use

of social trust relationships to mitigate the threat of Sybil
attacks [36, 35, 8, 7, 4, 16, 27], which rely on the insight that
it is costly for an adversary to set up trust relationships with
honest users (i.e., attack edges). These defenses use a wide
array of graph-theoretic techniques to bound the number or
influence of the Sybil identities in proportion to the number
of attack edges controlled by an adversary. For example,
the SybilLimit protocol [35] guarantees that an adversary
with g attack edges can insert about g · w Sybil identities,
where w is the mixing time of the honest social network.
Despite considerable differences between proposed mecha-
nisms, researchers have shown that they rely on identifying
local communities around a trust node [29].

Trust Assumptions: Social Sybil defenses often employ
two key assumptions. First, the honest region is fast mix-
ing, which presumes the existence of a well-connected, giant
community structure of honest users. Second, the social net-
work is a strong trust network, where the number of attack
edges is relatively small [29].

Prior work has shown that these assumptions oversim-
plify reality. Mohaisen et al. [20] measured the mixing time
of real-world social graphs and found that the actual mix-
ing time is longer than the theoretical value anticipated by
researchers who designed social Sybil defenses. This is due
to the presence of multiple small communities in real-world
social networks. Recent work has also questioned the as-
sumption that it is costly for an attacker to set up trust
relationships with honest users in the current online social
networks [31, 6, 12]. Yang et al. showed that the number
of attack edges may not be bounded if the underlying social
network does not have strong trust: RenRen, the largest



social networking platform in China, does not follow this as-
sumption [34]. Ghosh et al. [10] showed that link farming is
widespread on Twitter and that a majority of attack edges
are farmed from a small fraction of Twitter users. These
attacks highlight that relying on friendship links in current
online social networks is not sufficient.

We note that large number of attack edges and a longer
mixing time would degrade the security guarantees offered
by these systems (e.g. linearly with mixing time for Sybil-
Limit), but not render them inapplicable. Additionally, to
strengthen defenses against weak social links, prior work
has proposed (a) using user interactions to extract strong
real-world trust relationships that cannot be manipulated at
scale by an adversary [11, 31], or (b) explicitly asking users
to identify their most trusted social contacts [30].

3. OVERVIEW OF TEMPORAL ATTACKS
Temporal attacks against Sybil defenses exploit the dy-

namics of the underlying social network. Such attacks are
typically long-term attacks that incrementally exploit the
vulnerabilities of Sybil defenses as the system evolves. In
this section, we present a taxonomy of temporal attacks,
and formalize our temporal attack model.

3.1 Temporal Attack Taxonomy
Based on the type of the exploited dynamic, we categorize

temporal attacks into three categories: (1) attacks based on
exploiting churn in the Sybil region, (2) attacks based on
exploiting churn in the attack edges, and (3) attacks based
on exploiting churn in the honest social region. The effects
of these attacks can be compunded to effectively compromise
system security.

3.1.1 Exploiting Churn in Sybil Region

The first category of attacks aim to exploit churn in the
Sybil region. We observe that the attacker has complete
control over identities in the Sybil region, as well the edges
among the Sybil identities (which we term Sybil edges).
Thus, the attacker can (1) artificially induce churn in the
Sybil identities by deleting existing Sybil identities and in-
troducing new Sybil identities, and (2) artificially induce
churn among the edges connecting the Sybil identities by
creating new Sybil edges and deleting existing Sybil edges.
Note that such induced churn in the Sybil region does not
violate the assumptions made in Sybil-defense mechanisms,
since the number of attack edges remains bounded.

Next, we introduce a subclass of temporal attacks called
re-registration attacks that exploit churn in the Sybil region
while ensuring that the number of Sybil identities at any
given time remains the same. In a re-registration attack, a
strategic attacker can first ensure that the total number of
Sybil identities are below the detection threshold for the cor-
responding Sybil defense mechanism. Next, the attacker can
exploit vulnerabilities in the design of systems by changing
its Sybil identities over time, while keeping the total number
of Sybil identities at any instant of time below the detection
threshold. This is easily achieved by deleting an existing
Sybil identity and replacing it with a new Sybil identity.

For higher-level applications that leverage Sybil defenses,
the re-registration attack has two immediate consequences.

• First, these applications cannot enforce secure black-
listing of Sybil identities that behave maliciously. This

is because the re-registration attack can delete the
blacklisted Sybil identity, and replace it with a new
Sybil identity. Existing Sybil defenses do not defend
against this attack as they are designed to provide a
bound on the number of Sybil identities at an instant
of time, while the re-registration attacks preserves this
bound.

• Second, the re-registration attack allows the attacker
to impact application resources/properties by chang-
ing Sybil identities over time. Let us consider the
example of a voting system that validates user iden-
tity at the time of voting. By changing the registered
Sybil identities over time, the attacker can insert a
large number of malicious votes so as to subvert the
voting results.

The above observations highlight how re-registration at-
tacks can impact security properties of higher-layer applica-
tions. In this paper, we observe that such attacks have an
impact on the security of the Sybil defense mechanism itself.
In Section 4, we discuss how the re-registration attack can be
used to disable a key security mechanism in the SybilLimit
protocol, completely breaking its security and allowing the
attacker to insert an unbounded number of Sybil identities
at a single instant in time.

3.1.2 Exploiting Churn in Attack Edges

The second category of attacks aim to exploit churn in at-
tack edges. Given the assumption that the number of attack
edges is bounded, the designers of Sybil defenses have not
considered the the issue of attack edge churn in the security
analysis of their protocols. In a similar spirit to the re-
registration attack discussed above, we propose to consider
changes in attack edges over time, such that the total num-
ber of attack edges remains bounded at any given instant
of time. However, in contrast to the re-registration attack
which involved addition and deletion of Sybil identities, the
attacker does not fully control the process of obtaining new
attack edges, since an honest user must accept or interact
with a Sybil identity to establish a new edge. Thus, careful
attention is needed to model the capabilities of an attacker
aiming to induce and exploit churn in attack edges (see Sec-
tion 3.2 for a formal description of our dynamic attack edge
model).

Since our churn model for attack edges ensures that the
total number of attack edges are fixed at any instant of time,
the security guarantees of social Sybil defenses should ide-
ally hold. However, we show in this paper that an attacker
can exploit the dynamic nature of attack edges to compro-
mise the security of a number of Sybil defense mechanisms.
We find that Sybil-resilient applications such as the Persea
DHT completely fail against dynamic attack edges, because
the system does not have the capability to revoke resources
granted to an attacker based on an attack edge, even if the
attack edge no longer exists. This allows an attacker with
limited resources/attack edges to increase its influence in the
system over time by changing its attack edges. We will also
show that a number of protocols that rely on the knowledge
of a trusted entity in the system (such as SybilInfer and
SybilRank) are vulnerable to attacks where over time, the
attacker can move its attack edges closer to the honest trust
seed. Finally, such attacks also impact the design of Sybil-
resilient messaging applications such as Ostra, in which an



attacker can exploit system design and dynamic attack edges
to deny service to honest users.

3.1.3 Exploiting Churn in Honest Region

The third category of attacks aim to exploit natural churn
in the honest social network. Social networks are inherently
dynamic, where new nodes and edges are formed frequently,
and sometimes, existing nodes and edges get deleted. We
note that most Sybil defenses should use interaction graphs,
in which social trust edges are based on interactions among
users. Relying only on binary friendship relationships is
vulnerable to the attacker gaining many attack edges due
to high rates of users accepting friendship requests from
strangers [34, 6]. Prior work has observed, however, that
the frequency of churn among existing edges is greater for
interaction graphs than basic friendship graphs [31].

While the attacker may not control the rate or timings
of churn in the honest social region, we find that system
designers have not explicitly considered these issues in de-
signing their protocols. Churn in the honest social region
can lead to changes in the protocol state; such changes are
often left unspecified by the system designers, and have seri-
ous consequences for system security. We will uncover such
a vulnerability in the design of the SybilLimit protocol, al-
lowing the attacker to compromise system security.

3.2 Temporal Attack Model

3.2.1 Attacker capabilities

Based on the above discussion, we note that the attacker
can actively leverage temporal dynamics, by: (1) inducing
churn in the Sybil identities by deleting existing ones and in-
troducing new ones, and (2) inducing churn among the edges
connecting the Sybil identies by deleting existing edges and
creating new edges. Since the Sybil region is completely
controlled by the attacker, we do not enforce any rate limit
on this exploitation of churn in Sybil region. The attacker
can also passively leverage temporal dynamics by exploit-
ing churn in honest region, and monitoring changes in the
protocol state. For the attack edges churn, the capability
of the attacker is bounded by the basic assumption of social
Sybil defense, i.e. a bounded number of attack edges, which
is also inspired by the use of interaction graphs. Thus, we
note that the attacker cannot create an arbitrary number
of attack edges. Within the given bound, the attacker can
leverage churn in attack edges, by intentionally deleting
some existing edges (e.g. letting the interactions lapse) and
creating new attack edges. In order to do this, the attacker
would need to recollect and reuse its contrained resources for
interactions with honest users, which takes certain amount
of time. Thus, the attacker cannot regain new attack edges
immediately after losing old ones.

3.2.2 Dynamic attack edges model

Motivated by the use of interaction graphs in prior work [31]
and the idea of exploiting churn in attack edges, we formalize
our dynamic attack edges model as follows.

Suppose that the attacker has a recurring budget of $R
per unit time, and that it costs $E per unit time to main-
tain a trust relationship. An attack edge with a given target
user can be maintained by posting messages that generate
responses or comments from the target user, chatting with
the target user, or otherwise inducing two-way communi-

cation that the system could use to label the edge as an
active social relationship. The cost $E thus depends on the
amount of interaction required for maintaining an attack
edge, as well as the cost of human-based services or running
intelligent chatbots for getting regular two-way communica-
tion with users. The attacker initially leverages his budget
resources to obtain g = R

E
attack edges.

Under this model, the number of attack edges at any in-
stant of time remains bounded (by R/E). Our temporal
attacks exploit the fact that the interaction graph model
allows the attacker to change the entities it interacts with
over time, i.e., attack edges can be dynamic. The attacker
can achieve this by utilizing its recurring budget. For exam-
ple, in the next time instant, the attacker could allocate his
budget to establish new trust relationships while foregoing
previous trust relationships.

Studies of Sybil attacks in online social networks have
shown that although many users do accept friendship re-
quests from strangers, a significant fraction of users do not [6].
We thus further constrain the attacker by introducing a pa-
rameter δ to denote the fraction of users that never establish
a trust relationship with an attacker. Further, attack edges
might not form immediately upon demand. We use p to
denote the maximum rate at which the attacker can obtain
new attack edges (at the cost of previous attack edges).

4. EXPLOITING TEMPORAL DYNAMICS

IN SYBILLIMIT
In this section, we first introduce the SybilLimit proto-

col [35], and then present our novel temporal attacks that
allow an adversary to break SybilLimit’s security guaran-
tees. In particular, we show that an adversary can eventu-
ally register an unbounded number of Sybil identities in the
SybilLimit protocol (at a single instant in time).

4.1 SybilLimit Background
SybilLimit is a decentralized protocol that defends against

the Sybil attack. The goal of the protocol is for an honest
verifier node v to determine whether a suspect node s is an
honest node or a Sybil node.

Random routes and tails: SybilLimit defines a primitive
called random route that operates as follows. Each user
(node) in the social graph first constructs a permutation
map of its edges, in which each edge is mapped to another
edge pseudo-randomly. Then a random route of length l is
constructed as a sequence of edges starting from a selected
starting edge and iteratively applying the permutation map
given by the current edge’s terminating user. For example, a
node A with neighbors B, C, D may have the following per-
mutation map: AB → AC, AC → AD, and AD → AB. If
a random route reaches node A via edge AB, then accord-
ing to the permutation map, the route traverses edge AC
to node C, and the process continues with C’s permutation
map. The terminating edge of the random route is defined
as the tail of the random route.

Protocol state: In SybilLimit, each user maintains O(
√
m)

independent permutation maps (m is the number of edges in
the honest region) and performs r = O(

√
m) random routes

of length w = O(log n) (the mixing time of honest region);
the i’th random route leverages the i’th permutation map
for all nodes in the graph. Each user locally generates a
public-private key pair and registers the public key at the



terminal edges of the random routes (tails). SybilLimit does
not assume knowledge of m; the value of r = O(

√
m) is

estimated by the protocol using a benchmarking technique;
please see [35] for more details.

Verification protocol: The key idea in SybilLimit is that
the terminal edge of a random route starting from the honest
region is more likely to be within the honest region than in
the Sybil region, given that the number of attack edges g is
bounded. This intuition motivates the following procedure
used by a verifier node v to validate the identity of a suspect
node s, if s wants to send some network traffic to v.

• Intersection Condition: The r = O(
√
m) tails of the

random routes of the verifier and the suspect must have
an intersection (using the Birthday paradox). Verifier
nodes query the suspect for a list of its tails, contacts
the tails to validate that the suspect is registered at
those tails, and computes intersection with its own
tails. If there is no intersection, the suspect is clas-
sified as a Sybil node. If there is an intersection, then
the following Balance condition is checked.

• Balance Condition: A tail with a malicious terminal
edge is known as a malicious tail. To prevent a ma-
licious tail from validating an unbounded number of
Sybil nodes, a verifier maintains a counter value for
each of its tails that corresponds to how many suspect
identities have been validated by that tail. The key
idea is to keep the counter values for different tails of
a user roughly uniform. If the acceptance of a suspect
identity results in the counter values being unbalanced,
then the suspect is classified as a Sybil.

Security claim: SybilLimit claims to provide the following
security guarantee: given an adversary with g = O( n

logn
)

attack edges to honest users, the number of Sybil identities
in the system is bounded by g · w (i.e., the adversary can
insert w Sybil identities per attack edge).

4.2 Temporal Attacks
We find that the complexity of decentralized Sybil de-

fenses such as SybilLimit creates opportunities for temporal
attacks. We now present our temporal attacks on Sybil-
Limit: (a) a counter elevation attack that completely breaks
SybilLimit’s security guarantees, and (b) an induced social
churn attack that also impacts SybilLimit security.

Re-registration attacks in SybilLimit: SybilLimit en-
sures that an adversary is limited in the number of edges
(tails) where he can register its Sybil identities. The inter-
section condition ensures that the limited registration slots
translates into a limited number of Sybil identities that can
be validated by honest nodes. However, SybilLimit is vul-
nerable to the re-registration attack discussed previously,
since it allows the initiator of the random route to overwrite
the public key registered at its tail. Thus, while the num-
ber of Sybils is bounded at any instant of time, over time,
the adversary can use these limited registration slots multi-
ple times to insert an unbounded number of identities (by
revoking previously registered Sybil identities and inserting
new Sybil identities in its place).

Counter elevation attack: We now present the counter
elevation attack, which leverages the inter-play between the
re-registration attack and the SybilLimit balance condition.
This attack allows an adversary to insert an unbounded

number of identities at a particular instant in time. Thus,
the consequences of our attack are devastating – in its cur-
rent form, SybilLimit fails to provide any defense against
Sybil attacks. We note that the counter elevation attack
model is consistent with the SybilLimit threat model, and
considers attack edges to be static.

We explain our attack using the following series of obser-
vations.

1) The SybilLimit balance condition is designed to prevent
malicious tails in the network (i.e., tails where the ter-
minal node is Sybil/malicious) from validating an un-
bounded number of Sybil identities (by claiming to have
those identities be registered with itself). However, ob-
serve that in the re-registration attack, when an adver-
sary revokes its Sybil identities and inserts new ones, the
tails registering those Sybil identities are actually honest.

2) If the adversary is able to register its Sybil identities at a
sufficient number (O(n)) of honest tails, then it can ma-
nipulate the balance condition by (a) registering its Sybil
identities at honest tails, (b) getting its Sybil identities
validated by honest nodes, thus increasing the counter
values corresponding to the balance condition for its tails,
and (c) repeating the previous steps. In other words, if
the adversary has enough attack edges (O(n/wr)) to reg-
ister its Sybil identities at a threshold number of hon-
est tails, then the adversary can uniformly increase the
counter values corresponding to honest tails. We note
that the required number of attack edges are several or-
ders of magnitude lower than the bound ofO(n/w) attack
edges that SybilLimit claims to tolerate.

3) The above observations imply that an adversary with suf-
ficient attack edges (O(n/wr)) can increase the counter
values for honest tails (used by other nodes to check the
balance condition). As the counter values corresponding
to honest tails grow, an adversary can proportionally in-
crease the number of Sybil identities that are validated
by malicious tails, thus bypassing the balance condition
and breaking the guarantees offered by SybilLimit. In
this way, the adversary can insert an unbounded number
of Sybil identities.

Induced social churn attack: Finally, we discuss another
attack on SybilLimit that leverages churn in both the Sybil
and honest regions. Recall that the balance condition in
SybilLimit aims to limit the number of malicious identities
than can be validated by a malicious tail. However, a strate-
gic adversary can exploit protocol mechanisms to induce ar-
tificial churn in the social topology. The adversary can in-
troduce new edges incident to intermediate nodes that are
part of escaping random walks, random walks that start at
an honest node and end in the Sybil region. This attack in-
duces a change in the permutation tables of malicious users
that are part of escaping random walks, resulting in the re-
placement of one malicious tail with another malicious tail.
We note that churn in the honest region can also result in
this behavior.

How does a change in the tails impact the balance condi-
tion? This behavior has not been specified in the SybilLimit
protocol. Since the new tail has not participated in validat-
ing any identities, a natural interpretation would be to reset
the counter value corresponding to the new tail to zero. This
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Figure 2: Counter value distribution corresponding to the SybilLimit balance condition (left), and the resulting
Sybil identities that can be validated by an adversary (right), for varying attack rounds, using the Facebook
interaction topology. We can see that over time, the attacker can increase the entire distribution of counter
values, rendering the balance condition useless, and breaking SybilLimit security guarantees.

behavior allows the adversary to validate additional Sybil
identities via the new malicious tails. When counter values
corresponding to these tails reaches a bound enforced by the
balance condition, the adversary can repeat the attack.

4.3 Attack Demonstration
We experimentally demonstrate the feasibility of our counter

elevation attacks. Our goal is to show that an adversary
can insert an unbounded number of Sybil identities in the
SybilLimit protocol, breaking its security guarantees. For
our evaluation, we consider a real-world Facebook inter-
action graph from the New Orleans regional network [28].
The dataset comprises of 46,952 nodes (users) connected by
876,993 edges.

We setup an initial configuration of the system by having
1000 honest users invoke the SybilLimit verification proce-
dure to validate themselves to a verifier node. This helps
initialize the counter values corresponding to the tails of the
verifier node. Next, we considered 10 random nodes in the
system to be malicious (representing a very low malicious
node fraction of 0.0002 in the system, with only 80 attack
edges), who perform the counter elevation attack described
above. In each attack round, all of the attack edges are used
to insert new Sybil identities, and these Sybil identities get
validated by the honest verifier using the SybilLimit verifica-
tion procedure. The results of the experiment are depicted
in Figure 2, which shows the distribution of counter values
corresponding to the tails of the verifier (left), and the re-
sulting number of Sybil identities that can be validated by
an adversary (right). As we expected, over time, the adver-
sary is able to increase the counter values associated with
the tails of the honest verifier, thus manipulating the float-
ing bar corresponding to the SybilLimit balance condition.
This validates our insight that the SybilLimit balance con-
dition can be circumvented by an adversary, allowing it to
register an unbounded number of Sybil identities at an in-
stant in time (and breaking security guarantees offered by
Theorem 3 in [35]).

5. EXPLOITING TEMPORAL DYNAMICS

IN PERSEA, SYBILINFER, AND SYBIL-

RANK
In this section, we present temporal attacks against Sybil-

Infer, SybilRank and Persea. Our attacks rely on the insight
that attack edges can change over time, even though the to-

tal number of attack edges remain fixed (at any time). We
find that system designers have failed to consider such tem-
poral dynamics in system design, leading to serious security
vulnerabilities.

5.1 SybilInfer
SybilInfer [8] is a centralized algorithm for labeling nodes

in a social network as honest users or Sybils controlled by
an adversary. SybilInfer observes that a large Sybil attack
results in the Sybil identities being separable from the honest
identities via the minimum-quotient cut in the social graph,
and directly aims to estimate the minimum-quotient cut.
Towards this end, SybilInfer first constructs a probabilistic
model of honest social networks based by performing special
random walks over the social graph. The algorithm then
leverages knowledge of a known honest user (trust seed) and
uses Bayesian inference on the generated probabilistic model
to output the set of detected Sybil identities (if any).

5.1.1 Temporal Attacks on SybilInfer

Next, we present a temporal attack against SybilInfer that
exploits churn in attack edges to enhance connectivity be-
tween Sybil identities and the location of the trust seed over
time. Let us suppose that an adversary has several Sybils
and attack edges inserted in the system at time t. SybilIn-
fer would detect some Sybil identities and block the detected
Sybils. In the next timestamp t+ 1, the attacker could ad-
just its attack strategy to 1) preserve the survived attack
edges, i.e., attack edges connected to Sybil identities that
were not detected by SybilInfer, and 2) replace the detected
attack edges with new attack edges that are closer to the
trust seed. Observe that the total number of attack edges
remains bounded in our attack model.

In our temporal attack, we aim to replace detected attack
edges with new attack edges that connect to new benign
nodes that the adversary is not already connected to. Con-
necting to new benign users has the advantage of moving
the Sybil identities closer to the trust seed over time.

Therefore, our temporal attack lowers the probability that
Sybils will be detected in timestamp t+1. As time evolves,
Sybil identities become harder to be detected since the at-
tack edges are moving closer to the trust seed and the sur-
vived Sybils are becoming stronger. Figure 3 depicts our ex-
perimental results, using a synthetic social network topology
generated based on the Preferential Attachment model [5]
(we use synthetic topologies for our SybilInfer experiments
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Figure 3: SybilInfer detection performance degrades with time under our attack edge churn model (δ = 0.5).
(a) is for the scale-free data and (b) is the ratio of the distance between trust seed and Sybils identities, and
the distance between trust seed and other benign identities.

since it is difficult to scale the protocol to real-world datasets).
The synthetic graph contains 1,000 benign nodes, 1,000 Sybil
nodes, and 100 attack edges. We can see that SybilInfer
detection performance degrades with time, validating our
attack.

To shed insight behind the success of this attack, we eval-
uate the distance between the trust seed and the Sybil iden-
tities at each timestamp. Here, we utilize inverse of the
affinity between two nodes to evaluate their distance. To
normalize the distance, we further utilize the ratio of the
average distance between the trust seed and the Sybils and
the average distance between the trust seed and the benign
identities as our distance metric, where

distance(t) =
E(dist(Trust node, Sybil))

E(dist(Trust node,Honest))
(1)

and the dist(a, b) represents the inverse of the affinity be-
tween a and b, and the affinity is computed by random walk
with restart method as in [25]. We can see that the suc-
cess of our temporal attack is correlated with lower distance
ratio.

5.2 SybilRank
SybilRank [7] is a centralized Sybil defense mechanism

which is also based on the assumption that the Sybils have
limited social connections to real users, i.e., the number of
attack edges is bounded. The key insight is that it is easy
for a short random walk starting from a set of honest users
to quickly reach other honest users. On the other hand,
it is relatively hard for these random walks to enter into
the Sybil region because of a bound on the number of at-
tack edges. Specifically, SybilRank performs a random walk
starting from a set of honest users, i.e. a set of trust seeds,
using power iterations. The length of the random walk is on
the order of log(|V |), i.e. the graph mixing time. When the
random walk terminates, honest users tend to have a larger
degree-normalized landing probability than Sybil identities.

Intuitively, SybilRank can be viewed as a mechanism that
distribute trust scores via random walks starting from a set
of trust seeds. This trust can only flow into the Sybil re-
gion via the limited number of attack edges. Thus, if we
terminate the random walk early before it reaches station-
ary distribution (length less than the mixing time), honest
users will have higher degree-normalized trust scores than
Sybil identities. These trust scores can be used to produce
a ranking list of each node.

5.2.1 Temporal Attacks on SybilRank

Similar to our attack on SybilInfer, we propose a temporal
attack on SybilRank that (a) exploits dynamic nature of the
connectivity between the benign region and the Sybil region,
and (b) knowledge or inference of the honest trust seeds.

If the attacker already knows the identities of the hon-
est trust seeds, then under the dynamic attack edge model
(Section 3), the attacker can choose to preserve the attack
edges that are close to the trust seeds, and replace the attack
edges that are not. Thus, over time, the attacker can alter
the location of its attack edges to move them closer to the
honest trust seeds. Hence, the total trust that flows into the
Sybil region from the trust seeds will be significantly larger
than the theoretical anticipation.

Even in the absence of any prior knowledge about the
trust seeds, an adversary can infer the identities of the trust
seeds by using the Sybil defense mechanism as an oracle, as
demonstrated in our experiments on SybilInfer.

5.3 Persea
Persea is a Sybil-resilient social DHT system [4]. The

Persea DHT uses a circular identifier (ID) space, and hier-
archically distributes the ID space among a set of bootstrap
nodes in the network, by assigning each node its own ID
chunk/region. Each bootstrap node in turn can invite other
peers (based on trust relationships) and assigns them a node
ID, and a subset of its own ID chunk/region. This process
continues to form a bootstrap tree, that helps assign node
identifiers in a Sybil resilient fashion. Persea ensures that
a bound on the number of attack edges is translated into a
bound on the size of the ID space controlled by an adversary.

Furthermore, Persea replicates (key, value) pairs over mul-
tiple ID locations that are evenly spaced over the circular
ID space. Therefore, even if ID location is occupied by the
malicious Sybils, redundant lookup operations can be used
to retrieve the desired (key, value) pair from other honest
ID regions.

5.3.1 Temporal Attacks on Persea

We present a novel attack against Persea that exploits
churn in attack edges. Under our dynamic attack edge model
(Section 3), the attacker can change attack edges over time.
Specifically, for each timestamp t+1, the attacker could re-
place a fraction p of its existing attack edges in the previous
timestamp t with new attack edges. Note that at any instant
of time, the total number of attack edges remains bounded.
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Figure 4: The lookup performance of Persea de-
grades with time (with Facebook interaction data
Nh = 46952, g = 2000) under our attack edge churn
model (δ = 0.5). As time evolves, attackers gain ac-
cess to a larger chunk of the ID space, resulting in
lower lookup success rate.

We find that the security guarantees offered by Persea
significantly degrade with time. This is because the system
model in Persea does not allow honest entities to revoke the
ID space they assigned to a trusted contact when the trust
relationship is deleted.

Thus, as time evolves, the attacker would take control of
an increasing fraction of the ID space in the system. This
directly allows the adversary to exert greater control over
the lookup process. In particular, as the fraction of the ID
space controlled by an attacker increases, the probability
than an attacker is able to intercept all of the redundant
lookups in Persea also increases.

Figure 4 shows the lookup success rate in the Persea DHT
over time, using the Facebook interaction dataset for g =
2, 000. We can see the degradation in lookup performance
over time. A lower value of p increases the required time
duration to degrade lookup performance to a desired level.
We used δ = 0.5 to model the fraction of users that never
establish attack edges with the adversary. These results vali-
date our attack observations, and motivate our key message:
system designers should explicitly consider system evolution
in their design.

6. EXPLOITING TEMPORAL DYNAMICS

IN OSTRA AND SUMUP
In this section, we present temporal attacks against Sybil-

resilient applications such as Ostra and SumUp that allow
an adversary to deny service to honest users.

6.1 Ostra
Ostra [16] is a Sybil-resilient messaging system that lever-

ages trust relationships between users to thwart unwanted
communication. For each user, Ostra is able to bound the
rate of unwanted communication that a user can produce,
based on the number of trust relationships that the user has.
Ostra assumes that there is a trusted entity that observes all
user actions and associate them with user identities. The key
insight in Ostra is to associate the concept of credit balances
with trust relationships (edges). Each edge in the network
is associated with a credit balance B, and a balance range
[L,U ]. If the sender x wants to send some communication to
a friend y, Ostra issues a specific token for this communica-
tion and the edge (x, y)’s L (from the sender’s perspective) is

raised by one. After y receives the communication, he/she
needs to make a decision to mark this communication as
wanted or unwanted. Previous adjustment of L is undone
after y makes the decision. If y marks the communication
as unwanted, the balance B of (x, y) is lowered by one (from
the sender’s perspective). If a sender x wants to communi-
cate with a non-friend user z, Ostra finds a path from x to
z. Then, the bounds and balance of all edges along the path
will be adjusted accordingly.

To ensure legitimate users always able to communicate,
credit balances in Ostra decay towards 0 at a constant rate
d with 0 < d < 1. Furthermore, if a user finds he/she has too
much credit on all his/her links, he/she can forgive a small
amount of debt from one of his/her friends. To mitigate
communication failures, Ostra uses a timeout T and reset
the credit bound adjustments if a communication has not
been classified by the receiver after T .
However, we find that the path-based balance adjustment

scheme makes Ostra vulnerable to a combination of re-registration
attack and attack edge churn. We will discuss this in the
next two subsections.

6.1.1 Temporal User Targeting Attacks on Ostra

Attack scenario: Let us suppose that on the social net-
work, a malicious node x is connected to a honest node y
which is then connected to a honest node z. Also, let us sup-
pose that x wants to send some unwanted communication
to z and Ostra finds the path: x → y → z. If z marks the
communication as unwanted, the credit balance of both edge
(x, y) and edge (y, z) will be reduced by one. Thus, if the
victim z has less edges compared to the number of attack
edges owned by the attacker, a user targeting attack be-
comes practical. An attacker controlling a number of Sybils
can successively send unwanted traffic to z. As a result, all
edges of z will be exhausted within a short period of time,
and z is no longer able to receive any communication from
other honest users. We note that this attack is practical
even if the system considers a decay factor d, since not only
edges of the target, but also attack edges, will rejuvenate
after some time. Also, even if the target choose to forgive
the debt on one of his/her edges, since the attacker has more
attack edges than the total number of edges owned by the
victim user/target, the attacker is still able to send traffic
to the target via an available attack edge, thus making the
target unable to receive communication again.

Even if the target has more edges than the number of
attack edges, this attack is still practical by letting the at-
tacker leverage re-registration and attack edge churn. A
typical attack model is that at the end of each day, the at-
tacker could revoke certain fraction of invalid attack edges
(with balance below a threshold), and replace with new at-
tack edges, without changing the Sybil nodes. The attacker
might also choose to revoke old Sybil identities associated
with these invalid attack edges, and register new Sybil iden-
tities and establish new attack edges. The current design of
Ostra simply assigns an initial balance B = 0 and the same
L and U for all edges, including new attack edges. Thus,
even if the number of attack edges at each time instant is
bounded, the attacker is able to dynamically exploit attack
edge churn to obtain new attack edge resources, and contin-
uously send unwanted traffic to the target. As a result, all
edges of the target will be exhausted over time.

Attack evaluation: We simulate Ostra protocol on a syn-
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Figure 5: Temporal user targeting attacks on Ostra, (a) without attack edge churn, when the target has less
edges than the number of attack edges, and (b) with attack edge churn, when the target has more edges than
the number of attack edges. We observe that the target user is eventually unable to receive communication
from other honest users.

thetic network structure generated by Preferential Attach-
ment (PA) [5] model, and set L = −3 and d = 10% per day,
as specified in Ostra. The synthetic network contains 1,000
honest nodes, 100 Sybil nodes, and 40 attack edges. We use
synthetic graphs because we want to explore the behaviors
of the attack under different parameter settings. For a ran-
domly selected honest target, we randomly pick a Sybil node
and let it send a message to the target. Figure 5 shows the
fraction of available edges of the target versus the number
of messages sent by the Sybils. Specifically, Figure 5 (a)
shows the scenario when the target has less edges than the
number of attack edges. We observe that as the Sybils send
more messages, the fraction of available edges, i.e. capability
to receive communication, decreases towards zero. In prac-
tice, this attack can be completed within a short period of
time. Furthermore, the attacker can continuously monitor
the credit of edges of the target, so that if one or some edges
become valid again after several days due to the decay fac-
tor d, the attacker can immediately send traffic to the target
and hence make these edges invalid again. We note that this
type of attack can be completed without leveraging attack
edge churn.

Figure 5 (b) shows the scenario when the target has more
edges than the number of attack edges. In such scenario, the
attacker is not able to exhaust all edges of the target within
one round. Thus, the attacker needs to leverage attack edge
churn w/o re-registration and continuously performs the at-
tack for multiple rounds. In each round, the attacker ran-
domly selects a Sybil and sends a message to the target, until
all attack edges or all edges of the target become invalid. If
all attack edges become invalid, the attacker leverages the
attack edge churn and obtains some new attack edges.

In our experiments, we set δ = 50% and p = 0.1. We
also model the case that if the target finds all of his/her
edges become invalid, he/she will randomly pick a neighbor
and forgive the debt on the corresponding edge. The attack
ends if all edges of the target become invalid. In Figure 5
(b), we observe that by leveraging attack edge churn, the
attacker is able to continuously exhaust edge resources of the
target via multiple rounds (separated by red vertical lines),
even if some edges of the target become valid again due to
decay factor (the jumps on the figure). Thus, the attacker
can significantly reduce the rate of communication between
honest users by perform this type of temporal attacks.

6.1.2 Temporal Edge Targeting Attacks on Ostra

Attack scenario: In addition to attacking a randomly se-
lected target, the attacker can also target at certain edges in
the honest region, by continuously sending unwanted traf-
fic across these edges and eventually exhausting the credit
on them. As a result, the honest region will be partitioned
into two communities, such that users in one community
will not be able to send traffic to users in the other commu-
nity. Researchers have found that honest users tend to form
multiple small communities [17] driven by different purposes
(e.g., geographical location, education and career). This
multi-community structure prohibits the existence of a giant
community component and hence makes the honest region
vulnerable to temporal edge targeting attacks.

Like the temporal user targeting attacks, if the count
of targeted edges is less than the number of attack edges
owned by the attacker, the attacker can quickly exhaust the
credit on them thus making these edges invalid. Even if the
count of targeted edges is greater than the number of attack
edges, the attacker is still able to leverage attack edge churn
w/o re-registration to exhaust the credit on these edges over
time.

Attack evaluation: To evaluate this attack, we synthesize
the network structure by generating two honest regions (500
nodes for each) from PA model and connect them with cer-
tain number of edges. We then generate two Sybil regions
(100 nodes for each ) and connect each to a honest region
with the same number of attack edges. We set the param-
eters in Ostra the same as in 6.1.1. Denote the two Sybil
regions as Sybil region A and Sybil region B. To perform
the attack, we randomly pick a Sybil in each Sybil region,
and send a message from Sybil region A to Sybil region B.
In our experiments, we vary the number of internal edges
that link the two honest regions, and the total number of
attack edges owned by the attacker, to understand different
behaviors. Figure 5 shows the fraction of available internal
edges versus the number of messages passed across the net-
work. Specifically, Figure 5 (a) shows the scenario when the
number of internal edges is less than the number of attack
edges divided by two. We observe that as more messages
pass between Sybils in the two regions, the fraction of avail-
able (valid) internal edges decreases towards zero.

Figure 6 (b) shows the scenario when the number of inter-
nal edges is greater than the number of attack edges divided
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Figure 6: Temporal edge targeting attacks on Ostra, (a) without attack edge churn, when the number of
targeted edges is less than the number of attack edges, and (b) with attack edge churn, when the number
of targeted edges is greater than the number of attack edges. We observe that honest users are eventually
unable to communicate across the targeted edges.

by two. Similarly to user targeting scenario, the attacker is
able to exhaust the resources of the internal edges over time
by leveraging attack edge churn.

6.2 SumUp
SumUp [27] is a Sybil-resilient voting system that lever-

ages trust network among users. SumUp assumes that there
is one trusted vote collector that is far from the Sybil re-
gion. In the ticket distribution process, the vote collector
distributes C max tickets across the network in a breadth-
first manner. Each internal node aggregates the tickets it
receives, and consumes one ticket, and distributes the re-
maining tickets evenly to the neighbors at the next level.
The capacity of an edge is the number of tickets transferred
on this edge plus one. When the ticket distribution com-
pletes, nodes that consumed a ticket before become entry
points. In the vote collection process, each voter needs to
vote for the product via an entry point. SumUp computes
the set of max-flow paths from the vote collector to all vot-
ers, and the votes will be collected back to the vote collector
via the computed paths. Hence, each object can receive
C max votes in maximum.

To limit the number of bogus votes, the vote collector as-
signs a penalty value for each link. Once the vote collector
identifies a bogus vote, all the links on the path to the voter
will be penalized. The penalty grows if a voter continuously
sends bogus votes, and the link will be eliminated if the
penalty grows above a threshold. In the further ticket dis-
tribution process, links with high penalty will be distributed
fewer tickets.

6.2.1 Temporal Attacks on SumUp

SumUp assumes that the number of attack edges is bounded.
However, after examination, we find that the security guar-
antee of SumUp heavily relies on another underlying as-
sumption, which is that the vote collector is placed far away
from the attack edges. The system does not make it clear
how to select the location of the vote collector. The attacker
can exploit natural churn of the honest region and place the
attack edges close to the vote collector. If this happens, a
large number of Sybil nodes will become entry points. Since
each user needs to vote for a product via an entry point, a
large fraction of votes collected will be bogus votes, which
breaks the system design goal.

Even if the vote collector is placed far away from attack

edges, like Ostra, the attacker can still perform a combina-
tion of re-registration and attack edge churn. The observa-
tion is that over time, the attacker can re-register Sybil iden-
tities and make bogus votes. Since honest edges are mostly
located in the lower level of graph, i.e. close to the vote
collector, after those bogus votes are successfully marked by
the vote collector , the penalty of honest edges on the path
will also be raised. Thus, over time, the penalty of targeted
honest edges will exceed the threshold value, eliminating
the edges. This combined attack can target a specific voter,
eventually exhausting the available edges of this voter and
makes him/her unable to vote.

In this section, we discussed and demonstrated temporal
vulnerabilities of two Sybil resilient applications: Ostra and
SumUp. Our attacks highlight the importance of consid-
ering temporal system dynamics in the design and security
analysis of social Sybil defense mechanisms.

7. COUNTERMEASURES AND DISCUSSION
In this section, we first discuss how economic considera-

tions could impact the attacks described in this paper. We
then consider possible countermeasures for temporal attacks
on different Sybil defense systems. Finally, we briefly sketch
out a general method that aims to detect anomalous churn
in the Sybil region.

7.1 Economic Considerations
Our attack model in Section 3.2 assumes that an adver-

sary that can induce churn in the Sybil region via creation
and deletion of Sybil identities. This is consistent with the
threat model of social Sybil defenses, which typically assume
that such operations have no cost for an adversary [35, 8].
In practice, social networks employ a range of defense mech-
anisms that raise the bar for an adversary, including account
registration barriers such as CAPTCHAs, email and phone
confirmation, and IP blacklists [3, 24]. Thus creation and
deletion of Sybil identities has an economic impact on the
adversary, in terms of the resources required to circumvent
registration barriers.

In recent years, however, there has been an emergence of
an underground market that specializes in bypassing regis-
tration barriers such as email, phone, and CAPTCHA con-
firmation [33, 23, 21]. In fact, a number of websites and
Internet forums have emerged that allow adversaries to eas-



ily obtain a large network of Sybil accounts (or followers)123.
For example, Hotmail and Yahoo accounts are available on
blackhatworld.com for $6 per thousand, while Twitter ac-
counts from the same forum are $40 per thousand. Thus,
we expect that the combination of such ad hoc mechanisms
with social Sybil defenses should increase the cost of per-
forming temporal attacks, much as CAPTCHAs increase the
cost of spam [21]. They do not fundamentally mitigate our
attacks, however, motivating the search for improved de-
fenses.

7.2 System-specific Countermeasures

Batch mode enforcement for SybilLimit: To rate limit
the re-registration of new Sybils, a simple countermeasure
is for honest nodes to process protocol messages (such as in-
coming random route requests) in a batch mode, say every
x time units. This means that if an attacker tries to in-
troduce multiple Sybil identities using the registration slot
(tail), then it can do so only once every x time units.

This countermeasure introduces a trade-off between us-
ability and security. Clearly, as the time period x is in-
creased, the security of the system improves as the attacker
has to wait longer before being able to replace its existing
Sybil identities. On the other hand, increasing the time pe-
riod x adversely impacts the usability of the system, since
new honest nodes have to wait longer before being able to
set up their random routes and get validated by the system.

Note that this defense only slows down the rate of attack.
It does not fundamentally mitigate our observations that (a)
over time, an adversary can insert different Sybil identities
in the system (bounded), and (b) given enough time, an ad-
versary can insert an unbounded number of Sybil identities
at a single instant of time.

Bound the variance for SybilLimit: The second coun-
termeasure is for honest nodes to bound the variance in the
number of new random routes, terminating at itself, cor-
responding to its O(

√
m) entries. For example, if in time

period x, a particular public key entry registered at an hon-
est node A is overwritten a large number of times, as com-
pared to other public keys registered at node A, then this is
an indication of attack. The parameters for the bound on
the variance can be learned using models of honest social
network evolution in real world datasets. A new incoming
random route message that violates this condition is ignored.

Note that our second countermeasure constrains the ef-
fects of an adversary by rate limiting new random route
setups based on models of honest social network evolution.
Similar to before, this attack also only slows down an adver-
sary, but does not fundamentally mitigate our observations.

Moving-target defense for SybilInfer and SybilRank:
The idea of moving-target defense (MTD) is to impose asym-
metric uncertainty for the attacker by making systems dy-
namic and harder to predict. By adding randomness in the
system, the attacker has to use lots of resource to study the
system, identify its vulnerabilities, and deploy the attacks.
Specifically for systems like SybilInfer and SybilRank, which
rely on performing random walks from honest trust seeds,
the idea of MTD can be leveraged by first selecting multiple
random seeds, and then regularly changing them after some

1https://devumi.com/twitter-followers/
2https://www.fastfollowerz.com/
3http://twitterboost.co/

time T . Thus, the attacker is not able to estimate the loca-
tion of the trust seeds once and use this location information
to perform effective attacks forever.

Ephemeral attacker resource for Persea: The identi-
fied problem with Persea is that the resources correspond-
ing to deleted edges can not be revoked. Thus, the attacker
is able to change attack edges over time and obtain more
system resources. To deal with this, a natural way is to
introduce the concept of “ephemeral resources”, such that
the obtained system resources eventually time out (unless
renewed). Thus, the attacker would not be able to increase
its share of system resouces by changing attack edges over
time. For Persea, a possible solution is to enforce a timeout
T for the ID space of an edge, so that this ID space will
eventually not be valid once the edge has been deleted.

Asymmetric penalty for Ostra and SumUp: The de-
sign of Ostra penalizes each edge along the path evenly once
the receiver marks the communication traffic as unwanted.
To mitigate the previously discussed user targeting and edge
targeting attacks, we may adopt an asymmetric penalty ap-
proach, by penalizing edges close to the sender more and
penalizing edges close to the receiver less. Thus, the at-
tacker would lose more attack edges to attack a target/set
of edges, comparing to the previous symmetric penalty ap-
proach. For SumUp, a similar approach could be adopted by
penalizing edges close to the vote collector (i.e., in the lower
level) less and penalizing edges far from the vote collector
more.

Generic Defense via Detecting Anomalous Churn:
We now briefly discuss a possible approach to detect anoma-
lous churn in the social graph that could work on a variety of
systems. The key insight is that temporal attacks often rely
on the attacker inducing a high rate of churn in the Sybil
region, which can be used as a point of detection. Thus, we
propose to observe the graph evolution to distinguish the
Sybil region from the honest region. For example, one can
quantify change in the neighborhood structure for each user
in a time series of graphs, using statistical distance metrics,
and use them as a feature for detection. Once the Sybil re-
gion is detected, Sybil identities and their attack edges can
then be blocked from the social network (and the process is
repeated).

8. CONCLUSION
In this paper, we explored temporal dynamics of social

Sybil defenses: churn in the Sybil region, churn in attack
edges, and churn in the honest region. We proposed tempo-
ral attacks that exploit these system dynamics and investi-
gated the vulnerabilities of a variety of social Sybil defenses.
We find that temporal attacks can have devastating conse-
quences for system security, specially for distributed Sybil
defenses such as SybilLimit and Persea. We also discussed
proposed possible countermeasures that could be used to
prevent these attacks, though carefully designing and evalu-
ating robust countermeasures remains for future work. Our
work motivates the importance of explicitly considering tem-
poral dynamics in both system design and system security
evaluation.
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