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a  b  s  t  r  a  c  t

Copper-exchanged  SAPO-34  (Cu-SAPO-34)  provides  excellent  catalytic  activity  and  hydrothermal  sta-
bility  in  the selective  catalytic  reduction  (SCR)  of  NOx by using  NH3 as  a reductant.  We  find  that  the
6-membered  ring  (6MR)  site  is  the  most  energetically  favorable  for  a  Cu+ ion while  the  8-membered
ring  (8MR)  sites  are  less  favorable  by  about  0.5  eV with  respect  to the 6MR  site  in  Cu-SAPO-34.  Upon
adsorption  of  molecular  species  (H2O,  O,  OH, O2), the  energy  differences  between  Cu  in  the  8MR  and  6MR
sites  decreases  and  almost  disappears.  Further,  a  thermodynamic  phase  diagram  study  shows  that  a  Cu+

ion  bound  to a single  H2O molecule  is  the most  stable  species  at low  oxygen  potential  values  while  a
Cu2+ ion  bound  to  2 OH  species  is  more  stable  when  the  oxygen  chemical  potential  is sufficiently  high.  By
comparing  Cu  K-edge  XANES  between  Cu-SSZ-13  and  Cu-SAPO-34  with  Cu  in  different  oxidation  states,

we  conclude  that  it is  difficult  to differentiate  the  simulated  XANES  of  Cu  in  these  structures  at a given
oxidation  state.  By  studying  the  Cu  K-edge  XANES  of  several  favorable  structures  in  Cu-SAPO-34  in the
presence  of  adspecies,  the  simulated  XANES  results  capture  the  real trend  of  the  edge  shift  with  oxidation
state  and  gives  new  insights  into  the experimentally  determined  XANES  of Cu-SAPO-34  obtained  under
standard  SCR  conditions.

©  2016  Elsevier  B.V.  All  rights  reserved.

EA s
APO

 Cu-S
pro

ation
 into 

 at th
rted
n of
ity f
redu
y  ut
ies in
12].
uction

r-exchanged silicoaluminophosphate (Cu-SAPO-34) has
xtensive attention as a catalyst for selective catalytic

 (SCR) of NOx with an NH3 reductant. Cu-SAPO-34 and
xchanged aluminosilicate (Cu-SSZ-13) are structurally
s chabazite zeolites, which have excellent hydrother-
bility [1–3]. SAPO-34 molecular sieves are synthesized
rious structure directing agents (or templates), such
oline (MA), triethylamine (TEA), diethylamine (DEA),

lammonium hydroxide (TEAOH) or a mixture of them
ent results have shown that the template affects the Si
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amples due to the existence of a Si island. It is reported that
-34 samples are more insensitive to hydrothermal aging
SZ-13 [6]. Furthermore, high-temperature aging is found

ve the catalytic performance of Cu-SAPO-34 due to the
 of Cu species in the fresh sample from the external sur-

the micropores [3,4,7,8] and the formation of isolated Cu
e exchange sites during the aging process [3]. It is also

 that migration of Cu species from the surface upon acti-
 Cu-SAPO-34 leads to a several-fold increase in catalytic
or the selective catalytic reduction (SCR) of NOx with NH3
ctant [7].
ilizing different experimental techniques, isolated Cu2+

 Cu-SAPO-34 were found to be the active sites of NH3-SCR
 For the relationship between Cu species and Cu load-
-SAPO-34, similar to Cu-SSZ-13 [13], it was reported that
nt of isolated Cu2+ increased with increasing Cu loading

 wt% and only slightly increased with higher Cu load-
]. An increase in the amount of the isolated Cu2+ caused

ovement of the NH3-SCR activity and a decrease in the
f CuO induced a decline in the NH3 oxidation activity [14].
, the amount of CuxOy clusters continuously increased at

 loading. The presence of CuxOy may  promote NH3 oxi-
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 O2, leading to the observed decrease in standard SCR
nce at high temperatures [9] where the competing NH3

 decreases the SCR activity [10]. It was found that the
frequency calculated based on the number of isolated Cu2+

mples with varying Cu loading showed a constant value at
 temperature [12]. Based on these results, it was  concluded
olated Cu2+ species is the active site for the NH3-SCR reac-

 a Cu-SAPO-34 catalyst. As opposed to Cu-SSZ-13 [15], the
 acid sites in Cu-SAPO-34, act as an NH3 reservoir rather
g directly involved in the SCR reaction [10,16]. A key step
posed mechanism is the formation of surface nitrates and
hich react with NH3 to form NH4NO2 and NH4NO3 [16].

ming the electron paramagnetic resonance (EPR) experi-
 et al. also proved that the isolated Cu2+ species are the

es and the NH4NO2 species is the intermediate for NH3-
Cu-SAPO-34 [10]. In addition, NH3-SCR over Cu-SAPO-34
a different mechanism at low and high temperatures [17].
mperatures, NH4NO3 is a key intermediate while at high
ures, NO2 is an important intermediate and NH3 oxidation
titive with NH3-SCR. They observed a double peak shape
p point at the approximately moderate temperature of
7,18].
tly, some issues still need to be addressed for CHA-

R catalysts such as the unclear effect of reactants on
cation and reaction mechanism. Experimental evidence
nstrated that Cu ions are the active sites for NH3-SCR

 [5,8–11]. However, the location of Cu ions in Cu-SSZ-
e is still unclear. Understanding the catalytic properties
PO-34 at the atomic and electronic level is important.
, there are few theoretical studies on the properties of
-34 [19–22]. These studies help us to understand better
ions of Cu ions and molecular adsorption behaviors on

 sites. It has been reported that higher Cu loadings can
the formation of CuxOy clusters [9,12]. In the Cu-SAPO-
e, Cu is located in 8-membered ring and has two facets
can interact with reactants while Cu located in the 6-
d ring can only interact from one side. It also appears that
ecies may  relocate under reaction conditions. In order
-SSZ-13 and Cu-SAPO-34 optimally and further develop

 zeolite catalysts, the differences between the Cu-SSZ-13
PO-34 were discussed in the literature [6,8,17]. In all SCR

nce tests, NH3 oxidation and characterization results con-
indicate that Cu-SAPO-34 is more robust than Cu-SSZ-13
ydrothermal aging temperatures higher than 800 ◦C [6,8].
ests indicated that the Cu-SAPO-34 catalyst had a rela-
her deNOx performance than the Cu-SSZ-13 catalyst [17].
inuation of our work in understanding the properties of
nged CHA zeolite catalyst [23,24], the catalytic properties
PO-34 are investigated by using calculations from first-
s. Further, by using operando XAS, it has been confirmed

as present under standard SCR reaction conditions over
O-34 catalyst [25], as shown in Fig. 1. It also demon-
e importance of performing operando experiments and

tu XANES may  lead to the incorrect determination of the
te structure. We  will look at several structures and assign

eak by examining Cu K-edge XANES of various Cu+ species.
ntribution we will study the adsorption of O, O2, OH, and

 Cu ion in Cu-SAPO-34. We  will simulate the correspond-
edge XANES as well as compare the multiple possible Cu

 through density functional theory (DFT) calculations so as
sights into the underlying experimental XANES spectrum

 under standard SCR conditions.
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ed that the amount of Cu+ is 45% in the mixture of Cu ions.

utational details

lculations were performed with the Vienna Ab initio Simu-
kage (VASP) code [26,27]. The projector augmented-wave
8,29] method and the generalized-gradient approxima-

A), using the PW91 functional [30], were employed for
ment of the electron-ion interactions and the exchange-
n effects, respectively. With its PAW potentials, VASP

 the accuracy of all-electron methods with the com-
l efficiency of plane-wave approaches. The total energy
nce threshold was set to 10−8 eV and the geometries were
d to be fully relaxed when the forces were less than
.
well known, the Cu-SAPO-34 zeolite belongs to the

 structure which is composed of 4-membered rings
-membered rings (6MR), and 8-membered rings (8MR).

 in Fig. 2, in the pure aluminophosphate ALPO-34, the
 atoms on tetrahedral sites (T) obey strictly alternated
and there are four nonequivalent O sites, which can be
shed according to their participation in different rings of
work. Further information can be found in our previous

Cu-SSZ-13 [24]. The calculations in this contribution were
d in a rhombohedral unit cell, consisting of 12 T atoms

 atoms. Monovalent Cu-exchanged SAPO-34 (ZCu) is pro-
 replacing one Si atom with one P atom and using Cu to
ate the charge deficit. Cu2+-SAPO-34 (Z2Cu) is generated
placement of two  P atoms with two  Si atoms, where the
esents the oxidation state of 2+. Structures of ALPO-34

APO-34 were firstly relaxed to obtain the equilibrium vol-
 the pure ALPO-34, an equilibrium rhombohedral volume
3 was  obtained which is consistent with the results of

and 831.9 Å3 as reported in the literature [20,31]. With
cement of a P atom with a Si atom and an exchanged a

 the calculated equilibrium volume of ZCu is 847.4 Å3 (see
Supplementary Information), which is slightly larger than
LPO-34. However, with the replacement of two  P atoms

 Si atom and an exchanged a Cu atom, the equilibrium vol-
Cu is 840.8 Å3 (see Fig. S1 in Supplementary Information),
slightly smaller than that of ALPO-34. In this contribu-
tart our study on ZCu with the adsorption of adspecies (O,

2O) with different oxidizing power. The ‘oxidizing power’
the ability to oxidize the Cu+ ion into a higher oxidation
nother words, the ‘oxidizing power’ refers to the ability

species to obtain electrons from Cu ion. When a neutral
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 binding energy is calculated by
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bulk (1)
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 in the ZCu conformation was fully relaxed using the step
rocedure indicated in Supplementary Information sec-
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ve cutoff and a single �-point sampling of the Brillouin
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ely. We  note that although the PW91 functional is appro-

 the work done in this contribution, it does not account
W interactions and would not be suitable to determine

adsorption energies [32].
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, Al and O atoms, respectively.

t uses a plane wave basis sets and ultrasoft pseudopo-
ote that the calculations of the XANES spectra were not
hether or not one optimized the unit cell within CASTEP

ils in Fig. S2). As a result, the unit cell in CASTEP was  fixed
it cell as optimized by the VASP program. The GGA-PBE
ange correlation functional was  used in these calculations
timization of the atomic coordinates using the fixed unit
etry and for the simulation of the XANES. We  remark that

 the PBE, RPBE, or PBEsol functionals are recommended
GA functional is required for such calculations, we found
esults of theoretical K-edge XANES of Cu in ZCu with Cu in

 are independent of such exchange-correlation function-
o calculate the XANES spectra, ultrasoft pseudopotentials
erated on the fly [34], and one core electron was  excited
levant core level when performing core-hole calculations.
onstrated that the core-hole effect is significant on the

 core level spectra [36]. Therefore, we took into account the
 effect in our calculations. All core-hole calculations were

ut using supercells sufficiently large so as to eliminate the
ns between periodic images. Previous work recommends

e between images of 8–10 Å [34,37]. The dimensions of the
edral unit cell used in our calculations satisfy this require-
ergy cutoffs of 550 eV and a K-point grid of (5 × 5 × 5) were
e calculations of the XANES. The energy broadening with

mental smearing, using the Gaussian method, of 0.6 eV and
roadening of Cu with a value of 1.55 eV were applied [34].

ts and discussions

 ALPO-34 and clean SSZ-13
SZ-13 and ALPO-34 belong to the chabazite (CHA) struc-
ir difference lies in the tetrahedral sites occupied by a Si
SSZ-13 whereas Al and P atoms in ALPO-34 occupy these
s reported that this structural difference causes the dif-
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 8MR  sites distinguished by forming bonds with differ-
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cular adsorption on ZCu

ost common and abundant reactive gases under SCR con-
e O2 and H2O, and understanding the interactions of Cu
ith these gases and their decomposition products is cen-

derstanding the nature, oxidation state, and redox activity
materials. We  take a general approach and consider the
n of various species of H2O, OH, O,  O2 and 2OH  to a Cu

species is the simplest possible adsorbate intermediate
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ated to the two  activated O atoms and the adsorbed O−,
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ut 1.7 Å. As mentioned previously, the configuration of

 6MR  is the most favorable for clean ZCu. However, as
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Fig. 4. Local structures of three possible Cu positions (6MR, 8MR  O14 and 8MR  O24) in ZCu. Cu O distances with unit of Å are indicated in each panel. The atoms represented
are the same as previous figures. The different O atoms are labeled as presented in Fig. 2. Please note that these shown structures are portion of the periodic structure of the
rhombohedral unit cell.

Fig. 5. Local structure of atomic O adsorbed ZCu with Cu in the 6MR, 8MR  O14, and 8MR  O24 sites. 

meaning as previous figures. The total energy differences with respect to the total energy of Cu in 6M

Table 1
The  calculated adsorption energies of H2O, OH, O, O2 and 2 OH on Cu in 6MR,
8MR  O14 and 8MR  O24 sites according to Eq. 2. The values of adsorption energy for
2 OH adsorbed ZCu is calculated by following the ZCuOH + OH → ZCu(OH)2 process.

Eads (eV) 6MR  8MR  O14 8MR  O24

O 0.45 −0.08 −0.21
O2 −0.55 −1.09 −1.22
H2O −0.92 −1.64 −1.56
OH −2.67 −3.17 −3.31
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 and 8MR  O24 sites, respectively. As listed in Table 1, the
n energies of O2 on Cu in the 6MR, 8MR  O14 and 8MR  O24

−0.55, −1.09 and −1.22 eV, respectively.
vestigated how an O2 molecule could decompose, by
s as far as possible from each other. The distance between
toms was set to about 2.4 Å in the initial structure. How-
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Fig. 6. Local structure of O2 molecule adsorbed ZCu with Cu in the 6MR, 8MR  O14, and 8MR  O24 sites. The color coding for the spheres and the given distances have the
same meaning as previous figures. The total energy differences with respect to the total energy of Cu in the 6MR  site (�Etot) are given at the bottom of the figure.
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24 sites. The color-coding for the spheres and the given distances have
f Cu in the 6MR  site (�Etot) are presented at the bottom of the figure.

d −1.61 eV for Cu in 8MR  O14 and 8MR  O24  sites, respec-
ich are just half of values for the adsorption energies of
H species (−3.17 and −3.31 eV). We  can also examine the
dsorption energies of OH for 2 OH molecules adsorbed in
onformation using the following Eqs:

ot − EZCu − 2EOH) /2 (3)

ot, EZCu, and EOH are the total energies of ZCu upon the
n of 2 OH species, the clean ZCu conformation, and the
H species in the gas phase, respectively. The calculated

dsorption energies are −2.49, −2.43 and −2.46 eV for Cu in
 8MR  O14 and 8MR  O24 sites, respectively. It is concluded
n the adsorption of 2 OH species, the average adsorption
f OH is close to that found for the adsorption of one OH
n Cu in the 6MR  site (−2.67 eV). A similar comparison
at the interaction between OH and Cu is weaker for the
n of two  OH species than for the adsorption of one OH
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e diagram

st principles phase diagram approach provides a connec-
een the DFT results and the relative equilibrium stabilities

uOxHy species considered above [40]. A brief summary on
nstruct the phase diagram is described here and detailed

ion can be found in the paper of McEwen et al. [40] The
gy of a ZCu with adsorbate, which is related to the adsorp-
gies, is written using the chemical potentials of oxygen

ogen:

ZCuOxHy

)
− G (ZCu) − xO�O − yH�H (4)
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 choices of chemical potential reference are possible. The
 potentials can be related to temperature and gas pressure
the ideal gas law. Detailed information can be found in the

 and its Supplementary Information [40].
0a shows the computed relative free energies of Cu in

ite as a function of the oxygen chemical potential. As

 in Ref. [40], in order to understand the SCR reaction envi-
 the NO ⇔ NO2 equilibrium over the catalyst surface can
ed to obtain the chemical potential of oxygen, namely,
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putational Cu K-edge XANES

alysis of the XANES spectra of a clean Cu ion in
34
ES spectrum can provide information about the chemical
ent of a species and can be used as a fingerprint for iden-

 of a species. Differences in the Cu K-edge XANES spectra
terpreted by comparing them to the excited 4p PDOS of Cu
e empty band region, as shown in Fig. 11. The 1s–4s and
nsitions are forbidden from the dipole selection rules and
cluded in Fig. 11a. The 4p PDOS energy has been shifted

 to the Fermi level of Cu to allow for direct comparison

 the XANES spectra and the PDOS. For the three Cu loca-
R, 8MR  O14 and 8MR  O24), as shown in Fig. 11a, there

rgy gap in the 4p states between the small peak around
nd the main peak around 8984 eV. We  observe differences
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Fig. 11. The calculated PDOS of the excited Cu 4p state (a) and the computational
K-edge  XANES of Cu (b) in the 6MR  (solid line), 8MR  O14 (dash-dotted line) and
8MR O24 (dashed line) locations for clean ZCu. The vertical dashed line at 8978.9 eV
shows the Fermi level.

Fig. 12. The excited Cu ion orbital distributions in the (a) 6MR and (b) 8MR  O14
sites.  We  plotted the PDOS of 4s (dashed line) and 4p (dotted line) states because the
orbital distribution cannot be separated by each state. The iso-surface value is 0.04
electrons/Å3
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the differ
Cu+-SAPO
 in the 6MR  site. The differential plots of the corresponding XANES are
n (b) Cu+ and (d) Cu2+, respectively. The local structures of Cu ions are
sert figure, as well as the distances between Cu ions and lattice O atoms.

state with a small contribution from the 4p state. For Cu in
 8MR  sites this combined contribution by both the 4s and

 is near the Fermi level. The different contributions of the
or Cu in the 6MR  and the 8MR  sites result in a different
the orbital, as shown on the left of Fig. 12. Specifically,
n in the 6MR  is centered in the orbital, while the Cu ion

 toward the edge of the orbital for Cu in 8MR. The orbital
on of Cu in the 6MR  is more symmetrical than that of Cu
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NES comparison of Cu-SSZ-13 and Cu-SAPO-34 in the
f adsorbates

 shows a comparison between the XANES of a clean Cu-
d Cu-SAPO-34, including both the Cu+ and Cu2+ oxidation
r the Cu+ species, the coordination number is 3 for both
3 and Cu-SAPO-34. The distances between Cu and lattice
are almost the same, respectively 1.948, 2.004, 2.363 Å
, 2.008, 2.306 Å for Cu-SSZ-13 and Cu-SAPO-34. The same

 state of 1+ and same local structure produce nearly iden-
-edge XANES for Cu-SSZ-13 and Cu-SAPO-34, as shown

a. The edge position is defined as the maximum of the
al plot of the rising edge in the XANES. Fig. 13b shows
ential plots of the Cu K-edge XANES for Cu+-SSZ-13 and
-34. It is found that the edge position of Cu+ species in
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Fig. 14. (a) The excited 4p PDOS of Cu in the ZCu conformation in the presence of
adsorbates (H2O, O atom, OH and 2 OH with different oxidizing power. The Cu+ ion
is located in the 6MR  site. (b) The corresponding K-edge XANES. The vertical dashed
line at 8978.9 eV shows the Fermi level.

Table 2
Edge  position shifts in the Cu K-edge XANES in the presence of several adsorbates
in  the ZCu conformation (as shown in Figs. 14 and 15, as well as in Fig. S7) with
respect to the corresponding clean ZCu conformation with different Cu locations.
The  original data of the edge positions can be found in Table S1 of Supplementary
Information.  The resolution of the computational XANES is 0.05 eV.

Shift of edge position (eV) Clean H2O O OH− 2OH−

6MR  0.00 −0.10a 1.75 1.67 1.94
8MR O14 0.00 0.89 2.50 2.11 3.03
8MR O24 0.00 0.14 2.30 1.67 2.93
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Fig. 16. (a) Experimental XANES spectrum of a commercial ∼1.75 wt%  Cu-SAPO-
34  catalyst collected operando under standard SCR conditions [25]. Computational
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dure of our theoretical K-edge XANES to the experimental
s been detailed in our previous work [24]. However, the
ion of the phase diagram does not take into account the
nteraction of Cu exchanged ion with ammonia, which may

 adsorption of H2O because the binding preference for NH3
 in Cu-SSZ-13 [42]. As a result, we compare the XANES
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onsidered in the construction of the phase diagram since
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entary Information.
 16, we show the experimental XANES spectra. As shown in
t was determined that as much as 45% of the total Cu ions
under these conditions, where the photon energy of the

 is around 8984 eV. Details of the experimental procedure
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 different situations, we correlated the XANES of various
ecies to the experimental XANES collected operando under
SCR conditions. We compare the experimentally assigned

 with our ZCuOH2 model in Fig. 16, which was determined
 most energetically favorable configuration for a wide
xygen and water chemical potential values. We  also com-
ANES spectrum of an NH3 molecule bonded to a Cu ion in

onformation, which we denote as a ZCuNH3 configuration.
lated photon energy distribution of the Cu+ peaks of H2O
dsorbed ZCu correlate well with the experimental XANES
e photon energy range, as shown in Fig. 11b. Interestingly,
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ased on the XANES their respective XANES spectra alone.
so found in the construction of the phase diagram that
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mary, through calculations from first principles, the prop-
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d ALPO-34, the equilibrium volume of ALPO-34 is larger

 of SSZ-13, which is a result of the shorter average bond
etween the tetrahedral sites on the lattice oxygen atoms
3 (1.625 Å) as compared to the corresponding ones for
(1.645 Å). Similar to the ZCu conformation in Cu-SSZ-13,

 that the 6MR  site is the most energetically favorable site
red to the 8MR  sites with total energy differences in Cu-

 of about 0.5 eV with respect to the 6MR site. In addition,
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