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We investigate the behavior of the entanglement entropy of space in the primordial
phase of the universe before the beginning of the cosmic inflation. We argue that in this
phase the entanglement entropy of a region of space grows from a zero-law to an area-
law. This behavior provides a quantum version of the classical Belinsky–Khalatnikov–
Lifshitz (BKL) conjecture that spatially separated points decouple in the approach to a
cosmological singularity. We show that the relational growth of the entanglement entropy
with the scale factor provides a new statistical notion of arrow of time in quantum
gravity. The growth of entanglement in the pre-inflationary phase provides a mechanism
for the production of the quantum correlations present at the beginning of inflation and
imprinted in the CMB sky.
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1. Introduction

Current observations of the CMB radiation,1 together with the inflationary
paradigm, indicate that at the beginning of cosmic inflation the universe was in
a pure state with highly-correlated quantum fluctuations. These correlated quan-
tum fluctuations are imprinted in the CMB sky and correspond to an area law2 for
the entanglement entropy of quantum fields.

In this paper, we explore the behavior of entanglement before the beginning
of inflation, that is in the primordial universe. In classical general relativity, the
Belinsky–Khalatnikov–Lifshitz (BKL) conjecture3 indicates that the spatial cou-
pling of degrees of freedom is suppressed in the approach to a spacelike singularity.

∗This essay received an Honorable Mention in the 2015 Essay Competition of the Gravity Research
Foundation.
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In the quantum theory this phenomenon corresponds to the suppression of corre-
lations at spacelike separation, i.e. a suppression of the entanglement entropy. We
consider a class of candidate solutions of the Wheeler–deWitt (WdW) equation that
have exactly this behavior: a vanishing entanglement entropy in the limit of small
scale factor. We argue that the dynamics entangles the quantum degrees of freedom
of space resulting in a growth of the entanglement entropy with the scale factor:
the entanglement entropy grows — following a quantum version of the second law
of thermodynamics — until it saturates to an equilibrium state where the area
law holds and standard quantum field theory on a classical background geometry
applies.

2. The Candle and the Pendulum

Our analysis brings together two independent conceptual insights regarding the
nature of time: relational time and the thermodynamic arrow of time.

The notion of relational time is relevant for generally-covariant systems where
the parameter time t is not an observable.4 What a generally-covariant theory
predicts and experiments can test is the value of an observable O conditioned to
having measured the value of another observable a. Introducing the parameter time
t, we have the partial observables a(t) andO(t) and the predictionO[a] ≡ O(t(a)) of
finding the value O given the value a. For instance, we can describe the correlation
of the position of a pendulum with the position of a ball rolling down an inclined
plane. This timeless description of the dynamics applies to classical systems as well
as to quantum systems as discussed in Sec. 3.

The notion of thermodynamic arrow of time arises in isolated macroscopic sys-
tems where, according to the second law of thermodynamics, the entropy does not
decrease in time. The microscopic foundations of this law rest on Boltzmann’s sta-
tistical explanation of the observed irreversible behavior of macroscopic systems5,6:
the reversible microscopic dynamics of the system typically results in the evolution
from low statistical entropy towards the maximum allowed entropy, the equilibrium
state. The argument involves two ingredients: a choice of coarse graining of micro-
scopic degrees of freedom and the preparation of the system in an initial microscopic
configuration with low statistical entropy. For instance, a burning candle is initially
in a low-entropy state and the height of the candle can be used to measure a time
lapse and its direction. Fixing the initial conditions is what breaks the time-reversal
symmetry.

It can be argued that to measure the passing of time we need both a pendulum
and a candle. Our best clocks have oscillators with all frictions eliminated as far
as possible. A perfect oscillator is one that perfectly conceals the arrow of time,
while accurately measuring the length of a given interval of time, proportional to
the number of oscillations. Correlations of the position of the pendulum and the
height of a burning candle then establish the direction of the flow of time. Both
instruments are required if one wants to measure a directed interval of time. In fact,
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mechanical watches have this system built in: a good oscillator and an escapement
mechanism that is initially in a low-entropy state which introduces a small but
necessary dissipation in order to keep track of the number of oscillations, making
the hands advance in one direction.

We argue that the primordial universe is no different: the entanglement entropy
of a region of space typically grows with the scale factor resulting in an entanglement
arrow of time in an isolated and timeless quantum system.

In the next two sections we illustrate the notion of relational time in time-less
quantum mechanics (Sec. 3) and the second law of thermodynamics of quantum
systems initially prepared in a pure un-entangled state (Sec. 4). The application to
quantum gravity and its relevance to the description of the pre-inflationary universe
is discussed in Sec. 5.

3. Relational Time in Time-Less Quantum Mechanics

Differently from the Schrödinger equation, the WdW equation in quantum gravity
does not contain a parameter time t. An ordinary quantum mechanical system
showing this same behavior is a stationary state, i.e. an eigenstate of the energy.7

As an example, consider two uncoupled harmonic oscillators with Hamiltonians
Ĥ1 = !ω1(a†1a1+

1
2 ) and Ĥ2 = !ω2(a†2a2+

1
2 ). The level of energy E of the combined

system has finite degeneracy if the frequencies are proportional. We take ω2 = Mω1

and E = !ω1(N + M+1
2 ), with N a multiple of the integer M . The WdW equation

for this simple system reads

ĤΨ(x1, x2) = 0, (1)

where Ĥ = Ĥ1 + Ĥ2 − E, and the most general solution |s⟩ has the form

Ψs(x1, x2) =
N/M∑

n=0

cnψN−Mn(x1)ψn(x2), (2)

where ψn1(x1) and ψn2(x2) are eigenstates of each of the two oscillators. While
there is no time in this quantum system, we can still speak about the evolution of
the expectation value of an observable conditioned to a value of the other. In the
following, we discuss the evolution of the expectation value of the position ⟨x2⟩ of
the second oscillator, conditioned to the value x1 = a of the position of the first
oscillator. See also Refs. 4, 8–12.

The setting is the standard one of positive-operator valued measures (POVM).
We consider a Gaussian POVM in terms of squeezed coherent states |α⟩ of the
first oscillator, (α ∈ C). The completeness relation reads 1 =

∫
d2αFαF †

α with
Fα = 1√

π
|α⟩⟨α| ⊗ 12. The state of the second oscillator conditioned to the value α

for the first is

ρ2(α) =
Tr1(Fα | s⟩⟨s |F †

α)
Tr1Tr2(Fα | s⟩⟨s |F †

α)
, (3)
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where Tr1 and Tr2 are the traces in the Hilbert space of each oscillator. The con-
ditioned value of the position of the second oscillator is x2(α) = Tr2(x̂2 ρ2(α)).
Conditioning the first oscillator to a definite position x1 = a corresponds to the
limit of infinite squeezing of the coherent state |α⟩, i.e. the limit of a Gaussian to
a Dirac delta function centered at x1 = a. In this case, we obtain a rather simple
formula for the conditioned state:

ρ2(a;x2, x
′
2) =

Ψs(a, x2)∗ Ψs(a, x′
2)∫

dx′′
2 |Ψs(a, x′′

2 )|2
. (4)

Notice that this reduced state is pure: the entanglement between the two oscillators
has been exploited in obtaining the conditioned state. The conditioned position
x2(a) of the second oscillator is easily computed. Figure 1 shows a plot of the
evolution of the position x2 in the relational time x1 = a for a constrained coherent
state of the form (2). In the plot the quantum relational evolution (continuous line)
is compared to its classical counterpart (dashed line).
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Fig. 1. Classical and quantum relational observables for two uncoupled harmonic oscillators.
The dashed curve shows the classical position x2 of the second oscillator conditioned to the first
oscillator having at position x1. The continuous curve shows its quantum version, the expectation
value of x2 conditioned to a measurement of the first oscillator.
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4. Entanglement Entropy and the Second Law

Boltzmann’s notion of thermodynamic arrow of time, originally proposed for iso-
lated classical systems, applies to quantum systems in a pure state as well. The
coarse graining of the microscopic degrees of freedom is given by a choice of sub-
algebra of observables R corresponding to a splitting of the Hilbert space of the
system in a tensor product H = HR ⊗HR̄. A pure state |s⟩ restricted to this sub-
algebra results in a density matrix ρR = TrR̄(|s⟩⟨s|) that is typically mixed because
of entanglement between R and R̄. The entanglement entropy is the entropy of mea-
surements of the observables in R on the state |s⟩ and is defined as the von Neumann
entropy of the restricted state SR(|s⟩) = −TrR(ρR log ρR). While the Schrödinger
equation is invariant under time reversal, the evolution of a system initially pre-
pared in a state of low entanglement entropy typically results in an increase of the
entanglement entropy towards its value in the equilibrium configuration. This mech-
anism provides the foundations of the second law of thermodynamics in isolated
quantum systems13 and is illustrated below in a toy model.

The toy model consists of a discretized free scalar quantum field. The system
is equivalent to a collection of harmonic oscillators, one at every lattice site and
coupled through the discretized Laplacian on the lattice. In particular, the tensor
product of the individual oscillator vacua |I⟩ = |0⟩ ⊗ · · · ⊗ |0⟩ has zero entangle-
ment. If we use |I⟩ as initial state for the time evolution through the field theory’s
Hamiltonian, the entanglement entropy will start growing from S = 0 with the
asymptotics of S ∼ t2 log(1/t) and finally approach its equilibrium value in an
oscillating behavior. In Fig. 2, we show how this saturation occurs on a 1D lattice.
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Fig. 2. Entanglement production in a 1D lattice with 99 oscillators: The plot shows the growing
and equilibration of the entanglement entropy of a single oscillator.
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5. WdW Equation, BKL Behavior and Entanglement Time

Consider the WdW equation for gravity and an inflaton scalar field

ĤΨ[gij(x),ϕ(x)] = 0. (5)

The Hamiltonian constraint Ĥ = T + U consists of a kinetic term T that involves
the momenta πij(x) and πϕ(x) and a potential term U that involves the spatial
metric hij(x), the scalar field ϕ(x) and their spatial derivatives.a While the kinetic
term is ultra-local (in the sense that it does not contain spatial derivatives), the
potential term is only local and couples nearby points. For small perturbations
of a homogeneous and isotropic configuration, we can write hij(x) = a2 (δij +
ϵij(x)) and ϕ(x) = φ + δϕ(x) in terms of the scale factor a and the average value
φ of the inflation field. Correspondingly, the wave function of the universe reads
Ψ[a,φ, ϵij(x), δϕ(x)]. In the approach to a spacelike cosmological singularity where
the scale factor vanishes, a → 0, the kinetic term T can formally be shown to be
dominating over the potential term U . As the potential U is the one that couples
nearby points in the WdW equation, neglecting it altogether makes it easy to find
solutions: they are simply a product over points of solutions at each point. When
U is not neglected this behavior can be imposed as a boundary condition:

lim
a→0

Ψ[a,φ, ϵij(x), δϕ(x)] =
∏

x⃗

ψ(φ, ϵij(x), δϕ(x)). (6)

In a candidate full theory of quantum gravity, Eq. (6) serves as a proposed quantum
version of the classical BKL conjecture about the behavior of the metric and the
matter fields in the approach to a spacelike singularity: the entanglement entropy
between a region of space and its complement vanishes in the limit of Planck-scale
curvature.

As discussed in Sec. 4, the time evolution of an initially un-entangled state
typically results in a growth of the entanglement entropy. In the present case,
Eq. (6) provides the initially un-entangled state. On the other hand the discussion
of Sec. 4 presupposes the existence of an external time t in which the entropy grows,
an ingredient that is missing in the WdW equation. Applying the logic discussed
in Sec. 3 for time-less quantum systems, we can ask relational questions about the
state. The question we are interested in is: given the state Ψ[a,φ, ϵij(x), δϕ(x)], what
is the entanglement entropy of a region of space R conditioned to the observation of
the value a of the scale factor? The strategy is to compute the state ρR(a) restricted
to the region R and conditioned to the value a of the scale factor. The entanglement
entropy as a function of the scale factor is then given by

SR(a) = −TrR(ρR(a) log ρR(a)). (7)

We investigated numerically the behavior of SR(a) for a lattice version of the infla-
ton field fluctuations δϕ(x), retaining only quadratic terms in the fluctuation.14

aThe potential U includes both the spatial curvature (3)R of the metric and the spatial derivatives
gij∂iϕ∂jϕ of the field, as well as the “inflaton potential” V (ϕ).
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Fig. 3. Relational entanglement entropy in the primordial universe: This plot shows the entan-
glement entropy of Gaussian inflaton fluctuations as a function of the primordial scale factor a
provided that the field was prepared in a completely un-entangled initial state at a0 = 1. The
inflaton field is modeled as a scalar field on a finite 3D lattice.

The results are reported in Fig. 3: the entanglement entropy grows with the scale
factor therefore providing a statistical arrow of time in the primordial universe, the
entanglement time.

The standard inflationary paradigm posits that, before the hot big bang and
the exponential expansion, the linear perturbations of the gravitational and inflaton
fields were in a pure state with short-distance correlations matching the flat space
vacuum ones, the Bunch–Davies vacuum. This is a state with vanishing expectation
value of the Weyl curvature and small quantum fluctuations as originally conjec-
tured by Penrose.15 The entanglement entropy of such a state scales as the area of
the boundary of the region once a UV cutoff is introduced. The pre-inflationary sce-
nario proposed here consists in a quantum BKL phase: the universe started in a low
entanglement entropy state, with an entropy much lower than the one conjectured
in Penrose’s Weyl curvature hypothesis. In this phase, the entanglement entropy
grows with the scale factor until it reaches an equilibrium semiclassical state, in
which a Bekenstein–Hawking like area law SR = Area(∂R)/4G is expected for the
entanglement entropy of a semiclassical region of space.16 Afterwards, the entangle-
ment entropy of a region scales as a2, and the entanglement time then corresponds
to the choice of the squared scale factor as relational time. This scenario therefore
provides a mechanism for the production of the correlations present in the state at
the beginning of inflation and imprinted today in the statistical fluctuations of the
cosmic microwave background, as well as an entropic arrow of time applicable even
in the quantum gravity regime where classical geometric notions may not be well
defined.
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