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Abstract: In this work, phase diagrams of a modified two-mode phase-field crystal (PFC) that 

show two-dimensional (2D) and three-dimensional (3D) crystallographic structures were 

determined by utilizing a free energy minimization method. In this study the modified two-mode 

PFC model (presented by E. Asadi and M. Asle Zaeem, Comput. Mater. Sci. 2015) was used, in 

which the free energy can be exactly minimized in each stable crystal structure allowing 

calculation of accurate phase diagrams for two-mode PFC models. Different crystal structures, 

such as square, triangle, body-centered cubic (bcc), face-centered cubic (fcc), and stripe lattice 

structures as well as their coexistence regions were considered in the calculations. The model 

parameters were discussed to calculate phase diagrams that can be used as a guideline by other 

researchers for studying solidification and solid state phase transformation using two-mode PFC 

model.  
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1. Introduction 

The phase-field crystal (PFC) model is a reformulation of the Swift-Hohenberg [1] 

Equation, a model for simulation of non-conserved thermal fluctuation fields in the Rayleigh-

Benard convection problem [2], with conserved dynamics. The PFC model contains atomistic 

scale details and works on diffusive time scales, and it can be directly derived by approximations 

from density functional theory [3]. Therefore essential physics of the material such as elasticity, 

plasticity, dislocation and grain boundary formation are inherently incorporated in the PFC 

model. PFC models were successfully utilized in many different studies in materials science [3]. 

Different phenomena such as solidification [4, 5], binary alloy crystallization [6-9], Kirkendall 

effect [10], and grain-boundary premelting [11] were studied by utilizing different PFC models. 

Also different properties such as the bulk modulus and grain-boundary energies [12], crystal-

melt interfacial free-energy [12-14], and stacking faults [15] were calculated using this robust 

model. 

 The original PFC model is frequently called one-mode PFC model because its free 

energy functional damps the dynamics of the system except near the first density wave vector 

[16, 17]. The free energy functional of the one-mode PFC model is:  
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where   is a function of spatial positions related to the density field, 0q  is the magnitude of the 

principal reciprocal lattice vectors (RLVs) and  ,   and g  are model parameters. It is 

convenient to use the dimensionless form of the free energy by these relationships: 4
0/ q    , 

4
0/g q   , 0qx r  and *

2 5
0

g
F F

q
  , which result in the non-dimensional free energy 

functional of the one-mode PFC model: 
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where   is a small parameter,  and   is the dimensionless density field which is the 

summation of the average density of the solid state, s , and a periodic function representing 
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density fluctuations around s . The dimensionless density field for different crystal structures 

will be explained in Section 2 and Appendix A. Fig. 1 shows the two-dimensional (2D) and 

three-dimensional (3D) phase diagrams of the one-mode PFC model using the conventional free 

energy functional in Eq. (1) [12, 17]. The phase diagrams of PFC models show that which crystal 

structures are stable at different values of the model parameter,  . This type of PFC can present 

hexagonal close packed (hcp) or triangle, body-centered cubic (bcc), and strip structures but it 

can not present face-centered cubic (fcc) and square crystal structures. Jaatinen et al. [18] added 

a cubic term ( 3 / 3b  , where b  is another model parameter) to Eq. (1) and showed that with a 

particular choice of the modified  ( 2 4
0( / 3 )b g q   ) in Eq. (2), hcp, bcc and fcc lattice 

structures can be stable in the one-mode PFC, but no coexistence between fcc and bcc can be 

achieved, also square crystal structure is not stable in Jaatinen et al. [18] model.  

 

 

Fig. 1. Phase diagram of the one-mode PFC model in (a) 3D [12] and (b) 2D [17]; 

Constant region is liquid phase. 

 

Even though one-mode PFC models predict some properties such as solid-liquid interface 

free energy and grain boundary free energy with a good agreement with experimental data, they 

have difficulties in accurately predicting some other properties such as expansion in melting 

[19]. To improve the accuracy of the results of quantitative PFC, the effect of second or higher 

density wave vectors in the free energy functional needs to be considered.  In two-mode PFC, as 
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proposed by Wu et al. [20], a second density wave vector was considered. The free energy 

functionals of the two-mode PFC in dimensional and dimensionless forms are respectively: 

2 2 2 2 2 2 4
0 1 1
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where 4
1 1 0/R r q  and 1 1 0/Q q q . In Eq. (3a), 0q  corresponds to the principal RLVs of the 

crystal structure and 1q  to some other set of RLVs with larger wave vector magnitude. 1r  is the 

model parameter which can be positive or negative to provide flexibility to get stability of 

different crystal structures. For example for fcc, the principal RLVs is related to [111]  and the 

second one is [200] , so 1 4 / 3Q  . Wu et al. [20] two-mode PFC model has two degree of 

freedoms (DOFs) or independent model parameters,   and 1R . 

For 1 0R  , Eq. (3b) reduces to the free energy functional of Lifshitz and Petrich [21] and 

3D phase diagram of the model only exhibits fcc-liquid coexistence. The calculated 3D phase 

diagram for this model is presented in Fig. 2.   

 

Fig. 2. Calculated phase diagram for two-mode PFC with 1 0R   and 

1 1 4 / 3fccQ Q   in Eq. (3b). 
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By increasing 1R  in Eq. (3b), the amplitude of the second mode decreases and the two-

mode PFC model reduces to the one-mode PFC model. Wu et al. [20] showed that a small finite 

value of 1R  is required for the phase diagram (for the case of 1 4 / 3Q   ) to have both bcc-

liquid and fcc-liquid coexistence, and also to make this model capable of studying phase 

transformation from bcc to fcc (and vice versa). The computed phase diagram including bcc and 

fcc with 1 0.05R   for this model is presented in Fig. 3(a) [20], however, this phase diagram was 

computed based on some assumptions, which will be discussed in Section 2. Wu et al. [20] 

mentioned that a square crystal structure can be stable in the 2D version of their model, but they 

did not calculate the 2D phase diagram of their model to show for which range of model 

parameters this crystalline can be stable. In the following section, we will explain why it is 

necessary to revisit this phase diagram, and then we will study the effects of different model 

parameters on 2D and 3D phase diagrams of two-mode PFC.  

 

     

Fig. 3. Calculated phase diagram for two-mode PFC (a) from Ref. [20] and (b) for 

the modified two-mode PFC model with 1 0.05R   and 0 0R   [22]. 

 

Mkhonta et al. [23] introduced a multimode PFC model, and they showed a system 

including three length scales can order into five Bravias lattices and other structures such as 

honeycomb, and  kagome. The dimensionless free energy functional and the dynamic equation 

on diffusive time scales are respectively: 
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Where r ,  , ib  and  are phenomenological constants and iQ  are the magnitude of wave 

vectors. Mkhonta et al. [23] examined 2D nonequilibrium phase transitions with 3N   (three-

mode PFC) by solving the PFC evolution equation numerically. In the case of 2N  , this PFC 

model considers  the first two wavelength vectors similar to the two-mode PFC model of Wu et 

al. [20], but it has five DOFs ( r ,  , 0b , 1b  and  ). The three additional DOFs increase the 

computational expenses exponentially.  

In a recent work, the modified two-mode PFC model (M2PFC) was introduced by E. 

Asadi and M. Asle Zaeem [22], which has the same DOFs as Wu et al. two-mode PFC model 

[20], but it has a dependent parameter that enable exact minimization of the free energy in 

different phases. This model and the method to determine its phase diagrams will be explained in 

the next section. 

 

2. Phase Diagram Calculations 

In density functional theory (DFT), the density of the crystalline state can be expressed in 

terms of the reciprocal lattice vectors (RLVs), k


, and their amplitudes,
k

A , by 

 . . .s
ik r

k
k

A e c c  
 


   ,                                                                                                            (5) 

In Eq. (5), s  is the average density in the solid state, r


 is the position vector, 
k

A  is the Fourier 

amplitudes of the related RLVs, 1i   , and c.c. means complex conjugate. The dimensionless 

density profiles in the solid state for square, triangular, stripe, fcc and bcc lattice structures in 

PFC model by considering the first and second wavelength amplitudes are: 

2 (cos cos ) 4 (cos cos )sq s s sA qx qy B qx qy     ,                                                                  (6a) 
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tri s s s

qy qy
A qx B qx qy qx     ,                              (6b) 

cos cos 2str s s sA qx B qx    ,                                                                                                (6c) 

8 cos cos cos 2 (cos2 cos2 cos2 )fcc s s sA qx qy qz B qx qy qz      ,                              (6d) 

4 (cos cos cos cos cos cos )

2 (cos2 cos2 cos2 ),
bcc s s

s

A qx qy qx qz qy qz

B qx qy qz

   

  

 
                                               (6e) 

where sA  and sB  are density amplitudes for the first and second RLVs, and q  depends on the 

crystal structure (Appendix A). For square and stripe lattice structures, 1q  , for the triangular, 

3 / 2q  , for bcc, 1/ 2q  and for fcc, 1/ 3q  . It is worth mentioning that sA  and sB  are 

different for different crystal structures in Eqs. (6a)-(6e), and they will be calculated by the 

minimizing free energy density with respect to sA  and sB . The above form of dimensionless 

density fields is known as the two-mode expansion of density; if only the first wavelength 

amplitude was considered, in other words 0sB  , then it becomes the one-mode expansion of 

density. The procedure for deriving Eqs. (6a)-(6e) is explained in Appendix A. 

In the phase diagram calculated by Wu et al. [20], two-mode expansion of the density 

field was only considered for fcc crystal structure, and one-mode expansion of the density field 

was considered for the other crystal structures. With these assumptions they showed that their 

model could predict the coexistence of bcc and fcc structures. 

The free energy density for every crystal structure can be calculated by substituting the 

appropriate density profile from Eqs. (6a)-(6e) in Eq. (4a), integrating over the crystal unit cell, 

and then dividing the resultant by the unit area (in 2D) or unit volume (in 3D). For example the 

calculated free energy density for fcc crystal structure is: 

2 4
2 2 2 2 2

1 1

2 2 4 4

16 1
( ) 4( 3 ) 3(3 ) 72

9 2 9 4

45
144 54 .

2

s s
fcc s s s s s s s

s s s s

f R A R B A B

A B A B

                    

  

                  (7)                         
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The dimensionless free energy densities for other crystal structures can be calculated 

from equations in Appendix B. For fcc crystal structure, the free energy density in Eq. (7) needs 

to be minimized with respect to the crystal structure. Minimization of the free energy density 

with respect to density wavelength amplitudes ( sA  and sB ) gives the relationship of these 

unknowns in terms of average density of the solid state ( s ) and the model parameters 1R  and 

. If two-mode expansion of dimensionless density was considered, the total free energy density 

would not be minimized with respect to q , unless 1 0R   [22]. For example for fcc crystal 

structure with free energy density of Eq. (7), 2
11/ 3

/ | 16 / 3fcc sq
df dq B R


 . This error increases 

by increasing 1R  or sB . Thus for every crystal structure with two-mode expansion of density, its 

relevant q  will not minimize the free energy density accurately. E. Asadi and M. Asle Zaeem 

[22] proposed a modified two-mode PFC model (M2PFC) which incorporates two independent 

parameters,   and 1R , and one dependent parameter, 0R , to prevent this error in minimization of 

the free energy density in solid crystalline. The dimensional and dimensionless free energy 

functionals of M2PFC are:  

 2 2 2 2 2 2 4
0 0 1 1

1
( ) ( )

2 4

g
F q r q r d                    r ,                                          (8a) 

 
4

* 2 2 2 2 2
0 1 1(1 ) ( )

2 4
F R Q R d

  
 

              
 
 x ,                                             (8b) 

where 4
0 0 0/R r q , which can be calculated by minimizing the free energy density of the solid 

state for every crystal structure with respect to q  by considering its relevant q . 0R  is not an 

independent parameter and can be calculated according to the crystal structure and other model 

parameters such that the free energy is minimized accurately. For example, for fcc crystal 

structure 2 2
0 12 ( / )s sR R B A . M2PFC model will be reduced to the Wu et al. [20] two-mode PFC 

model when 0 0R  . Although Wu et al. model [20] added a new parameter ( 1R , which is an 

extra degree of freedom) to Swift-Hohenberg two-mode PFC model [1] to produce fcc crystals 

and achieve coexistence of fcc and bcc crystallines, this model did not exactly minimize the free 

energy in fcc crystals when R
1
 was not zero. The M2PFC model does not add an extra degree of 
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freedom to Wu et al. model [20], the new parameter ( 0R ) is a function of other parameters ( 1R ,  

etc.), and M2PFC produces stable phases by exactly minimizing the free energy in each phase. 

The Mkhonta’s model [23] with 2N   (i.e. two-mode) seems to have similar equations to 

M2PFC model, but in this model 0b  and 1b  (which are similar to 0R  and 1R  in M2PFC model) 

are independent parameters; although Mkhonta’s model [23] has the same wave numbers as 

M2PFC model, it has three more degree of freedoms. The M2PFC with the same degree of 

freedom as the Wu et al. [20] model, produces stable phases, all its parameters are connected to 

physical quantities [19], and it was showed that this model is more accurate quantitatively than 

previous results [19]. Therefore M2PFC not only gives stable fcc and co-existence between bcc 

and fcc, but also it gives better quantitative results. Fig. (3b) shows the calculated phase diagram 

of M2PFC with the assumptions in Ref. [20] and for 1 0.05R   and 0 0R  ; this phase diagram is 

the same as Fig. (3a). 

To calculate the phase diagrams, a positive, negative or zero value for 1R  is considered, 

and   is changed from 0 to 0.5. Then, for any average densities in solid ( s ) and liquid ( l ) 

states, the dimensionless free energy density for each crystal structure and liquid are calculated 

using Eqs. (B1)-(B6) in Appendix B. In 3D phase diagrams, we chose 1 0.05R   as a positive 

value of 1R , because then our results can be compared to the results of Ref. [20]. For a negative 

value of 1R , we chose 1 0.015R   , because for larger negative values of 1R  the numerical 

calculations of free energy minimization do not converge for small values of  . To calculate the 

2D phase diagrams, 1 0.05R   and 1 0.15R   are chosen. The density amplitudes ( sA  and sB ) 

can be determined by minimizing the free energy density. The coexistence of solid-liquid was 

numerically calculated by using the standard common tangent construction [3] by equating the 

chemical potentials ' '( ) ( )s s l l Ef f     and grand potentials ( ) ( )s s E s l l E lf f         for 

any phases. Similar procedure was followed to calculate the coexistence regions between two 

solid phases. 
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3. Results and Discussions 

3.1. Phase diagram in 3D 

I. Phase diagram of M2PFC model considering two-mode expansion of density field for fcc 

and one-mode expansion of density for bcc, triangle and stripe 

In Eq. (8b), the total free energy of the solid states is affected by parameter 1Q . This 

parameter is different for different crystal structures, thus it can significantly change the total 

free energy. In this section to be able to include different crystal structures in one phase diagram, 

1Q  for one crystal structure is used to determine the parameters for all the other crystal structures 

(first assumption of Wu et al. [20]). However, to determine the coexistence of the solid-liquid for 

any crystal structure, it is necessary to consider 1Q  for that crystal structure and use 0R  

according to Eqs. (9a)-(9d).  To calculate the phase diagram of M2PFC, 1Q  of fcc crystal is 

considered as the reference, and the values of 0R were calculated for the other crystal structures. 

Even by considering another 1Q  for a crystal structure rather than its own 1Q , M2PFC has the 

ability to choose 1R  in a way that the exact minimum free energy for that crystalline is achieved. 

As it was mentioned previously, in M2PFC model, it is necessary to calculate the value 

of 0R  for each crystal structure to minimize the free energy density exactly. This parameter is 

equal to zero if we consider one-mode expansion of the density. So if we want to recalculate the 

phase diagram of Fig. 3 considering M2PFC model, and since two-mode expansion density was 

used only for fcc crystal in Fig. 3 (second assumption of Wu et al. [20]), we need to only 

calculate 0R  for fcc crystal structure. Figs. 4(a-c) show the calculated phase diagrams of M2PFC 

for 1 0.05R  , 1 0.1R    and 1 0.015R    using two-mode expansions of the crystal density field 

for fcc and one-mode for bcc, triangle and stripe. As it can be seen, this exact minimization 

shows that, for example for even a small value of 1 0.05R  , the region for stable bcc is smaller 

than that of the Wu et al. two-mode PFC model [20], Fig. 3(a). In quantitative PFC simulations, 

the results can be significantly affected by this small changes in the phase diagram, especially 

noticing that the most of the quantitative PFC simulations have been done so far for small   [12-

14, 19]. As 1R  increases, the region for bcc will increase and have more coexistence region with 
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the fcc crystal structure. For the negative value of 1R , the effect of second wavelength vector 

increases, and bcc crystal structure is not stable. 

 

 

 

Fig. 4. Phase diagrams of the M2PFC model computed using two-mode 

expansions of the crystal density field for fcc and one-mode for bcc, triangle and 

stripe;  1 1, 4 / 3fccQ Q  ; (a) 1 0.05R   ,(b) 1 0.1R  , and (c) 1 0.015R   .  

 

Fig. 5 shows phase diagrams of M2PFC by considering 1Q  for bcc crystal structure. In 

this case fcc crystal structure is not stable for any values of 1R . This figure also shows that 

positive and negative values of 1R  resulted in very similar phase diagrams. 
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Fig. 5. Phase diagrams of the M2PFC model computed using two-mode 

expansions of the crystal density field for fcc and one-mode for bcc, triangle and 

stripe; 1 1,b 2ccQ Q  ; (a) 1 0.05R  , and (b) 1 0.015R   .  

 

II. Phase diagram of M2PFC model considering two-mode expansion of density fields 

Calculations of phase diagrams will be more accurate if the two-mode expansion of the 

density fields were considered for all the crystal structures, Eqs. (6a)-(6e). In this section, all the 

phase diagrams are calculated by two-mode expansion of density field. First, for all the crystal 

structures with their own 1Q , the phase diagrams are calculated with M2PFC model, then we 

recalculate the phase diagrams by considering 1Q  for a crystal structure as reference (first 1Q  for 

fcc and then for bcc). In M2PFC model 0R  will be modified for each crystal structure to exactly 

minimize the free energy density; therefore only accurately calculated stable phases will be 

presented in the phase diagrams of M2PFC model.  

The value of 1Q  is 2 , 3  and 2 for bcc, triangle, and stripe crystal structures, 

respectively. 0R  is calculated by minimizing the free energy density of the solid state for every 

crystal structure with respect to q  by considering its relevant q  and  1Q :  

2 2
0, 12 ( / )fcc s sR R B A ,                                                                                                                   (9a)  

2 2
0, 12 ( / )bcc s sR R B A ,                                                                                                                   (9b) 
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2 2
0, 13 ( / )tri s sR R B A ,                                                                                                                    (9c) 

2 2
0, 14 ( / )str s sR R B A .                                                                                                                   (9d) 

The phase diagrams of M2PFC model for 1 0.05R   and 1 0.015R    are shown in Fig. 6. 

In this diagrams, 1Q  for each crystal structure is used. These phase diagrams show that none of 

the model parameters can stabilize bcc crystal structure. In these cases, the free energy density of 

fcc phase was always less than that of the bcc phase, primarily because 1Q  for fcc is less than  

1Q  for bcc.  

 

 

Fig. 6. Phase diagrams of the M2PFC model computed using two-mode 

expansion of density fields for all the crystal structures with their own 1Q ; (a) 

1 0.05R  , and (b) 1 0.015R   . 

 

The above phase diagrams are recalculated first by considering 1 1, 4 / 3fccQ Q  , and 

then 1 1, 2bccQ Q   for all the crystal structures. 0R  in Eq. (9a)-(9d) needs to be modified. For 

the case where 1 1, fccQ Q , 0R  for fcc remains the same (Eq. (9a)), and 0R  for bcc, triangle and 

stripe is:  

2 2 2
0, 1(9 10) / (3 6 )bcc s s sR B R A B   ,                                                                                            (10a) 
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2 2 2
0, 12 (9 55) / ( 15 )tri s s sR B R A B   ,                                                                                          (10b)

2 2 2
0, 14 (9 136) / ( 32 )str s s sR B R A B   .                                                                                       (10c) 

For the case where 1 1,bccQ Q , 0R  for bcc remains the same (Eq. (9b)), and 0R  for fcc, 

triangle and stipe is:  

2 2 2
0, 1(9 2) / (27 18 )fcc s s sR B R A B   ,                                                                                         (11a) 

2 2 2
0, 16 ( 3) / ( 3 )tri s s sR B R A B   ,                                                                                                (11b) 

2 2 2
0, 112 ( 10) / ( 8 )str s s sR B R A B   .                                                                                            (11c) 

The phase diagrams for 1 0.05R   and 1 0.015R    are presented in Figs. 7 and 8. In Fig. 

7(a) where 1 1, fccQ Q , for 1 0.05R   and 0.33  fcc and bcc phases are not stable, and only the 

triangle phase has coexistence with the liquid. By increasing the value of  , the fcc phase can be 

stable and it has coexistence regions with liquid and triangle phases. In Fig. 7(b) with 

1 0.015R   , both triangle and fcc phases are stable for all the values of  , but only the fcc 

phase has coexistence with the liquid. In Fig. 8 where 1 1, 2bccQ Q  , for both positive and 

negative values of 1R , fcc phase is not stable. For 0.16 , Fig. 8(a) shows that only the 

triangle phase has a coexistence region with the liquid, and then increasing   reveals stability of 

the bcc phase which is in coexistence with both triangle and liquid phases. Fig. 8(b) is similar to 

Fig. 7(b) except instead of fcc, bcc crystal structure is stable and only fcc crystal structure has 

coexistence with the liquid. 
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Fig. 7. Phase diagrams of the M2PFC model computed using two-mode 

expansions of density for all crystal structures and 1 1, 4 / 3fccQ Q  ; (a) 

1 0.05R  , and (b) 1 0.015R   . 

 

 

Fig. 8. Phase diagrams of the M2PFC model computed using two-mode 

expansions of density for all crystal structures and 1 1, 2bccQ Q  ; (a) 1 0.05R  , 

and (b) 1 0.015R   . 
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3.2. Phase diagram in 2D 

To calculate 2D phase diagrams, 1Q  for square is considered as the basis and the other 

parameters in all crystal structures are calculated. By considering 1q   and 1 2Q   for the 

square structure, 2 2
0, 12 ( / )sq s sR R B A . For triangle and stripe lattice structures, 0R  is calculated 

as: 

2 2 2
0, 16 ( 3) / ( 3 )tri s s sR B R A B   ,                                                                                                (12a) 

2 2 2
0, 112 ( 10) / ( 8 )str s s sR B R A B   ,                                                                                            (12b) 

sA  and sB  are determined by minimizing the free energy density.  

For the square structure, minimizing the free energy density with respect to sA  and sB  

leads to two coupled equations:  

2 3 2
0 1 012 48 36 72 4 4 4 0s s s s s s s s s s sA A B A A B A R R A R A         ,                                       (13a) 

2 2 3 2
0 1 112 24 36 72 4 4 4 0s s s s s s s s s sB A B A B B R R B R B         .                                          (13b) 

The above equations and the equation for 0R  of the square structure are solved 

simultaneously to determine sA , sB  and 0R  for different values of 1R ,   and s . This procedure 

was followed for the other crystal structures. The equations for triangular and stripe crystal 

structures are not presented here for brevity. 

In Fig. 9, 2D phase diagrams of M2PFC for negative, zero and positive values of 1R  are 

plotted. Fig. 9(a) shows the constructed 2D phase diagram for 1 0.15R   . In this diagram only 

the square phase is stable.  Increasing 1R  to 0.05 , decreases the square phase region but still 

there is no stable triangle phase ( Fig. 9(b) ). Calculated phase diagram for 1 0R   in Fig. 9(c) 

shows square, triangle and stripe lattice phases can be stable but no range of   allows 

coexistence of the triangle phase with the liquid. Calculated phase diagram in Fig. 9(d) indicates 

by increasing 1R  to a positive value of 0.05, in addition to have both square and triangle stable 

phases which have a coexistence region with each other, they both have coexistence with the 
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liquid. As mentioned before increasing 1R  makes the two-mode PFC behaves as one-mode PFC, 

and it is expected to not have a stable square phase for large values of 1R . Fig. 9(e) shows for 

1 0.15R   only the triangle phase is stable and coexist with the liquid in 0.7  . 

 

 

 

Fig. 9. 2D phase diagrams of the M2PFC model for (a) 1 0.15R   , (b) 

1 0.05R   , (c) 1 0R  , (d) 1 0.05R  , and (e) 1 0.15R  . 
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4. Conclusions 

In this study phase diagrams of the modified two-mode PFC (M2PFC) model in 2D and 

3D were calculated. M2PFC model by incorporating a dependent parameter 0R , has the ability to 

exactly minimize the free energy functional in each crystal structure. By presenting the phase 

diagrams of M2PFC model, we showed that the model is capable of simulating square, triangle, 

stripe, bcc and fcc lattice structures as well as their coexistence with each other and liquid phase. 

0R  is essential in M2PFC model when two-mode expansion of density is considered. Also 

calculation of the phase diagram is sensitive to 1Q . But parameter 0R  gives a flexibility to the 

model to minimize the free energy in each crystal structure for any 1Q . It was shown that 

changing 1R  and   parameters allows adjustments of the relative liquid and solid free energies 

and densities, therefore the M2PFC model can be used to study problems related to the solid-

liquid coexistence, solid state near melting point and solid state transformation. 
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Appendix A. Calculation of the dimensionless density field 

Assuming that the system is in crystalline state and the average value of the density is s  

,then the functional form of a periodic density can be written in  terms of reciprocal lattice 

vectors (RLVs), k


, and their amplitudes 
k

A  by Eq. (5). In n-dimensional space, 
1

n

i ik n q
 

 

where iq


 are the principal RLVs related to a specific crystalline symmetry and in are integer 

numbers. It is appropriate to assume that the amplitudes are constant in a periodic state. A one-

mode approximation will refer to an approximation in which the summation for k


 only includes 

in  that correspond to the first nearest atoms to reconstruct a given crystal symmetry and two-
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mode approximation includes up to the second nearest atoms. In other words, in  are chosen to 

include up to the thn  order of the RLVs by considering 
1

n

in n  . 

In bcc crystal structure, the direct principal lattice vectors are in this form 

     
1 2 3

1 1 1
( ), ( ), ( )

2 2 2
a a x y z a a x y z a a x y z         
     ,                                                     (A1) 

Where a is lattice parameter and x , y  and z  are the unit vectors. The relevant RLVs can 

be calculated by considering this relationship 2i j ija q  in which ij is the Dirac delta function.  

   
1 2 3

2 2 2
( ), ( ), ( )q x y q y z q x z

a a a

  
     

    ,                                                                       (A2) 

The value of in  are ones for which the magnitude of k


 is equal to 2 2 / a  for one-

mode approximation and 4 / a  for two-mode approximation. 4 / a  is equal to 2  times of the 

magnitude of  k


 in one-mode. This is because bcc turns to fcc in RL space and the magnitude 

ratio of second RLVs to principal RLVs is 2 . So the value in  that correspond to a one-mode 

approximation are 1 2 3( , , ) (1,0,0),(0,1,0),(0,0,1),(1, 1,0),(0,1, 1),( 1,0,1)n n n     . By calculating 

k


 and substituting in Eq. (5), assuming all the amplitudes are equivalent (i.e. sk
A A )  and 

2 /q a  gives:  




2 cos( ) cos( ) cos( ) cos( )

cos( ) cos( ) .

bcc s sA qx qy qy qz qx qz qx qz

qy qx qz qy

          

  
                               (A3) 

For two-mode, 1 2 3( , , ) (1,1, 1),(1, 1,1),(1,1, 1)n n n     . With assumption of all second 

amplitudes are equivalent (i.e. sk
A B ), then two-mode expansion density in this case can be 

calculated and the dimensionless density field will be in form of Eq. (6e). 

 In fcc crystalline the direct principal lattice vectors, ia  and RLVs have these forms,  

   
1 2 3

1 1 1
( ), ( ), ( )

2 2 2
a a x y a a y z a a x z     
    ,                                                                        (A4) 
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     
1 2 3

2 2 2
( z), ( ), ( )q x y q x y z q x y z

a a a

  
         

     .                                                    (A5)                         

The value of in  are defined in order to have the magnitude of k


 equals to 2 3 / a  for 

one-mode approximation and 4 / a  for two-mode approximation. The RLVs of fcc crystal 

structure has the form of bcc crystalline and the magnitude of k


 for second wavelength to 

principal is 2 / 3 . So for one-mode approximation, 

1 2 3( , , ) (1,0,0),(0,1,0),(0,0,1),( 1, 1, 1)n n n      and for two-mode, 

1 2 3( , , ) (1,1,0),(0,1,1),(1,0,1)n n n  . By considering previous assumption as bcc, the 

dimensionless density filed can be calculated in form of Eq. (A6) and simpler form of Eq. (6d).   




2 cos( ) cos( x ) cos( )

cos( ) 2 (cos2 cos2 cos2 ).

fcc s s

s

A qx qy qz q qy qz qx qy qz

qx qy qz B qx qy qz

            

    
                             (A6) 

For square lattice structure,  
1 2,a ax a a y 
 

and  
1 22 / a, 2 /q x q y a  
 

. In one-mode 

and two-mode approximations 1 2( , ) (1,0),(0,1)n n   and 1 2( , ) (1,1),(1, 1)n n   respectively, and 

the dimensionless density will have this form before simplification, 

  2 (cos cos ) 4 cos( ) cos(qx )sq s s sA qx qy B qx qy qy        .                                         (A7) 

In stripe,  
1 1, 2 /a ax q x a 
 

. For one-mode and two-mode expansions 1 1, 1n    and 

1 2, 2n    which results the dimensionless density filed in form of Eq. (6c). 

For triangle lattice structure the direct principal lattice vectors, ia  and RLVs have these 

forms,  

  
1 2

2
,

3 3

a a
a x a x a y

 
  

 
,                                                                                                       (A8) 

  
1 2

2 3 1 2
( ), ( )

2 2
q x y q y

a a

 
  

 
.                                                                                           (A9)

                     
 

The magnitude of k


 is 2 / a  for one-mode approximation and 2 3 / a  for two-mode 

approximation. Then 1 2( , ) (1,0),(0,1),( 1, 1)n n     and 1 2( , ) ( 1, 2),( 2, 1),( 1,1)n n        are for 



Computational Materials Science 123 (2016) 139-147 

21 
 

one and two mode expansion approximations. If 2 3 / 2q a , these set of vectors leads to the 

following approximation for density and the simpler form of Eq. (6b). 

  

2
cos( ) cos cos( )

3 3 3

1
cos( 3 ) cos( 3 ) - cos2 .

2

tri s s

s

qy qy qy
A qx qx

B qx qy qx qy qx

   
      

 
      

                                                (A10) 

In our dimensionless units the magnitude of the principal RLVs are unity, so for square 

and stripe lattice structures, 1q  , for the triangular, 3 / 2q  ,for bcc, 1/ 2q  and for fcc, 

1/ 3q  . 

 

Appendix B. The free energy density in solid state  

By substituting   from Eqs. (6a)-(6e) in *F in Eq. (8b), integrating over the crystal 

structure, and calculate the free energy per unit area in 2D or per unit volume in 3D, the free 

energy in crystalline state can be calculated. The expression of sf  in square, triangle, stripe, bcc 

and fcc lattice structures are defined as shown below. For the liquid free energy, lF , it is simpler. 

By considering a constant l  in Eq. (8b), the dimensionless liquid free energy can be calculated.  

4 2
4 4 2 2 2

0 1 1 1 1 0 0 1

4 2 2 2 4 2
1 1 0 0 1 1 1 1

2 2 2 3 3 4 4

(1 )( ) 6 (1 2 ) 3
4 2

3 (4 4 ) 3 4 4

45
72 144 144 48 135 ,

2

s s
bcc s s

s s

s s s s s s s s s s s

F R Q R Q Q R R R A

Q Q R R R Q Q R B

A B A B A B A A B

   

 

 

                

           

     

                    (B1) 

4 2
4 4 2 2 2

0 1 1 1 1 0 0 1

4 2 2 2 4 2
1 1 0 0 1 1 1 1

2 2 2 4 4

(1 )( ) 4 (1 2 ) 3
4 2

16 8 8 1 1 16
3 ( ) 3

9 3 81 9 9 81

45
72 144 54 ,

2

s s
fcc s s

s s

s s s s s s s

F R Q R Q Q R R R A

Q Q R R R Q Q R B

A B A B A B

   

 



                

            

   

                    (B2) 
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4 2 2
4 4 2 2

0 1 1 1 1 0 0 1

2
4 2 2 2 4

1 1 0 0 1 1 1

2 2 2 4 4

(1 )( ) (1 2 ) 3
4 2 4

(16 8 ) 3 144 72 9
4

3 3 3 3
,

4 8 32 32

s s s
str s

s
s

s s s s s s s

A
F R Q R Q Q R R R

B
Q Q R R R Q Q

A B A B A B

   

 



                

          

   

                       (B3) 

4 2
4 4 2 2 2

0 1 1 1 1 0 0 1

4 2 2 2 4 2
1 1 0 0 1 1 1 1

3 3 3 2 2 4 4

3
(1 )( ) (1 2 ) 3

4 2 16
3

(9 6 ) 3 24 4 4 36
16

3 3 9 45 45 45
,

16 16 64 128 512 512

s s
tri s s

s s

s s s s s s s s s s

F R Q R Q Q R R R A

Q Q R R R Q Q R B

A B A B A B A B

   

 

 

                

           

     

                   (B4) 

4 2
4 4 2 2 2

0 1 1 1 1 0 0 1

4 2 2 2 4 2
1 1 0 0 1 1 1 1

2 2 2 4 4

(1 )( ) (1 2 ) 3 2
4 2

(4 4 ) 3 4 4 2

24 36 9 9 ,

s s
sq s s

s s

s s s s s s s

F R Q R Q Q R R R A

Q Q R R R Q Q R B

A B A B A B

   

 



                

           
   

                      (B5) 

2 4
4

0 1 1(1 )( )
2 4

l l
lF R Q R

         .                                                                              (B6) 
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