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1 Introduction and background

In nonlinear optic theory, the cubic nonlinear Schrédinger (NLS) equation

S R = 0 (LD

is the basic equation describing the formation and propagation of optical solitons in Kerr-type
materials [13,47]. Here ¢ is a slowly varying complex envelope of electric field, the real-
valued parameters r and x represent the relative strength and sign of dispersion/diffraction
and nonlinearity, respectively, and z is the propagation distance coordinate. The Laplacian
operator V7 can either be 3%/3t> for temporal solitons where 7 is the normalized retarded
time, or V2 = ZlNzl 82/8)ci2 for spatial solitons where x = (x1, x2, ..., xy) is the spatial
coordinate with the spatial dimension N > 1. Here x is in the direction orthogonal to z.
Solitary wave solutions to (1.1) and its generalizations have been proved in, for examples,
[7,46].

The invention of lasers in 1960s enabled experimental physical scientists to obtain a
powerful source of coherent light so nonlinear optical effects such as Second Harmonic
Generation (SHG) were discovered when the optical material has a x® (i.e. quadratic)
nonlinear response instead of conventional Kerr x ®) material for which the Eq. (1.1) is
based on (see [10,11]). Assuming that we consider a strong parametric interaction of three
stationary quasi-plane monochromatic waves with frequencies w; (i = 1,2, 3), the wave
vectors are in the same direction (assuming to be z-axis), there is no walk-off between
harmonic waves, the frequencies of interacting waves are matched exactly (w; + w2 = @3),
and corresponding wave vectors are almost matched (kjw; + krwy — k3wz = Ak K k;),
then with some conventional normalizations and the assumption that w; = wy = w3/2, one
obtains the following system of SHG of type I (see [10, p. 104]):

0
ia—v—i—rAv—v—i—wv*:O, x eRN,
< (1.2)

0 1
iaa—w—l—sAw—ozw—i—fvz:O, x eRN,
z

where v is a renormalized slowly varying complex envelope of wave with frequency wy, w
is the one with frequency w3, o, « > 0, and r, s = £1. In the spatial soliton case r = s = 1,
while the temporal case all four combinations for r, s = +1 are possible. The physically
realistic spatial dimensions are N = 1 or N = 2. In this paper we only consider the case of
r = s = 1. Then the chirp-free two-wave (symbiotic) solitons can be found as real-valued
solutions of the steady state (0/9z = 0) equation:

Av—v+wv =0, x € RV,
1
Aw—aw+§v2=(), x e RV, (1.3)

lim v(x) = lim w(x)=0.
|x|—o00 |x|—o00

Note that the limiting behavior of the soliton solutions at infinity is added to the equation as
a typical requirement. On the other hand, the type II SHG can be described by the following
renormalized three-wave mixing equation ([10, p. 118]):
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0

inalJrAv—erwu*:O, x e RV,

z
. du * N
i@ =+ Au—yutur* =0, xeR, (1.4)

z

218—+Aw—aw+uv =0, x € RY,

z

and its steady state equation is of form

Av—v+wu =0, x eRN,
Au — Pu+wv =0, x e RN,

1.5
Aw —yw+uv =0, x € RV, (-

lim v(x) = lim wu(x)= lim w(x) =0,
|x|—00 |x|—o00 |x|—00
where 8, y > 0.
We remark that similar to (1.2) and (1.4), the propagation of solitons in X(3) nonlinear
fiber couplers can be described by a set of coupled nonlinear Schrodinger equations:

1/” +rV2y; +X<Z|wl )w,- =0, (1.6)

i=1

for j = 1,2,..., K. Here the complex-valued v/; denotes the jth component of the light
beam, and > |/ |? is the change in refractive index profile created by all the incoherent com-
ponents in the light beam. The solitary waves of (1.6) satisfies ¢; (¢, x) = u;(x) exp(iu 1),
and u j (x) satisfies

K
rAuj — pjuj +X(Zu,~2)u,~ =0, (1.7)

i=1
for j = 1,2,..., K (see [28]). The existence of solitary wave solutions to (1.6) has been
considered by many authors in recent years, for example, [1,3,4,18,20,28,33,43,45,48] and
the references therein, and the same system in a bounded domain was also considered in
[15,16,19,37,49-51].

Contrast to the well-studied X(3) nonlinear Schrodinger system (1.6) and (1.7), the two-
wave x @ SHG systems (1.2) and (1.3) has only been analytically studied by a few authors [54,
55] for the case of N = 1, and there is no rigorous result for the three-wave case (1.4) and (1.5)
yet. In this paper, we aim to consider the existence, uniqueness, and multiplicity of soliton
solutions of (1.2) in higher dimensional case, and we also consider the dependence of positive
ground state soliton solutions on the parameter . We also obtain some preliminary results
for the three-wave system (1.5). To fully explore the mathematical structure of solutions of
x@ SHG systems (1.3) and (1.5), we will not restrict the spatial dimension N to be only 1
or 2, but a general positive integer. Our results show that N = 6 is a critical dimension for
the existence of positive solitons as such solutions do not exist when N > 6.

Our main analytic tool is the variational method. System (1.3) has a variational structure
and its energy functional is defined by I, : H := H'(RV) x H'(RY) — R which is defined
by

1 1
Iy(v,w) = E/N (IVo)? + 0% + [Vul* + aw?) dx — E/N Vwdx.  (1.8)
R R
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Itis standard to verify that I, is well defined when the spatial dimension N satisfies 1 < N <
6, 1, is continuously differentiable and its critical points correspond to the weak solutions of
(1.3), see Sect. 2 for more details. The trivial solution of (1.3) is (v, w) = (0, 0), and (1.3)
has no semi-trivial solutions in form of (v, 0) or (0, w). Any solution (v, w) other than (0, 0)
is a non-trivial solution of (1.3), and a non-trivial solution is called a ground state solution if
it has the least energy among all the non-trivial solutions.

For system (1.3), first we have the following existence and nonexistence result for the
positive ground state solution in higher dimensional space:

Theorem 1.1 1. Supposethat1l < N < 5anda > 0. Then system (1.3) possesses a positive
ground state solution (vy, wWy) € H. Moreover each of vy and wy, is radially symmetric
with respect to a point xo € RY and is strictly decreasing in the radial direction.

2. Suppose that N > 6 and a > 0. Then system (1.3) has no positive solution in H.

From a result in [12], all positive solutions of (1.3) are necessarily radially symmetric and
strictly decreasing in the radial direction. In the case N = 1, the existence of a non-trivial
ground state solution of (1.3) was shown in [55] by using a variational approach. It is also
known that when N = 1, the positive solution of (1.3) is unique up to a spatial translation
[34]. Here we state the following partial result on the uniqueness of positive solution of (1.3)
in higher dimensional space.

Theorem 1.2 1. When o = 1 and 2 < N <5, the positive solution (vy, wy) of (1.3) is
unique up to a translation. Moreover wi = vy / V2, and wy is the unique positive solution

of
Av—v4+1> =0, veH'®RY). (1.9)
2. Whena = Qand3 < N < 5, (1.3) possesses a unique positive solution (vg, wg) €

H'(RN) x DVY2@RN) up to a translation, and vo is the unique positive solution of the
nonlinear Choquard equation

1
AU—U-}—E(GN*UZ)v:O, ve H'RY), (1.10)
and wy = (1/2)Gy * v%, where Gy (x) is the Newton potential
1
G =—— x>V, 1.11
W) = il (1.11)

and wy is the surface area of the unit sphere in RN, When « = 0 and N = 1,2, (1.3)
has no positive solution.

The uniqueness of positive solution of (1.9) is a well-known result proved in [24], see also
[5,14,25]. According to Theorem 1.2, when o = 1, the two components v and w have the
same linear term, and the system (1.3) can be reduced to a single equation in a way. A similar
uniqueness result for ground state was proved in [23], and other similar uniqueness results
for the x® Schrodinger system (1.7) with K = 2 were proved in [16,52]. The uniqueness
of positive solution of the nonlinear Choquard equation in Theorem 1.2 follows from recent
result in [35] for N > 3, which improved the earlier one in [26]. For the case of & #% 1 and
2 < N < 5, the uniqueness of positive solution of (1.3) is an interesting open question. By
using a similar approach we also have the results on the existence and uniqueness of ground
state solution of the three-wave system (1.5), see Theorem 2.7.

Our next result provides information of the dependence of positive ground state solutions
of (1.3) on the parameter «, and also the limiting behavior of positive ground state solutions
as « approaches to 0 or co.
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Theorem 1.3 Let {,} be a sequence in R" and let (vy,, Wy, ) be a positive ground state
solution of (1.3) with a = a, such that the maximum of vy, and wy, is located at origin.
1. Suppose that 1 < N <5 and lim o, = ay > 0. Then up to a subsequence, there exists
n—oo
(Vo » Wq,) € H, a ground state solution of (1.3) with o = o, such that
(Vo » Wary) = (Va,, We,) in H, as n — oo.
In particular, if o, = 1, then (vy,, Wa,) = (v1, w1).
2. Suppose that3 < N <5 and lim «, = 0. Then up to a subsequence,
n—oo

(V> Wa,) — (v0, wo) in H'(RY) x DV2@®RY), as n — oo,

where (v, wy) € HY(RY) x DVZ(RN) is the unique positive solution of system (1.3)
with o = 0.
3. Suppose that lim o, = oo. If 1 < N < 3, then up to a subsequence,
n—oo

1
Vg, — Voo in H'(RY), wan—>v§o in LP(RY), as n — oo,

V2o,
for2 < p < 2% 2% is defined in (2.1), and v is the unique positive solution of

Av—v+0v =0, ve H'®RY); (1.12)
On the other hand, if N = 4 or 5, then

1
20,

It is known that the limiting equation (1.12) has only trivial non-negative solution in
H! (RN ) if N > 4, so it is necessary to assume 1 < N < 3 for the convergence result when
o — oo in Theorem 1.3. In the above limiting behavior of the ground state solutions of
(1.3), we notice a transition of (2e¢) ~'/2v from the positive solution of (1.9) (with exponent
2) when a = 1 to the positive solution of (1.12) (with exponent 3) when « is near infinity. The
limiting behavior when « is large is formally known as the cascading limit or effective Kerr
limit in physics literature (see [10, p. 105]), and here we give the first rigorous justification
of such limiting behavior. All above results are concerned with the ground state solution of
(1.3). In the following result, we obtain multiple solutions of (1.3).

[Va, loo = 00, and |wq,|eo — 00, as n — oo.

Theorem 1.4 Suppose that2 < N < 5 and a > 0. Then system (1.3) possesses infinitely
many distinct radially symmetric solutions {(vy,, wy,)} satisfying I (v,, w,) — 0o asn —
Q.

The sequence of solutions {(v,, w,)} obtained in Theorem 1.4 are radially symmetric
multi-pulse solutions, and in light of uniqueness of positive solution shown in Theorem
1.2, these {(v,, w,)} are likely to be sign-changing. Multi-pulse solutions for N = 1
were first observed in numerical simulations (see [55]), and the existence of multi-pulse
solutions was analytically proved using singular perturbation theory in [54]. Note that the
multi-pulse solutions in [54,55] are of two types: (i) v and w are both even functions, i.e.
(v(—x), w(—x)) = (v(x), w(x)); (i1) v is an odd function and w is an even function, i.e.
(v(—x), w(—x)) = (—v(x), w(x)). Hence our solutions are higher dimensional counterpart
of the first type multi-pulse solutions in one-dimensional domain. The existence of second
type higher dimensional multi-pulse solutions is another interesting open question. Also note
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that for any solution (v, w) of (1.3), w(x) must be positive hence it cannot be an odd func-
tion. For N = 1, multi-pulse solutions were only found when « is less than 1 and near 1 in
[54,55]. In comparison, Theorem 1.4 suggests the existence of multi-pulse solutions for all
o > 0 when 2 < N <5, which shows the effect of spatial dimension on the existence of
soliton waves. We also comment that (1.3) possesses another symmetry that if (v(x), w(x))
is a solution of (1.3), so is (—v(x), w(x)). Hence the results in Theorems 1.1 and 1.3 also
hold for ground solution (v, w) such that v < 0 and w > 0.

The result in Theorem 1.4 is proved by using variational method for a nonlocal elliptic
equation which is equivalent to (1.3):

1
Av—v+3 (G35 v?)v=0, veH'®Y) (1.13)

where Gf(x) is the Bessel kernel or Yukawa potential for the equation (—A +a)P(x) =0
in RV. Note that equation (1.13) is in a similar form as the nonlinear Choquard Eq. (1.10)
except a different convolution kernel, and the existence of infinitely many solutions of (1.10)
was obtained in [29], see also [36]. On the other hand, such approach has been used for another
similar system: Schrodinger-Poisson system, which has an opposite sign in the nonlocal term
(see, for example, [2,6,22,42,56]).

Finally we consider the system (1.3) on a bounded smooth domain :

Av—v+ovw =0, x € Q,

1
Aw—(xw+§v2:0, x € Q, (1.14)
v=w =0, x € 0Q2.

The energy functional is given by
1 1
Dy (v, w) = 7/ (IVo]? +v* + [Vwl* + aw?) dx — 7/ vw dx,
2 Ja 2 Ja

forv, w € HO1 (€2). The existence and multiplicity results for the solutions of (1.3) (Theorems
1.1 and 1.3) can be proved for (1.14) using similar proof (see Theorem 6.1). But in this
setting, more can be said about the structure of all solutions of (1.14). Here we summarize
the bifurcation results for (1.14) (precise statements are given in Theorems 6.2 and 6.4):

1. Let (A1, ¢1) be the principal eigen-pair of —A on HO1 (2) such that ¢; > 0. Then
(o0, v, w) = (—A1, 0, wey) is a semi-trivial solution of (1.14) for u € R.

2. For N > 1, there exists an increasing sequence u, > 0, n = 1,2,3,..., such that a
continuum X, of non-trivial solutions of (1.14) bifurcates from the the branch of semi-
trivial solutions at © = u,. In particular, £ contains the positive solutions of (1.14).

3. For N > 6, the solution continuum %, only exists for « € (—A1, 0) when € is a star
shaped domain; for N = 2, 3, the solution continuum X, is either extended to @ = 0o
or ¥, = %, for some m # n, and ¥; exists for ¢ € (—A1,00); for N = 1 and
Q = (—L, L), each I, exists for ¢ € (—Aj,00) and X, N X,, = ¥, that is, for any
o € (—A1, 00), (1.14) has a pair of solutions (£v,, w;) such that v, changes sign exactly
n — 1 times, and w, > 0 (see Fig. 1)

The result in part 3 shows the existence of both type (i) and type (ii) multi-pulse solutions
when N = 1 and Q = (—L, L), since an even v changes sign even number of times in
(=L, L) while an odd v changes sign odd number of times. The bifurcation result in part 2
above utilizes a new “double saddle-node” bifurcation theorem proved in [32]. Indeed near
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Fig. 1 Illustration of global bifurcation diagram of (1.14). Here the horizontal direction is p, and the vertical
direction is (v, w)

the bifurcation point, the solution continuum %, is a curve which is tangent to the curve of
semi-trivial solutions and the kernel of the linearized operator is two-dimensional, while in the
classical Crandall-Rabinowitz bifurcation theorem [17], the solution continuum is transversal
to the known branch and the corresponding kernel is one-dimensional. This appears to be the
first example of double saddle-node bifurcation occurring in practical mathematical models,
and it suggests that such bifurcations may arise in many other situations. Also these results
cannot be obtained from variational methods.

The paper is structured this way: in Sect. 2, we prove the existence of ground state solution
and prove the existence parts in Theorems 1.1 and 2.7, and the uniqueness of solution is proved
in Sect. 3. We study the convergence and asymptotic behavior of ground state solutions in
Sect. 4, and prove Theorem Theorem 1.3. The existence of multiple solutions is proved in
Sect. 5, and the bounded domain case is considered in Sect. 6. Throughout the paper (except
Sect. 6), we denote the norm of L”(RY) by [v]|, = (fgn [v]? dx)l/p for1 < p < o0, and
the norm of H!(RV) by |lv|| = (|Vv|% + |v|%)1/2; we also use ||v]lq = (|Vv|% —|—oz|v|§)l/2

. 1
as an equivalent norm of HY(RN) fora > 0; and we use |ullg = (|v]|® + |[w]/?)2 as the
norm for u = (v, w) in H.

2 Existence of ground state solutions

In this section, we prove the existence of a positive ground state solution of system (1.3) with
1 < N < 5fora > 0. To achieve this, we use variational method to the functional 7, defined
in (1.12). We note that the existence of a ground state solution was essentially obtained by
Brezis and Lieb [8] by using a constrained minimization method. Here, we use a different
argument and obtain the mountain pass characterization of the ground state solution, which
plays an important role in the characterization of the asymptotical behavior of the ground
state solutions depending on the parameter «.
First we observe the following estimate.

Lemma 2.1 Suppose that 1 < N < 6 and u,v,w € HI(RN), then there exists C > 0
independent of u, v, w such that

/ uvw dx < Cllulllv]{lw].
RN
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In particular, for (v, w) € H, there exists C > 0 independent of v, w such that
[, v dr = clou.
RN

Proof Define

2N N3
—F, N=>3, ~ 2N

=3 N-=-2 and 2¥ = ———. 2.1)
00 N=1,2 N+2

We first consider the case of 3 < N < 6. From Holder inequality, we have

- 1/(22*%) - 1/(22%) . 1/2*
/ uvw dx < (/ u?? dx) (/ v22 dx) (/ w? dx) .
RN RN RN RN

Since 22* < 2*for3 < N < 6, we get the conclusion by the Sobolev inequality. If
N = 1,2, it follows from the Sobolev embedding theorems that H LRN) — LP(RN) for
any p € [2, 00). Thus

13 173 1/3
/ uvw dx < (/ u’ dx) (/ v’ dx) (/ w? dx) < Cllullllvlllw].
RN RN RV RV

[m}

By Lemma 2.1, we see that the functional /,, defined in (1.8) is well definedif 1 < N < 6.
Moreover, it is standard to verify that 1, € CL(H, R) and its derivative is given by

(Ig(v, w), (@, ¥)) = / (VoVe + v + VuVy + awy) dx —/ vwe dx
RN RV

l/ ZWd
——= v X,
2 RN

for any (v, w), (¢, ¥) € H. Therefore, a weak solution of system (1.3) corresponds to a
critical point of /, in H. Since the nonlinearities in (1.3) is sufficiently smooth, then a weak
solution is necessarily a classical solution.

For any critical point (v, w) € H of I, it is standard to deduce the following Pohozaev’s

identity
N -2 N N -2
7/ |Vv|2dx+—/ vzdx+—/ [Vw|*dx
2 RN 2 RN 2 RN

N N
e B Y P / Vwdx = 0. 2.2)
2 RN 2 RN
Combining with (I, (v, w), (v, w)) = 0, we see that
6—N
/ v dx +oz/ w?dx = —— [ wdx, (2.3)
]RN RN 4 RN

which implies that (v, w) must be zero if N > 6 and « > 0. This proves the nonexistence
part in Theorem 1.1.

In what follows, we will focus on the case of 1 < N < 5. We will use the Mountain-
Pass Theorem without compactness ([53, Theorem 1.15]) and the concentration-compactness
principle [31, Lemma 1.1] to prove the existence of non-trivial critical points of /, fora > 0.
We recall that for ¢ € R, a sequence {(v,, w,)} C H is called a (PS). sequence of I, if
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Iy (vy, wy) — cinRand I (v, wy) — O0in H~ 1Y asn — oo, where H™! is the dual space
of H. We have the following basic variational result:

Theorem 2.2 Suppose that 1 < N < 5 and the functional 1, is defined as in (1.8). Define
cq by

cq = inf max [,(y (1)) 2.4)
yel'tel0,1]

where I' = {y(t) € C([0,1], H) : y(0) = 0, I4(y(1)) < O}. Then for any o > 0, the
functional Iy has a non-trivial critical point (Vy, Wy) € H such that Iy (Vy, Wy) < Cq.

Proof We prove it in the following steps.

Step 1 The functional I, has a strict local minimum at O in H. In fact, from Lemma 2.1, we
obtain that

1 2 1 2 1 2
la(v, w) = Zv|”+ Sllwle = 5 . wdx

Lo Lo 2 . 2 3
z S Ivl” + Sllwlle = ClvliTliwll = 5 min(L, e)llully = Cllully,

where u = (v, w) and ||u ||i, = [|v]|I>+ ||w]||?. Thus we get the desired conclusion by choosing
llullg = p small enough. This also implies that ¢, defined in (2.4) is strictly positive.

Step 2 For any fixed (v, w) € H withv > 0, w > 0, I, (¢ (v, w)) - —oo ast — oo. In fact,
this follows directly from

2 2 3
Lt w)) = —oll? + 2wl — t—/ vw dx.
2 2 Wla =5 |y

Therefore, I, satisfies the assumptions of the mountain pass theorem in H and I, has a
(PS)c, sequence, i.e. there exists a sequence {(v,, w,)} C H such that

Lo (Un, W) = ¢, and I, (v, wy) — 0in H~L, (2.5)

Step 3 The sequence {(v,, wy)} is bounded in H. In fact, it follows from (2.5) that

172
)

1
o + 1+ (loall® + lwal2) ™ = Lo (ua, wy) — 3 e s wn), (o, wn)

1 1
= 8||vn||2+g||wn||§,.

Hence, {(v,, w,)} is bounded in H.

Step 4 The functional I, has a non-trivial critical point (vy, Wy ) € H suchthat Iy (vy, W) <
cq- Infact, to get a non-trivial critical point, we use the concentration compactness arguments.
Since {(v,, wy,)} is bounded in H, up to a subsequence, we can assume that there exists 6 > 0
such that

6 = lim sup / (v,% + w%) dx.
B1(y)

n—o0
yeRN

If5 =0,i.e. (v,, wy) is vanishing, then by Lions Lemma [31, Lemma 1.1], we have v, — 0
and w, — 0in L?(RN) for2 < p < 2*, where 2* is defined in (2.1). It follows from Lemma
2.1 that
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. . 1
cg = lim Iy(v,, wy) = lim (I(X(Un? wy) — 7(1(;(1)11: Wy), (Vn, wn)))
n— 00 n— 00 2
1 . 2
— lim v,w, dx =0,
4 n—oo RN

which is a contradiction. Therefore, the constant § > 0 and there exists {y,} € R" such that

| >

/ (vy +wp) dx >
B1(yn)

Set v, (x) = v, (x — y,) and Wy, (x) = w,(x — y,), then
PN 5
v, +w;)dx > —. (2.6)
By (0) 2

Moreover, (v, wy) is also abounded (PS),, sequence of I, due to the invariance of translation
of I,. Therefore, up to a subsequence, we can assume that for some (vy, wy) € H,

Ty — Uy in H'@®RY), @, — Wy in H'(RV), o
T, — Uy ae. inRY, @, — w, ae. inRY.

By (2.6) and the compactness of the embedding of H HRYY — LIZOC(RN ), we see that
Vo, wy) # 0.

Next we check that (v, Wy ) is a critical point of . In fact, for any (¢, ¥) € C§° (RN x
Cy° (RM), we have

(I (Un, W), (0, V) = /N (Vﬁnv(p + En(p + Vw, Vi +aw, ) dx
R
-~ ~ 1 ~
—/ Uy Wy dx — f/ vil/f dx.
RN 2 RN
By (2.2) and (2.7), it suffices to show that

/]RN Vp Wy dx — /RN VoW dx, (2.8)

and

/ 724 dx —>/ 24 dx. (2.9)
RN RN

Indeed for (2.8) we have

/ Vp Wy dx _/ VeWep dx = / Up(Wy — We ) dx +/ (Un — Vo) Wo o dx
RN RN RN RN

1/2 1/2
< lgloo (/ v, dx) (/ (W — Wa)? dx)
Q Q
1/2 1/2
+loloo (/ (U — vot)Z dx) (/ wﬁ dx) — 0
Q Q

by (2.7), where Q = suppt(¢) (the support set of ¢) is a bounded domain. Similarly (2.9)
holds. Hence I/, (Vy, We) = 0 as CSO(RN) is dense in H'(RY).
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Now by Fatou’s Lemma, we have

1 1
Iy (Vy, We) = Iy (Vy, We) — 7(1&(601’ Wy), Vo, Wy)) = Z /N iiwa dx
R

1 o~ . ~ ~ 1 — e e~
< —lim inf/ viw,, dx <liminf (Ia(v”, Wy) — = (I, Oy, Wy), (Un, w,,))) =cy.
n—oo JpN n—00 2

O

Moreover we give a more precise estimate of the mountain pass value ¢, defined in (2.4)
which is useful for subsequent arguments.

Lemma 2.3 Let o > 0 and let (v, w) € H satisfying/

viwdx # 0, then
RN

3
(/ (IVo? + v + |[Vw]? + aw?) dx)
< 2 ]RN

CQ_E , P
(/ dex)
]RN

Proof By the definition of ¢, and the fact that 7, (¢ (v, w)) — —oo as t — oo, we have

Ca

IA

max I, (t (v, w))
>0

2 3
t t
max —/ (|Vv|2 +v2 + |Vw|2 +aw2) dx — — V2w dx
t>0 2 RN 2 RN

3
(/ (|Vv|2 + 02+ |Vw|? —I—aw2) dx)
_ 2 RN

=5 ) 5
(/ vwdx)
RN

Theorem 2.2 shows the existence of a non-trivial solution of (1.3) for any a > 0. Note
that we can use the same proof to the truncated functional

[m}

1 1
I (v, w) = E/RN (|Vv|2 + 02 + [Vw|? +(xw2) dx — 5 RN(U+)2w dx.

where vt (x) = max{v(x), 0}, to show the existence of a positive solution using standard
argument. It is unclear whether a solution obtained in this way is a ground state solution for

(1.3) or not, which we shall further explore in the following.
We note that the Nehari manifold

Ny = {(v, w) € H\{0} : (I, (v, w), (v, w)) = 0}, (2.10)
plays an important role in the variational analysis as shown in the following lemma.

Lemma 2.4 Let Ny be defined as in (2.10).

1. Foru = (v, w) € H\{0} such that fRN v2wdx > 0, there exists a unique t, > 0 such
that ty,u € Ny and

Iy (t, (v, w)) = maox 1, (t (v, w)).
[
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2. For (v, w) € Ng,

I,((v,w)) = maé( I, (t (v, w)).
[

Proof 1. Since 0 is a local minimum of I, and f(¢) := I,(tu) - —oo ast — oo, it is
easy to see that f(¢) for ¢ > 0 has at least one maximum point #, > 0 with maximum value
greater than 0. Clearly, f'(t,) = (I, (tyu), u) = 0 and t,u € Ny. We prove next f(¢) has a
unique critical point for # > 0, which then must be the global maximum point. Consider a
critical point of f,

3
0= £t = (vl + [lwl2) — 42/ 2w dor.,
2 RN
then

Ft) = (||v||2 + ||w||§) — 3t/N vw dx = — (||v||2 + ||w||§) < 0.
R
Therefore if ¢ is a critical point of f, then it must be a strict local maximum point. This
implies the uniqueness.
2. Since fRN vZwdx > 0 for (v, w) € Ng, the conclusion follows from the uniqueness of

ty. ]

Note that it is well-known that such geometric property of Nehari manifold in Lemma 2.4
holds for the scalar equation

—Au+u= f(u), x eRV,

where f(u) is a superlinear function such as P~ (p > 1), see for example [21]. However
the structure of Nehari manifold for the system (1.3) is more complicated hence a direct
minimization on the Nehari manifold may not produce desired ground state solution. Our
approach in this section is to use the mountain-pass geometry to obtain a solution, then we
use Nehari manifold to show the ground state solution can be achieved as well.

For that purpose, we define
ne = inf{l, (v, w) : (v, w) € Ng}. @.11)
my = inf{ly (v, w) : I,(v, w) = 0, (v, w) € H\{0}}. '

By Theorem 2.2, m is well-defined and n, < my < cq. We will prove m,, can be achieved
in H by the minimizing method. In fact, the following result implies the existence of ground
state solution in Theorem 1.1.

Theorem 2.5 Suppose that 1 < N < 5, and let m, be defined as in (2.11). Then my, is
achieved at some (vy, wWy) € H with vy, > 0, wy > 0 for any a > 0. That is, (vy, Wy) IS a
positive ground state solution of (1.3).

Proof Let m, and n, be defined as in (2.11). First we claim that m, = n, = c4 for any
a > 0. By the definition of ¢, and Lemma 2.4, we have

oy < inf{r}ljlg( I, (t (v, w)) : (v, w) € Ny}
= inf{l, (v, w) : (v, w) € Ny} = ng.

By Theorem 2.2, ny, < my < ¢, and we obtain the claim. Let {(v,, w,)} be a minimizing
sequence of my, that is

Io(Vy, wyp) — Mg, I&(Um wy) = 0. (2.12)
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In particular, {(v,, w,)} is a (PS),, sequence, so it is bounded in H. Since m, > 0, by
similar arguments as in the proof of Theorem 2.2, {(v,, w,)} is non-vanishing and there
exists {y,} C RY such that the sequence vy, (x) = v, (x — y,) and Wy, (x) = w,(x — y,) has
a non-trivial weak limit (vy, wy) in H. It is easy to check that (vy, wy) is a critical point of
1. Hence by Fatou’s Lemma,

1 1 —~ . -~ -
my < Iy (Vy, Wy) = 7/ viwa dx < 7liminf/ v,zlwn dx <liminf I, (v,, w,) = mgy.
4 RN 4 n—oo RN n— 00

Therefore, m,, is achieved at (vy, wy).
We show next that w, > 0 and v, can be chosen to be positive. Clearly, v, # 0 and
wy # 0 by the equations of (1.3). Since w,, satisfies
1
—Awy + awy = 5”5» x € RV,
and w, — 0 as |x| — oo, we see that wy > 0 by the strong maximum principle. It is easy
to check that (|vuy|, wy) € Ny and Iy (Jvg|, wy) = Iy (ve, wy), hence (Juy|, wy) is also a

minimizer of n, and m,. Hence, we can assume that v, is nonnegative. It follows from the
strong maximum principle that v, > O. O

Remark 2.6 If 3 < N < 5, by the above similar arguments and working in H'(RV) x
DLZ(RN), we can obtain a positive ground state solution for system (1.3) with & = 0.

We conclude this section by proving the existence of ground state solution for the three-
wave Eq. (1.5). The proof is mostly similar to the proof of two-wave Eq. (1.3), so we will only
sketch the proof by showing how the proof of two-wave case can be adapted to the three-wave
case. It is not hard to see that system (1.5) is reduced to (1.3) if one of the parameters B or
y is 1. The solutions of (1.5) are critical points of the energy functional

1
Jgy (v, u,w) = 3 /N (|Vv|2 + 02 4 |Vul> + Bu* + |Vw|> + ywz) dx
R
1
—f/ vuw dx, (2.13)
2 JrW

for (v, u, w) € [H'(RY)]3. We have the following results on the existence and uniqueness
of ground state solution of the three-wave system (1.5).

Theorem 2.7 Suppose that 1 < N < 5.

1. For any B > 0, y > 0, system (1.5) possesses a positive ground state solution
(Vg,y,UB,y, WB,y) € [HY@®RM)]3. Moreover each of vg,y, Ugy and weg ., is radially
symmetric with respect to a point xo € RN and is strictly decreasing in the radial direc-
tion.

2. If B = y = 1, then the positive solution (vi1,u1,1,w1,1) of (1.5) is unique up to
translation. Moreover vi,1 = u1,1 = wi,1 and wi ] is the unique positive solution of
(1.9).

3.3).If B = 1land y = 0, N > 3, then (1.5) possesses a unique positive solution
(v1,0, U1,0, W1,0) € [H'®M)1? x DV2RN) up to a translation, with V1,0 = uy,0 and
«/Eul,o is the unique positive solution of (1.10). A similar result holds for f = 0 and
y =1

@ Springer



2670 L. Zhao et al.

Proof of Theorem 2.7 (existence) From Lemma 2.1, the functional Jg ,, defined in (2.13) is
well-defined if 1 < N < 6 and Jg, € Cl([Hl(RN)P, R). For B,y > 0, the proof of
Theorem 2.2 can be easily modified to prove the existence of a non-trivial critical point of
Jg,y. We define the Nehari manifold

Npy = {(u, v, w) € [H'®RVP\(O} : (J5, (u, v, w), (v, w)) =0}, (2.14)

and we can define critical energy level cg,,,, mg,, and ng, in a similar fashion as in the
proof of Theorems 2.2 and 2.5. Then the characterization of Ng ,, in Lemma 2.4 can also be
obtained, and the existence of a ground state solution (vg,,, ug, ,, wg,,) can be proved using
the same way as the one for Theorem 2.5. Finally, we use the characterization of the Nehari
manifold Ng , to get a positive ground state solution. In fact, there exists a 75, > 0 such
that g, (vg,y, ug,y, wa,y) € Ng,,. From the two relations

B (1op 12 + gy 13+ lwpy12) =13, /RN g y gy llwp.y | dx,

opp 12 + llep.y I + w11y = /RN VB, yUp.y W,y dX

it follows that z5 ,, < 1. Therefore,

1 2 2 2 2
M.y < Jpy (5.0 (Wprl gyl [wpyD) = <1F , (10p 12+ Nupy I + 1wp 1)

A

1
< 2 (hwpy 17 + gy WG+ 1w 13) = Jpy Vg gy wpy) = mpy

then 15, (lug,y |, vg,y |, lwg,y|) is a nonnegative ground state solution and each component
is positive by the maximum principle. O

3 Uniqueness of the positive solution

In this section we prove the uniqueness of positive solution of (1.3) and (1.5) in some special
cases.

Proof of Theorem 1.2 First we assume that « = 1. Let (v, w) € H withv > Oand w > 0
be a solution of (1.3). Then

—A (v—ﬁw) + (v—«/iw) =W — %vz.

By integration by parts, we get

/RN(W(v—fow)lz—l—(v—ﬁw)z) dx:—% RNv(v—x/Ew)z dx <0.

Hence, v = /2w and w satisfies a scalar equation (1.9). It is known (see [24]) that equation
(1.9) has a unique positive solution up to translation, which implies the uniqueness of positive
solution for (1.3).

Secondly we assume that « = 0. Then for N > 3, the equation of w in (1.3) becomes
a Poisson’s equation, and w can be solved as w(x) = (1/2)(Gy * v2)(x), where Gy is
defined in (1.11). Thus the equation of v in (1.3) becomes (1.10), and the uniqueness of
positive solution of (1.10) follows from the result of [35]. f « = 0 and N = 1 or 2, then
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the w-equation in (1.3) becomes Aw = —(1/2)1}2 < 0, thus —w is a bounded subharmonic
function and consequently —w is constant. Hence w = 0 and v = O since (v, w) € H. O

Proof of Theorem 2.7 (uniqueness) When B = y = 1, we use the same argument as the one
in the proof of Theorem 1.2 to obtain

/ IV —w)* + (v —u)?) dx = —/ w(v —u)? dx <0,
RN RV

hence v = u. Similarly we obtain v = w which implies v = u = w and it satisfies equation
(1.9). When 8 = 1 and y = 0, we still obtain v = u, and the uniqueness follows from
Theorem 1.2. O

4 Behavior of ground state solutions

In this section, we consider the continuous dependence of ground state solutions of (1.3) on
the parameter « and the asymptotic behavior of ground state solutions as « approaches 0 or
0.

4.1 Continuous dependence of ground states

To consider the dependence of positive ground state solutions on the parameter o, we first
prove the following properties of the ground state energy m, defined as in (2.11).

Lemma 4.1 Let my be defined as in (2.11) and let o™ > 0 be fixed. Then

1. If0 <oy <oy, then mg, < mg,.
2. My — Mg*, as a — o,

Proof 1. Since my = cq, it suffices to show that ¢y, < ¢q,. Since Iy, (1) < Iy, (1) for any
fixedu € H, we have I'y, C I'y,, where

Iy, ={y@) e C(0,11, H) : y(0) =0, I, (y(1)) <0}, fora; >0, i=1,2,

and
Lo = {y(@®) € C(0. 11, H'®") x D'2®")) : y(0) = 0, Io(y (1)) < 0}.
Hence,
Cqy = ylenrfa1 max. I, (Y (1)) < ylenfa1 max. Io, (Y (1)) < ylgnfm max Lo, (Y (1)) = ca;-
2. Let {o,} be a sequence satisfying lim, o0, = o*. We denote (vq,, wq,) and

(Vg*, We+) a minimizer of mg, and mq+ respectively. By Lemmas 2.3 and 2.4 part 1, we
have

Ma, = Ca,

IA

m>ax Iot,, (t (Vo , Wo))

(fRN (|Vva*| +vo¢* + |Vwoz*| +apw ) dx)

K (Juw v2ower dx)?
Vg2 « 4 |[Vwgs L) d
= 2 Uar (o Gt Vo P +atul) )’
(Jaw 02100 dx)’°

max Lo (1 (Vgx, wo+)) + o(1) = mgx + o(1),
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which implies that

lim sup mg,, < mes+. “4.1)
n—0o0

On the other hand, by the result in part 1, there exists o > 0 such that
Myx—g = Mg, < My*ig.

Hence from

1
mey, = Iot,,(vot,,a wotn) - §<Il;n (Ua,,, wa,,), (van7 wa,,))

1
c (v, II* + 1w, 13,) = € (v, I + lwe, %) . 4.2)

we see that {(vy,, , We, )} is bounded in H. Similarly, it follows from m,, = % RN vgn Wq, dx
that

/ 2wy, dx = dmgs . (4.3)
RN "
Therefore, by (4.2), (4.3), Lemmas 2.3 and 2.4, we have

Mo+ = Cq* = ma(;( T+ (t (Uot,,v wan))
[

_ 2 (o (Voo P 403, + Vo, 2 + 0w, ) dx)’

=27 (fiow v2, wa, dx)’
3
2 (Jav (Vv 12+ 02+ [Vwe, | + apwl dx) + [ov (@ — ap)w? dx)
27 (f]RN vgln wan d'x)z
2 (Jav (1Vva, >+ 03 + Vg, | + apw] ) dx)3 + o)
— 0
27 (Jiw v2, way, dx)’
= max Iy, (1 (v, We,)) + o(1) = mg, +o(1),
which implies
me+ < liminf mg,, . 4.4)
n—0o0
Clearly the conclusion follows from (4.3) and (4.4). ]

Now we are ready to prove the continuous dependence of ground state solution (vy, W)
on the parameter .

Proof of Theorem 1.3 part 1 Let {a,} be a sequence such that o, — o, and let (v, , Wq,)
be a positive ground state solution of (1.3) with « = «,,. That is

Iy, (Uotn, wan) = Mmgy,, I(;” (Uan, wan) =0. 4.5)

By the assumption and the result of [12], we see that vy, , Wy, € H,1 (RM), the subspace of
H'(RV) consisting of radially symmetric functions. From (4.2), {(va,, , Wg, )} is bounded in
H.

We consider two cases according to the dimension N. If N > 2, up to a subsequence,
there exists (Vy+, We+) € H!(RV) such that

Vg, — Do+ in HY(RY), wg, — W in H'(RY).
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By Strauss’ compactness embedding theorem [46], we have

Vo, — Do+ in LP(RY), wy, — Wy in LP(RY), (4.6)

n

for2 < p <2*. Forany ¢, ¥ € Cgo(]RN), by (4.5), we have

/N (Vvaan) + Vo, @ + Vg, Vi + anwand/) dx
R

1
—/ vanwan(pdx—f/ vi Y dx =0.
RN 2 RN "

Taking n — 00, we see that (Ug+, Wy+) 18 a critical point of I,+. Next, we show that
Vo, = Vg in HY(RY), wy, — We in H'(RY). 4.7

n

In fact, we have

/ (leanl2 + vgn) dx = 2/ (leO[”|2 —i—anwin) dx :/ vgn Wy, dx,
R¥ R¥ R¥
/;ﬂv%ﬂpkﬁgdsz/NQV@ﬂP+a*@§)dx: R
R R
so it suffices to show that

/ i v2 W, dx — / Nﬁﬁ*wa* dx. (4.8)
R R

In fact, by (4.6), the convergence in (4.8) follows from the fact that

/ V2 e, dx —/ VW dx
RV " RV

= (vi — Tfi*)wa” dx + ﬁi*(wan — We+) dx
RN " RN

< |V, — Vo3 1Va, + D 131 War, 13 + [V |3 W, — Deerl3 = O.
Hence (4.7) holds. Therefore, by (4.7), (4.8) and Lemma 4.1, we have
Iy (Vgx, Wo+) = lim I, (vg,, We,) = lim mg, = myx.
n—oo n—o00

Hence (Vy+, Wy+) is a positive ground state solution of (1.3) with o = a*.

If N = 1, the argument as above is invalid due to the lack of compactness on the embedding
H'(R) — L3(R). We follow an argument in [23] to prove the convergence (4.7). Let
(@n, ¥n) = (Va,» Wa,) — Vg, Wy ), we claim that

Iy, (@n, Yrn) = Iy, (Uoz,,» wa,,) — Iy (Ug+, Wyx) + 0(1) inR, (4.9)
and
Ly (Pns V) = 1, (Vg Wa,) — Los (Ugr, Wer) + 0(1) in H (4.10)

In fact, since vy, — Uy and wy, — W in H' (R), we have

=~ 12 2 =~ 2 =~ 12 2 = 12
Ve, = Vet 17 = Vg, [I” — e 17 + 0(1), lwa,, — War 17 = [[w, [I” — l[we+ 117 + o(1).
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Therefore, we have
|Ioty, (Uot,, B wa,,) - Ioty, (‘Pn, WH) - Ia* (ia*s wot*)'

1 Fy _ —~~ ~ -~
= 5/ "pzwa* + 201 Vg YUy + 200 Vg We + Ui*‘ﬁn’ dx +o(1)
R

IA

1 R R N R 1 R R
5|§0nwa*|2|¢n|2 + 1@n Ve 12[¥n]2 + 1@n Ve 2| Wer 2 + §|1/fnva*|2|vo¢*|2-

To obtain (4.9), it suffices to show that for any sequence {u,} C H L(R) with u,, — 0in
H'(R) satisfies u,vg — 0 in L2(R) for any vg € H'(R). In fact, for any R > 0,

R
/uﬁvgg (sup|v0(x)|2)/ u dx + | sup |vo(x)|? /uﬁ dx. 4.11)
R xeR —R |x|>R R

The first term on the right hand side of (4.11) tends to 0 because of the compactness of the
embedding H IR) — lem, (R) and the last term tends to zero as R — oo since vy € C(R)
and limy|— o vo(x) = 0. Hence (4.9) holds. Similarly we have (4.10). By (4.9), (4.10) and
Lemma 4.1 part 2, we see that {(¢,, ¥,,)} is a (PS)o sequence, i.e.,

Ly, (@n. ¥a) = o(1) in R, I, (¢, Y) = 0(1)in H™".

Hence, similar to (4.2), we have

1
”(pn”2 + ”wn”2 <C (Ioz,, (@n> Yrn) — 5(10/(” (@ns Yn), (@n, %))) — 0,

which implies (4.7). This completes the proof for any o* > 0. If «* = 1, by Theorem 1.2,
we see that (01, W) is necessarily the unique positive ground state solution (vy, w1). ]

We remark that the convergence (vg,, Wy,) = (Vo*, We+) in H I« H! may be set in a
stronger topology.

4.2 Asymptotic behavior of ground state solutions as « — 0

In this subsection, we study the behavior of the ground state solutions of (1.3) as « — 0 and
give the proof of Theorem 1.3 part 2.

First we consider the existence of ground state solutions for (1.3) with « = 0 for 3 <
N < 5. Compared with the case of @ > 0, the main difference is that the suitable working
space for (1.3) is H L®RN) x DL2(RN) when using variational methods, where

DM2@®RN) = (w e LY RY) : |Vw| € L2®RY)} for3 < N <5,

12
||w||D=(/ Ilezdx) .
RN

By Remark 2.6, a positive ground state solution, denoted by (vg, wo), exists in H 1 (RN ) X
DUZ(®RN). Moreover, by the result in Theorem 1.2, (v, wo) is the unique positive solution
up to a translation for (1.3) with e = 0.

with the norm

Proof of Theorem 1.3 part 2 We assume that 3 < N < 5. Let {a,} be a sequence in R™
satisfying a, — 0 as n — oo and let (v, , W, ) be a positive ground state solution of (1.3)
with @ = a,, and energy m,,, such that the maximum of (v, , g, ) is located at origin in RY.
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By Lemma 4.1, we see that

mp = me, =

6

Hence, the sequence {(vg,, Wq,)} is bounded in H L®RYY x DV2(RN). Therefore, up to a
subsequence, we may assume that there exists vy € H LRMY, W € DIVZ(RN ) such that

1 1 1
7/ (IVvg, 1?4+ 02+ Vwg, > + anw? ) dx > —|lvg, I* + ~llwg, 5.
]RN n n 6 6

Ve, — Do in H'(RY), wg, — W in D2 (RY),
~ . N ~ N 4.12)
Vg, — Vo ae.in RY, wy, — wp a.e. inR™.

n

By the same arguments as in the proof of Theorem 2.2, one can see that (v, o) is a critical
point of /. Moreover, integrating the equations in (1.3), and by using Holder inequality and
Sobolev inequality, we have

/N (|Vv%|2 + vén + IVwO[,ll2 + anwén) dx
R

3 3 3 3
2 2 4 2
= E RN Uy, Way, dx < 5|Ut1n|2§*|wan|2* =< Z”van ™+ Z”wan”D-

Hence,

2
llva, I =

3 (4.13)
If {vy,} is vanishing, then v,, — 0 in L% (RM) and lvg, || — O by (4.2), which is a
contradiction to (4.13). Therefore, {v,, } isnon-vanishing. By the assumption on the maximum
of (v, , Wa, ), We see that g # 0 and wp # 0. Following the same arguments in the proof
of Theorem 2.2 and (4.12), we see that (v, Wo) is a positive solution of (1.3) with o = 0.
By the uniqueness result in Theorem 1.2 part 2, (Vy, Wo) is necessarily the unique positive
ground state solution (v, wo). Following the arguments in the proof of Theorem 1.3 part 1,
we see that (vy, we) = (v, wo), in HL(RY) x DL2(RY) asa — 0. m]

We comment that it is useful to consider the convergence property of the least energy my
as ¢ — 0. By Lemma 2.3, we clearly have m, > mg. To get my — mg by the method
given in Lemma 2.3, we need to show that wg € H L(RNY which is reduced to show that
wo € L2(RY). For that purpose, we restrict to the case of N = 4, 5 and recall the following
Hardy-Littlewood-Sobolev inequality [27, Theorem 4.3].

Lemma 4.2 Suppose that 1 < p < q < 09, and% =1- (% — é) For f € LP(RN),
define

Lre = [ =y o) dy,
RN
Then there exists a C = C(p, q, r, N) such that

[y flg = Clflp. (4.14)

By using Lemma 4.2, we have the following result on the convergence of m, to mg for
N = 4,5, and the convergence for N = 3 is not known.

Proposition 4.3 Suppose that N = 4,5 and (vo, wo) € HY(RY) x DL2(RY) is a positive
solution of (1.3) with o = 0, then wy € L2@®RM). In particular, lim,,_, g+ my = mq where
my, is defined in (2.11).
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Proof 1t is standard to deduce that vp(x) has an exponential decay as |x| — oo. Therefore,
vy € LP(RN) for any p € [2, oo]. Moreover, wq can be represented as

1 1 ()
=_(Gy*v)(x)=— | —2— _dy. 4.15
wo(x) 2( N * 1) (x) 2om Jan x— y N2 (4.15)
We apply Hardy-Littlewood-Sobolev inequality (4.14) withr = N/(N —2) andg = 2 to
deduce wy € L2(RN). If N = 4, we can choose p = 1 since v% e L'®M).IfN = 5, we
can choose p = 10/9 since v(z) e L'OORN), O

4.3 Asymptotic behavior of ground state solutions as « — oo

In this subsection, we study the behavior of the ground state solutions of (1.3) as &« — 00
and give the proof of Theorem 1.3 part 3.
Let (vy, wy) be a positive ground state solution of (1.3). Define

Vg = J%Ua' (4.16)
It is easy to verify that (v, w) satisfies the rescaled equation
— ATy + Uy = Vg Wy, x €RVN,
—Awy + Qwy = aT2, x RV, 4.17)
|xl|iinoo Vg (x) = \xlliinoo wy (x) = 0.

In this subsection we prove the convergence of (Vy, Wg) t0 (Vso, vgo) as o — 00, where vy
is the unique positive solution of (1.12). To achieve that, we need to obtain boundedness of
Ty as a« — oo. First we have the following estimate in H'(R").

Lemma 4.4 Let (vy, wy) be a positive ground state solution of (1.3), and let vy, be defined
as in (4.16). Then for all o > 0, vy is uniformly bounded in HY(RYN), and wy is uniformly
bounded in L*(RV).

Proof We first estimate m,,. Applying Lemma 2.3 with (\/av, w), where (v, w) is a fixed
element in H such that fRN viw dx = 0, we find that there exists C > 0 such that

3
(/ (@IVu]* + av? + [Vw|* + aw?) dx)
R
Mg < max I (t(Vav, w)) < —
t=

- 27 ) 2
(/ av-w dx)
RN

Noticing that

1
7/ (|va|2 + ng + |Vwo(|2 +aw§) dx
6 RN
1
= Iy (Vy, o) — g(lé(va» W), (Vg, Wy)) = Mg,
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together with (4.18), we have

1 2 1
v +{—v dx + — Vw, 2dx+/ w2 dx < C.
/]RN|: (VZa a) i| * Of/RN| e RN N

(4.19)

2

()

[m}

Itis not straightforward to obtain the boundedness of {w } in H L(®RM) and the convergence
properties of ol fRN [Vwg |2. In the following we obtain uniform boundedness of v, in
L>®(R") by using Moser iteration and consequently get the boundedness of o~ fRN [Vwe |
by representing w, by using Yukawa potential. This approach was first used in [22].

For f(x) € L2(RN), it is known that the unique solution of linear modified Helmholtz
equation

—Au+ pPu = f(x)

has the integral representation (see [27])
u(x) = (Gl * f)(x) = /RN Ghy(x—y) f(y)dy,

where G% (x) is the Yukawa potential defined by

G" (x) = / Tl wPrannn gy (4.20)
N o (dmr)N/2

We have the following estimates of the Yukawa potential and (v, we).

Lemma 4.5 Let G% be the Yukawa potential defined in (4.20), and let (Vy, wy) be a solution
of (417)for1 <N <5anda > 0.

1. There exists C1 = C1(N, p) > 0 such that

N
Gl |, < CrV 2, 4.21)

forl <p<

N_ZifN23and1§p<ooifN=l,2.
2. There exists Co > 0 independent of o such that
[Vwy |2 < C2lVgoo- (4.22)
3. There exists C3 > 0 independent of o such that
[Waloo < C3TalZ, (4.23)
and

lwaloo < C3a N2/ [Ty |0, for N > 3. (4.24)

Proof The proof is similar to the ones in [22] and we give the details here for reader’s
convenience.
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1. By the Minkowski inequality for integral, we have

12 e 1 —Mzt _ﬁ
IGylp < —e le™ 3 |, dt
0

(4mt)N/2
1 4 % ® NN 2 2 %
- _ - (= / 12T e gy / eI dy
(4m)N/2 \ p 0 RV
o N N N
<cul? r(——+47+0,
2p

which implies the conclusion.
2. Itis easy to see that v, and w,, are exponentially decaying as |x| — oco. Hence vy, wy €

L>®(RN). Moreover by part 1 we have |G“A{&|1 < Cje~!. Hence from the generalized
Young’s inequality and part 1, we have

Vwglz = a|GY™ % VI2I2 < alGY[1IVTZL2 < 2C1 [Tulool Vi a-
Hence the desired conclusion follows from Lemma 4.4.

3. By part 1, we have

wa ()] = “/RN G (r =0T dy = amléo/w GX* () dy = Cli .

Moreover, if N > 3, then by part 2, Holder inequality and Gagliardo-Nirenberg inequal-
ity, we have

e ()] = a/ GV (x — WR(y) dy < a|5a|oo/ G (x — »)Tu(y) dy
RN RN

~ ~ N—=2)/4 = ~ N—=2)/4 =
< @fTalool GY¥ lan /vy Tl < N2 44100 | Viul2 < @V D/AC 5, oo
O

In the following lemma, we establish a uniform bound of v, in L*>® (RM). The main idea of
the proof is the Moser iterations, which is somewhat standard. For the sake of completeness,
we give a proof in the appendix. By using this lemma, we prove the part 3 of Theorem 1.3.

Lemma 4.6 Assume that 1 < N < 3 and a > 0, and (Vy, wy) is a positive solution of
(4.17). Then there exists C > 0 independent of a such that

[Valoo < C. (4.25)

Proof of Theorem 1.3 part 3 Let {a,} be a sequence in R™ and let (Va, » Wa, ) be a positive
ground state solution of (1.3) with @ = «;, such that the maximum of vy, and wy,, is located
at origin. We prove the results in several steps.

Step 1 First we consider the case of 1 < N < 3. We prove that, up to a subsequence, for
some (Voo, Woo) € H,

Vg, — Voo 1N H'RY), We, — Woo iN H'®Y), as n — oo, (4.26)

Woo = vgo, and v is a nonnegative solution of (1.12).

By Lemmas 4.4 and 4.5 part 2 and Lemma 4.6, we see that {(Vy,, We,)} is bounded in H.
Hence we can assume the convergence in (4.26) holds up to a subsequence. Since (v, , W, )
satisfies the equation (4.17), then for any (¢, ¥) € H, we have

/ Vo, Vo dx +/ Ve, @ dx :/ Ve, Wer, @ AX, (4.27)
R R¥ RV
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and

1
7/ Vwg, Vi dx+/ W, ¥ dx :/ V2 ¥ dx. (4.28)
oy JRN RN RN n

By (4.26), we have

/ wanlﬁdx—>/ WooWr dx, / Egnwdx%/ vgowdx, n — oo.
RN RN RN RN

From Lemma 4.5 part 2 and Lemma 4.6, we see that ai,, fRN [Vwy, |2 dx — Qasn — oo.

Hence (4.28) yields wo, = vgo. Letn — oo in (4.27), we have

/ (Voo Vo + vaop) dx :/ Voo Woeo® dX :/ vgogo dx.
RN RN RN

Hence, vy is a solution of the limit Eq. (1.12) and v > 0 since vy, > 0.
Step 2 Next we show that
Ty, = Voo in H'(RY), wy, — weo in LP(RY), for2 < p < 2%, (4.29)

and v is the unique positive solution of (1.12). In fact, taking ¢ = vy, and ¥ = wy, in
(4.27) and (4.28), we have

/N (1Y%, 12 +72) dx = /N 2w, dx, (4.30)
R R

and

1 »
—/ |Vwg, |* dx +/ w2 dx =/ U2 W, dx. (4.31)
an RN RN n RN n

For2 < N < 3, noticing that Uy, , ws, € H'(RY) and Uy, — Voo, Wy, —> Weo in L3 (RY),

one can prove that
/ '175 W, dx —>/ vgowoo dx,
n
RV RV

by the same arguments as (4.8) in the proof of Theorem 1.3 part 1. Hence, it follows from
(4.30) and Eq. (1.12) that ||V, || = llveoll as n — oo, which implies that vy, — v in
H'(RY). Similarly, it follows from (4.31) that Wy, = Weo iN L?(RN). Then Wa, —> Woo
in LP(RN) for 2 < p < 2* by the interpolation inequality in Hélder spaces. Moreover, by
(4.30) we have

~ ~ 2 ~ 2
Ve, I = ClVg, [51we, 13 = Clive, 17w, |3 (4.32)

Hence |wool3 = limy— o0 |We, 13 = 1/C, and we # 0, voo 7 0. Thus v cannot be 0 and
Voo > 0 from the maximum principle. Therefore v, is the unique positive solution of (1.12)
with max , cgnv Voo (x) = v(0). This completes the proof for N = 2, 3.

For N = 1, it suffices to show that vy, — Voo and wy, — Weo in L3(RN ) to follow the
arguments above for the case of 2 < N < 3. For this purpose, we apply the concentration-
compactness argument. In fact, since {(vgy, , Wq, )} is bounded in H and |w, |3 > 1/C from
(4.32), we may assume that up to a subsequence for some p > 0,

/ (0, I* + 1wa, I*) dx — p, n — oo.
R
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By the concentration-compactness lemma [30, Lemma 1.1], there is a subsequence, still
denoted by {(Vq,. wq,)}, such that one of the following three cased occurs: (here Bg(x) is
the interval (x — R, x + R), and B (x) is R\Bg(x))

(a) (compactness) There exists a sequence {x,} C R satisfying that for any ¢ > O there is
an R > 0 such that

/ (I, I + lwg,|*) dx = p—e, forall n>1.
BRr(xn)
(b) (vanishing) For all R > 0,

lim sup/ (I, I + lwg, 1Y) dx = 0.

"0 yeR J Br(y)

(c) (dichotomy) There exists p € (0, p) and {x,} C R such that for any ¢ > 0, there is
R, > 0, forallr > R,, ¥’ > R, have

n—oo

lim inf/ (10, I + lwg, ) dx > 7 — e,
By (xp)

timinf [ (15, P+ o, P) d = (o)~ e
n—oo B:, (-xn)

Itis clear that (c) cannot occur since vy, and wq,, are radially symmetric and strictly decreasing
in the radial direction. If (b) occurs, noting that vy, and wy, are bounded in H L(R), then
we can get vy, — 0, wy, — 0in L3(R), which contradicts with the fact |we, |3 > 1/C.
Therefore, the compactness case (a) occurs. Since Vo, and wy,, are radially symmetric and
the maximum of vy, and wy,, is located at the origin of R, we see that {x, } in (a) is bounded.
Hence, we have Uy, — Voo, Wy, —> Woo iN L3(RN). This completes the proof for the case
of N =1.

Step 3 We consider the case of N = 4, 5. Suppose on the contrary that there exists C > 0
such that |V, [oc < C or |wy, |eo < C. We claim that both of |Ug,, |0 and |wy, |« are bounded.
In fact, if [Vy, |co < C, then Lemma 4.5 part 3 implies |wq, |co < C.If |wg, |oc < C, then by
(7.14) and the iteration procedure, we see that |Vy, |oc < C. Under the assumption that both
of |V, loo and |wy, |0 are bounded, one can obtain a positive solution of (1.12) in H LRrM)
by using the proof in Step I and Step 2, which is a contradiction since (1.12) has no positive
solution in H' (RN) when N =4, 5. O

5 The existence of infinitely many solutions

In this section, we prove the existence of multiple non-trivial radially symmetric solutions
of the system (1.3). Notice that I, (v, w) is not an even functional with respect to w, we use
a reduced functional. In fact, for any v € H LRYN), the w-equation in (1.3) has a unique
positive solution

1 -
wy (x) = E/RN GY¥ (x — y2(y) dy. 5.1)

where Gf(x) is the Yukawa potential defined in (4.20). Substituting w, (x) into the v-
equation of system (1.3), we reduce the system (1.3) into a scalar equation

—Av+v=vw,, veH'®RY). (5.2)
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Define a new energy functional J : H!(RY) — R by

1 1
J(v) = f/ (IVu|> +v?) dx — f/ V2w, dx. (5.3)
2 RN 4 RN

It is standard to verify that J € Cl(Hrl (RM), R) and J'(v) = 0 is equivalent that (v, w,) is
a solution of (5.2). Since J is an even functional so that J(—v) = J(v), we are able to apply
the Mountain-Pass Theorem with symmetry [41, Theorem 9.12] to obtain multiple critical
points. To achieve that, we first establish some basic properties of w, defined in (5.1).

Lemma 5.1 Letv € H'(RN), and let w, be defined as in (5.1). Then
1. There exists Cy > 0 independent of v such that

/ V2w, dx < Collv|*. (5.4)
RN
2.

1 3 1 2 1 2

- v’ dx <max{l,a}=|v]|*+ - viw, dx (5.5

2 ]RN 2 4 ]RN
Proof 1. By integrating the w-equation in (1.3) and Lemma 2.1, we obtain that

1
|mN§=§/NﬁwdxsamﬂmmscMMﬂmmw (5.6)
R

Hence the estimate (5.4) holds.
2. From the w-equation in (1.3) and the Holder inequality, we have

1
f/ v} dx :/ (VoVw + avw) dx
2 JrN RN

1 2 2 1/ 2 2
52/RN(|VU| +ozv)dx+2 RN(|VU}| +aw)dx

1 2
< max{l,a}illvll

+]/ 2w, d
- viw .
4]RN v X

O
Now we prove the existence of multiple solutions of (1.3).
Proof of Theorem 1.4 From Lemma 5.1 part 1, we have
T = Sl - ey (5.7)
—lv|I© = =Cqllv|", .
) 4

which implies that J has a strict local minimum at v = 0. Secondly we show that for any
finite dimensional subspace E of Hr1 (RM), there exists R = R(E) > 0 such that J(v) < 0
for any v € E\Bg(0). Indeed by using Lemma 5.1 part 2, we obtain that

I =310l = 3 [ Pwdx = 3 s maxta 0P < SR 59
T2 4 Jgy o VT T2 ’ 2 '

which implies that for any finite dimensional subspace E, J(v) < 0 for v € E\Bg(0) as all
the norms on a finite dimensional space is equivalent. Finally it is standard to verify that J
satisfies the Palais-Smale condition. Hence all conditions of Mountain-Pass Theorem with
symmetry [41, Theorem 9.12] are satisfied, and the conclusion follows from that. O
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6 Bounded domain case

In this section, we consider the solutions of the corresponding Dirichlet boundary value
problem (1.14) on a bounded domain 2 with smooth boundary 9€2. Let (A1, ¢1) be the
principal eigen-pair of
A rp =0, € Q,
vt re * ©.1)
¢ =0, x € 092,

then it is well-known that A; > 0 is a simple eigenvalue and ¢; can be chosen as positive. In
the following we assume that ¢;(x) > O for x € Q and |¢1]|c0 = 1.

The existence and multiplicity results for the solutions of (1.14) using variational method
are as follows. Here we only state the corresponding results for (1.14) without proof as the
proof is essentially similar to Theorems 1.1 and 1.3.

Theorem 6.1 Suppose that1 < N < 5and Q C RN is a bounded domain with smooth
boundary 092.

1. Foreach o > —A1, system (1.14) possesses a positive ground state solution (vy, Wy) €
H}(Q) x H}(Q).

2. For each o > —M\1, system (1.14) possesses infinitely many solutions {(v,, wy,)} such
that ®q (v, w,) — 00 asn — 0.

We observe that when o = —AX1, the system (1.14) has a branch of semi-trivial solutions
Y = {(a,v,w) = (=11, 0, ue1) : u € R} which intersects with the branch of the trivial
solutions g = {(«, 0, 0) : @ € R} at (—Ap, 0, 0). Next we use bifurcation theory to consider
the set of solutions of (1.14), especially the solutions near the semi-trivial branch ... For
that purpose, we consider an eigenvalue problem:

[A¢—¢+w1¢=0, xeq, 62)

¢:0, XEBQ,

where ¢ > 0 is the positive principal eigenfunction of (6.1). From a well-known result (see
for example [9]), (6.2) has a sequence of eigenvalues 0 < ) < o < -+ < g < --- — 00,
the eigenfunction ¢; corresponding to w1 is simple, and ¢ can be chosen as positive. The
principal eigenvalue 1¢1 can be expressed by the following Rayleigh quotient:

/(|V¢|2+¢2> dx
pi=  inf Q2 .
¢EH0(Q),¢77$0 /(p1¢2 dx
Q

Let X = Cg’e(ﬁ) for 6 € (0, 1). Define the set of non-trivial solutions of (1.14) to be

Y ={(a,v,w) € R x X2 (cr, v, w) is a solution of(1.14) such that v # 0 and w # 0}.
(6.3)

Here we consider solutions in X instead of in Hol (2) since all weak solutions are indeed

classical ones because of the smoothness of nonlinearities in the equation (5.2). Our results

about existence, nonexistence, multiplicity and bifurcation of solutions of (1.14) in a general
bounded domain €2 are as follows:
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Theorem 6.2 Suppose that N > 1 and @ C RN is a bounded domain with smooth boundary
Q2.

1. For —oo < a < —A\y, the only non-negative solution of system (1.14) is (v, w) = (0, 0).

2. Fora = —Ay, if (v, w) is a solution of (1.14), then v = 0 and w = g for n € R, that
is (—A1, v, w) € Xy

3. Assume that all eigenvalues v, of (6.2) are simple ones. Then for any n € N, there exists
Sn > 0 such that for —h1 < o < —A1 + 8y, system (1.14) possesses a pair of non-trivial
solutions in form of (v, (a, -), wy (@, -)) such that

(e, ) = k(e + 212 + oot + A1l), waler, ) = wagr +o(la + A1), (6.4)

Jor some constant ky, > 0. Moreover for eachn € N, there exists a connected component
¥n of Z suchthat (—X11, 0, wy@1) € Xy, and either X, is unbounded in (—\1, 00) X X2,
or there exists m € N and m # n such that (—X1, 0, wn@1) € Xy, that is, X, = X,.

Proof 1. Suppose that (v, w) is a non-negative solution of (1.14). Multiplying the w-
equation in (1.14) by ¢, and integrating over €2, we obtain

1
0:—(A1+a)/ weg dx+f/ v2<p1 dx.
Q 2 Ja

Since fQ wei dx > 0 and fQ v2¢>1 dx > 0, then under the condition that « < —Aj, we
must have w = 0 and v = 0 in Q2.

2. For o = —Ap, suppose that (v, w) is a solution of (1.14), then we have —Aw — Ljw =
(1/2)1)2 > Oforx € ©2,and w = 0 on d2. The equation is solvable only if fg vz(pl dx
0, which implies that v = 0, and w = pg; for u € R.

3. Assume an eigenvalues p, of (6.2) is a simple one. We consider the bifurcation
of non-trivial solutions of (1.14) from the semi-trivial branch X, near (¢, v, w) =
(=X, 0, upe1). We use a “double saddle-node” bifurcation theorem in [32]. For that
purpose, we define F : R x X2 — Y2 where ¥ = C?(Q), and F is defined by

Av — v+ wv
Fla,v,w) = 1, (6.5)
Aw —aw + Ev

It is straightforward to calculate the Fréchet derivatives of F':

Ap— ¢ +we +
F(v,w)(,u,v,w)[(flﬁ,lﬁ)]:( iw‘iazﬂ(:w), Fup. u,w)z(_ow),

bl + Ppa
F(v,w)(v,w)(,u,U,w)[(qba,wa),((pb,l/fb)]:( Vb + dp ¥ )

¢a¢h

In particular, we have

AP — ¢+ ppp1¢p
Ay +uay )

Then the null space N (L) = span{(¢n, 0), (0, ¢1)} where ¢, is the eigenfunction of (6.2)
associated with © = pu,; and the range space of L is defined by

L{(¢, V)] := Fo,w) (=21, 0, wpo) (@, ¥)] = (

R(L):{(f,g)eYz:/quﬁndx:O, and /ngldxzo].
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Hence dimN (L) = codimR (L) = 2. On the other hand,

0

) ) ¢ R(L),

Fo(=21,0, uppr) = (
since — fQ Mnfﬂf dx # 0. Define vy, vy € (Y2)* (the dual space of Y?) by

(vl,(f,g)>=/9g<p1 dx, (va, (f,g)>=/9f¢n dx.

Then R(L) = {(f.8) € Y2 (v, (f, g)) =0and (v, (f.8) = 0}, and (v, Fo(—41,0,
Une1)) # 0 and (va, Fy(—A1, 0, nper)) = 0. Define a 2 x 2 matrix

(v, F(v,w)(v,w)[((z’nv 0), (¢n, 0)]) (v2, F(v,w)(v,w)[((z’nv 0), (0, 1)
(v, F(v,w)(v,w)[(d’nv 0), 0, D) (v2, F(v,w)(v,w)[(ov 1), (0, D)

_ 0 fsz ¢n2<ﬂ1 dx
Jo ®Fe1 dx 0 .

Hence the determinant of H is — ([, ¢2¢1 dx)2 < 0. Then from [32, Theorem 2.3], the
set pf solutions of F = 0 near (—X1, 0, u,p1) is the union of two smpoth curves S; =
{(w' @), v (t, ), w'(t,) : |t] < e}, i = 1,2, satisfying u' (0) = —41, (1')'(0) =0,

(', ), wh(t, ) = (tdn + 1 (1), pagr + 13" (1))
(V2 (t, ), wi(t, ) = (tx*), g + to1 + 192 (@))

where x’(0) = y' (0) = (x)'(0) = (y")’(0) = 0. Apparently S5 is identical to %, the branch
of semi-trivial solutions. Hence (i, v, w) = (—A1, 0, w,@1) is a bifurcation point so that
non-trivial solutions of (1.14) are on S. From [32, Propostion 2.4], we get

2
_ (Ul, F(v,w)(v,w)[(¢m O)a ((pn’ 0)]) _ /Qd)n‘ﬂl dx
(v1, Fo) Mn/ o dx

Q

Hence fora € (—XA1, —A1+6,), there exists two non-trivial solutions of (1.14) near (v, w) =
(0, wne1) as stated.

Let X, be the connected component of z containing (—A1, 0, i, ¢1). Then we can use
a similar argument as in [39] or the proof of [57, Theorem 4.1] to prove that either X, is
unbounded, or X,, contains some (&, v, w) such that v = 0 or w = 0. Note that we can
use the result in [39] by converting (5.2) into equivalent integral equation which is compact
operator, or we can use the result in [44] for (5.2) directly as Fredholm operator. We assume
that X,, contains some (&, v, w) such that v = 0 or w = 0. It is easy to see that for a solution
(v, w) of (5.2), if w = 0, then v = 0. So possible forms of (v, w) are (0, 0) or (0, w). If
(v, w) = (0,0), then @ > —Aq, as near (—Xg, 0, 0) the only solutions of (5.2) are on X,
and Xy. For @ > —X1, (@, 0, 0) cannot be a bifurcation point for (5.2) from the form of
F,wy(@, 0,0). Hence (v, w) cannot be (0, 0). Thus (v, w) = (0, w) and from the equation,

> 0.

nh"(0) =

w must be kg, for k € Rand @ = —A,, where m > 1. Since near @ = —Ap, X, is on the
right side of @ = —A1, and %, is connected, then ¥,, contains another (—Ap, 0, w,,¢1) with
m # n. O
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Remark 6.3 1. The bifurcation result in Theorem 6.2 for @ near —A| holds for all N > 1,
while the existence of solutions in Theorems 1.1 and 1.3 are for2 < N < 5 (the existence
also holds for N = 1). See Theorem 6.4 for more on the subtlety of the spatial dimension
N.

2. If an eigenvalue A of (6.1) with k > 2 is also simple with eigenfunction ¢, and all
eigenvalues of (6.2) with ¢; replaced by ¢ are also simple, then similar bifurcation
result as in Theorem 6.2 part 3 can also be established near (¢, v, w) = (—Xik, 0, Wy @r).-

Theorem 6.4 Suppose that Q2 C RNJ'S a bounded domain with smooth boundary 02. Let
Y, be the connected component of ¥ containing (—A1, 0, 1) in Theorem 6.2, and let
Pprojy Xy be the projection of ¥, into a-axis.

1. For N > 6 and Q2 is a star-shaped domain, proj, X, C [—A1,0) for each n € N.

2. For N = 2,3, for each n € N, either proju %, = [—A1,00) or £, = X, for some
m # n. Moreover proj, X1 = [—A1, 00).

3. ForN =1and Q = (—L, L), foreachn € N, proj, ¥, = [—A1,00)and £, NE,, =0
for any m # n. Hence for any a > —A1 and n € N, (1.14) has at least one pair of non-
trivial solutions (£v(a, -), w(w, -)) such that v(a, -) changes sign exactly n — 1 times,
and w(a,-) > 0on (—L, L).

Proof For any dimension N > 1, proj, %, C [—Aj,00) from Theorem 6.2 part 2, as
¥, N{a = —A1} = {(—X1, 0, wye1)} and Theorem 6.2 part 3 shows the local structure of
3, near the bifurcation point (—A1, 0, i, ¢1). For any non-trivial solution (v, w) of (1.14)
with o > —X|, we must have w = (1/2)(—A + o) @w?) > 0.

1. Without loss of generality, we assume that 0 € € and €2 is star-shaped with respect to
the origin. The Pohozaev identity for (1.14) is

1 2 2 1 2

7/ (|Vv| + |Vw| ) (x-v)dS+ f/ vw(x - v)dS

2 Jaa 2 Jaa

= _/ W + aw?) dx + 6_71\[/ viw dx, (6.6)
Q 4 Ja
where v denotes the unit outward normal to 9€2. Since w > 0 for any non-trivial solution
(v, w) of (1.14) and x - v > O for any x € 9€2, then (1.14) has only the trivial solution
for« > 0 and N > 6. Therefore all the branches ¥, in Theorem 6.2 only exist for
o € (—A1,0) when N > 6.

2. For N =1, 2, 3, the a priori estimates in Lemma 4.6 still hold for a bounded domain <2
and o € [—A| 4+ §, 00) for some § > 0. If X, is not connected to another bifurcation
point (—X1, 0, w,, 1), then X, is unbounded in (—A1, 00) X X2. The a priori estimates
fora € [—X\1 + 6, oo) implies that there is no bifurcation from infinity at any —A; + 8 <
o < 00. Suppose that there is a sequence (o, v¥, w¥) of solutions to (1.14) satisfying
ok > —iy, and ||(V¥, wk)||Xz = o0 as k — oo, then ¥, and X, are two distinct

continua of solutions of (1.14) near (¢, (v, w)) = (—A1, 00), which is a contradiction to

the bifurcation from infinity result in [40, Corollary 1.8]. Thus the projection of X, into

X2 is bounded for all @ > —A1, and we must have proj, =, = [—A1, 00).

ForX|,weletX; = ZTUEfU{(—Al, 0, n1¢1)}, where Ef is the connected component

of £1\{(—A1, 0, ;t1¢1)} which contains the positive solutions near bifurcation point, and

20 = {(a,—v,w) : (@, v,w) € Efr}. It is shown in the proof of Theorem 6.2 that

¥ is either unbounded or X contains another (—A1, 0, ux¢1). But from the maximum

principle, any solution on 21+ is positive, hence Efr cannot connect to (—Ar, 0, uge1),
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as near that bifurcation point the v-component of solutions of (5.2) is not positive. Thus
21+ is unbounded and proj, X1 = [—A1, 00).

3. For N = 1, we assume that Q2 = (—L, L) and we follow a classical approach given in
[38]. Define E = {u € Cl—m, 7] : u(£n) = 0}. Let S,f denote the set of u € E such
that u# has exactly n — 1 simple zeros in (—x, ), all zeros of u in [—m, 7] are simple,
and u is positive in a small neighborhood (—m, 7w + 8) of x = —m. Set S; = —S;
and S, = S,‘f U S, . We claim that if (@, v, w) is a non-trivial solution of (5.2) on
Q= (—m, ) witha > —Aq, then (v, w) € S, X Sl+ where n — 1 is the number of zeros
of v in (—m, 7). We have shown that w > 0 in (—m, 7) whenever « > —\;. Suppose
that x = xo € [—m, 7] is a zero of v(x), then v'(xg) # O otherwise the uniqueness of
solution to a second order ordinary differential equation implies that v(x) = 0, which
contradicts with the assumption that v(x) is non-trivial. Hence (v, w) € S, X SfL.

Now near the bifurcation point, each ¥, can be decomposed into X, = U X U
{(=21,0, wpe1)}, where F C S, and =] = {(e, —v,w) : (@, v, w) € £]}. Now the
argument above (see also [38]) implies that the entire connected component X7 C S, and
in particular ¥, N X, = @. In part 2, we have proved that proj, X, = [—A1, 00) in case
¥, N X, = @. This completes the proof. O

The existence of solutions with precise nodal structure in part 3 of Theorem 6.4 can also
be proved for N = 2,3 when 2 is the unit ball. Such results in general do not hold for
systems of equations but only for scalar equations, and other related result was shown in
[3,50] for the Schrodinger system (1.7) with K = 2 and 1 = 2, also on a interval of ball
domain. Also when 7 is an even number, the solution (v, w) € X, satisfies v(—x) = v(x)
and w(—x) = w(x) which is again inherited from the eigenfunction. Thus for N = 1
and bounded interval, both types of multi-pulse solutions mentioned in the introduction are
proved in Theorem 6.4.

7 Appendix: proof of Lemma 4.6

Proof of Lemma 4.6 Form € Nand 8 > 1, define
Am = f{x e RV 1 [U() P71 <m}, By =RV\A,,
and

Ve ()T ) PE=D, x € Ay,

Om(x) = (7.1)
m2v, (x), x € By,.

One can observe that ¢,, € H LR, lom| < |Uo[|2’3 -1 pointwisely, and
Vom = 28 — D|5,?#~VVT,, in A,, Ve, =m>Vi,, in B,. (7.2)
Using ¢, as a test function in (4.17), we obtain

/N (V0o Vi + Vo) dx = /N Vg W P dX. (7.3)
R R

From (7.2), we have

/ VUV dx = 2B — 1)/ |’5a|2(ﬂ*“|v5a|2dx+m2/ |VUe|? dx. (7.4)
RN Ay

m
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Similarly we define

Ta [T IF!, x € Ap,

Ym@) =1 (7.5)
mug (x), X € By,.
Then Y2 = V@, and
Vym = BlU|P ' VT, in A, Vi, =mV7, in By. (7.6)
Hence we obtain
/ IV |? dx = ,32/ 190 2B~ D |V, | dx +m2/ [VUy|? dx. (7.7)
RN Am B

It follows from (7.1), (7.4), (7.5) and (7.7) that
/ (VY +y2) dx —/ (V5 Ve + Tugm) di
RN RN
— (17 / T2V T, P d. (7.8)
Am
From (7.4), we have
2B - 1)/ [P~V |2 dx < / Vi Vg dx
A RN
< /N (Voo Vo + Vaom) dx, (7.9)
R

and consequently from (7.3), (7.8) and (7.9), we obtain

_ 12
/ (|v1ﬁm|2 + W;i) dx < (u + 1)/ (Vg Vo + Vapp) dx
RN 28 —1 RN

< ,82/ Vo Wa@m dx. (7.10)
]RN

For N = 3, let S be the best constant of the Sobolev embedding of D'2(R) into LZ" (RV).
That is, for every u € DLZ(RN),

|u|3 ss/ |Vu|? dx, (7.11)
RN
For N = 1 or 2, we define 2* to be some positive constant larger than 4 and define S to be

the best constant of the Sobolev embedding of Dl’z(RN ) into L (RM). Then for N = 1,2
or 3, from (7.10), we have

” 2/2% » 2/2% L
(/ RV dx) = (/N [Viml dx) <SB /N Vo Wo P dx (7.12)
m R R

Since [ Y| = [x|f in A, and @ < |42~ in RV, from (7.12) we have

2/2%
(/ 1D |2 dx) < S,Bz/ 2P w, dx. (7.13)
m RN
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Let m — oo in (7.13). Then from the Monotone Convergence Theorem, we obtain

2/2%
(/ [T > P dx) < 5,32/ 2P wy dx. (7.14)
RN RN

By the Holder inequality, we have

1
[alars < (SBHYCP [Ty lagwely” (7.15)

As the estimate (7.15) holds for any 8 > 1, we can obtain the desired conclusion by the
iterations of the estimate (7.15). In fact, let 0 = 2*/4, then 0 > 1 since N < 3. Taking
B = o in (7.15), we have

- 11 L
[V |2t < 82907 [Uglox [wels” . (7.16)

Taking 8 = o2 in (7.15), we have

I L
[T larg2 < S22 007 [T laror w1377 (7.17)

Substituting (7.16) into (7.17), we find

1 1
+ b+ 22T %

1
[Valpsg2 < S202 " 200 "Ivalz*lwal . (7.18)

By induction, taking 8 = o/, j=1,2,..., yields

o1
i=1 pqi

SZ ]2(,1 z =1

|5a|2*gl = ”' |va|2*|wa|2

Taking j — o0, the conclusion in (4.25) follows from that |vy |2+ and |wg|2 are bounded
from Lemma 4.4, and the fact that the series > o, o ' is convergent. O

Remark 7.1 The Moser iteration arguments given in the proof of Lemma 4.6 is also useful
for the case of N = 4, 5 in the following sense.

1. For N = 4,5, one can show that there exists § > 0 independent of « such that |y |cc > 8
and |wy oo >6.In fact, by using (7.14) (again with 8 > 1) and the Holder inequality
with 2* and 2* defined in (2.1), we have

1

[Val2sp < (CSB )zﬂlva|22*ﬁ|wa|2f < (CSp? )2’3 |vot|22*ﬂ|vol (7.19)
Leto = 22; = 2(1}/\]4—22)’ then o > 1 since N < 6. Taking g = o/ in (7.19), we have

- Joo 1 i Z
Flyens < (C)Z 3 6Tt 2 1 e [ 271 27

1 1

i=1 27 = 3G > |

Let j — oo, we find that |Uy|~ is bounded from below, since > ro
when N =4, 5.
2. For N = 4,5, it follows from Step 3 in the proof of Theorem 1.3 that

[Vgloo = 00 and |wg|eo —> 00, as a — oo.
Here, as a comparison, we obtain an estimate from the Moser iteration

_ w-2?2 N-2
[Vgloo < Ca?6-NM | and |wy|co < Ca®N. (7.20)
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In fact, by using (7.14) and Lemma 4.5 part 3, we have

- I ' N I
[Valorg < (C3SB*) 2P (a7 )% [Ua|oh [V lp-

Taking o = 2*/2, we can get (7.20) by the iteration method.
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