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Existence of positive solutions to a Laplace equation with nonlinear boundary condition
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Abstract. The positive solutions of a Laplace equation with a superlinear nonlinear boundary condition on a bounded domain
are studied. For higher-dimensional domains, it is shown that non-constant positive solutions bifurcate from a branch of
trivial solutions at a sequence of bifurcation points, and under additional conditions on nonlinearity, the existence of a
non-constant positive solution for any sufficiently large parameter value is proved by using variational approach. It is also
proved that for one-dimensional domain, there is only one bifurcation point, all non-constant positive solutions lie on the
bifurcating curve, and for large parameter values, there exist at least two non-constant positive solutions. For a special case,
there are exactly two non-constant positive solutions.
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1. Introduction

Reaction–diffusion equations are mathematical models for describing various physical and biological phe-
nomena. For a well-posed reaction–diffusion problem, boundary conditions are required to obtain proper
solutions. Normally boundary conditions are linear functions of the values or normal derivatives of the
solutions on the boundary, but in recent studies, an increasing number of models require nonlinear bound-
ary conditions [3,4,8,9,11,12,23,24,41,48].

In this article, we consider a Laplace equation with a nonlinear boundary condition as follows:
⎧
⎨

⎩

−Δu = 0, x ∈ Ω,
∂u

∂n
= λr(x)f(u), x ∈ ∂Ω,

(1.1)

where Ω is a smooth bounded domain in R
N , N ≥ 1, n is the unit outer normal to ∂Ω, and λ is a

nonnegative parameter. The weight function r(x) satisfies

(r) r : ∂Ω → R is of class C1,θ(∂Ω) for θ ∈ (0, 1);

and the growth function f(u) satisfies

(f) f : R → R is a smooth function satisfying f > 0 in (0, 1), f < 0 in (−∞, 0) ∪ (1,∞), f(0) = f(1) =
0, f ′(0) > 0 and f ′(1) < 0.
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The equation (1.1) is the steady state equation for the diffusive boundary reaction equation:
⎧
⎪⎪⎨

⎪⎪⎩

ut − DΔu = 0, t > 0, x ∈ Ω,
∂u

∂n
= λr(x)f(u), t > 0, x ∈ ∂Ω,

u(x, 0) = u0(x), x ∈ Ω.

(1.2)

The system (1.2) is a variation of the classical reaction–diffusion model in which the reaction occurs in
the interior of the reactor Ω. In the system (1.2), the function u(x, t) is the concentration of a chemical of
interest, and the chemical molecules make random walk in the reactor; hence its movement is governed
by a diffusion equation. On the other hand, a chemical reaction involving this chemical occurs on the
boundary of the reactor, and it generates a location-dependent flux r(x)f(u) as a boundary condition.

The nonlinearity f(u) satisfying (f) is usually called logistic type function as the prototypical example
f(u) = au−bu2 (a, b > 0) appears in logistic growth model or Fisher-KPP model in genetics studies. The
weight function r(x) plays an important role in the structure of the solutions to (1.1). Previous work (see
[32]) shows that (1) when r(x) is positive, then for all λ > 0 the only nonnegative solutions of (1.1) are
the constant ones u = 0 and u = 1; (2) when r(x) is sign-changing,

∫

∂Ω

r(x)ds < 0 and f ′′(u) ≤ 0, then

there exists a critical value λ1 > 0 such that only when λ > λ1, (1.1) has a unique non-constant solution
u in H = {u ∈ H1(Ω) : 0 ≤ u ≤ 1 a.e. x ∈ Ω}, and all non-constant solutions in H for λ > λ1 are on a
curve bifurcating from (λ, u) = (λ1, 0).

We study (1.1) for the case of negative r(x) in this paper. Our main results for spatial dimension
N ≥ 2 can be summarized as follows:

1. there are a sequence of bifurcation points λk → ∞ such that non-constant positive solutions of (1.1)
bifurcate from the branch of trivial solution u = 1 at λ = λk;

2. with some more conditions on f(u), (1.1) possesses a non-constant positive solution for any suffi-
ciently large λ > 0.

The first result is established by using bifurcation theory, and the second one is proved via variational
method (see Sect. 3). It is a bit surprising that the result for N = 1 is different. Indeed, we also prove
that when N = 1, there is only one bifurcation point λ1 > 0 for the positive solutions from the trivial
branch u = 1, and all non-constant positive solutions lie on the bifurcating curve. Moreover, we show
that for λ > λ1, there exist at least two non-constant positive solutions, and with more restrictive f(u),
we show that there are exactly two non-constant positive solutions for each λ > λ∗ and λ �= λ1, where
λ∗ is a saddle-node bifurcation point satisfying λ∗ ≤ λ1 (see Sect. 4).

It is interesting to compare equation (1.1) with its more well-known counterpart with reaction occur-
ring in the interior with zero flux boundary condition:

⎧
⎨

⎩

−Δu = λr(x)f(u), x ∈ Ω,
∂u

∂n
= 0, x ∈ ∂Ω.

(1.3)

Here f again satisfies (f). The structure of the nonnegative solutions of (1.3) is

1. If r(x) is positive, then the only nonnegative solutions of (1.3) are u = 0 and u = 1 from the
maximum principle.

2. If r(x) is sign-changing,
∫

Ω
r(x)dx < 0 and f ′′(u) ≤ 0, then there exists λ̃1 > 0 such that only when

λ > λ̃1, (1.3) has a unique non-constant positive solution, and all non-constant positive solutions
{(λ, u) : λ > λ̃1} are on a curve bifurcating from (λ, u) = (λ̃1, 0) (see [20]).

3. If r(x) is negative, then there are a sequence of bifurcation points λ̃k → ∞ such that non-constant
positive solutions of (1.3) bifurcate from the branch of trivial solution u = 1 at λ = λ̃k, and when
λ → ∞, there are solutions exhibiting spiky pattern (see [25,26,42,49]).
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Hence the results for the boundary reaction equation (1.1) and interior reaction equation (1.3) are very
similar. But note that the results above for (1.3) and negative r(x) also hold for N = 1, which is different
from the one for (1.1). This subtle difference can be attributed to the fact that any positive solution of
(1.1) achieves its any local maximum/minimum on the boundary (see Lemma 2.2), while the solutions
of (1.3) can have “interior peak” solutions [18,19]. Note that (1.3) with positive or sign-changing r(x)
appears in the studies of migration–selection genetics models [28–30,34,35], while (1.3) with negative
r(x) appears in the studies of pattern formation PDEs and chemotaxis systems [6,7,26,36,37].

In recent years, the existence, multiplicity, and uniqueness of positive solutions of nonlinear elliptic
equations with nonlinear boundary conditions have been considered by many authors. For example, the
bifurcation of positive solutions of diffusive logistic equation with nonlinear boundary condition has been
studied in [8–10,17,45,47], and other types of nonlinear boundary conditions have been also considered
in [14,16,44]. On the other hand, nonlinear elliptic equations with nonlinear boundary condition defined
in half space have been considered in [12,22,31,38,50].

We review some preliminaries of the linear eigenvalue problem, results for positive and sign-changing
r(x) and bifurcation theory in Sect. 2. The main results for dimension N ≥ 2 are stated and proved in
Sect. 3, while the results for N = 1 are proved in Sect. 4. The proof of Lemma 3.4 is given in Sect. 5.

2. Preliminaries

2.1. Linear eigenvalue problem

First we recall some results for the following eigenvalue problem
⎧
⎨

⎩

Δφ = 0, x ∈ Ω,
∂φ

∂n
= λs(x)φ, x ∈ ∂Ω,

(2.1)

where Ω is a smooth bounded domain in R
N , N ≥ 1, λ is a nonnegative parameter. For the higher-

dimensional domain Ω, the following basic result is well known (see, e.g. [5,46]).

Proposition 2.1. Suppose that Ω is a smooth bounded domain in R
N with N ≥ 2, and s : ∂Ω → R is of

class C1,θ(∂Ω) for θ ∈ (0, 1). If there exists a measurable subset Ω0 of ∂Ω such that |Ω0| > 0 and s(x) > 0
for x ∈ Ω0, then there exists a sequence of eigenvalues {λn}∞

n=1 of (2.1) such that 0 = λ0 < λ1 ≤ λ2 ≤
· · · ≤ λn ≤ · · · and λn → ∞ as n → ∞. Moreover,

1. If φi and φj are eigenfunctions corresponding to eigenvalues λi and λj, respectively, and λi �= λj,
then

∫

Ω

∇φi(x) · ∇φj(x)dx =
∫

∂Ω

s(x)φi(x)φj(x)dS = 0.

2. If s(x) is a sign-changing function satisfying
∫

∂Ω

s(x)dS < 0, (2.2)

then the eigenfunction φ1 corresponding to λ1 can be chosen as positive; if s(x) is positive for all
x ∈ ∂Ω or s(x) is sign-changing but does not satisfy (2.2), then all eigenfunctions φi(x) (i ≥ 1) are
sign-changing in Ω.

It is clear that the eigenvalue λ0 = 0 corresponds to the eigenfunction φ0(x) = 1. The result for the
principal eigenvalue was proved in [46, Theorem 2.2]. We also remark that for the case that s(x) < 0 for
all x ∈ ∂Ω and N ≥ 1, 0 is the only nonnegative eigenvalue of (2.1).
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On the other hand when N = 1, equation (2.1) becomes the following two-point boundary value
problem {

φ′′(x) = 0, x ∈ (0, 1),
−φ′(0) = λs0φ(0), φ′(1) = λs1φ(1),

(2.3)

where s0 and s1 are nonzero constants. Then, by direct calculation, the problem (2.3) has only two

eigenvalues λ0 = 0 and λ1 =
s0 + s1

s0s1
, and the eigenfunction associated with λ1 is φ1(x) = x − s1

s0 + s1
.

When s0 and s1 are both positive, λ1 > 0 and φ1 is sign-changing, and when s0s1 < 0 but s0 + s1 <
0, λ1 > 0 and φ1 can be chosen as positive.

2.2. Results for positive and sign-changing potential functions

In this paper, we consider (1.1) for the case that the potential function r(x) is negative. The cases of r(x)
is positive or sign-changing have been considered previously, and in this subsection, we will review these
results. First we prove a maximum principle for a Laplace equation with a general nonlinear boundary
condition as follows: ⎧

⎨

⎩

−Δu = 0, x ∈ Ω,
∂u

∂n
= g(x, u), x ∈ ∂Ω,

(2.4)

where Ω is a smooth bounded domain in R
N with N ≥ 1 and g ∈ C(∂Ω× R). From the strong maximum

principle and Hopf’s lemma for the elliptic equations, we have the following lemma.

Lemma 2.2. Suppose that u ∈ C2(Ω) ∩ C(Ω) is a non-constant solution of (2.4). If u achieves a local
maximum at x = x0 ∈ Ω, then x0 ∈ ∂Ω, and g(x0, u(x0)) > 0. Similarly, if u achieves a local minimum
at x = x0 ∈ Ω, then x0 ∈ ∂Ω, and g(x0, u(x0)) < 0.

Proof. Assume on the contrary that u ∈ C2(Ω)∩C(Ω) is a non-constant solution of (2.4), and it achieves
a local maximum at x = x0 ∈ Ω. Then there exists an open ball Bδ(x0) ⊂ Ω with radius δ > 0 and center
x0 such that u(x0) ≥ u(x) for all x ∈ Bδ(x0). From the strong maximum principle, we have u(x) ≡ u(x0)
in Bδ(x0). We can proceed to prove that u is constant in Ω, but that is a contradiction to the fact
u is a non-constant solution. Thus x0 ∈ ∂Ω, and there exists an open ball B containing x0 such that
u(x0) > u(x) for all x ∈ B ∩ Ω. It follows from Hopf’s lemma that

∂u

∂n
(x0) > 0,

which implies that g(x0, u(x0)) > 0. In the same way, if u achieves a local minimum at x = x0 ∈ Ω, then
x0 ∈ ∂Ω, and g(x0, u(x0)) < 0. �

From Lemma 2.2, we have the following result directly.

Theorem 2.3. Suppose that r(x) satisfies (r), and f(u) satisfies (f). Assume in addition that r(x) > 0
for all x ∈ ∂Ω. Then for any λ > 0, the only nonnegative solutions of (1.1) are u = 0 or 1.

On the other hand, Madeira and do Nascimento [32] studied the problem (1.1) with an indefinite
weight r(x) and the results are as follows.

Theorem 2.4. Suppose that r(x) satisfies (r), and f(u) satisfies (f). Assume in addition that r(x) is a

sign-changing function with
∫

∂Ω

r(x)dS < 0 and f ′′(u) < 0 for u ∈ [0, 1]. Then (1.1) has only the constant

solutions u = 0 and u = 1 when λ ≤ λ1, and (1.1) has a unique non-constant solution uλ ∈ H for each
λ > λ1. Here H = {u ∈ H1(Ω) : 0 ≤ u ≤ 1 a.e. x ∈ Ω}, and λ1 is the positive principal eigenvalue of
(2.1) with s(x) = r(x)f ′(0).
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We comment that the above results hold for both the cases of N ≥ 2 and N = 1. Apparently
Theorem 2.3 classifies all nonnegative solutions of (1.1) when r(x) is positive and Theorem 2.4 classifies
all nonnegative solutions in H when r(x) is sign-changing. We shall consider the case when r(x) is negative
in this paper.

2.3. Bifurcation theory

Our main analytic tool in this paper is the bifurcation theory, and in this subsection, we review some
abstract bifurcation theorems which will be used. Nonlinear problem can often be formulated in the form
of an abstract equation

F (λ, u) = 0,

where F : R×X → Y is a nonlinear differentiable mapping and X,Y are Banach spaces. In the following,
we use Fu as the partial derivative of F with respect to argument u, and we use 〈·, ·〉 as the duality pair
of a Banach space X and its dual space X∗. We say that 0 is a simple eigenvalue of Fu(λ0, u0) if the
following assumption is satisfied:
(F1) dimN(Fu(λ0, u0)) = codimR(Fu(λ0, u0)) = 1, and N(Fu(λ0, u0)) = span{φ1},
where N(T ) and R(T ) are the null space and the range space of linear operator T , respectively. Crandall
and Rabinowitz [13] proved the following celebrated local bifurcation theorem from a simple eigenvalue.

Theorem 2.5. (Transcritical and pitchfork bifurcations, [13, Theorem 1.7]). Let U be a neighborhood of
(λ0, u0) in R × X, and let F : U → Y be a twice continuously differentiable mapping. Assume that
F (λ, u0) = 0 for (λ, u0) ∈ U . At (λ0, u0), F satisfies (F1) and
(F2) Fλu(λ0, u0)[φ1] �∈ R(Fu(λ0, u0)).
Let Z be any complement of span{φ1} in X. Then the solutions of F (λ, u) = 0 near (λ0, u0) different
from (λ, u0) form a curve {(λ(s), u(s)) : s ∈ I = (−ε, ε)}, where λ : I → R, z : I → Z are C1 functions
such that u(s) = u0 + sφ1 + sz(s), λ(0) = λ0, z(0) = 0, and

λ′(0) = −〈l, Fuu(λ0, u0)[φ1, φ1]〉
2〈l, Fλu(λ0, u0)[φ1]〉 , (2.5)

where l ∈ Y ∗ satisfying N(l) = R(Fu(λ0, u0)). If F satisfies
(F3) Fuu(λ0, u0)[φ1, φ1] �∈ R(Fu(λ0, u0)),
then λ′(0) �= 0, and a transcritical bifurcation occurs. If F satisfies
(F3′) Fuu(λ0, u0)[φ1, φ1] ∈ R(Fu(λ0, u0)),
and in addition F ∈ C3, then λ′(0) = 0 and

λ′′(0) = −〈l, Fuuu(λ0, u0)[φ1, φ1, φ1]〉 + 3〈l, Fuu(λ0, u0)[φ1, θ]〉
3〈l, Fλu(λ0, u0)[φ1]〉 ,

where θ satisfies Fuu(λ0, u0)[φ1, φ1]+Fu(λ0, u0)[θ] = 0. A pitchfork bifurcation typically satisfies λ′′(0) �=
0.

We will also use a secondary bifurcation result which was first proved in [13, Theorem 1], and Liu,
Shi and Wang [27] extended it as follows.

Theorem 2.6. (Secondary Bifurcation Theorem [27, Theorem 2.7]). Let W and Y be Banach spaces, let
Ω be an open subset of W and let G : Ω → Y be twice differentiable. Suppose that

G(w0) = 0, dimN(G′(w0)) = 2, codimR(G′(w0)) = 1.

Then
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1. if for any φ(�= 0) ∈ N(G′(w0)), G′′(w0)[φ]2 �∈ R(G′(w0)), then the set of solutions to G(w) = 0
near w = w0 is the singleton {w0}.

2. if there exists φ1(�= 0) ∈ N(G′(w0)) such that G′′(w0)[φ1]2 ∈ R(G′(w0)), and there exists φ2 ∈
N(G′(w0)) such that G′′(w0)[φ1, φ2] �∈ R(G′(w0)), then w0 is a bifurcation point of G(w) = 0 and
in some neighborhood of w0, the totality of solutions of G(w) = 0 form two continuous curves
intersecting only at w0. Moreover, the solution curves are in form of w0 + sψi + sθi(s), s ∈ (−δ, δ),
θi(0) = θ′

i(0) = 0, where ψi (i = 1, 2) are the two linear independent solutions of the equation
〈l1, G′′(w0)[ψ,ψ]〉 = 0 and l1 ∈ Y ∗ satisfying N(l1) = R(G′(w0)).

Finally we recall the following global bifurcation theorem due to Shi and Wang [43] which is essentially
based on almost the same conditions of Theorem 2.5, and it is also a generalization of the classical
Rabinowitz global bifurcation theorem [39].

Theorem 2.7. Let V be an open connected subset of R × X and (λ0, u0) ∈ V , and let F be a continuously
differentiable mapping from V into Y . Suppose that

1. F (λ, u0) = 0 for (λ, u0) ∈ V ,
2. the partial derivative Fλu(λ, u) exists and is continuous in (λ, u) near (λ0, u0),
3. Fu(λ0, u0) is a Fredholm operator with index 0, and dimN(Fu(λ0, u0)) = 1,
4. Fλu[w0] �∈ R(Fu(λ0, u0)), where w0 ∈ X spans N(Fu(λ0, u0)).
Let Z be any complement of span{w0} in X. Then there exist an open interval I1 = (−ε, ε) and

continuous functions λ : I1 → R, ψ : I1 → Z such that λ(0) = λ0, ψ(0) = 0, and if u(s) = u0+sw0+sψ(s)
for s ∈ I1, then F (λ(s), u(s)) = 0. Moreover, F−1({0}) near (λ0, u0) consists precisely of the curves
u = u0 and Γ = {(λ(s), u(s)) : s ∈ I1}. If in addition Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ V ,
then the curve Γ is contained in Σ, which is a connected component of S, where S := {(λ, u) ∈ V :
F (λ, u) = 0, u �= u0}, and either Σ is not compact in V or Σ contains a point (λ∗, u0) with λ∗ �= λ0.

3. Existence for higher-dimensional domains

In this section, we consider the existence of positive solutions to (1.1) for a bounded domain Ω ⊂ R
N

with N ≥ 2 and under the condition

r(x) < 0, for all x ∈ ∂Ω. (3.1)

Clearly (1.1) has two lines of trivial solutions:

Γ0 := {(λ, 0) : λ ≥ 0} and Γ1 := {(λ, 1) : λ ≥ 0}, (3.2)

and also
Γ00 := {(0, u) : u ∈ R, u ≥ 0}. (3.3)

If (3.1) is satisfied, and u(x) is a non-constant solution of (1.1), then by Lemma 2.2, u is a positive
solution of (1.1) such that

max
x∈Ω

u(x) = max
x∈∂Ω

u(x) > 1

and

0 < min
x∈Ω

u(x) = min
x∈∂Ω

u(x) < 1.

To consider the solutions of (1.1) in a functional setting, we define X = W 2,p(Ω) and Y = Lp(Ω) ×
W 1− 1

p ,p(∂Ω), where p > N . Define a nonlinear mapping F : R × X → Y by

F (λ, u) =
(

Δu,
∂u

∂n
− λr(x)f(u)

)

. (3.4)
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We prove the existence of positive solutions of (1.1) by using bifurcation theory for the bifurcation
of positive solutions from the line of trivial solutions Γ1. We first determine possible bifurcation points
along the lines of trivial solutions Γ0, Γ1 and Γ00. We say that (λ∗, 1) is a bifurcation point on the line
of trivial solutions Γ1 = {(λ, 1) : λ > 0} if there exists a sequence (λn, un) of solutions to (1.1) such that
un �= 1, λn → λ∗ and ||un − 1||X → 0 as n → ∞. And a bifurcation point on the line Γ0 or Γ00 can be
defined similarly.

Lemma 3.1. Suppose that r(x) satisfies (r) and (3.1), and f(u) satisfies (f).
1. If (λ, 1) with λ > 0 is a bifurcation point of (1.1) on the trivial branch Γ1, then λ is an eigenvalue of

(2.1) with s(x) = f ′(1)r(x).
2. There is no bifurcation point of (1.1) on the trivial branch Γ0 for λ > 0.
3. If (0, u) is a bifurcation point of (1.1) on the trivial branch Γ00, then u = 0 or 1.

Proof. 1. Suppose that (λ, 1) is a bifurcation point on Γ1, then there exists a sequence {(λn, un)} such
that un(�≡ 1) is a solution of (1.1) with λ = λn and

(λn, un) → (λ, 1) in R × W 2,p(Ω) as n → ∞.

Thus un → 1 in H1(Ω) as n → ∞. Setting

vn :=
un − 1

‖un − 1‖H1(Ω)
,

there exists a subsequence of {vn}, still denoted by {vn}, and vλ ∈ H1(Ω)\{0} such that as n → ∞,

vn ⇀ vλ in H1(Ω),
vn → vλ in L2(∂Ω),
vn → vλ a.e. in ∂Ω.

On the other hand, vn satisfies
⎧
⎨

⎩

Δvn = 0, x ∈ Ω,

∂vn

∂n
= λnr(x)

f(‖un − 1‖H1(Ω)v
n + 1)

‖un − 1‖H1(Ω)
, x ∈ ∂Ω,

and thus, for all φ ∈ H1(Ω),
∫

Ω

∇vn · ∇φdx = λn

∫

∂Ω

r(x)
f(‖un − 1‖H1(Ω)v

n + 1)
‖un − 1‖H1(Ω)

φdS

= λn

∫

∂Ω

r(x)
(

f ′(1)vn +
o(‖un − 1‖H1(Ω)v

n)
‖un − 1‖H1(Ω)

)

φdS

= λn

∫

∂Ω

r(x)
(

f ′(1) +
o(un − 1)
un − 1

)

vnφdS.

Here o(s) means that o(s)/s → 0 as s → 0. Consequently,
∫

Ω

∇vλ · ∇φdx = λ

∫

∂Ω

r(x)f ′(1)vλφdS

for all φ ∈ H1(Ω), which implies that λ is an eigenvalue of (2.1) with s(x) = r(x)f ′(1).
2. Suppose that (λ, 0) is a bifurcation point on Γ0, then the same arguments as in part 1 show that λ

is an eigenvalue of (2.1) with s(x) = r(x)f ′(0). From (3.1), we have s(x) < 0 for all x ∈ ∂Ω, then
from the remark after Proposition 2.1, (2.1) has no positive eigenvalue, and hence such bifurcation
point does not exist on Γ0.
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3. Suppose that (0, u) is a bifurcation point on Γ00. By integration of the equation (1.1), we obtain

λn

∫

∂Ω

r(x)f(un)dS =
∫

Ω

Δundx = 0,

which implies that f(u) = 0; thus we must have u = 0 or u = 1 from the condition (f).
�

From the part 3 of Lemma 3.1, we have two possible bifurcation points (0, 0) and (0, 1) along Γ00. But
indeed only the trivial solutions on Γ0 and Γ1 bifurcate from these two points. We make this fact clear
by using the secondary bifurcation theorem (Theorem 2.6) as follows.

Lemma 3.2. Suppose that r(x) satisfies (r) and (3.1), and f(u) satisfies (f). Then,

1. (λ, u) = (0, 1) is a bifurcation point of (1.1) such that totality of the solutions of (1.1) near (0, 1)
consists precisely of the curves C1 = {(λ, u) = (0, c) : c ∈ (1 − δ, 1 + δ)} and C2 = {(λ, u) = (λ, 1) : λ ∈
[0, δ)} for sufficiently small δ > 0.

2. (λ, u) = (0, 0) is a bifurcation point of (1.1) such that totality of the solutions of (1.1) near (0, 0)
consists precisely of the curves C1 = {(λ, u) = (0, c) : c ∈ (−δ, δ)} and C2 = {(λ, u) = (λ, 0) : λ ∈ [0, δ)}
for sufficiently small δ > 0.

Proof. Define a nonlinear mapping G : R × X → Y by

G(w) =
(

Δu,
∂u

∂n
− λr(x)f(u)

)

, w = (λ, u) ∈ R × X.

and let w0 = (0, 1). Then N(G′(w0)) = span{(0, 1), (1, 0)} and R(G′(w0)) = N(l1), where

〈l1, (h1, h2)〉 =
∫

Ω

h1dx −
∫

∂Ω

h2dS.

Since

G′′(w0)[(0, 1), (0, 1)]) = (0, 0) ∈ R(G′(w0))

and

G′′(w0)[(0, 1), (1, 0)]) = (0,−r(x)f ′(1)) �∈ R(G′(w0)),

then applying Theorem 2.6, we obtain that (0, 1) is a bifurcation point of (1.1) and totality of the solutions
of (1.1) near (0, 1) forms two continuous curves intersecting only at (0, 1). The case (0, 0) can be proved
in a similar manner. �

The results in Lemma 3.1 and Lemma 3.2 show that the only non-trivial bifurcation points from the
set of trivial solutions are the eigenvalues of (2.1) with s(x) = f ′(1)r(x). From Proposition 2.1, let {λn} be
the sequence of eigenvalues of (2.1) with s(x) = f ′(1)r(x) such that 0 = λ0 < λ1 ≤ λ2 ≤ · · · ≤ λn ≤ · · · ,
and λn → ∞ as n → ∞. The following local bifurcation result can be proved by using Theorem 2.5.

Theorem 3.3. Suppose that r(x) satisfies (r) and (3.1), and f(u) satisfies (f). Assume that for some
k ∈ N, the eigenvalue λk of (2.1) with s(x) = f ′(1)r(x) is simple with an associative eigenfunction φk.
Then the solution set of (1.1) near (λ, u) = (λk, 1) consists precisely of the curves Γ1 and

Sk = {(λk(t), uk(t)) : t ∈ I = (−ηk, ηk) ⊂ R},
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where λk(t) = λk + tλ′
k(0) + tzk

1 (t) and uk(t) = 1 + tφk + tzk
2 (t) are continuous functions such that

zk
i (0) = 0, i = 1, 2. Moreover, if f is C2 near u = 1, then the curve Sk is C1, and

λ′
k(0) = −

∫

∂Ω

λkr(x)f ′′(1)φ3
kdS

2
∫

∂Ω

r(x)f ′(1)φ2
kdS

= −
λkf ′′(1)

∫

Ω

φk|∇φk|2dx

f ′(1)
∫

Ω

|∇φk|2dx

. (3.5)

Proof. We verify all the assumptions in Theorem 2.5. We prove it in several steps:
1. Since λk is assumed to be simple, then dimN(Fu(λk, 1)) = 1 and N(Fu(λk, 1)) = span{φk}.
2. Let (h1, h2) ∈ R(Fu(λk, 1)) and let w ∈ X satisfy

⎧
⎨

⎩

Δw = h1, x ∈ Ω,
∂w

∂n
− λkr(x)f ′(1)w = h2, x ∈ ∂Ω.

(3.6)

Multiplying the equation in (3.6) by φk and integrating on Ω, we obtain
∫

Ω

φkh1dx =
∫

Ω

wΔφkdx +
∫

∂Ω

(

φk
∂w

∂n
− w

∂φk

∂n

)

dS

=
∫

∂Ω

φkh2dS,

which shows that (h1, h2) ∈ R(Fu(λk, 1)) if and only if
∫

Ω

φkh1dx −
∫

∂Ω

φkh2dS = 0.

In the following, we define l ∈ X∗ by

〈l, (h1, h2)〉 =
∫

Ω

φkh1dx −
∫

∂Ω

φkh2dS.

Consequently, R(Fu(λk, 1)) = N(l), and codimR(Fu(λk, 1)) = 1.
3. Since

Fλu(λk, 1)[φk] = (0,−r(x)f ′(1)φk),

then we have

〈l, Fλu(λk, 1)[φk]〉 =
∫

∂Ω

r(x)f ′(1)φ2
kdS > 0,

and Fλu(λk, 1)[φk] �∈ R(Fu(λk, 1)). Thus the proof is complete in view of Theorem 2.5, and (3.5)
can be obtained by using (2.5).

�
We remark that the simplicity assumption on the eigenvalues of (2.1) is not restrictive, as the simplicity

is generically true with respect to perturbation of the boundary, see, for example, Henry [21] Chapter 6.
On the other hand, in the case of a higher multiplicity eigenvalue λ = λk, the bifurcation of non-constant
solutions still occurs due to the variational structure of (1.1) so a bifurcation theorem of variational
problem (see Theorem 11.4 of Rabinowitz [40]). Here we will not give the details of that approach, and in
the last part of this section, we use variational method directly to prove the existence of positive solutions.

Theorem 3.3 shows that non-constant positive solutions bifurcate from the line of trivial solutions
u = 1 in the (λ, u) space. The global bifurcation theorem (Theorem 2.7) can be applied to obtain a global
picture of the bifurcation diagram, but we will need a critical a priori estimate for the positive solutions
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of (1.1). To prove the boundedness of solutions of (1.1), we make use of the blow-up method (see, e.g.
[15,26]). The following lemma can be proved in a similar way as the proof of [26, Theorem 3]. For the
sake of completeness, we present its proof in Sect. 5.

Lemma 3.4. Suppose that r(x) satisfies (r) and (3.1), and f(u) satisfies (f). In addition, we assume that
f(u) satisfies that

(f1) Let f(u) = u − g(u). Then g(u) satisfies

lim
u→0

g(u)
u

= 0, lim
u→∞

g(u)
up

= A1, (3.7)

for positive constants A1 and p ∈ (1, p∗). Here, p∗ = N/(N − 2) if N ≥ 3, and p∗ = ∞ if N = 2.

Then there exists M > 0 independent of λ such that if u(x) is a positive solution to (1.1) with λ ∈ (0,∞),
then u(x) < M for all x ∈ Ω.

Now we give a main result of global bifurcation of positive solutions of (1.1) with negative r(x).

Theorem 3.5. Suppose that all conditions in Theorem 3.3 are satisfied, and f(u) also satisfies (f1). Let
V := {(λ, u) ∈ (0,∞) × X : u(x) > 0, x ∈ Ω}. Then the curve Sk in Theorem 3.3 is contained in Λk,
which is a connected component of S, where S := {(λ, u) ∈ V : F (λ, u) = 0, u �= 1}, and either Λk is
unbounded in the λ-direction or Λk contains a point (λ∗, 1) with λ∗ �= λk. Here λ∗ is another eigenvalue
of (2.1) with s(x) = f ′(1)r(x).

Proof. Since Fu(λ, u) is a Fredholm operator for all (λ, u) ∈ V , it follows from Theorem 2.7 that the
curve Sk in Theorem 3.3 is contained in Λk, and either Λk is not compact in V or Λk contains a point
(λ∗, 1) with λ∗ �= λk. If Λk contains a point (λ∗, 1) with λ∗ �= λk, by Lemma 3.1, λ∗ is an eigenvalue
of (2.1) with s(x) = f ′(1)r(x). On the other hand, if Λk does not contain a point (λ∗, 1) with λ∗ �= λk,
it follows from Lemma 2.2, Lemma 3.1, and Lemma 3.2 that Λk ∩ ∂V is an empty set, and thus Λk is
unbounded in the λ-direction by Lemma 3.4. �

The global bifurcation result in Theorem 3.5 shows the existence of non-constant positive solutions
for λ-values at least near the bifurcation points. But it is possible that Λi = Λj for i, j ∈ N and i �= j.
Hence Theorem 3.5 cannot guarantee the existence of non-constant positive solutions for all large λ. In
the last part of this section, we prove the existence of a non-constant positive solution of (1.1) for large
λ > 0 by using the mountain pass theorem of Ambrosetti and Rabinowitz [2].

Similar to the setting in (f1), let f(u) = u − g(u) for u ∈ R, and we make the following hypotheses
on g(u) following [26]:

(g1) g : R → R is locally Hölder continuous, g(u) = 0 for all u < 0, and g(u) > 0 for all u > 0.

(g2) g(u) = o(u) as u → 0 and
g(u)
u

→ ∞ as u → ∞.

(g3) There exist positive constants c1, c2, and p ∈ (1, p∗) such that

g(u) ≤ c1 + c2u
p for u > 0,

where p∗ is the constant defined in (f1).
(g4) There exist μ > 2 and ε > 0 such that

0 < μG(u) ≤ ug(u) for u ≥ ε,

where G(s) =
s∫

0

g(t)dt.

(g5) inf
u∈Z

{2−1u2 − G(u)} > 0, where Z = {u > 0 : g(u) = u}.
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Note that Z �= ∅ by (g1) and (g2).
In the remaining part of this section, let X denote the Sobolev space W 1,2(Ω) with norm

‖u‖X =

⎛

⎝

∫

Ω

|∇u|2dx − λ

∫

∂Ω

r(x)u2dS

⎞

⎠

1
2

,

which is equivalent to the usual norm in W 1,2(Ω) because of (3.1). We define a functional E : X → R by

E(u) =
1
2

∫

Ω

|∇u|2dx − λ

∫

∂Ω

r(x)
(

1
2
u2 − G(u)

)

dS, u ∈ X.

Since the embedding X ↪→ Lk(∂Ω) is compact if k ∈ [1, p∗ + 1), then by standard arguments, we have
the following lemma (see, e.g. [33, Lemma 4.2]).

Lemma 3.6. Suppose that r(x) satisfies (r), and (g1) and (g3) hold. Then E is well defined on X, and
E ∈ C1(X, R) with

E′(u)φ =
∫

Ω

∇u · ∇φdx − λ

∫

∂Ω

r(x)(u − g(u))φdS for all u, φ ∈ X.

Now we verify that the conditions in the mountain pass theorem are satisfied.

Lemma 3.7. Assume that r(x) satisfies (r) and (3.1), and (g1) − (g4) hold. Then
(1) u = 0 is a strict local minimum of E;
(2) given v ∈ X with v �= 0 on ∂Ω, there exists ρ0 > 0 such that E(ρ0v) ≤ 0;
(3) E satisfies the Palais–Smale condition, i.e., let {un} be any sequence in X such that |E(un)| is

uniformly bounded and E′(un) → 0 as n → ∞, then {un} has a convergent subsequence.

Proof. (1) In view of (g2) and (g3), given δ > 0, there exists Cδ > 0 such that

G(s) ≤ 1
2
δ|s|2 + Cδ|s|p+1, s ∈ R,

which implies that

E(u) ≥ 1
2
‖u‖2

X − C1

(
δ

2
‖u‖2

L2(∂Ω) + Cδ‖u‖p+1
Lp+1(∂Ω)

)

for some C1 > 0. Since the embedding X ↪→ Lk(∂Ω) is compact if k ∈ [1, p∗ + 1), one can choose δ
so small that

E(u) > 0 = E(0)

for all u with 0 < ‖u‖X ≤ ε1 and for some sufficiently small ε1 > 0.
(2) By (g1), (g3) and (g4), there exist positive constants c and d such that

G(s) ≥ c|s|μ − d, s ∈ R,

which implies

E(u) ≤ 1
2
‖u‖2

X − C2‖u‖μ
Lμ(∂Ω) + C3

for some C2, C3 > 0. Given v ∈ W 1,2(Ω) with ‖v‖Lμ(∂Ω) > 0,

E(ρv) ≤ 1
2
‖v‖2

Xρ2 − C2‖v‖μ
Lμ(∂Ω)ρ

μ + C3 → −∞ as ρ → ∞.

Thus there exists ρ0 > 0 such that E(ρ0v) ≤ 0.
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(3) Let {un} be a sequence such that |E(un)| ≤ C4 for all n ∈ N and for some constant C4 > 0, and
E′(un) → 0 as n → ∞. Then, for all n sufficiently large, one has

|E′(un)un| ≤ ‖un‖X ,

which implies

E(un) − 1
μ

E′(un)un ≤ C4 +
1
μ

‖un‖X .

Consequently, by (g4),
(

1
2

− 1
μ

)

‖un‖2
X − C5 ≤ C4 +

1
μ

‖un‖X

for some constant C5 > 0, and ‖un‖X is bounded. By standard arguments, E satisfies the Palais–
Smale condition (see, e.g. [33, Proposition 4.3]).

�

Now we are able to prove the following existence result for non-constant positive solutions of (1.1) for
all large λ. Let B(p, δ) := {x ∈ R

N : |x − p| < δ} and B(δ) := B(0, δ).

Theorem 3.8. Suppose that N ≥ 2, r(x) satisfies (r) and (3.1), and (g1) − (g5) hold. Then (1.1) has a
non-constant positive solution for all sufficiently large λ > 0.

Proof. Let x0 ∈ ∂Ω. Assume that there exist an open neighborhood U of x0, B(δ1) and a diffeomorphism
Ψ : U → B(δ1) such that
(1) Ψ(x0) = 0 and DΨ(x0) = I,
(2) Ψ(U ∩ Ω) = R

N
+ ∩ B(δ1) and Ψ(∂Ω ∩ U) = ∂R

N
+ ∩ B(δ1).

Let λ > 1/δ2
1 and V = Ψ−1(B(λ− 1

2 )). Define a test function

eλ(y) =

{
λ

N−1
2 (1 − λ

1
2 |y|), |y| < λ− 1

2 ,

0, |y| ≥ λ− 1
2 .

Define ẽλ(x) = eλ(Ψ−1(y)). Then, ẽλ ∈ W 1,2
0 (RN ). By straightforward computation, we have

∫

Ω

|∇ẽλ|2dx ≤
∫

V

|∇ẽλ|2dx ≤ C1

∫

B(λ− 1
2 )

|∇eλ|2dy ≤ c1λ
N
2 , (3.8)

where C1, c1 > 0 are constants independent of λ. Furthermore, there exist C2, c2 also independent of λ
such that ∫

∂Ω

ẽ2
λdS =

∫

∂Ω∩V

ẽ2
λdS ≤ C2

∫

∂RN
+ ∩B(δ1)∩B(λ− 1

2 )

e2
λ ds = c2λ

N−1
2 . (3.9)

Set h(t) := E(tẽλ) for t ∈ [0,∞). By Lemma 3.7 (1) and (2), there exists t0 > 0 such that h(t0) = 0 and
h(t) > 0 for all t ∈ (0, t0). Let Γ = {l ∈ C([0, 1],X) : l(0) = 0, l(1) = t0ẽλ}. Then

cλ := inf
l∈Γ

max
s∈[0,1]

E(l(s)) > 0

is a critical value of E in view of the mountain pass theorem of Ambrosetti and Rabinowitz [2]. Thus E
has a critical point uλ ∈ X \ {0} with E(uλ) = cλ > 0.

On the other hand, we show that cλ = O(λ
3−N

2 ) as λ → ∞. By [26], there is a unique σ ∈ (0, 1)
depending only on N such that ∫

Sσ

e2
λdx =

1
2

∫

∂RN
+ ∩B(δ1)

e2
λdx, (3.10)
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where Sσ = {x ∈ ∂R
N
+ ∩ B(δ1) : eλ > σλ

N−1
2 }. Set S̃σ = Ψ−1(Sσ). From (g2), it follows that for any

R > 0, there exists MR > 0 such that g(s) > Rs for all s ≥ MR. Given t > MRσ−1λ− N−1
2 , let

S :=
{

y ∈ ∂R
N
+ ∩ B(δ1) : eλ(y) >

MR

t

}

, S̃ = Ψ−1(S).

Then S̃σ ⊂ S̃. Put M = max
∂Ω

(−r(x)) and m = min
∂Ω

(−r(x)). For λ > 1/δ2
1 , by (3.8),(3.9) and (3.10) and

noting that r(x) < 0 for x ∈ ∂Ω, we have

h′(t) = t

⎛

⎝

∫

Ω

|∇ẽλ|2dx − λ

∫

∂Ω

r(x)ẽ2
λdS

⎞

⎠ + λ

∫

∂Ω

r(x)g(tẽλ)ẽλdS

≤ c1tλ
N
2 + Mtλ

∫

∂Ω

ẽ2
λdS − mλ

∫

∂Ω∩S̃

g(tẽλ)ẽλdS

≤ c1tλ
N
2 + Mtc2λ

N+1
2 − C3mλ

∫

Sσ

g(teλ)eλdS

≤ c1tλ
N
2 + Mtc2λ

N+1
2 − RtC3mλ

∫

Sσ

e2
λdS

= c1tλ
N
2 + Mtc2λ

N+1
2 − 1

2
RtC3mλ

∫

∂RN
+ ∩B(δ1)

e2
λdS

= c1tλ
N
2 + Mtc2λ

N+1
2 − 1

2
Rtc3mλ

N+1
2

= tλ
N+1

2 (c1λ
− 1

2 + Mc2 − 1
2
Rc3m)

≤ tλ
N+1

2

(

c1δ1 + Mc2 − 1
2
Rc3m

)

,

where c3, C3 > 0 are constants independent of λ. Choosing R = R1 large enough such that c1δ1 +
Mc2 − 1

2R1c3m < 0, we see that h′(t) < 0 provided t > t1 := MR1σ
−1λ− N−1

2 . Since, for any t ∈ [0,∞),
G(tẽλ(x)) ≥ 0 for all x ∈ ∂Ω, and it follows from (3.8) and (3.9) that

h(t) ≤ t2

2
λ

N+1
2

(
c1λ

− 1
2 + Mc2

)
≤ t2

2
λ

N+1
2 (c1δ1 + Mc2) ,

which implies that

cλ ≤ max
t∈[0,t0]

E(tẽλ) ≤ max
t∈[0,t1]

h(t) ≤ t21
2

λ
N+1

2 (c1δ1 + Mc2)

=
1
2
M2

R1
σ−2λ

3−N
2 (c1δ1 + Mc2) .

If w is a constant positive solution of (1.1), then it follows from (g5) that E(w) ≥ cλ, where c =

− inf
u∈Z

{2−1u2 − G(u)}
∫

∂Ω

r(x)dS > 0. Since N ≥ 2 and cλ = O(λ
3−N

2 ) as λ → ∞, then we can conclude

that uλ is not a constant positive solution or zero solution but a non-constant positive solution of (1.1)
for sufficiently large λ > 0. �
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Define a function f̂(u) = u − ĝ(u) for u ∈ R, where ĝ(u) = 0 for u < 0 and ĝ(u) = g(u) for u ≥ 0. If
f(u) = u − g(u) satisfies (f) and (f1), then ĝ(u) satisfies (g1) − (g3) and (g5). Hence, by Theorem 3.8,
we have the following corollary:

Corollary 3.9. Suppose that (r), (f), (f1), and (g4) hold. Then (1.1) has a non-constant positive solution
for sufficiently large λ > 0.

We comment that if, in addition, g(u)/u is strictly increasing, then we can show that a least energy
positive solution of (1.1) exists under the conditions of Theorem 3.8 or Corollary 3.9, following similar
arguments in [37].

4. Existence and exact multiplicity for one-dimensional domain

When N = 1, (1.1) becomes the following two-point boundary value problem
{

u′′(x) = 0, x ∈ (0, 1),
−u′(0) = λr0f(u(0)), u′(1) = λr1f(u(1)),

(4.1)

where λ is a nonnegative parameter, and f(u) satisfies (f). Here we assume that r0 < 0 and r1 < 0. In
this section, we also assume that f(u) satisfies

(f2) There exists a unique u1 ∈ (0, 1) such that f ′(u) > 0 for u ∈ [0, u1), f ′(u1) = 0 and f ′(u) < 0 for
u ∈ (u1,∞), and lim

u→∞ f(u) = −∞.

If u is a solution of (4.1), u is a linear function, i.e., u(x) = Ax + B, for some A,B ∈ R. We can still
use the bifurcation approach in Sect. 3 to consider the solutions of (4.1), which we briefly discuss without
detailed proof. Define X1 := W 2,p(0, 1) and Y1 := Lp(0, 1) × R × R, where p > 1, and define a nonlinear
mapping H : R × X1 → Y1 by

H(λ, u) = (u′′,−u′(0) − λr0f(u(0)), u′(1) − λr1f(u(1))). (4.2)

Then similar to Lemma 3.1, the only possible bifurcation points from the lines of trivial solutions are
(λ, 1) where λ are the eigenvalues of the following eigenvalue problem:

{
φ′′(x) = 0, x ∈ (0, 1),
−φ′(0) = λr0f

′(1)φ(0), φ′(1) = λr1f
′(1)φ(1),

(4.3)

From the results in Sect. 2.1, we have only one positive eigenvalue λ1 =
r0 + r1

r0r1f ′(1)
> 0 with a correspond-

ing eigenfunction φ1(x) = x − r1

r0 + r1
. Similar to Theorem 3.3, we can show a local bifurcation from Γ1

occurs at (λ, u) = (λ1, 1).

Theorem 4.1. Assume that f(u) satisfies (f), and ri < 0 for i = 1, 2. Then the solution set of (4.1) near
(λ1, 1) consists precisely of the curves Γ1 and

Σ = {(λ(t), u(t)) : t ∈ I = (−η, η) ⊂ R},

where λ(t) = λ1 + z1(t) and u(t) = 1 + tφ1 + tz2(t) are continuous functions such that zi(0) = 0, i = 1, 2.
Moreover, suppose that f is sufficiently smooth near u = 1,

1. if r0 < r1 and f ′′(1) < 0, then λ′(0) < 0;
2. if r0 > r1 and f ′′(1) < 0, then λ′(0) > 0;
3. if r0 = r1 and −f ′(1)f ′′′(1) + 3(f ′′(1))2 > 0, then λ′(0) = 0 and λ′′(0) > 0.
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The proof of Theorem 4.1 is similar to that of Theorem 3.3. We only point out that if f ∈ C2 near
u = 1,

λ′(0) =
(r1 − r0)f ′′(1)
2r0r1(f ′(1))2

,

and if r0 = r1, then λ′(0) = 0 and if f ∈ C3 near u = 1, then

λ′′(0) =
−f ′(1)f ′′′(1) + 3(f ′′(1))2

6r0(f ′(1))3
.

For the N = 1 case, by using the fact that any solution u(x) must be a linear function, we can obtain
a more precise global bifurcation diagram. For that purpose, we set a solution u(x) of (4.1) to be

u(x) = (C − B)x + B = Cx + B(1 − x), (4.4)

where B = u(0) and C = u(1). Then the boundary conditions become

B − C = λr0f(B), C − B = λr1f(C). (4.5)

Hence a solution (λ, u) of (4.1) is equivalent to a solution (λ,B,C) of (4.5). Any non-constant solution
u(x) of (4.1) satisfies C �= B, while B = C = 0 and B = C = 1 give the two trivial solutions u = 0 and
u = 1 for any λ > 0, and B = C > 0 gives the trivial solution for λ = 0.

Adding the two equations in (4.5) implies that B and C must satisfy a relation

r0f(B) + r1f(C) = 0. (4.6)

Since f(u) satisfies (f) and (f2), then the relation of B and C can be further determined as follows:

Lemma 4.2. Suppose that f(u) satisfies (f) and (f2), r0 < 0 and r1 < 0. Then
1. For any fixed 0 < B < 1, there exists a unique C = C1(B) > 1 such that (4.6) holds; moreover,

the function C1 : (0, 1) → (1,∞) is smooth such that C ′
1(B) > 0 for 0 < B < u1, C ′

1(B) < 0 for
u1 < B < 1, and

lim
B→0+

C1(B) = lim
B→1−

C1(B) = 1. (4.7)

2. There exists B∗ > 1 such that for any B > B∗, there is no C > 0 such that (4.6) holds; for any fixed
1 < B < B∗, there exist exactly two C = C2(B), C3(B) ∈ (0, 1) such that C2(B) > u1 > C3(B), and
(4.6) holds for (B,C2(B)) and (B,C3(B)); moreover, the functions Ci : (1, B∗) → (0, 1) (i = 2, 3)
are smooth such that C ′

2(B) < 0 and C ′
3(B) > 0 for 1 < B < B∗, and

lim
B→1+

C2(B) = 1, lim
B→1+

C3(B) = 0, lim
B→B−∗

C2(B) = lim
B→B−∗

C3(B) = u1. (4.8)

Proof. The relation (4.6) implies that
f(C) = −r0

r1
f(B). (4.9)

Since B,C > 0, then B ∈ (0, 1) implies that C > 1, and B > 1 implies that C ∈ (0, 1). We first assume
that B ∈ (0, 1), then there exists C > 1 such that (4.9) holds since f(1) = 0 and f(u) → −∞ as u → ∞
from (f2), and such C is unique since f ′(u) < 0 for u > 1. We denote this C by C1(B), and we have

f(C1(B)) = −r0

r1
f(B). (4.10)

By differentiating (4.10) in B, we obtain that

f ′(C1(B))C ′
1(B) = −r0

r1
f ′(B), (4.11)

which implies that C ′
1(B) > 0 for 0 < B < u1, C ′

1(B) < 0 for u1 < B < 1. The limits in (4.7) is clear
from (4.9) and the fact that f(B) → 0 as B → 0+ or B → 1−. The case of B > 1 can be proved similarly,
by observing that the graphs of (B,C1(B)) and the inverse function of (B,C2(B)) and (B,C3(B)) have
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Fig. 1. The graphs of C = Ci(B) (i = 1, 2, 3) when f(u) = u − u2 and r0 = r1 = −1. Here the arc between (0, 1) and
(1, 1) is C1(B), the one between (1, 1) and (B∗, 0.5) is C2(B), and the one between (B∗, 0.5) and (1, 0) is C3(B), where

B∗ = (1 +
√

2)/2

the same structure (see, e.g. Fig. 1). Here B∗ > 1 can be determined uniquely by r0f(B∗) + r1f(u1) = 0
since f ′(u) < 0 for u > u1. �

The structure of Ci(B) (i = 1, 2, 3) given in Lemma 4.2 indicates that the solutions of (4.1) can be
classified as follows:

Corollary 4.3. Suppose that f(u) satisfies (f) and (f2), r0 < 0 and r1 < 0. Then any non-constant
solution u(x) of (4.1) is a linear function in form of (4.4), with either

1. 0 < B < 1, C = C1(B) > 1, and the corresponding u(x) is increasing; or
2. 1 < B ≤ B∗, C = C2(B) ∈ (0, 1) or C = C3(B) ∈ (0, 1), and the corresponding u(x) is decreasing.

It remains to determine the parameter λ from B and C. From (4.5), we obtain that

λ = λi(B) =
B − Ci(B)

r0f(B)
, i = 1, 2, 3. (4.12)

Here the domain of λi(B) is same as the one for Ci(B), (i = 1, 2, 3).
Now we are ready to state the global bifurcation result for (4.1).

Theorem 4.4. Suppose that f(u) satisfies (f) and (f2), r0 < 0 and r1 < 0. Define

Σ =
3⋃

i=1

Σi, where Σi = {(λi(B), B) : B ∈ Ii}, (4.13)

I1 = (0, 1), and I2 = I3 = (1, B∗] where B∗ is defined in Lemma 4.2. Then

1. If (λ, u) is a positive solution of (4.1), then there exists i ∈ {1, 2, 3} and B ∈ Ii such that u(x) =
Ci(B)x + B(1 − x) and λ = λi(B) which is defined in (4.12).
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2. Σ is a smooth curve in R
2
+ satisfying

λ1(1−) = λ2(1+) =
r0 + r1

r0r1f ′(1)
≡ λ1, λ′

1(1
−) = λ′

2(1
+),

λ2(B−
∗ ) = λ3(B−

∗ ), λ′
2(B

−
∗ ) = λ′

3(B
−
∗ ),

lim
B→0+

λ1(B) = lim
B→1+

λ3(B) = ∞.

(4.14)

3. Let λ∗ = min
i

inf
B∈Ii

λi(B). Then 0 < λ∗ ≤ λ1. For each λ > λ∗ and λ �= λ1, (4.1) possesses at least

two non-constant positive solutions, and when λ > λ1, (4.1) possesses at least one increasing positive
solution and one decreasing positive solution.

Proof. If (λ, u) is a positive solution of (4.1), then from arguments given above, u(x) = Cx + B(1 −
x), (C,B) satisfies C = Ci(B) and B ∈ Ii from Lemma 4.2. Hence the set of positive solutions of (4.1)
is equivalent to Σ. The continuity of λi(B) and λ′

i(B) at B = 1 and B = B∗ can be easily established
from the smoothness properties of Ci(B) and f(B). The limits of λi(B) can also be easily shown from
properties of Ci(B) in Lemma 4.2.

From (4.14) (especially the infinite limits), one can see that 0 < λ∗ ≤ λ1, and for each λ > λ∗, λ =
λi(B) is achieved at least twice on Σ except when B = 1 and λ = λ1, and thus (4.1) possesses at least
two non-constant positive solutions for each λ > λ∗ and λ �= λ1. For λ > λ1, (4.1) has at least one
positive solution on Σ1 (which consists of increasing solutions), and another on Σ2 ∪ Σ3 (which consists
of decreasing solutions). �

As λ → ∞, (4.1) has two positive solutions with (B,C) approaching to (1, 0) or (0, 1), which implies
that the two solutions with patterns u∞

1 (x) = x and u∞
2 (x) = 1 − x respectively. In general, λ = λ∗

is a saddle-node bifurcation point, while λ = λ1 is a transcritical bifurcation point. From Theorem
4.1, λ∗ < λ1 when r0 �= r1. When r0 = r1, it is likely λ∗ = λ1 and two bifurcation points merge to
create a pitchfork bifurcation. For f satisfying more restrictive convexity condition, it is possible to show
that for each λ > λ∗ and λ �= λ1, (4.1) possesses exactly two non-constant positive solutions. Here we
only point out that for the prototypical f(u) = u − u2, the exact multiplicity results holds. Indeed, for
f(u) = u − u2, Ci(B) and λi(B) can be explicitly solved as

C1(B) =
1 +

√
1 + 4r2(B − B2)

2
, λ1(B) =

B − C1(B)
r0(B − B2)

, B ∈ (0, 1], (4.15)

C2(B) =
1 +

√
1 + 4r2(B − B2)

2
, λ2(B) =

B − C2(B)
r0(B − B2)

, B ∈ (1, B∗], (4.16)

C3(B) =
1 − √

1 + 4r2(B − B2)
2

, λ3(B) =
B − C3(B)
r0(B − B2)

, B ∈ (1, B∗], (4.17)

where

r2 =
r0

r1
, B∗ =

1 +
√

1 + r−1
2

2
. (4.18)

The exact multiplicity of solutions for this case can be easily deduced from the explicit form above. Figure
2 shows the bifurcation diagrams of (4.1) with f(u) = u−u2. One can see that a saddle-node bifurcation
occurs in the portion Σ1 when r0 < r1 < 0, and it occurs in the portion Σ2 when r1 < r0 < 0. In all
three diagrams in Fig. 2, the bifurcation point is at λ1 = 1.5, but when r1 �= r2, there is a saddle-node
bifurcation point λ∗ < λ1 such that two non-constant positive solutions also exist for λ ∈ (λ∗, λ1).



3078 C.-G. Kim, Z.-P. Liang and J.-P. Shi ZAMP

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

B
r0=-1.0, r1=-2.0

λ
1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

B

r0=r1=-4/3

λ
1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

B

r0=-2.0, r1=-1.0

λ

Fig. 2. The bifurcation diagrams for (4.1) when f(u) = u − u2. The horizontal axis is λ, and the vertical axis is B. Left:
r0 = −1 and r1 = −2; middle: r0 = r1 = −4/3; right: r0 = −2 and r1 = −1

5. Proof of Lemma 3.4

Proof of Lemma 3.4. Fix ε > 0, we first prove that positive solutions of (1.1) with λ ∈ [ε,∞) are uniformly
bounded. Note that

‖u‖L∞(Ω) = ‖u‖L∞(∂Ω)

by Lemma 2.2. Assume on the contrary that there exist a sequence {λk} with λk ∈ [ε,∞), a sequence of
non-constant solutions {uk} of (1.1) for λ = λk, and a sequence of points {Pk} on ∂Ω such that

Mk := max
x∈Ω

uk(x) = uk(Pk) → ∞, Pk → P ∈ ∂Ω,

as k → ∞.
Without loss of generality, we may assume that P is the origin and the xN -axis is normal to ∂Ω

at P . Then there exists a smooth function ψ(x′), x′ = (x1, · · · , xN−1), defined for |x′| < δ0 satisfying
ψ(0) = 0, (∂ψ/∂xj)(0) = 0 for j = 1, · · · , N − 1, Ω ∩ O = {(x′, xN ) : xN > ψ(x′)}, and ∂Ω ∩ O =
{(x′, xN ) : xN = ψ(x′)} in a neighborhood of O of P . For y ∈ R

N with |y| sufficiently small, we define
a mapping x = Φ(y) = (Φ1(y), · · · ,ΦN (y)) by Φj(y) = yj − yN (∂ψ/∂xj)(y′) for j = 1, · · · , N − 1 and
ΦN (y) = yN +ψ(y′). Since Φ′(0) = I, Φ has the inverse mapping y = Ψ(x) := Φ−1(x) in the neighborhood
of x = 0. We write Ψ(x) = (Ψ1(x), · · · ,ΨN (x)), and put

aij(y) :=
N∑

l=1

∂Ψi

∂xl
(Φ(y))

∂Ψj

∂xl
(Φ(y)),

bj(y) := (ΔΨj)(Φ(y)),

where 1 ≤ i, j ≤ N . Defining vk(y) = uk(x), then vk satisfies
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

N∑

i,j=1

aij(y)
∂2vk

∂yi∂yj
+

N∑

j=1

bj(y)
∂vk

∂yj
= 0, y ∈ B+

2δ,

∂vk

∂yN
= −λkr(Φ(y))f(vk), y ∈ {yN = 0} ∩ B2δ,

(5.1)

where B2δ = {y ∈ R
N : |y| < 2δ}, B+

2δ = B2δ ∩ R
N
+ , and δ > 0 is sufficiently small. Moreover, we put

Qk = Ψ(Pk) and also write Qk = (q′
k, 0). Since Qk → 0 as k → ∞, we may assume that |Qk| < δ for all



Vol. 66 (2015) Existence of positive solutions 3079

k. Let dk = (λk)−1M1−p
k . Then dk → 0 as k → ∞. We define a scaled function by

wk(z) = M−1
k vk(dkz′ + q′

k, dkzN ). (5.2)

Note that wk is well defined in the half ball B+
δ/dk

and that 0 < wk(z) ≤ 1 for all k. By (5.1), wk satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N∑

i,j=1

ak
ij(z)

∂2wk

∂zi∂zj
+ dk

N∑

j=1

bk
j (z)

∂wk

∂zj
= 0, z ∈ B+

δ/dk
,

∂wk

∂zN
= −rk(z)(M1−p

k wk − M−p
k g(Mkwk)), z ∈ {zN = 0} ∩ Bδ/dk

,

(5.3)

where ak
ij(z) = aij(dkz′ + q′

k, dkzN ), bk
j (z) = bj(dkz′ + q′

k, dkzN ), and rk(z) = r(Φ(dkz′ + q′
k, dkzN )).

Choose a sequence {Rn} such that Rn → ∞ as n → ∞. For fixed n, B+
4Rn

⊂ B+
δ/dk

provided k is
sufficiently large. Note that ak

ij(z) and bk
j (z) are uniformly bounded in k with respect to C2(Bδ/dk

)-norm,
and rk(z) is uniformly bounded in k with respect to C2({zN = 0} ∩ Bδ/dk

)-norm. By (f1),

lim
k→∞

|M−p
k g(Mkwk(z)) − A1w

p
k(z)| = 0,

and M−p
k f(Mkwk(z)) remains uniformly bounded in {zN = 0}∩Bδ/dk

. Applying the elliptic Lr-estimates

to (5.3) in the domain B
+

2Rn
, {wk} is uniformly bounded in W 2,r(B+

2Rn
) for each r > 1. Choosing r > N ,

{wk} is uniformly bounded in C1,β(B
+

2Rn
), where β ∈ (0, 1). By the Schauder estimates for elliptic

equations, on each D � B+
Rn

, {wk} is uniformly bounded in C2,β(D) with β ∈ (0, 1). By standard
arguments, there exists a subsequence, still denoted by {wk}, such that wk converges uniformly to w ∈
C2,β′

(RN
+ ) ∩ C1,β′

(R
N

+ ), for β′ ∈ (0, β), on any compact subset of R
N
+ . It follows from Ψ′(0) = I that

aij(0) = δij . Since ak
ij(z) → aij(0) and dk → 0 as k → ∞, w is a nonnegative solution of

⎧
⎨

⎩

−Δw = 0, in R
N
+ ,

∂w

∂zN
= A1r(0)wp, on {zN = 0}.

(5.4)

Since A1r(0) < 0, w ≡ 0 by [22, Theorem 1.1 and Theorem 1.2] (or see [41, Sect. 4]), which is a
contradiction to the fact that

w(0) = lim
k→∞

wk(0) = lim
k→∞

M−1
k vk(Qk) = 1.

Thus positive solutions of (1.1) with λ ∈ [ε,∞) are uniformly bounded.
By the same argument as above, we can prove that there exists C0 > 0 such that for all solutions uλ

with λ ∈ (0, ε],

max
x∈Ω

uλ(x) ≤ C0λ
−1

p−1 . (5.5)

Here C0 is independent of λ ∈ (0, ε]. Indeed, if we assume that (5.5) does not hold, and again let
dk = (λk)−1M1−p

k and Mk = maxx∈Ω uk(x), then dk → 0 as k → ∞, and we can proceed to a contradiction
as above.

Let u be a non-constant solution of (1.1) with λ ∈ (0, ε]. By (f1), there exists A2 > 0 such that

g(z) ≤ 1
2
(z + A2z

p) for z ≥ 0. (5.6)
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Multiplying the equation in (1.1) by u2s−1 (s ≥ 1) and integrating it over Ω, by (5.6), we have

2s − 1
s2

∫

Ω

|∇(us)|2dx − λ

∫

∂Ω

r(x)u2sdS

= −λ

∫

∂Ω

r(x)u2s−1g(u)dS ≤ −λ

∫

∂Ω

r(x)
1
2
(u2s + A2u

2s−1+p)dS,

which implies that, by (5.5),

2s − 1
s2

∫

Ω

|∇(us)|2dx ≤ −A2C
p−1
0

∫

∂Ω

r(x)u2sdS.

For s ≥ 1, we have
s2

2s − 1
≤ s, and thus

∫

Ω

|∇(us)|2dx ≤ sA2C
p−1
0 max

x∈∂Ω
(−r(x))

∫

∂Ω

u2sdS. (5.7)

Note that the norm

‖w‖1 =

⎛

⎝

∫

Ω

|∇w|2dx +
∫

∂Ω

w2dS

⎞

⎠

1
2

is equivalent to the usual norm in H1(Ω). By a boundary trace imbedding theorem [1, Theorem 5.36],
there exists a constant γ > 0 such that for all w ∈ H1(Ω),

⎛

⎝

∫

∂Ω

wνdS

⎞

⎠

1
ν

≤ γ

⎛

⎝

∫

Ω

|∇w|2dx +
∫

∂Ω

w2dS

⎞

⎠

1
2

,

where ν = 2(N − 1)/(N − 2) if N ≥ 3, and ν is fixed such that ν > 2 if N = 2. It follows from (5.7) that,
for all s ≥ 1,

⎛

⎝

∫

∂Ω

usνdS

⎞

⎠

2
ν

≤ C1s

∫

∂Ω

u2sdS, (5.8)

where

C1 = γ2

(

A2C
p−1
0 max

x∈∂Ω
(−r(x)) + 1

)

.

Let

rj = p(2−1ν)j−1, αj =
∫

∂Ω

urj dS, (5.9)

for j ≥ 1. Then, by (5.8), we have

αj+1 ≤ (C2rj)
ν
2 α

ν
2
j for j ≥ 1, (5.10)

where C2 = C1/2. Let μj = log αj for j ≥ 1. By (5.9) and (5.10), there exists C∗ > 0 such that

μj+1 ≤ ν

2
μj + C∗(j + 1) for j ≥ 1.
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Define {τj} by τ1 = μ1 and τj+1 =
ν

2
τj + C∗(j + 1) for j ≥ 1. Then μj ≤ τj for all j ≥ 1. By the same

arguments as in the proof of [26, Corollary 2.1 and Theorem 3],

‖u‖L∞(∂Ω) ≤ C3α
1
p

1 , (5.11)

for some constant C3 > 0.
On the other hand, integrating the equation in (1.1) over Ω, we obtain that

−
∫

∂Ω

r(x)udS = −
∫

∂Ω

r(x)g(u)dS,

so that
∫

∂Ω

g(u)dS ≤
(

max
x∈∂Ω

(−r(x))
) (

min
x∈∂Ω

(−r(x))
)−1 ∫

∂Ω

udS.

It follows from (f1) that there exist positive constants b1, b2 such that

g(z) ≥ b1z
p − b2, z ≥ 0,

and using Hölder inequality, we have
∫

∂Ω

updS ≤ b3,

where b3 is a positive constant depending only on g and |∂Ω|. Thus the proof is complete by (5.11). �
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