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Abstract. The goal of this paper is to gather and develop some necessary and su�cient criteria for injectivity
and multistationarity in vector fields associated with a chemical reaction network under a variety of
more or less general assumptions on the nature of the network and the reaction rates. The results
are primarily linear algebraic or matrix-theoretic, with some graph-theoretic results also mentioned.
Several results appear in, or are close to, results in the literature. Here, we emphasize the connections
between the results and, where possible, present elementary proofs which rely solely on basic linear
algebra and calculus. A number of examples are provided to illustrate the variety of subtly di↵erent
conclusions which can be reached via di↵erent computations. In addition, many of the computations
are implemented in a web-based open source platform, allowing the reader to test examples including
and beyond those analyzed in the paper.
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1. Introduction. In this paper, the term chemical reaction network (CRN) will refer to
a set of chemical reactions and also to its description via a system of ordinary di↵erential
equations (ODEs). The study of how network structure/topology a↵ects network dynamics,
often termed “chemical reaction network theory,” has a considerable history frequently traced
to the pioneering works of Horn and Jackson [34] and Feinberg [23]. This area has, however,
also seen a recent resurgence of interest, and perhaps the most active strand of recent work
involves examining the capacity of CRNs for multiple equilibria. In this context, variants on
the following question have been intensively studied:

Q1. Which CRNs forbid multiple equilibria?
In other words, for which CRNs do the vector fields derived from the network forbid more than
one equilibrium on some set? Complicating any review of this and related questions is that the
set examined may vary, conclusions may be phrased in terms of matrices or graphs associated
with the network, and results may be derived under formally similar, but nevertheless subtly
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di↵erent, assumptions. For example, the reactions may be assumed to be occurring in a
so-called continuous flow stirred tank reactor or in a closed chamber; the kinetics may be
assumed to be mass action or to belong to some other more general class; the domain examined
may be the whole nonnegative orthant, its interior, or individual stoichiometry classes (to be
defined later); and so forth. In some cases the question may be about not the possibility
of multiple equilibria per se but rather of multiple nondegenerate equilibria (defined later).
Closely related to (Q1) is the next question:

Q2. Which CRNs are injective?
Namely, when do the vector fields derived from the network necessarily take di↵erent values
at di↵erent locations on some set? In the special case where the value is 0, (Q2) reduces to
(Q1). In other words, where noninjectivity of a vector field amounts to it taking the same
value at two distinct locations in its domain, multiple equilibria occur in the case where it
takes the particular value 0 at two distinct locations. That noninjective reaction networks
may forbid multiple equilibria under certain assumptions on the reaction rates is shown by
example in [16] and in some of the examples in section 5 of this paper. (Q2), like (Q1),
becomes precise only once we specify the domain we are examining, the assumptions on the
kinetics, etc. Some recent papers which have studied (Q1) and/or (Q2), sometimes alongside
other questions, include [15, 16, 19, 9, 8, 7, 18, 26, 14, 41, 42, 35, 50, 30], to cite but a few.

The goal here is to discuss (Q2) and (Q1) and to present known results, developments of
existing results, and improvements on existing results. In some cases we point out relationships
between results appearing in di↵erent papers, where these are obscured by di↵erences in
terminology, or minor variations in assumptions. For brevity, the focus is on matrix-theoretic
approaches, although graph-theoretic corollaries are touched on at several points. Both general
networks and certain special cases are treated in some detail: the latter include so-called simply
reversible networks, namely, networks of reversible reactions where no chemical species ever
occurs on both sides of the same reaction. Similarly, general kinetics, power-law kinetics, and
mass action kinetics are treated (defined formally later). One of our main conclusions is that
many results in this area can be seen in a common framework—for example, results on CRNs
with mass action kinetics often appear with very di↵erent proofs from those on CRNs with
more general kinetics. In a sense to be made precise, we show that collective nonsingularity of
vector fields associated with a CRN and some choice of kinetics is equivalent to injectivity of
these vector fields, which in turn is sometimes equivalent to the absence of multiple equilibria.
On the other hand collective nonsingularity also has elegant combinatorial characterizations.
In the spirit of [32], we find that the machinery of linear algebra, calculus, and a little convex
analysis su�ces for many of the results and often results in shorter and/or more general
proofs than previously available. Algorithmic forms of several of the results are implemented
in the open-source web-based CRN analysis tool CoNtRol [10], and a variety of examples are
presented based on analysis carried out in CoNtRol.

The paper is structured as follows. The next two sections are set in a general context,
developing background material from linear algebra and matrix theory (section 2) and exam-
ining injectivity of functions of the kind arising as vector fields in CRNs, but in a non-CRN
specific setting (section 3). In section 4, the results of the previous sections are applied to
CRNs in a wide range of settings (e.g., under di↵erent choices of kinetics, for general or fully
reversible networks, for open or closed systems, etc.); schematics summarizing some key re-



INJECTIVITY AND MULTISTATIONARITY IN CRNs 809

sults are given in Figures 4.1 and 4.2. A series of examples illustrating the subtly di↵erent
conclusions that are allowed by the results, as well as the limitations of our approach, are
given in section 5. Finally, section 6 contains concluding remarks and discussion of future
work. We have left outside the main body of the paper a selection of definitions, results, and
proofs, relevant but not central to the development of the theory given here; these are given
in Appendices A–F. Some of these results are known, and we only present proofs where they
are new and/or considerably simpler than previous proofs.

2. Background material. Before treating chemical reactions it is helpful to set out some
background material from linear algebra and matrix theory and some results on the injectivity
of functions. This material is developed in this section and the next, and much of it can be
skipped by the reader interested primarily in the later applications to CRNs. However, we
remark that it is reusable in contexts which go beyond the study of CRNs, and hopefully
demonstrates the more general point that work on CRNs throws up questions of theoretical
and practical interest going beyond the application itself. For example, proofs of the so-called
first Thomas conjecture [48] on multistationarity both inspired some of the material here and
can be derived as easy corollaries of some results presented here. We sometimes preview in
these sections the application of various lemmas to results on CRNs, although the precise
statements may be deferred.

2.1. Notation and basic definitions. Some basic matrix-related definitions are intro-
duced. In particular, it is conceptually helpful and notationally elegant to express several of
the results to come using (multiplicative) compound matrices and Hadamard products.

Notation 2.1. Given an undetermined natural number n, a boldface n will refer to the
set {1, . . . , n}. However, 1 will refer to the vector of ones, with size determined by context.

Notation 2.2 (submatrices and minors of a matrix). Given a matrix A 2 Rn⇥m and
(nonempty) sets ↵ ✓ n and � ✓ m, define A(↵|�) to be the submatrix of A with rows

from ↵ and columns from �. If |↵| = |�|, then A[↵|�] def
= det(A(↵|�)). A(↵) is shorthand for

A(↵|↵), and A[↵] means the principal minor A[↵|↵].
Definition 2.3 (nonnegative orthant in Rn, facets). Define Rn

�0

to be the nonnegative orthant
in Rn with boundary @Rn

�0

and interior Rn

�0

. The closed, codimension 1, faces of Rn

�0

are
its facets. x, y 2 Rn

�0

will be said to share a facet if there exists i 2 n such that x
i

= y

i

= 0.
Observe that the line segment joining x, y 2 Rn

�0

lies entirely in @Rn

�0

if and only if x, y share
a facet. Sometimes it turns out that a function on some U ✓ Rn

�0

can take the same value at
two points x, y 2 U only if they share a facet (see Theorem 1 later).

Notation 2.4 (image of a matrix A and A-equivalent points in Rn

�0

). The image of A 2
Rn⇥m, a linear subspace of Rn, will be denoted imA. Given x, y 2 Rn

�0

we will write x ⇠A

y

for x � y 2 imA and x

⇠=/ A

y for x � y 2 imA\{0}. Clearly ⇠A is an equivalence relation
on Rn

�0

. In the context of CRNs, where � is the “stoichiometric matrix” of the system (to

be defined later), each equivalence class of ⇠� in Rn

�0

is a polyhedron termed a “stoichiom-
etry class.” In the study of many questions related to CRNs we restrict attention to these
classes.

Definition 2.5 (nonnegative/positive matrices and vectors). Given a real matrix or
vector A, A � 0 will mean that each entry of A is nonnegative, and A > 0 will mean that
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A � 0 and A 6= 0. A � 0 will mean that each entry of A is positive. The inequalities <, ,
and ⌧ will also have their natural meanings. Any A � 0 will be referred to as nonnegative,
while A � 0 will be referred to as positive.

We next introduce “compound matrices” because these greatly simplify the statement
of several definitions and results to follow. We only exploit the notational simplicity they
allow and do not apply any of the extensive theoretical machinery associated with compound
matrices in the study of linear algebra and di↵erential equations (e.g., [1, 36]).

Definition 2.6 (multiplicative compound matrices). Given A 2 Rn⇥m and k 2 {1, . . . ,
min{n,m}}, define A

(k) as the kth multiplicative compound matrix of A (see [36], for ex-
ample), namely, choosing and fixing some orderings (say, lexicographic) on subsets of n and
m of size k, A(k) is the

�
n

k

�
⇥
�
m

k

�
matrix of k ⇥ k minors of A.

Definition 2.7 (Hadamard product). Given A,B 2 Rn⇥m, define A � B 2 Rn⇥m to be the
Hadamard product (or entrywise product) of A and B, namely, (A �B)

ij

= A

ij

B

ij

.

Notation 2.8 (A �r B: Hadamard product of compound matrices).We introduce the abbre-
viation A �r B for A(r) �B(r). This notation will be used extensively and is illustrated in the
Example in Remark 2.21 to follow.

Notation 2.9 (D
n

: positive diagonal matrices).Define D
n

✓ Rn⇥n to be the n⇥ n diagonal
matrices with positive diagonal entries, namely, A 2 D

n

if and only if A

ii

> 0 for i 2 n

and A

ij

= 0 for i, j 2 n, i 6= j. Given A 2 Rn⇥n (resp., A ✓ Rn⇥n), we write A + D
n

for
{A+D : D 2 D

n

} (resp., A+D
n

for {A+D : A 2 A, D 2 D
n

}).
Definition 2.10 (P -matrix, P

0

-matrix). A 2 Rn⇥n is a P -matrix (resp., P
0

-matrix) if all its
principal minors are positive (resp., nonnegative), namely if diagonal elements of A(k) are all
positive (resp., nonnegative) for each k = 1, . . . , n.

Remark 2.11 (characterization of P
0

-matrices via collective nonsingularity). P

0

-matrices
can also be characterized as follows: A 2 Rn⇥n is a P

0

-matrix if and only if A + D
n

con-
sists of nonsingular matrices (see Remark 3.4 in [7]).

Lemma 2.12 (the Cauchy–Binet formula). Given A 2 Rn⇥m and B 2 Rm⇥n and any
nonempty ↵ ✓ n, � ✓ m with |↵| = |�|,

(AB)[↵|�] =
X

�✓m
|�|=|↵|

A[↵|�]B[�|�].

Proof. See [28], for example.
In terms of multiplicative compound matrices, the Cauchy–Binet formula is simply

(AB)(k) = A

(k)

B

(k), which is immediate from elementary properties of compound matrices.
Definition 2.13 (qualitative class Q(A)).A 2 Rn⇥m determines the qualitative class Q(A) ✓

Rn⇥m consisting of all matrices or vectors with the same sign pattern as A, i.e., X 2 Q(A)
if and only if (A

ij

> 0) ) (X
ij

> 0); (A
ij

< 0) ) (X
ij

< 0); and (A
ij

= 0) ) (X
ij

= 0).
The closure of Q(A) will be written Q

0

(A). Given A,B 2 Rn⇥m, we write Q(A)�Q(B) for
{A0 � B

0 : A

0 2 Q(A), B0 2 Q(B)}, [Q(A)|Q(B)] for {[A0|B0] : A

0 2 Q(A), B0 2 Q(B)}, and
so forth. If A is a set of matrices or vectors, we may write Q(A) for [

A2AQ(A).
Definition 2.14 (semiclass Q0(A)). Given A 2 Rn⇥m, define the semiclass of A,

Q0(A)
def
= {D

1

AD

2

: D
1

2 D
n

, D

2

2 D
m

}.
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Remark 2.15 (qualitative classes, semiclasses, and when they coincide). Note that
Q0(A) ✓ Q(A) and it can be shown that Q0(A) = Q(A) if and only if the bipartite graph of A
(described in section 2.3) is a forest, i.e., has no cycles [12]. For example, if A is a 2⇥2 positive
matrix with positive determinant, then Q(A) includes all 2⇥ 2 positive matrices, whereas all
matrices in Q0(A) have positive determinant, demonstrating that Q0(A) is a proper subset of
Q(A). In fact, the proofs in [12] make it clear that when Q0(A) 6= Q(A), Q0(A) is of lower
dimension than Q(A).

Definition 2.16 (matrix-pattern). A matrix-pattern A is a set of matrices defined by equal-
ities or inequalities on the entries of each A 2 A taking one of the forms A

ij

= 0, A
ij

> 0, or
A

ij

< 0. Some entries may have no defining equality or inequality, and so we may think of
each entry as a “+” (positive), a “�” (negative), 0, or a “?” (any real number). A qualitative
class is the special case of a matrix-pattern where there are no entries of unknown sign. Given
a matrix-pattern A ✓ Rn⇥m and nonempty ↵ ✓ n,� ✓ m, the set A(↵|�) = {A(↵|�) : A 2 A}
is clearly a matrix-pattern.

Notation 2.17 (A
↵,�

). Given A 2 Rn⇥m and (nonempty sets) ↵ ✓ n and � ✓ m, define
A

↵,�

2 Q
0

(A) via (A
↵,�

)
ij

= A

ij

if i 2 ↵, j 2 �, and (A
↵,�

)
ij

= 0 otherwise, namely, A
↵,�

is
the matrix A with all entries not in A(↵|�) set to zero.

Definition 2.18 (sign nonsingular, sign singular).A 2 Rn⇥n is sign nonsingular if every ma-
trix in Q(A) is nonsingular. It is sign singular if every matrix in Q(A) is singular.

Characterizing sign nonsingular matrices has led to a rich combinatorial literature ([49, 40],
for example) and the more general question of understanding when properties of a matrix are
invariant over a qualitative class has close connections with the study of CRNs.

We will need the following easy fact, whose proof is left to the reader. Either all matrices
in a (square) matrix-pattern have determinants of the same sign or all signs are represented
by the determinants of the matrix-pattern.

Lemma 2.19. Let A be a matrix-pattern consisting of square matrices and containing A
1

, A

2

such that sign(detA
1

) 6= sign(detA
2

). Then there exists A

3

2 A such that
sign(detA

3

) 6= sign(detA
1

) and sign(detA
3

) 6= sign(detA
2

).

To preview our interest in qualitative classes and semiclasses in the study of CRNs, we
find, for example, that for an irreversible CRN with general kinetics, the matrix of partial
derivatives of reaction rate functions explores a qualitative class Q(A), whereas in the case
of mass action kinetics, this matrix explores a semiclass Q0(A). Convexity of Q(A) means
that convex approaches arise very naturally in the study of CRNs with general kinetics; on
the other hand the nonconvexity of Q0(A) in general (though see Remark 2.15) suggests that
these approaches may not work for mass action kinetics. We see, in Theorem 2 and subsequent
related results, that this limitation is to some extent only apparent.

2.2. The reduced determinant of a matrix product. Let A 2 Rn⇥m have rank r � 1
and let B 2 Rm⇥n. Given any basis for imA we can write down a square matrix describing
the action of the product AB on this basis. Di↵erent choices of basis lead to similar matri-
ces, and so it makes sense to refer to the determinant of any such matrix as the “reduced
determinant” of the product and denote this as det

A

(AB) (see also the “core determinant” in
[33]). The construction is provided explicitly in Appendix A. Here we list only the important
facts:
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(1) det
A

(AB) =
P

|↵|=r

(AB)[↵]. In other words, the reduced determinant is the sum of the
r⇥r principal minors of AB. We observe that (i) det

A

(AB) =
P

|↵|=|�|=r

A[↵|�]B[�|↵]
= trace (A(r)

B

(r)) =
P

i,j

(A �r Bt)
ij

using Cauchy–Binet, and (ii) det
A

(AB)=(�1)r

a

n�r

, where a

k

is the coe�cient of �k in the characteristic polynomial det(� I �AB).
(2) det

A

(AB) 6= 0 if and only if rank(ABA) = r. This is proved as Lemma A.1 in
Appendix A.

The first result is important because, for fixed A, the quantity
P

|↵|=r

(AB)[↵] is a polynomial
in the entries of B; if these entries vary, and we wish to make the claim that det

A

(AB) 6= 0 for
all allowed B, this reduces to an algebraic claim about the nonvanishing of this polynomial
on its domain. The second claim is almost obvious given the meaning of det

A

(AB): we
expect det

A

(AB) = 0 if and only if imA intersects ker (AB) nontrivially, which occurs if
and only if rank(ABA) < r. We summarize some equivalent ways of regarding the condition
det

A

(AB) 6= 0, at the heart of many results in this paper, where the equivalences follow
straightforwardly from basic linear algebra:

(1) rank(ABA) = rankA.
(2) imBA� kerA = Rm.
(3) imA� kerAB = Rn.
(4) AB|

imA

: imA ! imA is a homeomorphism.
(5) If 0 is an eigenvalue of AB, then it is not “defective,” namely it has the same algebraic

and geometric multiplicity (this follows as det
A

(AB) = (�1)ra
n�r

6= 0, and n � r is
the dimension of kerAB).

If the reader wishes to fix a single meaning for det
A

AB 6= 0, it is that AB is a nonsingular
transformation on imA.

Definition 2.20 (A-nonsingular).Given A 2 Rn⇥m and B 2 Rm⇥n, we will say that B is
A-nonsingular if det

A

(AB) 6= 0 (equivalently, rank(ABA) = rank(A)). Otherwise B is A-
singular. A set B ✓ Rm⇥n is A-nonsingular if each B 2 B is A-nonsingular and A-singular if
each B 2 B is A-singular.

“Reduced” Jacobian matrices and reduced determinants are natural objects to consider
in the study of systems of ODEs with linear integrals, and CRNs in particular. They appear
directly or indirectly in many papers in this area, for example, [17, 5, 7, 18, 26, 37]. They tell
us about properties of the linearized system restricted to level sets of the integral.

Remark 2.21. The following example illustrates the notion of the reduced determinant of
a matrix product, and equivalent ways of computing it. Let

A =

0

@
�1 0
1 �1
1 1

1

A
, B =

✓
�a b c

0 �d e

◆
, AB =

0

@
a �b �c

�a b+ d c� e

�a b� d c+ e

1

A
.

As A has rank 2, we can compute det
A

(AB) as a sum of 2⇥ 2 principal minors:

det
A

(AB) = (AB)[{1, 2}] + (AB)[{1, 3}] + (AB)[{2, 3}] = ad+ ae+ 2(be+ cd) .

Alternatively, we also have

A

(2) =

0

@
1

�1
2

1

A
, B

(2) =
�
ad �ae be+ cd

�
, A �2 Bt =

0

@
ad

ae

2(be+ cd)

1

A
,
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giving, again, det
A

(AB) = sum of entries in A �2 Bt = ad+ ae+2(be+ cd). If a, b, c, d, e > 0,
then det

A

(AB) > 0, and thus AB acts as an orientation preserving (nonsingular) linear
transformation on imA.

2.3. Graphs associated with matrices and matrix-products. Graph theoretic approaches
to the study of injectivity, and more particularly to injectivity of CRNs, are too extensive to
be treated in this paper. However, these approaches have a close relationship with the theory
described here, both inspiring it and in some cases deriving from it. We provide some basic
definitions in order to be able to state without proof a few graph-theoretic corollaries. We
also remark that approaches centered on matrix minors and matrix products as described
here lend themselves very naturally to graph-theoretic formulations, leaving much to explore
in this area.

Definition 2.22 (bipartite graph of a matrix, SR graph of a matrix, DSR graph of a matrix
product). Given A 2 Rn⇥m define the bipartite graph of A as follows: A is a graph on n+m

vertices, with vertices {X
1

, . . . , X

n

}[ {Y
1

, . . . , Y

m

}, and with edge X

i

Y

j

present if and only if
A

ij

6= 0. Edge X

i

Y

j

is given the sign of A
ij

. To get the SR graph of A, G
A

, as described in
[8], edge X

i

Y

j

in the bipartite graph of A is also labeled with the magnitude of A
ij

. Similarly,
given A 2 Rn⇥m, B 2 Rm⇥n, associated with the product AB, is a bipartite generalised graph
G

A,B

with signed, labelled edges some of which may be directed, termed the directed SR graph
or DSR graph of AB [7]. The construction is provided in Appendix F, but note that if B

varies over a qualitative class, then G

A,B

is constant. SR graphs are a special case of DSR
graphs.

Remark 2.23 (SR and DSR graphs).The original construction of the “species-reaction
graph” for a CRN is given in Craciun and Feinberg [16]. The abstract constructions of
SR and DSR graphs above follow Banaji and Craciun [7, 8]. While these generalized graphs
are defined for matrices and matrix products and appear to have no connection with CRNs,
they can still naturally be associated with CRNs, as described in Appendix F. Examination
of their properties plays a part in many results on CRNs, including results on injectivity and
multistationarity [16, 7, 8] but not restricted to these (see [2] for results connected with Hopf
bifurcation and the possibility of oscillation, for example). Drawing and some analysis of the
DSR graph of a CRN are automated in CoNtRol [10].

2.4. Compatibility of matrices and related notions. In the study of injectivity to follow
we will frequently be concerned with the determinant, minors, or reduced determinant of a
matrix product. In this context we define various important relationships between the sign
patterns of compound matrices of a pair of matrices.

Definition 2.24 (compatibility and related notions). Given a pair of matrices A,B2Rn⇥m

and r 2 {1, . . . ,min{n,m}}, A and B will be termed

• r-compatible if A �r B � 0;
• r-strongly compatible if A �r B > 0;
• r-strongly negatively compatible if A �r B < 0;
• compatible if A�rB � 0 for each r = 1, . . . ,min{n,m}. We abbreviate this as A m B.

Observe that these relations are not transitive; for example, A �r B � 0 and B �r C � 0 do
not imply that A �r C � 0. The notation may be applied to sets of matrices so, for example,
if B is a set of matrices, then A �r B > 0 will mean A �r B > 0 for all B 2 B.
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Remark 2.25 (invariance of compatibility notions under row/column reordering). We will fre-
quently use without comment the fact that given A,B 2 Rn⇥m, applying an arbitrary permu-
tation to the rows/columns of A and the same permutation to the rows/columns of B does not
alter compatibility relationships such as A�rB � 0, A�rB > 0, etc. In other words, if P

1

and
P

2

are permutation matrices of appropriate dimension, then A�rB > 0 , P

1

AP

2

�rP
1

BP

2

> 0,
and so forth.

The reader may confirm that if a, b, c, d, e > 0, the matrices A and B

t in the example of
Remark 2.21 are 2-strongly compatible, so we can write A �2 Bt

> 0. As they are both also
1-compatible and 2-compatible, they are compatible, namely, A m B

t. Clearly, if n 6= m, then
n-compatibility does not imply m-compatibility: for example, if

A =

0

@
�1 �1
1 0
0 1

1

A and B =

0

@
�1 0
1 1
0 0

1

A
, then A �B =

0

@
1 0
1 0
0 0

1

A
> 0,

so A and B are 1-strongly compatible. But they are 2-strongly negatively compatible as

A

(2) =

0

@
1

�1
1

1

A
, B

(2) =

0

@
�1
0
0

1

A
, and A �2 B =

0

@
�1
0
0

1

A
< 0 .

The following lemma will prove useful. It provides some elementary consequences of
compatibility and shows how sometimes compatibility of a matrix A with a set of matrices B
is equivalent to compatibility between a new matrix A

0 and a modified set of matrices B0. Such
constructions will allow us to pass easily between claims about sets of irreversible reactions
and sets of reactions which are not necessarily irreversible.

Lemma 2.26. Let A,B,C,D 2 Rn⇥m, and E,F 2 Rn⇥m

0
. For the first six claims, fix

r 2 {1, . . . ,min{n,m}}. For the final claim, fix r 2 {1, . . . ,min{n,m+m

0}}.
(1) (i) If A �r B � 0, then (ABt)[↵] � 0 for all ↵ ✓ n s.t. |↵| = r.

(ii) If A �r B  0, then (ABt)[↵]  0 for all ↵ ✓ n s.t. |↵| = r.
(iii) If A �r B = 0, then (ABt)[↵] = 0 for all ↵ ✓ n s.t. |↵| = r.

(2) (i) If A �r B > 0, then (ABt)[↵] > 0 for some ↵ ✓ n s.t. |↵| = r.
(ii) If A �r B < 0, then (ABt)[↵] < 0 for some ↵ ✓ n s.t. |↵| = r.

(3) (i) If A �r B 6� 0, then (AB

t

1

)[↵] < 0 for some B

1

2 Q0(B) and some ↵ ✓ n s.t.
|↵| = r.
(ii) If A �r B 6 0, then (AB

t

1

)[↵] > 0 for some B

1

2 Q0(B) and some ↵ ✓ n s.t.
|↵| = r.
(iii) If B

1

, B

2

2 B ✓ Rn⇥m, where B is path connected, and A �r B
1

6< 0, A �r B
2

6> 0,
then there exists B

3

2 B such that A �r B
3

6< 0 and A �r B
3

6> 0.
(4) Each entry of A �r (C �D) is a sum of entries of [A|�A] �r [C|D].
(5) (i) [A|�A] �r [Q(C)|Q(D)] � 0 i↵ A �r (Q(C)�Q(D)) � 0.

(ii) [A|�A] �r [Q(C)|Q(D)]  0 i↵ A �r (Q(C)�Q(D))  0.
(6) (i) [A|�A] �r [Q(C)|Q(D)] > 0 i↵ A �r (Q(C)�Q(D)) > 0.

(ii) [A|�A] �r [Q(C)|Q(D)] < 0 i↵ A �r (Q(C)�Q(D)) < 0.
(7) (i) [A|F |�A] �r [Q(C)|Q(E)|Q(D)] > 0 i↵ [A|F ] �r [Q(C)�Q(D)|Q(E)] > 0.

(ii) [A|F |�A] �r [Q(C)|Q(E)|Q(D)] � 0 i↵ [A|F ] �r [Q(C)�Q(D)|Q(E)] � 0.
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(iii) [A|F |�A] �r [Q(C)|Q(E)|Q(D)] < 0 i↵ [A|F ] �r [Q(C)�Q(D)|Q(E)] < 0.
(iv) [A|F |�A] �r [Q(C)|Q(E)|Q(D)]  0 i↵ [A|F ] �r [Q(C)�Q(D)|Q(E)]  0.

Proof. (1), (2), (3) The first two claims are immediate consequences of the Cauchy–Binet
formula. (3)(i) suppose that A[↵|�]B[↵|�] < 0. Observe that B

↵,�

(Notation 2.17) lies in
the closure of the semiclass Q0(B) and that (A(B

↵,�

)t)[↵] = A[↵|�]B[↵|�] < 0; the claim
now follows by choosing any B

1

2 Q0(B) su�ciently close to B

↵,�

. 3(ii) In a similar way, if
A �r B 6 0, then we find B

1

2 Q0(B) and ↵ ✓ n s.t. (AB

t

1

)[↵] > 0. (3)(iii) By continuity of
determinants, there exists on any path connecting B

1

and B

2

some B

3

such that A �r B
3

6> 0
and A �r B

3

6< 0.
For the following three claims, let A = [A|�A].
(4) Let B = C �D and B = [C|D]. Fix ↵ ✓ n, � ✓ m with |↵| = |�| = r and consider

the product A[↵|�]B[↵|�] = det(A(↵|�)Bt(�|↵)). Clearly

A(↵|�)Bt(�|↵) = A(↵|�0)B
t

(�0|↵),

where �

0 = (�
1

, . . . ,�

r

,�

1

+ m, . . . ,�

r

+ m), and it follows, from the Cauchy–Binet formula

applied to the product A(↵|�0)B
t

(�0|↵), that

A[↵|�]B[↵|�] =
X

�✓�

0
,|�|=r

A[↵|�]B[↵|�] .

In the following two claims, we prove only part (i); the second part follows similarly.
(5) To see that [A|�A] �r [Q(C)|Q(D)] � 0 implies that A �r (Q(C) � Q(D)) � 0, take

arbitrary C

0 2 Q(C) and D

0 2 Q(D), and apply (4) to get that [A| � A] �r [C 0|D0] � 0 )
A �r (C 0 � D

0) � 0. In the other direction, suppose that [A|�A] �r [Q(C)|Q(D)] 6� 0. By

(3)(i), there exists M = [C 0|D0] 2 [Q(C)|Q(D)] and ↵ ✓ n such that (AM

t

)[↵] < 0. Setting

M = C

0 �D

0 gives AM

t

= AM

t, and so (AM

t)[↵] < 0, proving, by (1)(i), that A �r M 6� 0.
(6) By (5), [A|�A] �r [Q(C)|Q(D)] > 0 ) A �r (Q(C) � Q(D)) � 0; to confirm that

the inequality is strict, choose arbitrary C

0 2 Q(C) and D

0 2 Q(D), and set M = C

0 � D

0,
M = [C 0|D0]. Choose ↵,� such that A[↵|�]M [↵|�] > 0 and choose �

0 ✓ {1, . . . ,m} s.t.
|�0| = r, and � ✓ �

0[{�0
1

+m, . . . ,�

0
r

+m}. Now, following the proof of (4), A[↵|�0]M [↵|�0] is
a sum of (nonnegative) entries of A�rM including A[↵|�]M [↵|�], and so A[↵|�0]M [↵|�0] > 0.
In the other direction, by (5), A �r (Q(C)�Q(D)) � 0 ) A �r [Q(C)|Q(D)] � 0, and by (4),
for any C

0 2 Q(C), D0 2 Q(D), A �r (C 0 �D

0) 6= 0 ) A �r [C 0|D0] 6= 0. Together these imply
that A �r (Q(C)�Q(D)) > 0 ) A �r [Q(C)|Q(D)] > 0.

(7)(i) and (ii) Let A0 = [A|F ], A = [A|F |�A], and B = [C|E|D]. Let A
+

= [A|F |�A|�F ],
B

+

= [C|E|D|0]. The results follow as

A �r Q(B) � 0 , A

+

�r Q(B
+

) � 0 , A

0 �r [Q(C)�Q(D)|Q(E)] � 0,
A �r Q(B) > 0 , A

+

�r Q(B
+

) > 0 , A

0 �r [Q(C)�Q(D)|Q(E)] > 0.

To see the first equivalence on each line, observe that given any C

0 2 Q(C), D0 2 Q(D),
and E

0 2 Q(E), [A|F |�A|�F ] �r [C 0|E0|D0|0] is simply [A|F |�A] �r [C 0|E0|D0] with additional
zeros. The second equivalences follow from (5) and (6) with A as [A|F ], C as [C|E], and D

as [D|0]. (iii) and (iv) follow similarly.
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Lemma 2.27 (equivalent formulations of compatibility of two matrices). Let A,B 2
Rn⇥m, and define Ã = [A |�I], B̃ = [B |�I] with I the n ⇥ n identity matrix. Then the
following are equivalent: (i) A m B, (ii) Ã �n B̃ � 0, (iii) Ã �n B̃ > 0, (iv) det(ÃDB̃

t) � 0 for
all D 2 D

n+m

, and (v), det(ÃDB̃

t) > 0 for all D 2 D
n+m

.
Proof. Observe that

(2.1) Ã[n | {m+1, . . . ,m+n}]B̃[n | {m+1, . . . ,m+n}] = 1 > 0,

and there is a one-to-one correspondence between the remaining products of the form Ã[n|�]
B̃[n|�] (where � ✓ {1, . . . ,m+ n}, |�| = n) and the products A[↵0|�0]B[↵0|�0] (where ↵

0 ✓ n,
�

0 ✓ m, 0 6= |↵0| = |�0|). This immediately shows the equivalence of (i), (ii), and (iii).
The Cauchy–Binet formula gives

det(ÃDB̃

t) =
X

�✓{1,...,m+n}
|�|=n

Ã[n|�]D[�]B̃[n|�]

for any D 2 D
n+m

. If Ã �n B̃ � 0, then clearly det(ÃDB̃

t) � 0 for all D 2 D
n+m

. Conversely
if Ã �n B̃

t 6� 0, then there exists � such that Ã[n|�]B̃[n|�] < 0. Choosing D 2 D
n+m

such
that D

ii

= 1 if i 2 �, and D

ii

is su�ciently small if i 62 �, we can ensure that det(ÃDB̃

t) < 0.
This shows the equivalence of (ii) and (iv).

That (iii) implies (v) again follows from the Cauchy–Binet formula, and that (v) implies
(iv) is trivial. This completes the proof.

Lemma 2.27 tells us that compatibility of two n ⇥ m matrices A and B is equivalent
to n-strong compatibility of the matrices augmented with �I, namely, Ã and B̃. Further,
A 6m B, namely, A and B, fail to be compatible if and only if there exists D 2 D

n+m

such that
det(ÃDB̃

t) < 0. For later use we define a condition stronger than A 6m B. Unlike A 6m B, this
next relationship is not symmetric in A and B.

Definition 2.28 (strongly incompatible). Let A,B 2 Rn⇥m, with Ã = [A|�I] and B̃ =
[B|�I] as in Lemma 2.27. B is strongly A-incompatible if there exists D 2 D

n+m

such that
det(ÃDB̃

t) < 0 and ÃD1  0.
The next two results form the basis for several injectivity results in Banaji, Donnell, and

Baigent [9] and below.
Lemma 2.29. Let A,B 2 Rn⇥m and B ✓ Rn⇥m, with B satisfying B = [

B2BQ0(B) (namely,
B is a union of semiclasses, e.g., a semiclass, a qualitative class, or a matrix-pattern). Then
(i) A m B implies that ABt is a P

0

-matrix; (ii) A m B if and only if AB

t is a P

0

-matrix for
each B 2 B.

Proof. (i) A m B ) AB

t is a P

0

-matrix by the Cauchy–Binet formula (Lemma 2.12). (ii)
The implication to the right is immediate from (i); the implication to the left follows from
Lemma 2.26(3)(i).

Lemma 2.30. Given A,B 2 Rn⇥m and r 2 {1, . . . ,min{n,m}},
(i) A �r B � 0 , A �r Q0(B) � 0, (ii) A �r B  0 , A �r Q0(B)  0,
(iii) A �r B > 0 , A �r Q0(B) > 0, (iv) A �r B < 0 , A �r Q0(B) < 0,
(v) A �r B = 0 , A �r Q0(B) = 0, (vi) A m B , A m Q0(B).

Proof. In one direction (to the left) the results are trivial as B 2 Q0(B). In the other
direction, the reader can easily confirm from the Cauchy–Binet formula that (D

1

BD

2

)(r) 2
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Q(B(r)) for any r 2 {1, . . . ,min{n,m}}, D
1

2 D
n

, and D

2

2 D
m

. In other words, pre- and
postmultiplication of B by positive diagonal matrices does not change the sign of any minor
of B. The results then follow immediately from the definition of A �r B.

Remark 2.31 (invariance of signs of minors over a qualitative class).The basis for
Lemma 2.30 is that the signs of minors of a matrix remain fixed as we vary within a semiclass,
which can be expressed elegantly as

(Q0(B))(r) ✓ Q(B(r))

for any matrix B, and so A�rQ0(B) ✓ Q(A�rB). As an aside, note that matrices whose minors
maintain their signs as we explore a qualitative class are rather special: (Q(B))(r) ✓ Q(B(r))
if and only if each square submatrix of B is either sign nonsingular or sign singular; these
are precisely the matrices such that Q(B) m Q(B) (i.e., by Lemma 2.29, such that B

1

B

t

2

is a
P

0

-matrix for each B

1

, B

2

2 Q(B)), or equivalently those with “2-odd” bipartite graphs [12],
namely, those whose SR graphs have no e-cycles (see [6] and Appendix F).

2.5. Compatibility and the reduced determinant of a general product. The lemmas in
this section relate the compatibility properties of pairs of matrices, computed by examining
signs of their minors, to linear algebraic properties of various associated products. We are
particularly interested in making simultaneous claims about sets of matrices, and the emphasis
is on a constant first factor and a varying second factor. To preview roughly results to follow,
strong compatibility of various matrices related to a CRN, particularly the stoichiometric
matrix and the matrix of partial derivatives of the reaction rates, will imply injectivity of
associated vector fields.

Lemma 2.32. Let 0 6= A 2 Rn⇥m, B ✓ Rm⇥n, and define r = rankA. Define the six
conditions:

(1) A �r Bt

> 0 (A, Bt are r-strongly compatible).
(2) A �r Bt

< 0 (A, Bt are r-strongly negatively compatible).
(3) det

A

(AB) > 0 for each B 2 B (AB has positive reduced determinant).
(4) det

A

(AB) < 0 for each B 2 B (AB has negative reduced determinant).
(5) rank(ABA) = r for each B 2 B (B is A-nonsingular).
(6) Given any k � 2, every product of length k of the form AB

1

AB

2

· · · or B

1

AB

2

A · · · ,
where B

i

2 B, has rank r.
Then (1) ) (3) ) (5) , (6). Similarly, (2) ) (4) ) (5). If B is path connected and a

union of semiclasses, then (3) ) (1), (4) ) (2), and (5) ) [(3) or (4)].
Proof. (1) ) (3) If A �r Bt

> 0, then (from above) det
A

(AB) =
P

i,j

(A �r Bt)
ij

> 0. (2)
) (4) follows similarly.

(3) ) (1) if B = [
B2BQ0(B). (i) Suppose condition (1) fails in such a way that A�rBt 6� 0

for some B 2 B, i.e., A[↵0|�0]B[�0|↵0] < 0 for some ↵

0 ✓ n,�

0 ✓ m with |↵0| = |�0| = r. Then

det
A

(AB
�

0
,↵

0) =
X

|↵|=|�|=r

A[↵|�]B
�

0
,↵

0 [�|↵] = A[↵0|�0]B[�0|↵0] < 0 .

B

�

0
,↵

0 is in the closure ofQ0(B) and by continuity, det
A

(AB

0) < 0 for allB0 2 Q0(B) su�ciently
close to B

�

0
,↵

0 . (ii) Suppose instead that there exists B 2 B such that A �r Bt = 0, i.e.,
A[↵|�]B[�|↵] = 0 for all ↵ ✓ n,� ✓ m with |↵| = |�| = r. Then det

A

(AB) =
P

i,j

(A�rBt)
ij

=
0. (4) ) (2) if B = [

B2BQ0(B) follows in similar fashion.
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(3) ) (5) and (4) ) (5) are immediate from Lemma A.1.
(5) ) [(3) or (4)] if B is path connected. Observe that if neither of det

A

(AB) < 0 for all
B 2 B nor det

A

(AB) > 0 for all B 2 B holds, then, since B is path connected, there must
exist B0 2 B such that det

A

(AB0) = 0. But then rank(AB

0
A) < r by Lemma A.1.

(6)) (5) is trivial. For (5)) (6), suppose condition (5) holds. Clearly then rank(ABA) =
rank(AB) = rank(BA) = rank(A) for all B 2 B, and so the result is true for all prod-
ucts of length 2. Moreover, these cases imply that for all B 2 B, imA \ kerB = {0} and
im(BA) \ kerA = {0}. Suppose the result holds for all products of length n for some n � 2.
Premultiplying a product AB

1

. . . of length n by some B 2 B cannot decrease the rank of the
product as imA \ kerB = {0}. Similarly premultiplying a product B

1

A · · · of length n by A

cannot decrease the rank of the product as im (BA) \ kerA = {0} for all B 2 B. Thus the
result holds for all products of length n+ 1.

Remark 2.33. A consequence of Lemma 2.32 is that given 0 6= A 2 Rn⇥m with rank r, and
a matrix-pattern B ✓ Rm⇥n, the condition “A �r Bt

> 0 or A �r Bt

< 0” is equivalent to “B is
A-nonsingular.”

The next results provide basic conditions guaranteeing that r-compatibility of A 2 Rn⇥m

and B ✓ Rn⇥m implies r-strong compatibility of A and B. They will prove useful in under-
standing the relationship between injectivity of a CRN and its so-called fully open
extension.

Lemma 2.34. Let A 2 Rn⇥m have rank r and let B ✓ Rn⇥m be a matrix-pattern. Then the
following are equivalent:

(1) A �r B � 0 and A �r B
1

> 0 for some B

1

2 B.
(2) det

A

(ABt) � 0 for all B 2 B and det
A

(AB

1

) > 0 for some B

1

2 B.
(3) A �r B > 0.
(4) det

A

(ABt) > 0 for all B 2 B.
Proof. Note first that being a matrix-pattern, B is path connected and a union of semi-

classes. (3) , (4) is just the statement (1) , (3) in Lemma 2.32. The proof of (1) ,
(2) follows easily in the same fashion. (3) ) (1) is trivial. To prove (1) ) (3), suppose
(1) holds and observe that this implies the existence of ↵,� with |↵| = |�| = r such that
A[↵|�]B

1

[↵|�] > 0. If (3) fails, then there exists B

2

2 B such that A[↵|�]B
2

[↵|�] = 0. As B
is a matrix-pattern, there exists B

3

2 B such that A[↵|�]B
3

[↵|�] < 0 (Lemma 2.19), namely,
A �r B

3

6� 0, contradicting the assumption that (1) holds.
As an immediate corollary of Lemma 2.34 we have the following.
Corollary 2.35. Let A 2 Rn⇥m have rank r and let B ✓ Rn⇥m be a matrix-pattern. If A m B

and A�rB
1

> 0 for some B

1

2 B, then A�rB > 0 (equivalently det
A

(AB

t) > 0 for all B 2 B).

Lemma 2.36. Let 0 6= A 2 Rn⇥m

, B 2 Rm⇥n, and define r = rankA. The following are
equivalent:

(i) A �r Bt

> 0 or A �r Bt

< 0,
(ii) rank (AD

1

BD

2

A) = r for all D
1

2 D
m

, D
2

2 D
n

(Q0(B) is A-nonsingular).

Proof. (i) ) (ii) By Lemma 2.30 A �r B

t

> 0 , A �r Q0(Bt) > 0, and A �r B

t

<

0 , A �r Q0(Bt) < 0. Thus, by implications (1) ) (5) and (2) ) (5) of Lemma 2.32,
rank (AD

1

BD

2

A) = rankA.
(ii) ) (i) Observe that Q0(B) is path connected and is trivially a union of semiclasses. By
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implications (5) ) [(3) or (4)] ) [(1) or (2)] of Lemma 2.32, Q0(B) is A-nonsingular implies
that A �r Q0(Bt) > 0 or A �r Q0(Bt) < 0, and so certainly A �r Bt

> 0 or A �r Bt

< 0.
The following result illustrates one of the primary uses of the DSR graph: graph theoretic

tests for compatibility of matrices can be significantly more e�cient than direct
approaches.

Lemma 2.37. Let A 2 Rn⇥m and B 2 Rm⇥n. If the DSR graph G

A,B

satisfies Condition (⇤)
in Appendix F, then A m B

t.
Proof. This is shown in [7].
Remark 2.38 (Condition (⇤): history and previous results). Condition (⇤) is an easily

computable condition, described in Appendix F and implemented algorithmically in CoNtRol

[10]. It originated in Craciun and Feinberg [16], where the condition was applied to SR graphs
of a CRN, and used to make injectivity claims about CRNs with mass action kinetics. It was
then used to make injectivity claims about CRNs with general kinetics in Banaji and Craciun
[8] and was further extended to DSR graphs and used to make claims about a very general
class of dynamical systems termed “interaction networks” (which include, but go beyond,
CRNs) in Banaji and Craciun [7]. By Lemma 2.37, if B is a matrix-pattern and G

A,B

satisfies
Condition (⇤) for all B 2 B, then this implies in particular that A m Bt. Corollary 2.35 states
that if we can additionally confirm that A�rBt 6= 0 for some B 2 B (where r = rankA), then
A �r Bt

> 0. In some situations this is automatic (see, e.g., Lemma 2.44 below).

2.6. Compatibility and the reduced determinant in the case B = Q(At
). While in the

previous section B is an arbitrary set of matrices, at most assumed to be a matrix-pattern, the
following results focus on the important special case B = Q(At), particularly relevant to the
study of certain classes of CRNs, termed simply reversible CRNs below. There exist simple
necessary and su�cient conditions for a matrix A to be compatible, or r-strongly compatible,
with its entire qualitative class Q(A).

Definition 2.39 (SSD, r-SSD). Given A 2 Rn⇥m and r 2 {1, . . . ,min{n,m}}, A is termed
r-SSD if every r ⇥ r submatrix of A is either singular or sign nonsingular. It is SSD if all
square submatrices of A are either sign nonsingular or singular, i.e., A is r-SSD for each
allowed r. (The acronym SSD was originally an abbreviation of strongly sign determined and
the concept was introduced in Banaji, Donnell, and Baigent [9].)

Lemma 2.40. The following conditions on A 2 Rn⇥m with rank r > 0 are equivalent:
(1) A is r-SSD.
(2) A �r Q(A) � 0.
(3) A �r Q(A) > 0.
(4) det

A

(AB) > 0 for each B 2 Q(At).
(5) rank(ABA) = r for each B 2 Q(At) (Q(At) is A-nonsingular).
(6) Given any k � 2, every product of length k of the form AB

1

AB

2

· · · or B

1

AB

2

A · · · ,
where B

i

2 Q(At), has rank r.
Proof. (1) , (2) The implication (1) ) (2) is immediate by definition. In the other

direction, if A is not r-SSD, then there exist ↵ ✓ n,� ✓ m such that |↵| = |�| = r, A[↵|�] 6= 0
but A(↵|�) is not sign nonsingular. By Lemma 2.19, there exists B̃ 2 Q(A) such that
A[↵|�]B̃[↵|�] < 0, i.e., A �r B̃ 6� 0.

(2) , (3) The implication (3) ) (2) is immediate. In the other direction, since all r ⇥ r

submatrices of A are either singular or sign nonsingular, but A has rank r, there must be a



820 MURAD BANAJI AND CASIAN PANTEA

sign nonsingular r ⇥ r submatrix of A, say, A(↵|�). So, by definition, A[↵|�]B[↵|�] > 0 for
all B 2 Q(A).

(3) , (4) follows from Lemma 2.32 with B = Q(At).
(4) , (5) Condition (4) implies condition (5) by Lemma A.1. In the other direction,

suppose rank(ABA) = r for each B 2 Q(At). Choosing B

0 = A

t, it is immediate that
det

A

(AB0) =
P

|↵|=r

(AB0)[↵] > 0. As Q(At) is path connected, it now follows from implica-

tion (5) ) [(3) or (4)] of Lemma 2.32 that det
A

(AB) > 0 for each B 2 Q(At).
(5) , (6) follows from Lemma 2.32 with B = Q(At).
Remark 2.41. Observe that given a real matrix A with rank r, A�rA > 0, and consequently

A �r Q(A)  0 is impossible.
Remark 2.42. A consequence of Lemma 2.40 is that given 0 6= A 2 Rn⇥m with rank r the

condition “A is r-SSD” is equivalent to “Q(At) is A-nonsingular.”
Remark 2.43. The condition that rank(ABA) = rankA for each B 2 Q(At) (namely,

Q(At) is A-nonsingular) is a stronger claim than merely that rank(AB) = rankA for all
B 2 Q(At): consider the matrices

A =

0

@
2 1
1 1
1 0

1

A
, B =

✓
a b e

c d 0

◆
so that AB =

0

@
2a+ c 2b+ d 2e
a+ c b+ d e

a b e

1

A
,

where a, b, c, d, e > 0. Then rank(AB) = rankA = 2 for all such B (AB has a nonsingular
2 ⇥ 2 submatrix). But A is not SSD and rank(ABA) can equal 1. In particular, the sum of
the 2⇥ 2 principal minors of AB is ad+ ce+ de� bc, which may be zero.

Lemma 2.44. Define the following conditions on a matrix A 2 Rn⇥m with rank r:
(1) The SR graph G

A

satisfies Condition (*) in Appendix F.
(2) A is SSD.
(3) A m Q(A).
(4) AB is a P

0

-matrix for each B 2 Q
0

(At).
(5) rank(ABA) = r for each B 2 Q(At) (i.e., Q(At) is A-nonsingular).

The following implications hold: (1) ) (2) , (3) , (4) ) (5).
Proof. (1) ) (2) is proved in [8]. (2) , (3) follows by applying the proof of (1) , (2)

in Lemma 2.40 to each dimension; (3) ) (5) is immediate from Lemma 2.40 (the special
case r = 0 is trivial). That (3) implies that AB is a P

0

-matrix for all B 2 Q(At) follows
from Lemma 2.29; (4) then follows by closure of the P

0

-matrices. On the other hand if (3) is
violated and there exist ↵ ✓ n,� ✓ m such that 0 6= |↵| = |�| and some B 2 Q(At) such that
A[↵|�]B[�|↵] < 0, then B

�,↵

2 Q
0

(At) (Notation 2.17), but (AB

�,↵

)[↵] = A[↵|�]B[�|↵] < 0.
So (4) is violated.

3. Injectivity results. We recall that a function f with domain X is injective on X if
a, b 2 X, a 6= b implies f(a) 6= f(b). In the study of CRNs, we will be concerned with
functions of the form �v(x) on Rn

�0

or Rn

�0

, where � 2 Rn⇥m is the “stoichiometric matrix”
of the system (to be defined below), and the function v is a vector of reaction rates. We note
that the choice to discuss functions of the form �v, namely, with a constant first factor, is not
really limiting: any vector field with linear integrals can be written in this way (the choice
of � is not in general unique), and in fact any function can be cast in this form by choosing
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� to be the identity. That even this latter approach can produce nontrivial results on the
injectivity of functions is demonstrated in [6]. We proceed to examine such functions, noting
that the discussion at this stage is quite general.

3.1. The general case. Note first that if we state that a function f is C

1 (continuously
di↵erentiable) on some subset U ✓ Rn, not necessarily open, we mean that f extends to a C

1

function on some open neighborhood of U . Let � 2 Rn⇥m, U ✓ Rn, and v : U ! Rm. We
will examine conditions on � and v which allow us to make claims termed IC1, IC10, IC100,
IC2, IC20, IC200, and IC1�, about the function �v : U ! Rn (a further claim, termed IC1a,
will be discussed later). These claims are all about the possibility of �v or a related function
taking the same value at distinct points and can, roughly speaking, be termed “injectivity
claims.” Claims IC1, IC2, and IC1� will be relevant when v is defined and C

1 on Rn

�0

; IC10

and IC20 when v is defined and continuous on Rn

�0

, and C

1 on Rn

�0

; and IC100 and IC200 when

v is defined and C

1 on Rn

�0

.

IC100. If x, y 2 Rn

�0

, x ⇠=/ �

y, and �v(x) = �v(y), then x and y share a facet (Definition 2.3)
of Rn

�0

.

IC10. x 2 Rn

�0

, y 2 Rn

�0

, x ⇠=/ �

y imply �v(y) 6= �v(x).

IC1. x, y 2 Rn

�0

, x ⇠=/ �

y imply �v(y) 6= �v(x).
IC1�. x, y 2 Rn

�0

, x ⇠=/ �

y, and �v(y) = �v(x) imply that either det
�

(�Dv(x)) = 0 or
det

�

(�Dv(y)) = 0.
IC200. If x, y 2 Rn

�0

, x 6= y, and q : Rn

�0

! Rn is C

1 with Dq 2 D
n

on Rn

�0

, then
�v(x)� q(x) 6= �v(y)� q(y).

IC20. If x 2 Rn

�0

, y 2 Rn

�0

, x 6= y, and q : Rn

�0

! Rn is continuous, and C

1 on Rn

�0

with
Dq 2 D

n

on Rn

�0

, then �v(x)� q(x) 6= �v(y)� q(y).
IC2. If x, y 2 Rn

�0

, x 6= y, and q : Rn

�0

! Rn is C

1 with Dq 2 D
n

on Rn

�0

, then
�v(x)� q(x) 6= �v(y)� q(y).

Remark 3.1 (motivation for the di↵erent injectivity claims).In the literature on chemical re-
action systems, the most commonly used notion when discussing injectivity of CRNs is IC1.
Observe that if �v(x) fails condition IC1, this implies not that every coset of im� intersecting
Rn

�0

contains x, y 2 Rn

�0

, x ⇠=/ �

y such that �v(x) = �v(y), only that this occurs on some coset
of im�. IC1, IC2, and IC200 are true injectivity claims. IC10 and IC100 are partial extensions
of IC1 to the boundary. IC20 is a partial extension of IC2 to the boundary, while IC200 is a
complete extension of IC2 to the boundary. The variety of di↵erent closely related conditions
allows for a range of assumptions on reaction rates, on inflows and outflows (to be defined
later) and potentially allows claims about dynamical systems going beyond chemistry. In
particular, we leave open the possibilities that v fails to be defined on @Rn

�0

or is defined but
fails to be di↵erentiable on @Rn

�0

, particularly relevant to power-law functions discussed later.
After we have developed the appropriate notions, in section 4 we describe the implications of
the di↵erent conditions for the possibility of multiple equilibria in a CRN.

We next list some relationships between the claims. In particular, we note that IC10 and
IC20 are entirely natural extensions of IC1 and IC2, respectively, provided the function �v is
defined and continuous on Rn

�0

.
Lemma 3.2 (automatic relationships between the injectivity claims). The following implica-

tions between claims about a function f = �v are automatic: IC100 ) IC10 ) IC1, and
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IC200 ) IC20 ) IC2. Provided f is defined and C

1 on Rn

�0

, IC1 ) IC1� and IC2 ) IC1�.
Provided f is defined and continuous on Rn

�0

, IC1 ) IC10 and IC2 ) IC20. Thus we have
the following implications:

IC100 ) IC10 , IC1

IC200 ) IC20 , IC2

)
) IC1�

provided the assumptions on existence and di↵erentiability are fulfilled.

Proof. IC100 ) IC10 ) IC1 ) IC1� are immediate. IC200 ) IC20 ) IC2 are immediate;
IC2 ) IC1� can be proved using arguments involving the invariance of Brouwer degree. See
Lemma B1 in [7] for the details and [17, 46, 39] for closely related results. The final two
claims, namely, that IC1 ) IC10 and IC2 ) IC20 provided f is continuous on Rn

�0

, follow
from Lemma 3.3 below.

Lemma 3.3. Let V be a vector subspace of Rn, and fix c 2 Rn. Let U be a relatively open
subset of the a�ne set c+ V , with closure U . If f : U ! V is continuous on U and injective
on U , then x 2 U, y 2 U , x 6= y implies f(x) 6= f(y).

Proof. Suppose there exist x 2 U, y 2 U , x 6= y such that f(x) = f(y). As f is continuous
and injective on U , by the invariance of domain theorem (see, e.g., Propostion 7.4 in [21]) f
maps some open neighborhood N of x in U homeomorphically onto some open neighborhood
N

0 of f(x) in V . Choose (y
i

) ✓ U\N , y
i

! y; then continuity of f implies f(y
i

) ! f(y) =
f(x), and so for su�ciently large i, f(y

i

) 2 N

0, contradicting injectivity of f on U .
Remark 3.4 (the trivial case � = 0).If � = 0, then the claims are all satisfied: IC100, IC10,

IC1, and IC1� are trivial (since x

⇠=/ �

y is impossible), while IC200, IC2 are easy via the
fundamental theorem of calculus. IC20 follows from IC2 by Lemma 3.3. In the results below
we assume that � 6= 0.

Remark 3.5 (IC2 and fully open CRNs). IC2 (resp., IC200) can be interpreted as stating that
all functions of the form c + �v(·) � q(·) are injective on Rn

�0

(resp., Rn

�0

), where c 2 Rn is
a constant vector and q satisfies the assumptions of the claim. IC2, IC20, and IC200 are of
interest in the study of “fully open” CRNs (to be defined below), namely, for situations where
outflows of all species are to be expected (see Craciun and Feinberg [15, 16], for example).

Definition 3.6 (nondegenerate equilibria).Given 0 6= � 2 Rn⇥m, U ✓ Rn, and v : U ! Rm as
above, p 2 U is termed a nondegenerate equilibrium of �v if �v(p) = 0 and
det

�

(�Dv(p)) 6= 0. If det
�

(�Dv(p)) = 0, then p is degenerate [17, Definition 4].
Remark 3.7 (IC1�).A consequence of IC1� is that “�v forbids multiple positive nondegen-

erate equilibria,” namely, if x, y 2 Rn

�0

, x ⇠=/ �

y, and �v(y) = �v(x) = 0, then at least one of
x, y must be degenerate. We will rarely explicitly mention IC1�, but the reader should bear
in mind that IC2 ) IC1� for all functions of the kind treated in this paper.

Notation 3.8 (closure of a set of matrices).Given a set of real matrices V, V will refer to
the closure of V.

Definition 3.9 (stable/strongly stable under path integration).A set of matrices V is stable
under path integration if given any continuous � : [0, 1] ! V, the integral

R
1

0

�(s) ds 2 V. V
is strongly stable under path integration if given any continuous � : [0, 1] ! V with �(c) 2 V
for some c 2 [0, 1], then the integral

R
1

0

�(s) ds 2 V.
Remark 3.10 (matrix-patterns are strongly stable under path integration). Any set of

(real) matrices V defined by a set of linear equalities and inequalities on its entries is stable
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under path integration. For example, let � : [0, 1] ! V be continuous and let � be any
of =, , �, <, or >. If A is some matrix such that trace(At

�(s)) � 0 for each s 2 [0, 1],
then clearly trace(At

R
1

0

�(s) ds) =
R
1

0

trace(At

�(s)) ds) � 0. By similar reasoning, any set of
matrices defined by a set of linear equalities and strict inequalities, such as a matrix-pattern
(Definition 2.16), for example, is strongly stable under path integration.

For completeness observe the following.
Lemma 3.11. If ; 6= S ✓ Rm⇥n is convex, then it is stable under path integration.
Proof. The result is immediately true for any closed nonempty convex set in Rm⇥n: such

sets are the intersection of their supporting half-spaces (Theorem 2.7(ii) in [29], for example),
and stability under path integration then follows from Remark 3.10. Now consider arbitrary
convex S ✓ Rm⇥n and some continuous � : [0, 1] ! S. As �([0, 1]) is compact as the continuous
image of a compact set, so is its convex hull C, which is again the continuous image of a
compact set. Thus we can regard � as a path in the compact convex set C, and so

R
1

0

�(s) ds 2
C. But C ✓ S and the result follows.

The proof of the following theorem follows the argument of Gouzé [31], where a version of
the first Thomas conjecture is proved. The result of [31] can in turn be deduced as a corollary
of Theorem 1.

Theorem 1. Let 0 6= � 2 Rn⇥m, and let V ✓ Rm⇥n be such that � �r Vt

> 0 or � �r Vt

< 0.
Further, let V be strongly stable under path integration. Let U ◆ Rn

�0

and v : U ! Rm. Then
we have the following:

(1) Given any x, y 2 U , x ⇠=/ �

y, suppose v is defined and C

1 on the line segment [x, y]
joining x and y, with Dv(p) 2 V on [x, y], and Dv(p) 2 V for some p 2 [x, y]. Then
�v(x) 6= �v(y).

(2) Suppose v is C

1 on Rn

�0

, and Dv(x) 2 V for x 2 Rn

�0

. Then �v satisfies claim IC1.
If v is defined and continuous on Rn

�0

and C

1 on Rn

�0

, then �v satisfies claim IC10.

If v is defined and C

1 on Rn

�0

, then �v satisfies claim IC100.
Proof. Write y � x = �z. Then by the fundamental theorem of calculus,

�v(y)� �v(x) = �

Z
1

0

Dv(ty + (1� t)x) dt

�
�z = �Ṽ �z ,

where the final equality defines Ṽ . By the assumptions on [x, y] and V, Ṽ 2 V, and hence
� �r Ṽ t

> 0 or � �r Ṽ t

< 0. By Lemma 2.32, rank(�Ṽ �) = rank�. Thus since �z 6= 0,
�Ṽ �z 6= 0, and the first claim follows.

Suppose that Dv(x) 2 V for x 2 Rn

�0

. That �v satisfies IC1 follows immediately from
the first claim. Provided v is additionally defined and continuous on Rn

�0

, �v satisfies IC10

by Lemma 3.3. If v is defined and C

1 on Rn

�0

, then Dv(x) 2 V for x 2 Rn

�0

(since v is C

1);
that �v satisfies claim IC100 follows from the first claim by noting that any line segment in
Rn

�0

either lies entirely in some facet of Rn

�0

or intersects Rn

�0

thus containing p such that
Dv(p) 2 V.

In the important special case where V = Q(�t) we have the following.
Lemma 3.12. Let 0 6= � 2 Rn⇥m have rank r and be r-SSD. Let U ◆ Rn

�0

, and let
v : U ! Rm be C

1 on Rn

�0

, with Dv 2 Q(�t) on Rn

�0

. Then �v satisfies claim IC1. If v is
defined and continuous on Rn

�0

, and C

1 on Rn

�0

, then �v satisfies claim IC10. If v is defined

and C

1 on Rn

�0

, then �v satisfies claim IC100.
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Proof. As � is r-SSD, � �r Q(�) > 0 by Lemma 2.40. The result now follows from the
second part of Theorem 1 with V = Q(�t).

Lemma 3.13. Let � 2 Rn⇥m, U ◆ Rn

�0

, and let v : U ! Rm be C

1 on Rn

�0

. If ��Dv(x) is
a P

0

-matrix for each x 2 Rn

�0

, then �v satisfies claim IC2. Additionally, if v is defined and
continuous (resp., C1) on Rn

�0

, then �v satisfies claim IC20 (resp., IC200).
Proof. The claims follow from the injectivity of functions on rectangular domains with

P -matrix Jacobians (Gale and Nikaido [27]). In brief, the conditions of the lemma guarantee
that given q(·) as in IC2, the function ��v(·) + q(·) has P -matrix Jacobian matrix on Rn

�0

and is hence injective on Rn

�0

; consequently �v(·)� q(·) is also injective on Rn

�0

. See Banaji
and Craciun [7] for more details. This fact is also behind the proof by Soulé [46] of a version
of the first Thomas conjecture. Lemma 3.3 ensures that IC20 is satisfied provided v is defined
and continuous on Rn

�0

. If v is in fact C

1 on Rn

�0

, then ��Dv(x) is a P

0

-matrix for each
x 2 Rn

�0

(by continuity of the derivative and closure of the P

0

-matrices), and with q(·) as
in IC200, the function ��v(·) + q(·) has P -matrix Jacobian matrix on Rn

�0

, ensuring that �v
satisfies claim IC200.

3.2. Power-law functions. In Theorem 1, v was a general C1 function. We now examine
a special case, “power-law functions,” where Dv belongs to a set which is not in general convex
and not in general stable under path integration, while nevertheless we are able to make claims
about injectivity using techniques similar to those for general kinetics.

Definition 3.14 (exponential and logarithmic functions).Define the exponential and logarith-
mic functions exp: Rn ! Rn

�0

and ln : Rn

�0

! Rn componentwise in the natural way, i.e.,
(exp x)

i

= exp x

i

and (ln x)
i

= ln x

i

for each i. Clearly exp and ln are inverse functions and
are diagonal, namely, (exp x)

i

, (ln x)
i

depend on x

i

only.

Notation 3.15 (generalized monomials xM ).Given M 2 Rm⇥n, xM is a convenient abbrevi-

ation for the vector of generalized monomials w = (w
1

, . . . , w

m

)t with w

j

=
Q

n

i=1

x

Mji

i

(j =
1, . . . ,m). Note that if we regard x

M as a function on Rn

�0

, we can write
x

M = exp(M lnx).
Definition 3.16 (power-law function). Given � 2 Rn⇥m, M 2 Rm⇥n, and E 2 D

m

, we
refer to any function of the form �Ex

M as a power-law function and to M as the matrix of
exponents.

The following technical lemma is useful.
Lemma 3.17. Consider � 2 Rn⇥m, E 2 D

m

, and 0  M 2 Rm⇥n such that the nonzero
entries of M are all greater than or equal to 1. Then the function f = �Ex

M , with domain
Rn

�0

, can be extended to a C

1 function f̄ : Rn ! Rn.

Proof. The partial derivatives of f can clearly be extended continuously on @Rn

�0

. The
result now follows from a version of the Whitney extension theorem [51, Theorem 4].

Remark 3.18 (domain/di↵erentiability of power-law functions).Observe that the power-law
functions of Definition 3.16 are defined on Rn

�0

for arbitrary M . However, if M is nonnegative,
then clearly �Ex

M extends continuously to all of Rn

�0

. If the nonzero entries of M are greater

than or equal to 1, then �Ex

M can be extended to a C

1 function on Rn

�0

(Lemma 3.17). If

M is a nonnegative integer matrix, then �Ex

M is in fact a polynomial function on Rn.
Remark 3.19 (Jacobian matrix of a power-law function on Rn

�0

). By a quick computation,
the Jacobian matrix of the power-law function �Ew(x), where w(x) = exp(M lnx) (on Rn

�0

)
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is �D
Ew

MD

1/x

, where D

Ew

2 D
m

is defined by (D
Ew

)
jj

= E

jj

w

j

and D

1/x

2 D
n

is de-
fined by (D

1/x

)
jj

= 1/x
j

(see also [9] and Remark 3.1 in [18] for an equivalent formula-
tion). By Lemma A.1, the reduced determinant det

�

(�D
Ew

MD

1/x

) is nonzero if and only if
rank(�D

Ew

MD

1/x

�) = rank �. It is easy to see that for fixed � and M , the set of all possible
Jacobian matrices of power-law functions of the form �Eexp(M lnx) (obtained by varying x

over Rn

�0

and E over D
m

) is precisely equal to {�V : V 2 Q0(M)} (see also [9]).
Theorem 2. Let 0 6= � 2 Rn⇥m have rank r and M 2 Rm⇥n. The following statements are

equivalent:
(i) � �r �M

t

> 0 or � �r �M

t

< 0.
(ii) rank (�D

1

MD

2

�) = rank� for all D
1

2 D
m

and D

2

2 D
n

(Q0(M) is �-nonsingular).
(iii) For each E 2 D

m

the function �Eexp(M lnx) satisfies claim IC1.
Proof. Define w(x) = exp(M lnx). The notation is as in Remark 3.19.
(i) , (ii) follows immediately from Lemma 2.36 since Q0(M) is �-nonsingular if and only

if Q0(�M) is �-nonsingular.
To prove (ii) , (iii), we first show that given x, y 2 Rn

�0

, there exist D 2 D
n

and D̃ 2 D
m

,
dependent on x and y, and such that

(3.1) w(y)� w(x) = D̃MD(y � x) .

Choose and fix arbitrary x, y 2 Rn

�0

, and define �x = y � x. Note that x + t�x 2 Rn

�0

for
t 2 [0, 1] by convexity of Rn

�0

. Since ln(w(x)) = M lnx, the Jacobian matrix of ln(w(x)) is
MD

1/x

. By the fundamental theorem of calculus,

ln(w(y)) = ln(w(x)) +

Z
1

0

MD

1/(x+t�x)

�x dt = ln(w(x)) +MD�x ,

where D

def
=

R
1

0

D

1/(x+t�x)

dt 2 D
n

. Consequently,

w(y)� w(x) = exp(ln(w(y)))� w(x)

= exp(ln(w(x)) +MD�x)� w(x)

= w(x) � (exp(MD�x)� 1) ,

where 1 2 Rm is a vector of ones. As w(x) is positive, and exp(MD�x)�1 is in the qualitative
class of MD�x, we can define D̃ 2 D

m

via w(y)� w(x) = D̃MD�x.
(ii) ) (iii) Suppose there exist x, y 2 Rn

�0

, x ⇠=/ �

y, and E 2 D
m

such that �Ew(y) =
�Ew(x). Defining D and D̃ as above and applying (3.1) gives

0 = �E(w(y)� w(x)) = �ED̃MD(y � x) .

Then defining D

1

def
= ED̃ 2 D

m

, D
2

def
= D 2 D

n

, we see that y � x is a nonzero vector in
im� \ ker(�D

1

MD

2

), implying that rank (�D
1

MD

2

�) < rank�.
(iii) ) (ii) Suppose there exist D

1

2 D
m

, D

2

2 D
n

such that rank (�D
1

MD

2

�) < rank�,
and choose 0 6= �x 2 im� \ ker(�D

1

MD

2

). Define x, y by

x

i

=

(
�xi

[exp(D2�x)]i�1

(�x

i

6= 0),

1/(D
2

)
ii

otherwise,
y

i

= x

i

+�x

i

= [exp(D
2

�x)]
i

x

i

.
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Clearly x and y are positive vectors. Define D 2 D
n

and D̃ 2 D
m

(dependent on x, y) as
above. Computation quickly confirms that D = D

2

. Set E = D

1

D̃

�1 2 D
m

. Then applying
(3.1) gives

�E(w(y)� w(x)) = �ED̃MD

2

(y � x) = �D
1

MD

2

(y � x) = 0 .

This completes the proof.
Remark 3.20. By equivalence (i) , (iii) of Theorem 2, observe that � �r �M

t 6> 0 and
��r�M

t 6< 0 occur if and only if there exists E 2 D
m

such that �Eexp(M lnx) fails condition
IC1. As the condition � �r �M

t 6> 0 and � �r �M

t 6< 0 is invariant under positive scaling of
M , an immediate consequence is that given any ↵ > 0, �Eexp(M lnx) fails condition IC1 for
some E 2 D

m

if and only if �E0exp(↵M lnx) fails condition IC1 for some E

0 2 D
m

.
Remark 3.21. It may be helpful to restate the findings of Theorem 2 in words. Given

0 6= � 2 Rn⇥m and M 2 Rm⇥n the following are equivalent:
(1) � is either r-strongly compatible or r-strongly negatively compatible with �M

t (where
r = rank�). Later, when we consider � to be the stoichiometric matrix of a CRN, we
will say that the CRN is “M -concordant.”

(2) The semiclass Q0(M) is �-nonsingular, or equivalently the reduced determinant of
every power-law function �Eexp(M lnx) is nonvanishing on Rn

�0

.
(3) For each c 2 Rn

�0

, all power-law functions �Eexp(M lnx) are injective on the set
{x 2 Rn

�0

: x ⇠�

c}. Later, when discussing CRNs, we will term such a set a “positive
stoichiometry class.”

Remark 3.22 (extensions of Theorem 2).While Theorem 2 is apparently about power-law
functions, the main conclusion is easily seen to apply to a much wider class of functions.
Replacing exp(·) and ln(·) by any pair of strictly increasing diagonal C1-di↵eomorphisms ✓(·)
and �(·), inverse to each other, and with domains/codomains such that w(·) = ✓(M�(·)) is
well defined and preserves Rn

�0

, leads nevertheless to the conclusion of (3.1), namely, that
✓(M�(y))� ✓(M�(x)) = D̃MD(y � x) for x, y 2 Rn

�0

.
Remark 3.23 (results related to Theorem 2).While the proofs here appear formally di↵er-

ent, the fundamental ideas for the proof of Theorem 2 can be traced back to Craciun and
Feinberg [15]. The equivalence of (i) and (iii) in Theorem 2 is the object of Proposition
8.4 in Wiuf and Feliu’s paper [50] (see also [26, Corollary 7.6]). The statement “Q0(M) is
�-nonsingular” can be rephrased as follows: “M cannot map any nonzero vector from any
qualitative class intersecting im� into any qualitative class intersecting ker�,” or in more
abbreviated notation,

M(Q(im�)\{0}) \Q(ker�) = ; .

This formulation makes the connection between Theorem 2 and Theorem 1.4 in Müller et al.
[37]. Determinant conditions for injectivity in the spirit of Theorem 2(i) can be inferred from
Craciun and Feinberg [18]. Related determinant conditions may be obtained by exploiting
the nonvanishing of the reduced determinant of ��M (see Lemma 2.32), and by an explicit
choice of basis of im�; results along these lines are given in Feliu and Wiuf [26, 50] and
Gnacadja [30].

Remark 3.24 (condition IC1a). Provided M � 0, w(x) = x

M is a continuous function on
Rn

�0

, and Lemma 3.3 allows us to extend the final statement of Theorem 2 to “for each E 2 D
m

the function �v(x) = �Ew(x) satisfies claim IC10.” In fact following Proposition 5.2 in Feliu
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and Wiuf [26], we can do a little better: if M � 0, the final statement of Theorem 2 can in
fact be replaced with, “For each E 2 D

m

the function �v(x) = �Ew(x) satisfies claim IC1a,”
where IC1a is defined as follows:

IC1a. x, y 2 Rn

�0

, x ⇠=/ �

y, and v(x) + v(y) � 0, imply �v(y) 6= �v(x).
Observe that v(x) + v(y) � 0 if and only if w(x) + w(y) � 0, which is satisfied provided
at least one of x or y lies in Rn

�0

. Thus IC1a ) IC10 ) IC1. To see that IC1a can then
replace IC1 in the final statement of Theorem 2, we need only confirm that (3.1) remains true
wherever w(x) + w(y) � 0; the remaining arguments follow through without alteration. Fix
some x, y 2 Rn

�0

such that w

j

(x) + w

j

(y) > 0 for each j = 1, . . . ,m. Define 1

x

by (1
x

)
i

= 1
if x

i

= 0 and (1
x

)
i

= 0 otherwise. Define 1

y

similarly, and given � > 0, define x

�

= x + �1

x

,
y

�

= y + �1

y

. For any � > 0, x
�

, y

�

2 Rn

�0

and so, by (3.1), w(y
�

)� w(x
�

) = D̃MD(y
�

� x

�

)
for some D 2 D

n

and D̃ 2 D
m

(dependent on �).
(i) For small enough �, it is clear that y

�

� x

�

2 Q(y � x), i.e., y
�

� x

�

= D

0(y � x) for
some D

0 2 D
n

(dependent on �).
(ii) For small enough �, w(y

�

)�w(x
�

) 2 Q(w(y)�w(x)), i.e., w(y)�w(x) = D

00(w(y
�

)�
w(x

�

)) for some D

00 2 D
m

(dependent on �): (a) If w
j

(y)� w

j

(x) 6= 0, then for small enough
�, (w

j

(y
�

) � w

j

(x
�

))(w
j

(y) � w

j

(x)) > 0 by continuity of w. (b) If w
j

(x) = w

j

(y) > 0, then
x

i

, y

i

> 0 for each i such that M

ji

> 0 and hence (for arbitrary �) w

j

(x
�

) = w

j

(x) and
w

j

(y
�

) = w

j

(y). (c) Finally, w
j

(x) = w

j

(y) = 0 is ruled out by assumption.
Choosing � > 0 su�ciently small, (i) and (ii) give

w(y)� w(x) = D

00(w(y
�

)� w(x
�

)) = D

00
D̃MD(y

�

� x

�

) = D

00
D̃MDD

0(y � x).

As D00
D̃ 2 D

m

and DD

0 2 D
n

, (3.1) holds.
Lemma 3.25. Let � 2 Rn⇥m, M 2 Rm⇥n with M

ij

= 0 or M

ij

� 1 for all i, j (resp.,
0  M 2 Rm⇥n, resp., M 2 Rm⇥n), and suppose that � m �M

t. Then �Ex

M satisfies
conditions IC200 (resp., IC20, resp., IC2), for each E 2 D

m

.
Proof. Fix E 2 D

m

, and define the map w(x) = x

M with codomain Rm. In the case that
M 2 Rm⇥n with M

ij

= 0 or M

ij

� 1 for each i, j, w is a C

1 map on Rn

�0

by Lemma 3.17;

if 0  M 2 Rm⇥n, w is continuous on Rn

�0

, and C

1 on Rn

�0

; otherwise w is C

1 on Rn

�0

.
Let v = Ew. For x 2 Rn

�0

the Jacobian matrix �Dv(x) takes the form �M 0, where M

0 2
Q0(M) (Remark 3.19). From Lemma 2.30, � m �M

t implies � m Q0(�M

t) and hence, by
Lemma 2.29, ��M 0 is a P

0

-matrix for all M 0 2 Q0(M). The result in each case now follows
from Lemma 3.13.

Remark 3.26. Clearly, we could replace the condition � m �M

t by � m M

t in Lemma 3.25;
however, � m �M

t is the situation arising in the study of CRNs.

4. Injectivity results for CRNs. We apply the results of the previous sections to CRNs
treating both general kinetics and power-law/mass action kinetics (all to be formally defined
below). Throughout this section we consider a system of m chemical reactions on n species
and generally choose and fix an ordering on species and reactions. We emphasize that no
results are dependent on the choice of orderings. Reactions may or may not be reversible, but
each reaction must be assigned a “left-hand side” and a “right-hand side.” Where a reaction is
irreversible we assume that reactants occur on the left and products on the right, namely, the
reaction proceeds from left to right. These conventions are merely to simplify the exposition.
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Definition 4.1 (stoichiometric matrix, left stoichiometric matrix, right stoichiometric ma-
trix). Given a system of chemical reactions, define the left stoichiometric matrix 0  �

l

2
Rn⇥m and right stoichiometric matrix 0  �

r

2 Rn⇥m as follows: (�
l

)
ij

is the number of
molecules of species i occurring on the left-hand side of reaction j; (�

r

)
ij

is the number of
molecules of species i occurring on the right-hand side of reaction j. Define the stoichiometric
matrix of the network as � = �

r

� �
l

. Any pair out of �, �
l

, and �
r

fully specify a CRN.

Remark 4.2. Note that the stoichiometric matrix is not uniquely defined, depending on the
choice of orderings on the species and reactions and (for reversible reactions) on the choice of
left- and right-hand sides for each reaction; when referring to the stoichiometric matrix of a
system without further comment it will be assumed that these choices have been made and
fixed.

Definition 4.3 (irreversible stoichiometric matrix).Given an arbitrary CRN we may consider
any reversible reaction as a pair of irreversible ones with reactants on the left and products
on the right. Choosing and fixing any convenient ordering for these irreversible reactions
gives a new CRN (formally speaking) whose stoichiometric matrix will be referred to as the
irreversible stoichiometric matrix of the CRN. Notationally, where we need to refer to both
the original stoichiometric matrix � of a CRN and its irreversible stoichiometric matrix, we
write � for the latter (although where there is no need for both, we generally write an arbitrary
stoichiometric matrix as �).

Definition 4.4 (complexes, the complex digraph, and weak reversibility). For a given
CRN, the columns of �

l

and �
r

are a set of nonnegative vectors termed the complexes of
the network [34]. We allow, as a special case, the empty complex corresponding to the zero
vector and denoted ;. Regarding these complexes as the vertices of a digraph, each irreversible
reaction is now representable as an arc, converting a source complex into a product com-
plex. Note that this digraph, which we term the complex digraph of the CRN, is quite distinct
from its DSR graph whose vertices are individual species or reactions. A digraph is weakly
reversible if each of its connected components is strongly connected or, equivalently, each arc
figures in a cycle. A CRN is defined to be weakly reversible if its complex digraph is weakly
reversible. Clearly, reversible CRNs are special cases of weakly reversible ones. Gunawardena
[32] provides a number of equivalent characterisations of weak reversibility for CRNs.

A system of chemical reactions with stoichiometric matrix � 2 Rn⇥m gives rise to the
ODE

(4.1) ẋ = �v(x) .

Here x 2 Rn

�0

, and v describes the rates of reaction or “kinetics” of the system. We now
consider di↵erent choices of kinetics which will play an important part in the results to follow.

Definition 4.5 (general kinetics, weak general kinetics, positive general kinetics). Given a
CRN described by (4.1), we define some classes of kinetics as follows:

(1) General kinetics. (i) v is defined and C

1 on Rn

�0

; (ii) v satisfies Assumption K
described in Appendix B.

(2) Weak general kinetics. (i) v is defined and C

1 on Rn

�0

and continuous on Rn

�0

; (ii) we
ignore any parts of Assumption K that assume di↵erentiability on @Rn

�0

(the details
are in Appendix B).
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(3) Positive general kinetics. This is the restriction of general kinetics to the interior of
the nonnegative orthant: (i) v is defined and C

1 on Rn

�0

; (ii) we ignore all elements
of Assumption K which apply only on @Rn

�0

. (The considerably reduced assumptions
in this case are termed Assumption K

o

in Appendix B.)
Remark 4.6 (Assumption K).Assumption K is a weak and physically reasonable assumption

which can be summarized very roughly as “reactions proceed if and only if all reactants
are present, reaction rates are nondecreasing with reaction concentration, and reaction rates
increase strictly with reactant concentration if and only if all reactants are present.” General
kinetics implies that the nonnegative orthant is forward invariant under the local semiflow
generated by (4.1) (Lemma B.1 in Appendix B). In the case of irreversible reactions, it also
implies the assumptions termed K.1 and K.2 in Feinberg [24]. Early papers treating CRNs with
minimal kinetic assumptions include Angeli, De Leenheer, and Sontag [3], Banaji, Donnell,
and Baigent [9], and Craciun, Helton, and Williams [19].

Definition 4.7 (rate pattern). Given a CRN R with some fixed left/right stoichiometric ma-
trices, under the assumption of positive general kinetics (namely, Assumption K

o

in Ap-
pendix B), as x explores Rn

�0

, the derivative Dv(x) of v(x) in (4.1) may vary within a set
termed the rate pattern of the CRN. More precisely, the rate pattern is the set of all possible
Dv(x) for all functions satisfying Assumption K

o

associated with R. The rate pattern is a
matrix-pattern (Definition 2.16) which is, in fact, a single qualitative class if and only if the
CRN includes no reversible reaction with some species occurring on both sides of the reaction.
In the case of a CRN with irreversible stoichiometric matrix � and corresponding left stoi-
chiometric matrix �

l

, the reader may confirm that the rate pattern is just Q(�t

l

). In the case
of a CRN with some reversible reactions, the rate pattern is given explicitly in Lemma 4.21
below.

Definition 4.8 (power-law kinetics, physical power-law kinetics, power-law general kinetics,
mass action kinetics, rate constants). Let �

l

,�
r

2 Zn⇥m be the left and right stoichiometric
matrices of an irreversible system of reactions, now assumed to be nonnegative integer ma-
trices. Let � = �

r

� �
l

. Given M 2 Rn⇥m, and E 2 D
m

, we refer to (4.1) with v = Ex

M

t

as a CRN with power-law kinetics. Note that in general v is only defined on Rn

�0

. It is
convenient to abbreviate CRN with power-law kinetics and matrix of exponents M

t to CRN
with M -power-law kinetics. If M 2 Q(�

l

), we say that the system is a CRN with physical
power-law kinetics. In this case, as M � 0, �Ex

M

t
is defined and continuous on Rn

�0

, and

C

1 on Rn

�0

. It is sometimes useful to consider power-law general kinetics, the intersection of
power-law kinetics and general kinetics: in particular, if M 2 Q(�

l

) and all nonzero entries in
M are greater than or equal to 1, �Ex

M

t
is defined and C

1 on Rn

�0

(Lemma 3.17) and hence
we get an instance of power-law general kinetics. The special case M = �

l

gives a CRN with
mass action kinetics. In this case �Ex

M

t
is a polynomial vector field on Rn. In all cases, the

diagonal entries of E are termed the rate constants for the reactions. Note that rate constants
are always assumed to be positive.

Remark 4.9 (relationships among the di↵erent classes of kinetics). Clearly every CRN
with general kinetics (GK) is a CRN with weak general kinetics (WGK), which is in turn a
CRN with positive general kinetics (GK

+

). A CRN with physical power-law kinetics (PPLK)
is a CRN with weak general kinetics (WGK) (see Remark 3.19) and also a CRN with power-
law kinetics (PLK). A CRN with power-law general kinetics (PLGK) is by definition both a
CRN with physical power-law kinetics and a CRN with general kinetics. Mass action kinetics
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(MAK), giving rise to polynomial vector fields, is a special case of power-law general kinetics.
These inclusions (all strict) are illustrated graphically.

MAK ✓ PLGK ✓
GK ✓

✓PPLK✓
WGK

✓PLK

✓GK
+

Note that a given CRN with mass action kinetics—or indeed any fixed power-law kinetics—is
a family of vector fields parameterized by the vector of rate constants, a much smaller family
than the whole class of general kinetics. As we will see, a CRN with mass action kinetics, or
some other fixed physical power-law kinetics, may be injective where the same CRN may fail
to be injective with general kinetics.

Definition 4.10 (stoichiometric subspace, stoichiometry class, nontrivial stoichiometry class,
positive stoichiometry class). Given a CRN with stoichiometric matrix � 2 Rn⇥m, im� ✓ Rn

is termed the stoichiometric subspace of the network. Given p 2 Rn

�0

, the set

S

p

= {y 2 Rn

�0

: y ⇠�

p}

is the stoichiometry class of p. A stoichiometry class which intersects Rn

�0

is nontrivial. The
intersection of a nontrivial stoichiometry class with Rn

�0

is a positive stoichiometry class.
Since Assumption K ensures forward invariance of Rn

�0

(Lemma B.1 in Appendix B) and
cosets of im� are also forward invariant for (4.1), stoichiometry classes are forward invariant
sets for (4.1) under the assumption of general kinetics.

Definition 4.11 (fully open extension of a CRN).Consider the system ẋ = �v(x) in (4.1).
Let c 2 Rn

�0

, U be the domain of v, and q : U ! Rn

�0

have the same di↵erentiability as v with
derivative Dq(x) 2 D

n

where di↵erentiable. The system

(4.2) ẋ = �v(x) + c� q(x)

will be termed the fully open extension of (4.1) (also referred to as the system with inflows
and outflows). If a claim is made for a fully open system without qualification, this means
that it holds for all allowed rates v and all c and q as above. The term fully open extension
makes sense as (4.1) is precisely the ODE obtained by adding to the CRN inflow and outflow
reactions for each species (namely, reactions of the form ; ⌦ A

i

for each species A
i

), with the
assumption of general kinetics, weak general kinetics, or general kinetics on Rn

�0

depending
on the assumptions about domain and di↵erentiability of v. Note, however, that if we refer to
the fully open extension of a CRN with, say, mass action kinetics, to maximize generality we
do not necessarily assume that the inflow and outflow reactions have mass action kinetics.

Remark 4.12 (injectivity of CRNs and of their fully open extensions).We will see below sev-
eral related but distinct results about injectivity of CRNs which are not necessarily fully open
on the one hand and about injectivity of fully open CRNs on the other. A natural question is
how these claims relate to each other. This question has been discussed in [17, 7, 18, 6, 42].
Roughly speaking, conditions which imply injectivity of the fully open extension of a CRN
also imply injectivity of the original CRN, if and only if certain additional “nondegeneracy”
conditions are met. These nondegeneracy conditions take slightly di↵erent forms depending
on the kinetics. The details are in Corollary 4.28 and Remark 4.30 below for general kinetics
and Corollary 4.42 and Remark 4.43 below for power-law kinetics.
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4.1. Injectivity of arbitrary CRNs without kinetic assumptions. We examine the func-
tions defined by (4.1) and (4.2). Note that a system of the form (4.1) or (4.2) with some choice
of kinetics defines a set of allowed vector fields; here a CRN with a choice of kinetics is said
to be injective on some set if each allowed vector field is injective on this set. At this stage it
may prove helpful to list the implications of some of the injectivity conditions defined earlier
for the possibility of multiple equilibria. We refer to equilibria on the same stoichiometry
class as “compatible.” Note that the list below states implications, not definitions, of the
conditions:

IC100. If there are two compatible equilibria, they must both lie on @Rn

�0

, and further must
both lie on the same facet of Rn

�0

. Any positive equilibrium is the sole equilibrium
on its class.

IC10. If there are two compatible equilibria, they must both lie on @Rn

�0

. Any positive
equilibrium is the sole equilibrium on its class. As IC1a ) IC10, the same holds for
IC1a.

IC1. If there are two compatible equilibria, at least one must be on @Rn

�0

.
IC1�. Two positive, compatible equilibria cannot both be nondegenerate.
IC200. The fully open system has no more than one equilibrium on Rn

�0

.
IC20. If the fully open system has two equilibria, they must both lie on @Rn

�0

. Any positive
equilibrium of the fully open system is the sole equilibrium of the system.

IC2. The fully open system can have no more than one positive equilibrium.
Several useful results are gathered in the following lemma: in order to highlight the purely

matrix-theoretic aspect of many of the results, we do not assume any class of kinetics for
the time being but only assume that the derivatives of reaction rates on Rn

�0

belong to some
matrix-pattern. However, application of the lemma to CRNs with general kinetics will be
immediate by Remark 4.14 below.

Lemma 4.13. Let the stoichiometric matrix 0 6= � 2 Rn⇥m of a CRN have rank r, and
consider the vector field �v(x) defined by (4.1). Let v be defined and C

1 on Rn

�0

. Let Dv 2 V
on Rn

�0

, where V ✓ Rm⇥n is a matrix-pattern (Definition 4.7). Define the following conditions:

(1) The DSR graph G

�,�V

satisfies Condition (*) for each V 2 V.
(2) � m �Vt.
(3) � �r �V

t 6= 0 for some V 2 V.
(4) � �r �Vt

> 0.
(5) � �r �Vt

< 0.
(6) �v satisfies claim IC1, namely, it is injective on the relative interior of each stoichiom-

etry class.
(7) �v satisfies claim IC10, namely, �v can take the same value at distinct points on a

stoichiometry class only if they are both on @Rn

�0

.
(8) �v satisfies claim IC100, namely, �v can take the same value at distinct points on a

stoichiometry class only if they are both on @Rn

�0

and in fact belong to the same facet
of Rn

�0

.
(9) �v satisfies claim IC2, namely, the fully open system is injective on Rn

�0

.
(10) �v satisfies claim IC20, namely, the fully open system can take the same value at two

distinct points of Rn

�0

only if they are both on @Rn

�0

.
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(11) �v satisfies claim IC200, namely, the fully open system is injective on Rn

�0

.
(12) �v satisfies claim IC1�, namely, the system can take the same value at two distinct

compatible points of Rn

�0

only if at least one is degenerate.
Then (1) ) (2) ) (9) ) (12), (4) ) (6), (5) ) (6), and [(2) and (3)] ) (4). If v is
additionally defined and continuous on Rn

�0

, then (9) ) (10) and (6) ) (7). If v is defined

and C

1 on Rn

�0

, then in addition (2) ) (11), (4) ) (8), and (5) ) (8). These conclusions
are summarized graphically as follows:

IC20 IC10
+ +
IC2 )IC1� IC1

+ +
(2) (4)(1) )

*
+

=)
with (3)

(5)

* *
IC200 IC100

(if v is defined and

continuous on Rn

�0

)

(if v is defined

and C

1 on Rn

�0

)

Proof. Observe first that being a matrix-pattern V is strongly stable under path integration
(Remark 3.10). (1) ) (2) This is the claim of Lemma 2.37. (2) ) (9) By Lemma 2.29, if
� m �Vt, then ��V is a P

0

-matrix for each V 2 V , the claim now follows from Lemma 3.13.
(9) ) (12) follows from Lemma 3.2. (4) ) (6) and (5) ) (6) follow from Theorem 1. [(2)
and (3)] ) (4), by definition and Corollary 2.35 (see also Remark 2.38).

If v is defined and C

1 on Rn

�0

, then Dv 2 V on Rn

�0

. (2) ) (11) By Lemma 2.29, if
� m �V

t for each V 2 V , then ��V is a P

0

-matrix for each V 2 V , and by closure for each
V 2 V; the claim now follows from Lemma 3.13. (4) ) (8) That ��v satisfies claim IC100

follows from the second part of Theorem 1; immediately the same holds for �v. (5) ) (8)
follows similarly from Theorem 1.

If v is defined and continuous on Rn

�0

, then the conclusions (9) ) (10) and (6) ) (7)
follow from Lemma 3.3.

Remark 4.14 (implications of Lemma 4.13 for general kinetics). Note that only the implica-
tions (4) ) (6), (5) ) (6), (4) ) (8), (5) ) (8), and [(2) and (3)] ) (4) of Lemma 4.13
require V to be a matrix pattern: all others follow for arbitrary V. Observe also that the
lemma immediately translates into statements about CRNs with positive general kinetics,
weak general kinetics, and general kinetics if we fix the stoichiometric matrix � and set V to
be the associated rate pattern (Definition 4.7).

Remark 4.15. The diagram accompanying Lemma 4.13 divides naturally into the left-hand
side, concerned with conclusions about a fully open CRN (IC2, IC20, IC200), and the right-
hand side, concerned with conclusions which apply on each stoichiometry class (IC1, IC10,
IC100, IC1�). The implication (9) ) (12) (namely, IC2 ) IC1�) provides an automatic link.
More important is the implication [(2) and (3)] ) (4) (namely, � m �V t and ¬(� �r �Vt = 0)
) � �r �Vt

> 0) which provides the “bridge” between questions of injectivity of a CRN
with general kinetics and its fully open extension, discussed further in Corollary 4.28 and
Remark 4.30 below.

4.2. Concordance and accordance. We will provide several equivalent definitions, and a
variety of results, associated with two important concepts: “concordance” and “accordance.”
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Concordance and related notions are associated with injectivity of CRNs on stoichiometry
classes, while accordance and related notions are associated with injectivity of fully open
CRNs. The term “concordance” originates in Shinar and Feinberg [41], although elements
of the notion appear in various earlier papers, including Banaji and Craciun [7] and Banaji
[6], and the form in which we present concordance is rather di↵erent from [41]. The term
“accordance” is used for the first time here, but note that the concept figures heavily in
Banaji, Donnell, and Baigent [9] and Banaji and Craciun [7] and other related work of Banaji.
Apart from these references, results connected closely to both concordance and accordance
have appeared implicitly before in the literature, as detailed in remarks below. We begin
with some general and abstract definitions, followed by various more computationally useful
formulations.

Definition 4.16 (concordance, discordance, structural discordance, accordance). A CRN R is

(1) concordant i↵ for all positive general kinetics, the reduced determinant of R is nonzero,
namely, all Jacobian matrices are homeomorphisms on the stoichiometric subspace;

(2) discordant if it is not concordant;
(3) structurally discordant i↵ for all positive general kinetics, the reduced determinant of

R is zero, namely, all Jacobian matrices, restricted to the stoichiometric subspace, are
singular;

(4) accordant i↵ for all positive general kinetics, the negative of the Jacobian matrix of R
is a P

0

-matrix. Equivalently, all Jacobian matrices of the fully open system (4.2) with
positive general kinetics are nonsingular (Remark 2.11).

We will shortly see that these definitions make sense, namely, they are true properties of
a CRN, and independent of the choice of ordering on species and reactions, and of whether
we treat reversible reactions as single objects or as pairs of irreversible reactions. In partic-
ular, if we make some choices and fix the stoichiometric matrix �, so that Assumption K

o

(Appendix B) gives us the rate pattern V (Definition 4.7), we have that R is

(1) concordant i↵ det
�

�V 6= 0 for all V 2 V,
(2) discordant i↵ det

�

�V = 0 for some V 2 V,
(3) structurally discordant i↵ det

�

�V = 0 for all V 2 V,
(4) accordant i↵ ��V is a P

0

-matrix for all V 2 V, namely, det(��V +D) > 0 for all
V 2 V and all D 2 D

n

.

Depending on the task in hand, di↵erent, equivalent, characterizations of concordance,
accordance, etc., prove useful. For example, the best characterization from the point of view
of computing whether a given CRN is concordant may not be the best from the point of view
of proving additional theoretical results.

Remark 4.17 (accordance as concordance of the fully open extension of a network). The no-
tion of accordance and some of its implications are developed in section 3.3 of [7], although
the term is not used. The characterization of accordance in Definition 4.16 as nonsingularity
of all Jacobian matrices of the fully open extension of a CRN under the assumption of positive
general kinetics makes it clear that a CRN is accordant if and only if its fully open extension
is concordant. Conversely, concordance is the natural generalization of accordance to CRNs
which are not necessarily fully open.

The following notions are all so closely related that we present them in a group.
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Definition 4.18 (M -concordant, semiconcordant, M -normal, normal, M -accordant,
semiaccordant). Consider a CRN R with irreversible stoichiometric matrix � 2 Rn⇥m having
rank r, and left stoichiometric matrix �

l

. Let M 2 Rn⇥m be arbitrary. R is:
(1) M -concordant if � �r M > 0, or � �r M < 0, or equivalently, by Lemma 2.36, Q0(M t)

is �-nonsingular;
(2) semiconcordant if it is �

l

-concordant, or equivalently Q0(�t

l

) is �-nonsingular;
(3) M -normal if � �r M 6= 0, or equivalently, by Lemma 2.36, Q0(M t) is not �-singular;
(4) normal if it is �

l

-normal, or equivalently Q0(�t

l

) is not �-singular (see also [18]);
(5) M -accordant if � m �M , or equivalently, by Lemma 2.29, ��V is a P

0

-matrix for all
V 2 Q0(M t);

(6) semiaccordant if it is �
l

-accordant, or equivalently, by Lemma 2.29, ��V is a P

0

-
matrix for all V 2 Q0(�t

l

)).
Lemma 4.19 (concordance and discordance in terms of minors for an irreversible CRN). Con-

sider a CRN R with irreversible stoichiometric matrix � 2 Rn⇥m having rank r, and left
stoichiometric matrix �

l

. Then R is
(1) concordant i↵ it is M -concordant for each M 2 Q(�

l

), namely, Q(�t

l

) is �-non-
singular, equivalently, � �r Q(�

l

) > 0 or � �r Q(�
l

) < 0;
(2) discordant i↵ there exists M 2 Q(�

l

) such that � �r M 6> 0; and � �r M 6< 0.
(3) structurally discordant i↵ ��rQ(�

l

) = 0, namely, Q(�t

l

) is �-singular, or equivalently,
it is not M -normal for any M 2 Q(�

l

);
(4) accordant i↵ � m Q(��

l

), (or equivalently, ��V is a P

0

-matrix for all V 2 Q(�t

l

));
Proof. We need only note that the assumption of positive general kinetics implies that R

has rate pattern Q(�t

l

). The claims now follow immediately from Definitions 4.16 and 4.18,
noting that the characterization of discordance follows from Lemma 2.26(3)(iii), and � m
Q(��

l

) is equivalent to ��V is a P

0

-matrix for all V 2 Q(�t

l

) by Lemma 2.29.
Remark 4.20 (concordance as defined by Shinar and Feinberg in [41]). It can be

confirmed that for an irreversible CRN the following are equivalent:
• The network is concordant in the sense of Shinar and Feinberg [41].
• The network is concordant as defined here.

Shinar and Feinberg’s definition of concordance is presented in [41], and this equivalence is
shown in Appendix C. Shinar and Feinberg showed that a network is concordant if and only if
it is injective in a sense similar to IC10 for any weakly monotonic kinetics [41, Definition 4.5],
thus obtaining a result related to some of the claims in Theorem 3 below. Further details are
given below.

The following lemma provides computational conditions for concordance and accordance
of a CRN in full generality and confirms that these are consistent with Lemma 4.19 for an irre-
versible CRN. Together with Remark 2.25, this tells us that to confirm concordance/accordance
of CRNs we can ignore both species and reaction ordering and also choose to treat reversible
reactions as irreversible pairs, or not, as we wish. The freedom this latter choice a↵ords us
may lead to significant computational simplification.

Lemma 4.21 (concordance and accordance in terms of minors for a general CRN). Suppose a
CRN R has stoichiometric matrix � = [�1|�2] with rank r, left stoichiometric matrix �

l

=
[�1

l

|�2

l

], and right stoichiometric matrix �
r

= [�1

r

|�2

r

], where reactions corresponding to �1

are reversible and those corresponding to �2 are irreversible. Then with V = [Q(�1

l

) �
Q(�1

r

)|Q(�2

l

)], R is
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(1) concordant i↵ � �r V > 0 or � �r V < 0,
(2) discordant i↵ there exists V 2 V such that � �r V 6> 0 and � �r V 6< 0,
(3) structurally discordant i↵ � �r V = 0,
(4) accordant if f � m �V.

Moreover these characterisations are consistent with those in Lemma 4.19: if R is the corre-
sponding irreversible CRN, then R is concordant (resp., structurally discordant, resp., accor-
dant) if and only if R is concordant (resp., structurally discordant, resp., accordant) in the
sense of Lemma 4.19.

Proof. Assumption K
o

(Appendix B) implies that the rate pattern of R is precisely the
matrix-pattern V = [Q(�1

l

) � Q(�1

r

)|Q(�2

l

)]. The characterizations now follow from the def-
initions in Definition 4.16, noting that (2) is the negation of (1) via Lemma 2.26(3)(iii). To
directly confirm consistency with Lemma 4.19, without loss of generality let R have stoi-
chiometric matrix � = [�1|�2|��1] and left stoichiometric matrix �

l

= [�1

l

|�2

l

|�1

r

]. Clearly
rank� = rank�. Then by Lemma 2.26, claim (7),

� �r Q(�
l

) > 0 (< 0, = 0) , � �r [Q(�1

l

)�Q(�1

r

)|Q(�2

l

)] > 0 (< 0, = 0) .

By the same result, for each n 2 {1, . . . , r},

� �n Q(��
l

) � 0 , � �n [�Q(�1

l

) +Q(�1

r

)|Q(��2

l

)] � 0 ,

and so � m Q(��
l

) , � m [�Q(�1

l

) +Q(�1

r

)|Q(��2

l

)].
We close this section by noting that in the special case of weakly reversible CRNs, we

need only check “half” of the concordance/semiconcordance conditions.
Lemma 4.22 (concordance/semiconcordance for weakly reversible CRNs). Let R be a

weakly reversible CRN with stoichiometric matrix � and rate pattern V. Then (i) R is con-
cordant i↵ � �r �Vt

> 0, and (ii) assuming � is the irreversible stoichiometric matrix of R,
R is semiconcordant i↵ � �r ��

l

> 0.
Proof. We can assume, without loss of generality by Lemma 4.21, that � is the irreversible

stoichiometric matrix of R, �
l

is the corresponding left stoichiometric matrix, and V = Q(�t

l

).
By Corollary E.2 in Appendix E, as R is weakly reversible there exists a positive diagonal
matrixD such that det

�

(��D�t

l

) > 0. Note thatD�t

l

2 Q0(�t

l

), and so certainly det
�

(��V ) <
0 for all V 2 Q0(�t

l

) is not true. Equivalently, by Lemma 2.32, � �r Q0(��
l

) < 0 is not true.
As Q0(�t

l

) ✓ Q(�t

l

), certainly � �r Q(��
l

) < 0 is not true.
(i) By Lemma 4.19 concordance is equivalent to � �r Q(��

l

) > 0 or � �r Q(��
l

) < 0.
As weak reversibility rules out � �r Q(��

l

) < 0, the result follows. (ii) By definition, R is
semiconcordant i↵ ��r��

l

> 0 or ��r��
l

< 0; equivalently, by Lemma 2.30, ��rQ0(��
l

) > 0
or � �r Q0(��

l

) < 0. As weak reversibility rules out � �r Q0(��
l

) < 0, semiconcordance is
equivalent to � �r Q0(��

l

) > 0, namely, � �r ��
l

> 0.

4.3. Injectivity of CRNs with general kinetics: Implications of accordance and con-
cordance. In this section, we spell out the implications of concordance/accordance, and of
their negations, on injectivity and the existence of multiple positive equilibria for a CRN with
general kinetics. We begin by noting that some CRNs never admit positive equilibria for any
reasonable kinetics.
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Definition 4.23 (CRNs which admit positive equilibria). Lemma D.2 in Appendix D tells us
that if the irreversible stoichiometric matrix � of a CRN has no positive vector in its kernel,
then the CRN admits no positive equilibria for any class of kinetics considered in this paper
(the only assumption on the kinetics is that an irreversible reaction proceeds at positive speed
if all reactants are present). In this case we simply say that the CRN admits no positive
equilibria. If ker� includes a positive vector, then the CRN has a positive equilibrium for
some choice of, say, mass action kinetics (Lemma D.2). In this case we say the CRN admits
positive equilibria.

Lemma 4.13 and Remark 4.14 tell us that concordance of a CRN is su�cient for injec-
tivity of the system in the sense of IC1, IC10, or IC100 (depending on the kinetics), while
accordance is su�cient for injectivity in the sense of IC2, IC20, or IC200 (depending on the
kinetics). Part (a) of the next theorem tells us that concordance is also necessary for injectiv-
ity (in the sense of IC1) of all CRNs with physical power-law kinetics (see also Theorem 4.11
in Shinar and Feinberg [41]). Further, a discordant CRN either admits no positive equilib-
ria or admits multiple positive equilibria on a stoichiometry class for some choice of power-
law general kinetics. Part (b) informs us that the fully open extension of any CRN which
fails to be accordant has multiple positive equilibria for some choice of power-law general
kinetics.

Theorem 3 Consider a CRN R.

(a) If R is concordant it satisfies IC100 for general kinetics, IC1 for positive general ki-
netics, and IC10 for weak general kinetics. If R is discordant, there exists a choice of
power-law general kinetics such that R fails condition IC1; further, either R admits no
positive equilibria in the sense of Definition 4.23, or there exists a choice of power-law
general kinetics such that R has multiple positive equilibria on some stoichiometry
class.

(b) If R is accordant it satisfies IC200 for general kinetics, IC2 for positive general kinetics,
and IC20 for weak general kinetics. If R is not accordant, there exists a choice of power-
law general kinetics such that R fails condition IC2; further, we can choose power-law
general kinetics and inflows and outflows, namely, c, q(·) in (4.2), such that the fully
open system has multiple positive equilibria.

Proof. Let R have irreversible stoichiometric matrix � 2 Rn⇥m with rank r � 1 and
corresponding left stoichiometric matrix �

l

.
(a) We already know from Lemma 4.13 with V = Q(�t

l

) (see Remark 4.14) that if R
is concordant, then it satisfies condition IC100 for general kinetics, IC1 for positive general
kinetics, and hence, via Lemma 3.2, IC10 for weak general kinetics. Suppose R is discordant
so there exists M 0 2 Q(�

l

) such that ��r�M

0 6> 0 and ��r�M

0 6< 0. We can assume without
loss of generality that nonzero entries of M 0 are greater than or equal to 1 (see Remark 3.20).
Applying Theorem 2, we can choose E 2 D

m

such that �Eexp(M 0t lnx) fails condition IC1.
Now suppose R admits positive equilibria (Definition 4.23), namely, there exists 0 ⌧ z 2

ker�. Define x = 1 and E 2 D
m

via E

ii

= z

i

so that for any M 2 Rm⇥n, �E exp(M lnx) =
�E1 = 0. Choose M

0 2 Q(�
l

) as above. By Theorem 2, there then exists M

0

2 Q0(M 0) ✓
Q(�

l

) and nonzero �x 2 im� such that �M
0

�x = 0. Assume, by scaling �x if necessary,
that for each i, |�x

i

| < 1 and |(E�1

M

0

�x)
i

| < 1.
Define D

2

=
R
1

0

D

1/(x+t�x)

dt 2 D
n

as in the proof of Theorem 2. Observe that D
2

is well



INJECTIVITY AND MULTISTATIONARITY IN CRNs 837

defined by the assumption that |�x

i

| < 1 and that y = x + �x = exp(D
2

�x) � 0. Define
the diagonal matrix D

1

via

(D
1

)
ii

=

(
(M0�x)i

ln[(E

�1
M0�x)i+1]

if (M
0

�x)
i

6= 0,

1 otherwise

for each i = 1, . . . ,m. Observe that D

1

is well defined as |(E�1

M

0

�x)
i

| < 1 and that
D

1

2 D
m

. With M = D

�1

1

M

0

D

�1

2

, we can also compute that

exp(M ln y) = exp(D�1

1

M

0

�x) = (E�1

M

0

�x) + 1 .

So �E exp(M ln y) = �M
0

�x + �E1 = 0. Since x, y � 0, x ⇠=/ �

y, �E exp(M lnx) = 0, and
�E exp(M ln y) = 0, we have shown that if R is discordant and admits positive equilibria, then
it admits multiple positive equilibria on some stoichiometry class for M -power-law kinetics
where M 2 Q(�

l

). To see that we can, in fact, make the nonzero entries of M as large as we
like, fix � > 1 and consider the transformation M

0

! �M

0

, �x ! 1

�

�x. Clearly �x ⌧ 1

remains true; M
0

�x, E�1

M

0

�x, and D

1

are unchanged; and D

2

=
R
1

0

D

1/(x+t�x/�)

dt ap-

proaches the identity as � ! 1. By choosing � large, the nonzero entries of M = D

�1

1

M

0

D

�1

2

can be made as large as we like.
(b) From Lemma 4.13 and Remark 4.14 it follows that if � m Q(��

l

), thenR satisfies IC200

for general kinetics, IC2 for positive general kinetics, and hence, by Lemma 3.2, IC20 for weak
general kinetics. Suppose on the contrary that � 6m �M

0 for some M

0 2 Q(�
l

). Without loss
of generality we can assume that nonzero entries of M 0 are greater than or equal to 1, as the
relation � 6m �M

0 is invariant under positive scaling of M 0. Define �̃ = [� |�I], M̃ = [M 0 | I],
so that, by Lemma 2.27, �̃ �n (�M̃) 6> 0. Also, by (2.1), �̃ �n (�M̃) 6< 0. By Theorem 2,
we can choose E 2 D

n+m

such that �̃Eexp(M̃ t lnx) fails IC1, namely, �E0exp(M 0t lnx) fails
IC2, where E

0 = E(m) 2 D
m

.

We now follow the approach in part (a). First, choose z � 0 s.t. c

def
= ��̃z � 0, possible

by the structure of �̃. Let x = 1, so that exp(M ln x) = 1 for any M . Define E 2 D
m+n

via
E

ii

= z

i

, so that �̃E1 = �c.
Since �̃ �n (�M̃) 6> 0 and �̃ �n (�M̃) 6< 0, by Theorem 2 there exists M

0

2 Q0(M̃) and
0 6= �x 2 im �̃ = Rn such that �̃M

0

�x = 0. By scaling �x if necessary, assume for each i

that |�x

i

| < 1 and that |(E�1

M

0

�x)
i

| < 1. As above, define D

2

=
R
1

0

D

1/(x+t�x)

dt 2 D
n

and D

1

2 D
n+m

via

(D
1

)
ii

=

(
(M0�x)i

ln[(E

�1
M0�x)i+1]

if (M
0

�x)
i

6= 0,

1 otherwise.

Observe that y = x + �x = exp(D
2

�x) � 0 as |�x

i

| < 1, and the assumption that
|(E�1

M

0

�x)
i

| < 1 ensures that D

1

is well defined. With M = D

�1

1

M

0

D

�1

2

, we can com-
pute that exp(M ln y) = exp(D�1

1

M

0

�x) = (E�1

M

0

�x) + 1 and so �̃E exp(M ln y) =
�̃M

0

�x+ �̃E1 = 0� c = �c.
We see that c+ �̃E exp(M ln y) = c+ �̃E exp(M lnx) = 0. Exactly as in part (a), we can

scale M

0

and �x so as to maintain M

0

�x constant and thus make the nonzero entries of M
as large as we like.
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Weakly reversible CRNs admit positive equilibria, so we have the following.
Corollary 4.24 A weakly reversible CRN R has no more than one positive equilibrium

on each stoichiometry class for all choices of physical power-law kinetics if and only if it is
concordant.

Proof. This is immediate from Theorem 3(a) once we note that weak reversibility easily
implies the existence of a positive vector in the kernel of � the irreversible stoichiometric matrix
of R.

We summarize in Corollary 4.25 a number of equivalences which follow from Theorem 3
and earlier results with little e↵ort, noting in advance that the equivalence of (1) and (2) in
Corollary 4.25 reads almost identically to Theorem 4.11 in Shinar and Feinberg [41] (with pos-
itive general kinetics replaced by “weakly monotonic kinetics”). Recall that given a function
f(x) = �v(x) as in (4.1), IC1 means injectivity of f on each positive stoichiometry class, IC10

means that f can take the same value at two distinct points on a stoichiometry class only if
they are both on @Rn

�0

, and IC100 means that f can take the same value at distinct points on
a stoichiometry class only if they share a facet of @Rn

�0

.
Corollary 4.25 The following are equivalent for a CRN R:

(1) R is concordant.
(2) R satisfies IC1 for all positive general kinetics.
(3) R satisfies IC1 for all weak general kinetics.
(4) R satisfies IC10 for all weak general kinetics.
(5) R satisfies IC1 for all physical power-law kinetics.
(6) R satisfies IC10 for all physical power-law kinetics.
(7) R satisfies IC1 for all general kinetics.
(8) R satisfies IC10 for all general kinetics.
(9) R satisfies IC100 for all general kinetics.

Proof. First, by Lemma 4.21, we may assume without loss of generality that R is a system
of irreversible reactions, namely, any reversible reaction can be treated as a pair of irreversible
ones. (1) ) (2) follows from Theorem 3(a). (2) ) (3), (3) ) (5), and (4) ) (6) are immediate
as weak general kinetics is a special case of positive general kinetics, and physical power-law
kinetics is a special case of weak general kinetics (Remark 4.9). (3) , (4) and (5) , (6)
follow from Lemma 3.2. (1) ) (9) follows from Theorem 3(a). (9) ) (8) ) (7) is immediate.
Finally, (5) ) (1) and (7) ) (1) follow from Theorem 3(a) as power-law general kinetics is a
case of both physical power-law kinetics and general kinetics.

We have an analogous, but stronger, corollary for fully open systems. The result is stronger
because failure of accordance is equivalent to the existence of multiple positive equilibria in
the fully open system for some choice of physical power-law kinetics, without any additional
assumptions. Recall that given a function f(x) = �v(x) + c � q(x) as in (4.2), IC2 means
injectivity of f on Rn

�0

, IC20 means that f can take the same value at two distinct points of
Rn

�0

only if they are both on @Rn

�0

, and IC200 means injectivity of f on Rn

�0

.
Corollary 4.26 The following are equivalent for a CRN R with fully open extension R

o

:

(1) R is accordant.
(2) R satisfies IC2 for all positive general kinetics.
(3) R satisfies IC2 for all weak general kinetics.
(4) R satisfies IC20 for all weak general kinetics.
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(5) R satisfies IC2 for all physical power-law kinetics.
(6) R satisfies IC20 for all physical power-law kinetics.
(7) R

o

forbids multiple positive equilibria for all physical power-law kinetics.
(8) R satisfies IC2 for all general kinetics.
(9) R satisfies IC20 for all general kinetics.
(10) R satisfies IC200 for all general kinetics.
(11) R

o

forbids multiple positive equilibria for all general kinetics.

Proof. By Lemma 4.21 we may assume without loss of generality that R is a system of
irreversible reactions. (1) ) (2) follows from Theorem 3(b). (2) ) (3), (3) ) (5), and (4) )
(6) are immediate as weak general kinetics is a special case of positive general kinetics, and
physical power-law kinetics is a special case of weak general kinetics (Remark 4.9). (3) ,
(4) and (5) , (6) follow from Lemma 3.2. (6) ) (7) is immediate. (7) ) (1) follows from
Theorem 3(b) as power-law general kinetics is a special case of physical power-law kinetics. (1)
) (10) follows from Theorem 3(b). (10) ) (9) ) (8) ) (11) is immediate. (11) ) (1) follows
from Theorem 3(b) as power-law general kinetics is a special case of general kinetics.

Remark 4.27 (concordance and weak reversibility imply persistence). In addition to
discussing the implications of concordance for injectivity, Shinar and Feinberg [41] proved
the remarkable result that if a concordant network is weakly reversible, then it has no criti-
cal siphons and is “structurally persistent” (see Appendix D) under very weak assumptions
on the kinetics. This result is reproved in elementary linear algebraic/combinatorial ways in
Appendix E. It follows immediately that a weakly reversible, concordant CRN with bounded
stoichiometry classes has precisely one equilibrium on each nontrivial stoichiometry class, and
this equilibrium is positive.

Injectivity of a CRN with general kinetics and its fully open extension. An
important question is when injectivity of the fully open extension of a CRN in the sense of
IC2 (resp., IC20, resp., IC200) implies injectivity of the original CRN in the sense of IC1 (resp.,
IC10, resp., IC100). This question has been answered in the results above, but we state the
conclusion explicitly for completeness.

Corollary 4.28 (i) An accordant CRN is concordant if and only if it is not structurally
discordant (Definition 4.18).

(ii) If a CRN satisfies IC2 (resp., IC20, resp., IC200) for positive general kinetics (resp.,
weak general kinetics, resp., general kinetics), then it satisfies IC1 (resp., IC10, resp., IC100)
for positive general kinetics (resp., weak general kinetics, resp., general kinetics) if and only
if it is not structurally discordant.

(iii) A weakly reversible, accordant CRN is concordant.
Proof. (i) Clearly an accordant, but structurally discordant, CRN is not concordant.

In the other direction, the implication [(2) and (3)] ) (4) in Lemma 4.13, combined with
Remark 4.14, tells us that an accordant CRN that is not structurally discordant is concordant.

(ii) This follows immediately as injectivity in the sense of IC2, IC20, or IC200 (for the
relevant kinetics) is equivalent to accordance (Corollary 4.26) and injectivity in the sense of
IC1, IC10, or IC100 (for the relevant kinetics) is equivalent to concordance (Corollary 4.25).

(iii) Weakly reversible CRNs are normal (Theorem 7.2 in [18]; see Lemma E.1 in Ap-
pendix E for a proof) and hence not structurally discordant. The result now follows
from (i).
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Remark 4.29. (accordant + normal ) concordant (Theorem 7.4 in Shinar and Feinberg
[41])).Corollary 4.28 tells us that an accordant CRN is concordant if and only if it is not
structually discordant. However, given any M 2 Q(�

l

), we can also easily infer that an
accordant network is concordant if and only if it is M -normal; in particular, “accordant + not
structurally discordant”, “accordant + normal.” The implication to the left is obvious as the
normal CRNs are a subset of CRNs which are not structurally discordant; in the other direction
an accordant CRN which is not structurally discordant is concordant (Corollary 4.28), and
concordant CRNs are certainly normal, by Definition 4.18.

Remark 4.30 (injectivity of a CRN and its fully open extension: related results). The
first claim in Corollary 4.28 is closely related to Lemma 6 in Banaji [6], where a graph-
theoretic analogue of this claim is made. The connections between injectivity of a CRN and
injectivity of its fully open counterpart are the object of Theorem 8.2 in Craciun and Feinberg
[18] and of related results: Theorem 2 in Craciun and Feinberg [17], Theorem 7.11 in Shinar
and Feinberg [42], and Corollary 5.12 in Feliu and Wiuf [26]. Underlying several such results is
a basic argument on persistence of nondegenerate equilibria under small perturbations of the
vector field (Lemma B.1 in Banaji and Craciun [7], for example), although here this argument
is not required. Craciun and Feinberg [18] show that normal CRNs have the property that
injectivity of the fully open extension guarantees injectivity of the network for mass action
kinetics (see also Shinar and Feinberg [41, 42]). This result will turn out to be an immediate
consequence of results below (see Corollary 4.42).

4.4. Injectivity of simply reversible CRNs with general kinetics. In the special case
where all reactions are reversible, and no species occurs on both sides of a reaction, the results
of the previous section take rather special forms. The results are stated for general kinetics,
but the modifications required for weak general kinetics, or positive general kinetics are minor
and are left to the reader.

Definition 4.31 (simple, simply reversible, simply irreversible).A CRN is referred to as
simple if no species occurs on both sides of any reaction. It is simply reversible if it is simple
and all reactions are reversible. Implicit in this term is the choice to treat each reversible
reaction as a single reaction contributing only one column to the stoichiometric matrix, rather
than as a pair of irreversible reactions. A CRN is simply irreversible if it is simple and all
reactions are irreversible. Each simple CRN defines a simply irreversible one where we treat
each reversible reaction as a pair of irreversible ones.

Definition 4.32 (positive and negative parts of a matrix: �
+

, ��).Given a real matrix �,
write �

+

to mean the positive part of � (i.e., we set all negative entries in � to zero to
obtain �

+

). Similarly, define �� to be the negative part of �, so that � = �
+

� ��.
We first show that for a simply reversible CRN R, concordance and accordance are com-

binatorial properties of its stoichiometric matrix � alone. Recall that a matrix is r-SSD if all
of its r ⇥ r submatrices are either singular or sign nonsingular and is SSD if it is r-SSD for
each r (Definition 2.39).

Lemma 4.33. Consider a simply reversible CRN R with stoichiometric matrix 0 6= � 2
Rn⇥m having rank r. Let R be the corresponding simply irreversible CRN with stoichiometric
matrix � and left stoichiometric matrix �

l

. Then the following are equivalent: (1) � is r-SSD;
(2) � is r-SSD; (3) R is concordant in the sense of Lemma 4.21; (4) R is concordant, namely,
� �r Q(�

l

) > 0. Similarly the following are equivalent: (1a) � is SSD; (2a) � is SSD; (3a) R
is accordant in the sense of Lemma 4.21; (4a) R is accordant, namely, � m Q(�

l

).
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Proof. Without loss of generality assume that � = [�|��] and hence �
l

= [��|�+

].
Observe that rank� = rank� and that Q(��

l

) ✓ Q
0

(�). For (1) ) (2) and (1a) ) (2a) each
r⇥r submatrix of � either is automatically singular having two collinear columns or is simply
an r⇥r submatrix of �, possibly with some columns reordered and re-signed: these operations
preserve singularity and sign nonsingularity. (2) ) (1) and (2a) ) (1a) are automatic as �
is a submatrix of � of the same rank. That (1) , (3) is immediate once we observe that, for
a simply reversible system, (i) � is r-SSD is equivalent to � �r Q(�) > 0 (Lemma 2.40), and
(ii) Q(�) = �Q(��) +Q(�

+

) = �Q(�
l

) +Q(�
r

). (1a) , (3a) follows similarly: � is SSD is
equivalent to � m Q(�) (Lemma 2.44), namely, � m (Q(�

r

)�Q(�
l

)). (3) , (4) and (3a) ,
(4a) follow from Lemma 4.21.

Thus for a simply reversible CRN R,
• R is accordant , � is SSD,
• R is concordant , � is r-SSD, where r = rank�.

As � is SSD implies � is r-SSD, accorance implies concordance for simply reversible CRNs.
This is of course also automatic from Corollary 4.28(iii), as simply reversible CRNs are weakly
reversible.

Theorem 4. Consider a simply reversible CRN R with stoichiometric matrix 0 6= � 2
Rn⇥m. Let G

�

be the SR graph of �. Then, with r = rank�, the following hold:
(a) If � is r-SSD, then R satisfies claim IC100 for general kinetics. If � fails to be

r-SSD, then there exists a choice of power-law general kinetics such that R has multiple
positive equilibria on some stoichiometry class.

(b) If � is SSD, then R satisfies claims IC100 and IC200 for general kinetics. If � fails
to be SSD, then there exists a choice of power-law general kinetics, and inflows and
outflows, such that the fully open system has multiple positive equilibria.

(c) If G
�

satisfies Condition (⇤), then R satisfies claims IC100 and IC200 for general kinet-
ics.

Proof. (a) By Lemma 4.33, � is r-SSD implies that R is concordant, and R satsifies claim
IC100 for general kinetics by Theorem 3(a). If � fails to be r-SSD, then, by Lemma 4.33, R is
discordant. Observe that 1 2 ker� for any choice of irreversible stoichiometric matrix � (as
each reaction has a corresponding oppositely directed reaction), and the existence of multiple
positive equilibria on some stoichiometry class for some choice of power-law general kinetics
now follows by Theorem 3(a).

(b) If � is SSD, then it is certainly r-SSD and so satisfies claim IC100 for general kinetics as
before. By Lemma 4.33, � is SSD if and only if R is accordant, and R satisfies IC200 for general
kinetics by Theorem 3(b). The conclusion about multistationarity is also an immediate special
case of Theorem 3(b).

(c) Finally, if G
�

satisfies Condition (⇤), then � is SSD (Lemma 2.44), and consequently
r-SSD. The claim now follows from (a) and (b).

Remark 4.34 (related results).The conclusions that if G
�

satisfies Condition (⇤), then � is
SSD, and that this implies IC200 is satisfied for general kinetics are the subject of [9] and [8].

Remark 4.35.Theorem 4 and, preceding results imply that a simply reversible CRN with
general kinetics and SSD stoichiometric matrix satisfies the following:

• Any positive equilibrium is the unique equilibrium on its stoichiometry class. If sto-
ichiometry classes are bounded, then each nontrivial stoichiometry class contains a
positive equilibrium (Lemma 4.33 and Remark 4.27).
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• The fully open system has no more than one equilibrium in Rn

�0

.

4.5. Injectivity of arbitrary CRNs with power-law/mass action kinetics. In the discus-
sion in this subsection and the next, the stoichiometric matrix � is always the irreversible
stoichiometric matrix of the system.

First we provide another characterization of M -concordance and M -accordance (Defini-
tion 4.18) which makes clear the close and surprising parallels between results for power-law
kinetics (with mass action as a special case) and for general kinetics, discussed further in the
conclusions.

Lemma 4.36 (M -concordance, M -accordance). Let R be a CRN with irreversible stoichio-
metric matrix �. Let M be a fixed matrix with the dimensions of �. Then

(1) R is M -concordant , for all M -power-law kinetics the reduced determinant of R on
Rn

�0

is nonzero , det
�

�V 6= 0 for all V 2 Q0(M t) , Q0(M t) is �-nonsingular,
(2) R is M -accordant , for all M -power-law kinetics, the negative of the Jacobian matrix

of R on Rn

�0

is a P

0

-matrix , ��V is a P

0

-matrix for all V 2 Q0(M t) , � m
Q0(�M).

Proof. Recall that by Remark 3.19 the set of all Jacobian matrices of a CRN with M -
power-law kinetics is {�V : V 2 Q0(M t)}. The first result is now immediate by Lemma 2.36
and the second by Lemmas 2.29 and 2.30.

We immediately have the corollary for mass action.
Corollary 4.37 (semiconcordance, semiaccordance). Let R be a CRN with irreversible stoi-

chiometric matrix � and left stoichiometric matrix �
l

. Then:

(1) R is semiconcordant , for all mass action kinetics the reduced determinant of R on
Rn

�0

is nonzero , det
�

�V 6= 0 for all V 2 Q0(�t

l

) , Q0(�t

l

) is �-nonsingular,
(2) R is semiaccordant , for all mass action kinetics, the negative of the Jacobian matrix

of R on Rn

�0

is a P

0

-matrix , ��V is a P

0

-matrix for all V 2 Q0(�t

l

) , � m Q0(��
l

).
Observe that where (for an irreversible CRN) concordance and accordance are conditions

relating minors of � to minors ofM for each M 2 Q(�
l

), semiconcordance and semiaccordance
are simply a condition relating minors of � to minors of �

l

. However, both concordance and
semiconcordance can be interpreted as �-nonsingularity of sets of matrices related to �

l

:
the qualitative class Q(�

l

) in the case of concordance, and the semiclass Q0(�
l

) in the case of
semiconcordance. Similarly both accordance and semiaccordance can be seen as nonsingularity
of a set of matrices: {��V +D : V 2 Q(�t

l

), D 2 D
n

} in the case of accordance and {��V +
D : V 2 Q0(�t

l

), D 2 D
n

} in the case of semiaccordance. Interestingly, if the bipartite graph of
�
l

includes no cycles, then Q(�
l

) = Q0(�
l

) (see Remark 2.15) and in this case semiconcordance
of a CRN is equivalent to concordance, and semiaccordance is equivalent to accordance. We
need some further lemmas in order to be able to state, in Theorem 5 below, the connections
between M -concordance and M -accordance on the one hand and injectivity/ multistationarity
of a CRN with M -power-law kinetics.

Lemma 4.38. Consider a CRN R with irreversible stoichiometric matrix 0 6= � 2 Rn⇥m,
and let M 2 Rn⇥m. If R is not M -accordant (namely, � 6m �M), then R with M -power-law
kinetics fails condition IC2. In particular, there exist E

0 2 D
m

, E

00 2 D
n

, and x, y � 0,
x 6= y, such that �E0exp(M t lnx)� E

00
x = �E0exp(M t ln y)� E

00
y.

Proof. Suppose � 6m �M . Define �̃ = [� |�I], M̃ = [M | I], so that, by Lemma 2.27,
�̃ �n (�M̃) 6> 0. Also by (2.1) in Lemma 2.27, �̃ �n (�M̃) 6< 0. Observe that �̃ has rank n,
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and by Theorem 2, the function f(x) = �̃Eexp(M̃ t lnx) fails claim IC1 for some E 2 D
n+m

:
i.e., there exist x, y 2 Rn

�0

such that f(x) = f(y), namely,

�E0exp(M t lnx)� E

00
x = �E0exp(M t ln y)� E

00
y ,

where E

0 = E({1, . . . ,m}) 2 D
m

and E

00 = E({m+1, . . . ,m+n}) 2 D
n

.
Lemma 4.39. Consider a CRN R with irreversible stoichiometric matrix � 2 Rn⇥m, and let

M 2 Rn⇥m. If �M is strongly �-incompatible (Definition 2.28), then the fully open extension
of R with M -power-law kinetics admits multiple positive equilibria. In particular, there exist
E 2 D

m

, D 2 D
n

, c � 0, and x, y � 0, x 6= y, such that c + �E exp(M t lnx) � Dx =
c+ �E exp(M t ln y)�Dy = 0.

Proof. Define �̃ = [� |�I] and M̃ = [M | I]t. Recall that �M is strongly �-incompatible if
and only if there exists D

0

2 D
n+m

such that det(��̃D
0

M̃) < 0 and �̃D
0

1  0. Assume that
�M is strongly �-incompatible and choose such a D

0

. Defining D

0 = D

0

({1, . . . ,m}) 2 D
m

,
D

00 = D

0

({m+1, . . . ,m+n}) 2 D
n

, note that

�̃D
0

1 = �D0
1�D

00
1 and � �̃D

0

M̃ = ��D0
M

t +D

00
.

Clearly, by increasing the diagonal elements of D00 we can in fact choose D

1

2 D
n+m

such
that det (�̃D

1

M̃) = 0 and �̃D
1

1 ⌧ 0. We now choose 0 6= z 2 ker (�̃D
1

M̃). Let x = 1,
y = exp(z) � 0, and define D̃(z) 2 D

n+m

via

[D̃(z)]
ii

=

(
exp(

˜

Mz)i�1

(

˜

Mz)i
if (M̃z)

i

6= 0,

1 otherwise.

This gives exp(M̃ ln y)�exp(M̃ lnx) = exp(M̃z)�1 = D̃(z)M̃z. Setting E(z) = D

1

D̃

�1(z) 2
D

n+m

gives

(4.3) �̃E(z)(exp(M̃ ln y)� exp(M̃ lnx)) = �̃E(z)D̃(z)M̃z = �̃D
1

M̃z = 0 .

Observe that as we scale z such that z ! 0, D̃(z) approaches the identity matrix and thus
E(z) ! D

1

, and so �̃E(z) exp(M̃ lnx) = �̃E(z)1 ! �̃D
1

1 ⌧ 0 as z ! 0. Thus, by choosing
z 6= 0 with |z| su�ciently small we can guarantee that �̃E(z)1 ⌧ 0. Choose and fix such a z

and set c(z) = ��̃E(z)1 � 0, so that

c(z) + �̃E(z) exp(M̃ ln y) = c(z) + �̃E(z) exp(M̃ lnx) (by (4.3))

= ��̃E(z)1+ �̃E(z)1 = 0 ,

and x, y are thus a pair of distinct positive equilibria for the fully open system with c and the
rate constants (including outflow rates) chosen appropriately.

The next theorem summarizes injectivity and multistationarity results proved above for a
system with fixed power-law kinetics. Part (a) tells us that M -concordance is necessary and
su�cient for a CRN withM -power-law kinetics to be injective in the sense of IC1 for all choices
of rate constants (and semiconcordance is necessary and su�cient for a mass action system to
be injective in the sense of IC1 or IC1a for all choices of rate constants). The remainder of the
theorem provides necessary and su�cient conditions for injectivity/the absence of multiple
positive equilibria in the fully open system.
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Theorem 5. Let M 2 Rn⇥m be fixed. Consider a CRN R with (irreversible) stoichiometric
matrix 0 6= � 2 Rn⇥m, left stoichiometric matrix �

l

2 Rn⇥m, and M -power-law kinetics. Let
R

o

be the fully open extension of R.

(a) Let r = rank�. The following statements are equivalent:
(i) R is M -concordant (i.e., � �r �M > 0 or � �r �M < 0).
(ii) rank (�D

1

M

t

D

2

�) = rank� for all D
1

2 D
m

and D

2

2 D
n

(i.e., Q0(M t) is
�-nonsingular).

(iii) For all rate constants, R satisfies claim IC1.
If M � 0, these are additionally equivalent to the following:
(iv) For all rate constants, R satisfies claim IC1a.

(b) If R is M -accordant (i.e., � m �M) with M 2 Rn⇥m (resp., 0  M 2 Rn⇥m, resp.,
M 2 Rn⇥m with M

ij

= 0 or M
ij

� 1 for all i, j), then for all rate constants, R satisfies
claims IC2 (resp., IC20, resp., IC200).

(c) If R is not M -accordant (i.e., � 6m �M), then R fails condition IC2. In particular,
there exist E 2 D

m

, D 2 D
n

, and x, y � 0, x 6= y, such that �Eexp(M t lnx)�Dx =
�Eexp(M t ln y)�Dy.

(d) If �M is strongly �-incompatible (Definition 2.28), then R
o

admits multiple positive
equilibria. In particular, there exist E 2 D

m

, D 2 D
n

, c � 0, and x, y � 0, x 6= y,
such that c+ �Eexp(M t lnx)�Dx = c+ �Eexp(M t ln y)�Dy = 0.

Proof. (a) This follows immediately from Theorem 2 and Remark 3.24. (b) This follows
from Lemma 3.25. (c) This follows from Lemma 4.38. (d) This follows from
Lemma 4.39.

Remark 4.40 (Theorem 5 for mass action). If we set M = �
l

in Theorem 5, we immediately
get the important special case of mass action kinetics. In this case, note that 0  M = �

l

2
Zn⇥m, so, for example, the system is semiconcordant if and only if �v satisfies claim IC1a
for all rate constants; similarly the system is semiaccordant (namely, � m ��

l

) if and only if
it satisfies IC200 for all rate constants, which occurs if and only if it satisfies IC2 for all rate
constants.

Remark 4.41 (results related to Theorem 5 in the case of mass action kinetics).Theorem 3.1
in Craciun and Feinberg [15] states that a fully open CRN (4.2) with mass action kinet-
ics is injective on Rn

�0

if and only if it has nonsingular Jacobian matrix at each x 2 Rn

�0

and
for all rate constants. By similar methods of proof, Corollary 5.9 in Feliu and Wiuf [26] shows
that changing “Jacobian” to “reduced Jacobian” in the statement above, and restricting at-
tention to stoichiometry classes, yields a result that holds for any CRN, not necessarily fully
open. Bearing in mind Remark 3.19, these are immediate consequences of Theorem 5(a). The
result in part (d) of Theorem 5 giving su�cient conditions for multiple positive equilibria in
a fully open system with power-law kinetics is close to that of Theorem 4.1 in Craciun and
Feinberg [15]. A related result also appears in Feliu [25]. The equivalence of (a)(i), (a)(iii),
and the sign condition mentioned in Remark 3.23 is the object of Theorem 3.4. in Müller et
al. [37].

Injectivity of a CRN with power-law kinetics and its fully open extension.

Quite analogously to the situation for general kinetics, it is natural to ask of a CRN R
with fixed power-law kinetics when injectivity of the fully open extension in the sense of IC2
(resp., IC20) implies injectivity of R in the sense of IC1 (resp., IC1a). Where in the case of
general kinetics a necessary and su�cient nondegeneracy condition was that R should not
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be structurally discordant, for fixed M -power-law kinetics (including mass action as a special
case), a necessary and su�cient condition is that R should be M -normal. Recall that an
irreversible CRN with stoichiometric matrix � is M -normal if � �r M 6= 0 or, equivalently,
Q0(M t) is not �-singular. By Remark 3.19 the set of all Jacobian matrices of a CRN with
M -power-law kinetics is {�V : V 2 Q0(M t)}, and so M -normal CRNs are precisely those
which have nonzero reduced determinant somewhere on Rn

�0

for M -power-law kinetics and
some choice of rate constants. Similarly, normal CRNs are those which have nonzero reduced
determinant somewhere on Rn

�0

for mass action kinetics and some choice of rate constants.
We have the following corollary of Theorem 5.

Corollary 4.42. Let R be a CRN with irreversible stoichiometric matrix � and, let M be
any matrix with the dimensions of �. (i) If R is M -accordant, then it is M -concordant if
and only if it is M -normal. (ii) If R satisfies IC2 (resp., IC20) for power-law kinetics (resp.,
physical power-law kinetics) with matrix of exponents M

t, then it satisfies IC1 (resp., IC1a)
for this kinetics if and only if it is M -normal.

Proof. (i) Observe that M -accordance (� m �M) rules out � �r �M < 0 and implies
� �r �M > 0 if and only if � �r M 6= 0. Thus M -accordance implies M -concordance if
and only if R is M -normal. (ii) By Theorem 5, injectivity of R in the sense of IC2 or IC20

(depending on kinetics) is equivalent to M -accordance, and injectivity of R in the sense of
IC1 or IC10 (depending on kinetics) is equivalent to M -concordance. The result thus follows
from (i).

Remark 4.43. (related results: injectivity of a CRN with mass action kinetics from in-
jectivity of its fully open extension). The particular case of Corollary 4.42 for mass action
kinetics (namely, where M = �

l

) is the subject of the main theorem (Theorem 8.2) of [18].

4.6. Injectivity of simple CRNs with mass action kinetics. Results in Banaji, Donnell,
and Baigent [9] on the special case of simple CRNs with mass action kinetics motivate the
following definitions.

Definition 4.44 (WSD, r-strongly WSD, r-strongly negatively WSD).Observe that if � is the
irreversible stoichiometric matrix of a simple CRN, then �

r

= �
+

and �
l

= ��. A matrix �
with rank r � 1 is termed r-strongly WSD if � �r �(��) > 0 and r-strongly negatively WSD
if � �r �(��) < 0. It is WSD if � m �(��).

Remark 4.45 (WSD matrices).The acronym WSD was originally an abbreviation of
“weakly sign determined” in [9], where it was shown that every SSD matrix is WSD, but
not vice versa. An example of a matrix of rank r which is r-strongly negatively WSD is

� =

✓
�1 2
1 �1

◆
so that � (��) =

✓
�1 0
0 �1

◆
.

We see that � has rank 2 and is 2-strongly negatively WSD as (det�)(det (�(��))) < 0. An
example of a WSD matrix that is not r-strongly WSD is

� =

0

@
�1 �1
0 1
1 0

1

A so that � (��) =

0

@
�1 �1
0 0
0 0

1

A
.
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It is easy to see that � is WSD. However, as rank� > rank�� it cannot be 2-strongly WSD.
An example of a matrix which is r-strongly WSD but not WSD is

� =

0

@
�1 0 0
2 �1 0

�1 1 �1

1

A so that � (��) =

0

@
�1 0 0
0 �1 0

�1 0 �1

1

A
.

� has rank 3 and is 3-strongly WSD as (det�)(det (�(��))) > 0. But

�[{2, 3}|{1, 2}] (�(��))[{2, 3}|{1, 2}] < 0

and so it is not WSD.
For reference when discussing examples, we write out in full the following specialization

of Theorem 5 to the case of simple CRNs with mass action kinetics.
Theorem 6. Consider a simple CRN R with irreversible stoichiometric matrix 0 6= � 2

Zn⇥m and mass action kinetics. Let R
o

be the fully open extension of R.
(a) Let r = rank�. The following statements are equivalent:

(i) � is r-strongly WSD or r-strongly negatively WSD (namely, � �r �(��) > 0 or
� �r �(��) < 0).

(ii) rank (�D
1

�t

�D2

�) = rank� for all D
1

2 D
m

and D

2

2 D
n

(i.e., Q0(�t

�) is �-
nonsingular).

(iii) For all rate constants R satisfies claim IC1.
(iv) For all rate constants R satisfies claim IC1a.
If R is weakly reversible, these are additionally equivalent to
(v) � is r-strongly WSD (namely, � �r �(��) > 0).

(b) If � is WSD, then for all rate constants R satisfies conditions IC200: for arbitrary rate
constants and inflows and outflows, R

o

is injective on Rn

�0

.
(c) If � is not WSD, then for some choice of rate constants R fails condition IC2.

In particular, there exist E 2 D
m

, D 2 D
n

, and x, y � 0, x 6= y, such that
�Eexp(�t

� lnx)�Dx = �Eexp(�t

� ln y)�Dy.
(d) If �(��) is strongly �-incompatible (Definition 2.28), then R

o

admits multiple positive
equilibria. In particular, there exist E 2 D

m

, D 2 D
n

, c � 0, and x, y � 0, x 6= y,
such that c+ �Eexp(�t

� lnx)�Dx = c+ �Eexp(�t

� ln y)�Dy = 0.
Proof. (a) Note that by definition the condition that “� is r-strongly WSD or r-strongly

negatively WSD” is equivalent to “R is semiconcordant.” Equivalence of (i) to (iv) is imme-
diate from the definitions and Theorem 5(a) with M = ��. Equivalence of (i) and (v) follows
once we observe that for simple, weakly reversible CRNs, semiconcordance is equivalent to
��r�(��) > 0 by Lemma 4.22. (b) By definition, � is WSD if and only if R is semiaccordant.
The result is now a special case of Theorem 5(b). (c) and (d) follow from Theorem 5(c) and (d)
with M = ��.

Remark 4.46 (related results).The result in Theorem 6(b) is a corollary of the results in
section 4 of Banaji, Donnell, and Baigent [9]. The result in Theorem 6(d) can be inferred
from Theorem 4.1 in Craciun and Feinberg [15].

Figure 4.1 summarizes some of the results on injectivity and the absence of multiple
positive equilibria for a system of irreversible reactions. Figure 4.2 summarizes some of the
results for fully open systems.
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Figure 4.1. A schematic summarizing some results on injectivity and the absence of multiple positive
equilibria (MPE) on a stoichiometry class for a CRN with irreversible stoichiometric matrix � 2 Rn⇥m and
corresponding left stoichiometric matrix �l 2 Rn⇥m. Results on fully open systems are gathered in Figure 4.2,
and specializations are omitted. The implications without labels follow immediately from other implications or
from the definitions.
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Figure 4.2. A schematic summarizing some results on injectivity and the absence of MPE for a fully open
CRN with irreversible stoichiometric matrix � 2 Rn⇥m and corresponding left stoichiometric matrix �l 2 Rn⇥m.
The implications without labels follow immediately from other implications or from the definitons.
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5. Extensions and examples. We examine some examples chosen to demonstrate the
subtleties or limitations of the various results above. In some cases techniques in the liter-
ature beyond the scope of this paper augment or clarify or expand the conclusions: partic-
ularly worth mentioning are deficiency theory and applications of the theory of monotone
dynamical systems to CRNs. All computations are carried out in CoNtRol [10]. Before
presenting the examples we list some conditions which may strengthen conclusions about in-
jectivity or multistationarity of a CRN. The first additional condition which may apply is as
follows:

BC1. Stoichiometry classes are bounded.
It is well known that BC1 holds if and only if ker�t \Rn

�0

6= ; (Lemma D.1 in Appendix D)
and implies that each stoichiometry class is a nonempty compact, convex polyhedron and
hence, by the Brouwer fixed point theorem, includes an equilibrium of (4.1). The following
sometimes occurs:

PC0. The CRN admits no positive equilibria (Definition 4.23).
If � 2 Rn⇥m is the irreversible stoichiometric matrix of a CRN and ker� \ Rn

�0

= ;, then
claim PC0 follows for all classes of kinetics considered in this paper, whereas otherwise the
CRN admits a positive equilibrium for mass action kinetics with some choice of rate constants
(Lemma D.2 in Appendix D). So PC0 is equivalent to ker� \ Rn

�0

= ;. Perhaps more
interesting are the following:

PC1. No stoichiometry class, other than possibly a stoichiometry class consisting only
of {0}, includes any equilibria on @Rn

�0

.
PC2. No nontrivial stoichiometry class includes any equilibria on @Rn

�0

.
Observe that (i) PC1 implies that the only possible equilibrium on @Rn

�0

is 0, and (ii) PC1
implies PC2. Claims PC1 and PC2 are reached via examination of the so-called siphons of
the system (see [3, 43], for example). PC2 holds if the CRN has no critical siphons; PC1 holds
if the system has no siphons at all, other than possibly the set of all species, in which case
this siphon is noncritical. The details are in Appendix D. We recall that claim PC2 holds
automatically if we know that the CRN is concordant and weakly reversible (Remark 4.27
and Appendix E).

Remark 5.1 (implications of IC10 combined with persistence and boundedness). Note first
that IC100 ) IC10 and IC1a ) IC10, so the observations in this remark apply if we replace
IC10 with IC100 or IC1a. Claims IC10 and PC2 (or PC1) together imply that no nontrivial
stoichiometry class includes more than one equilibrium. If, additionally, BC1 holds (namely,
stoichiometry classes are bounded), then each nontrivial stoichiometry class includes a unique
equilibrium, and this equilibrium is positive. Claims IC10, PC1, and BC1 together imply,
by the Brouwer fixed point theorem, that each stoichiometry class other than {0} contains
a unique equilibrium, which is positive (an indirect consequence of BC1 and PC1 is that all
stoichiometry classes other than {0} must in fact be nontrivial). In summary, we have the
following implications:

(1) IC10 + PC2 � BC1: no nontrivial stoichiometry class includes more than one equi-
librium (they may have no equilibria). An equilibrium on a nontrivial stoichiometry
class, if it exists, must be positive.

(2) IC10 + PC2 + BC1: each nontrivial stoichiometry class includes exactly one equilib-
rium; this equilibrium is positive.
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(3) IC10 + PC1 � BC1: no stoichiometry class includes more than one equilibrium (they
may have no equilibria). Equilibria, if any, are positive.

(4) IC10 + PC1 + BC1: each stoichiometry class other than {0} is nontrivial and includes
exactly one equilibrium; this equilibrium is positive.

5.1. Examples of simply reversible CRNs. In the examples to follow, we report mainly
conclusions for general kinetics and for mass action kinetics. However, the reader may easily
infer similar conclusions for weak general kinetics, positive general kinetics, power-law kinetics,
or physical power-law kinetics, using the theorems and lemmas above.

Example 1 (the strongest possible claims I).A+ B ⌦ C, 2A ⌦ B. The stoichiometric ma-
trix �, �Dv

t, and SR graph G

�

are shown:

� =

0

@
�1 �2
�1 1
1 0

1

A
, �Dv

t =

0

@
� �
� +
+ 0

1

A
,

G

�

=

B

C

A

2

.

Report. General kinetics. G

�

satisfies Condition (⇤). By Theorem 4 both claims IC100

and IC200 hold. As PC1 and BC1 also hold, each stoichiometry class other than {0} contains
a unique equilibrium, which is positive (Remark 5.1).

Remark. In fact, claims IC100 and IC200 hold if the species participate in these reactions
with any stoichiometries, rather than the particular values chosen, and if one or both reactions
are set to be irreversible (in either direction); the CRN remains accordant and concordant
and IC100 and IC200 follow by Theorem 3. As with several examples to follow, various other
tools allow conclusions about the network beyond questions of injectivity or multistationarity.
This network is weakly reversible with deficiency zero and the stoichiometric subspace has
dimension 2: by Theorem 6.3 in Pantea [38], assuming mass action kinetics, the unique
equilibrium on each nontrivial stoichiometry class is in fact globally asymptotically stable
relative to its stoichiometry class.

Example 2 (the strongest possible claims II).A+B ⌦ C ⌦ A+D, E +B ⌦ F ⌦ E +D.
This is the reversible version of the so-called futile cycle presented in Example 7 later. The
stoichiometric matrix � and SR graph G

�

are shown:

� =

0

BBBBBB@

�1 1 0 0
�1 0 �1 0
1 �1 0 0
0 1 0 1
0 0 �1 1
0 0 1 �1

1

CCCCCCA
,

G

�

=

B

C D

A

E

F

.

Report. General kinetics. G

�

satisfies Condition (⇤), and � is hence SSD and r-SSD by
Theorem 4. Thus both claims IC100 and IC200 hold. As the system is simply reversible, PC2 is
automatic (Remark 4.27), and as BC1 also holds, each nontrivial stoichiometry class contains
a unique equilibrium, which is positive (Remark 5.1).

Remark. This system also satisfies certain conditions of Theorem 2 in [4], and of Theorem
2.2 in [22]. Either of these theorems can be used to infer that (with general kinetics) all initial
conditions on any nontrivial stoichiometry class converge to an equilibrium which is positive
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and is the unique equilibrium on its stoichiometry class.
Example 3 (injectivity on stoichiometry classes, but not of the fully open extension).A+B ⌦

C, 2B ⌦ C +D, C ⌦ ;. The system has stoichiometric matrix � and irreversible stoichio-
metric matrix � as follows:

� =

0

BB@

�1 0 0
�1 �2 0
1 1 �1
0 1 0

1

CCA , � =

0

BB@

�1 1 0 0 0 0
�1 1 �2 2 0 0
1 �1 1 �1 �1 1
0 0 1 �1 0 0

1

CCA .

Report. (i) General kinetics. � has rank 3 and is 3-SSD but not SSD (namely, concordant,
but not accordant). By Theorem 4(a) claim IC100 holds. As PC1 also holds no nontrivial stoi-
chiometry class includes more than one equilibrium. As stoichiometry classes are unbounded,
we cannot actually infer the existence of equilibria on stoichiometry classes. By Theorem 4(b),
the fully open system has multiple positive equilibria for some choice of power-law general
kinetics. (ii) Mass action kinetics. As � fails to be WSD, by Theorem 6(c), the system fails
condition IC200, namely, the fully open system fails to be injective for some choice of rate
constants and inflows and outflows.

Remark. Interestingly, if the reaction C ⌦ ; is omitted, then the conclusion about injec-
tivity no longer holds. However, the system A+ B ⌦ C, 2B ⌦ C +D is of some interest in
its own right: (i) As this is a simply reversible system whose irreversible stoichiometric matrix
fails to be 2-strongly WSD, by Theorem 6, the CRN with mass action kinetics fails condi-
tion IC1 for some choice of rate constants. This does not, however, imply multiple positive
equilibria: it is a weakly reversible, deficiency zero network with stoichiometric subspace of
dimension 2; so, with mass action kinetics, each nontrivial stoichiometry class includes exactly
one positive equilibrium which attracts all positive initial conditions on its stoichiometry class
[38]. (ii) A+B ⌦ C, 2B ⌦ C +D defines a monotone dynamical system on each stoichiom-
etry class for general kinetics (Corollary A.7 in [5]) and, via Theorem 0.2.2 in [45], admits no
nontrivial attracting periodic orbits.

Example 4 (injectivity claims with mass action kinetics only).A + B ⌦ C, 2B ⌦ C + D,

C ⌦ ;. The system has stoichiometric matrix � and irreversible stoichiometric matrix � as
follows:

� =

0

BB@

�1 �2
�1 �1
1 0
0 1

1

CCA , � =

0

BB@

�1 1 �2 2
�1 1 �1 1
1 �1 0 0
0 0 1 �1

1

CCA

Report. (i) General kinetics. � has rank 2 but is neither SSD nor 2-SSD (namely, neither
accordant nor concordant) and so, by Theorem 4(a), the system has multiple positive equilibria
on a stoichiometry class for some choice of power-law general kinetics and, by Theorem 4(b),
the fully open system has multiple positive equilibria for some choice of power-law general
kinetics. (ii) Mass action kinetics. � is both WSD and 2-strongly WSD, and by Theorem 6
both claims IC1a and IC200 hold. The fully open system has no more than one equilibrium
on R4

�0

. Further, PC2 and BC1 hold, so in fact (with mass action kinetics), each nontrivial
stoichiometry class includes a unique equilibrium, which is positive. In this example, the
assumption of mass action significantly strengthens conclusions for both the CRN and its
fully open extension.
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Remark. This system satisfies certain conditions of Theorem 2 in Angeli, de Leenher, and
Santag [4] and consequently (with general kinetics) almost all positive initial conditions con-
verge to the set of equilibria (the Lebesgue measure of the set of possibly nonconvergent initial
conditions is zero). From above, with mass action kinetics, this “set of equilibria” intersects
each nontrivial stoichiometry class in a unique point. We thus get generic convergence to a
unique equilibrium on nontrivial stoichiometry classes for mass action kinetics, without using
deficiency theory.

The next example is only a slight variant on Example 4, where some inflows and outflows
have been added, but gives di↵erent conclusions, illustrating that care is needed in analyzing
even simple networks.

Example 5 (stronger injectivity claims with mass action kinetics).A + B ⌦ C, 2B ⌦ C +
D, C ⌦ ;. The system has stoichiometric matrix � and irreversible stoichiometric matrix �
as follows:

� =

0

BB@

�1 �2 0 0
�1 �1 �1 0
1 0 0 0
0 1 0 �1

1

CCA , � =

0

BB@

�1 1 �2 2 0 0 0 0
�1 1 �1 1 �1 1 0 0
1 �1 0 0 0 0 0 0
0 0 1 �1 0 0 �1 1

1

CCA .

Report. (i) General kinetics. rank� = 4 so the only stoichiometry class is R4

�0

. � is 4-SSD

but not SSD, so by Theorem 4, claim IC100 holds. As PC1 also holds, the R4

�0

includes no
more than one equilibrium. By Theorem 4(b), the fully open system has multiple positive
equilibria for some choice of power-law general kinetics. Thus, even though the CRN and
its fully open extension both have the same stoichiometry class (namely, the whole of R4

�0

),

the conclusions are quite di↵erent. (ii) Mass action kinetics. � is both WSD and 4-strongly
WSD (the CRN is both semiaccordant and semiconcordant), so by Theorem 6 both claims
IC1a and IC200 hold. In this example, the assumption of mass action significantly strengthens
conclusions for the fully open extension.

Remark. This example and the previous one illustrate rather interesting behavior: adding
some, but not all, inflows and outflows to the CRN in Example 4 led to the loss of multi-
stationarity on positive stoichiometry classes, while adding the remaining outflows led to its
return. Note that the addition of some inflows and outflows caused a change in the stoi-
chiometric subspace, and this behavior is thus consistent with the results in Joshi and Shiu
[35]. In fact, this is a weakly reversible deficiency zero network [24] and so, with mass action
kinetics, each nontrivial stoichiometry class has exactly one equilibrium, which is positive,
and is locally asymptotically stable relative to its stoichiometry class. As the system is in
fact complex-balanced [34] and persistent (since PC1 holds), we can infer that the unique
positive equilibrium on each nontrivial stoichiometry class in fact attracts the whole of its
stoichiometry class [44].

Example 6 (claims via deficiency theory only).A + B ⌦ C, 2B ⌦ C + D, C ⌦ ;. The
system has stoichiometric matrix � and irreversible stoichiometric matrix � as follows:

� =

0

@
�1 �1 �1
2 0 1
0 2 1

1

A
, � =

0

@
�1 1 �1 1 �1 1
2 �2 0 0 1 �1
0 0 2 �2 1 �1

1

A
.
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Report. (i) General kinetics. rank� = 2 and � is neither 2-SSD nor SSD (the CRN is nei-
ther concordant nor accordant). By Theorem 4(a), the system has multiple positive equilibria
on a stoichiometry class for some choice of power-law general kinetics, and by Theorem 4(b)
the fully open system has multiple positive equilibria for some choice of power-law general
kinetics. (ii) Mass action kinetics. � is neither WSD nor 2-WSD. By Theorem 6(c), the
system fails condition IC200, namely, the fully open system fails to be injective for some choice
of rate constants and inflows and outflows. By Theorem 6, the CRN with mass action kinetics
fails condition IC1 for some choice of rate constants. This does not, however, imply multiple
positive equilibria: as a weakly reversible network satisfying the conditions of the deficiency
one theorem [24], it has precisely one positive equilibrium on each nontrivial stoichiometry
class (for all choices of rate constants). As stoichiometry classes are bounded and PC1 also
holds we can in fact say that with mass action kinetics the CRN has precisely one equilibrium
on each stoichiometry class, and this equilibrium is positive provided the stoichiometry class
is not {0}.

5.2. Examples of CRNs which are not simply reversible.

Example 7 (the strongest possible claims III).The following network is often termed the “fu-
tile cycle” ([4], for example): A+B ⌦ C ! A+D, E+D ⌦ F ! E+B. The stoichiometric
matrix � and DSR graph G are shown:

� =

0

BBBBBB@

�1 1 0 0
�1 0 0 1
1 �1 0 0
0 1 �1 0
0 0 �1 1
0 0 1 �1

1

CCCCCCA
,

G

�

=

B

C D

A

E

F

.

Report. General kinetics. G satisfies Condition (⇤) and so is concordant and accordant:
IC100 and IC200 hold by Theorem 3. As the CRN is not weakly reversible, PC2 is not automatic
from concordance, but PC2 can be computed to hold. As BC1 also holds, each nontrivial
stoichiometry class contains a unique equilibrium, which is positive (Remark 5.1).

Remark. This system also satisfies certain conditions of Theorem 2 in [4], and of Theorem
2.2 in [22]. Either of these theorems can be used to infer that (with general kinetics) all initial
conditions on any nontrivial stoichiometry class converge to an equilibrium which is positive
and is the unique equilibrium on its stoichiometry class.

Example 8 (the strongest possible claims IV).A + B ! B + C, B + C ! D, D ! A + B.
The stoichiometric matrix �, �Dv

t, and the DSR graph G = G

�,�Dv

are shown:

� =

0

BB@

�1 0 1
0 �1 1
1 �1 0
0 1 �1

1

CCA ,�Dv

t =

0

BB@

� 0 0
� � 0
0 � 0
0 0 �

1

CCA ,

G =

A C

B

D

1

.
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Report. General kinetics. Although the DSR graph fails Condition (⇤), the system is
accordant (namely, � m �Dv

t), demonstrating that Condition (⇤) is su�cient but not nec-
essary for accordance. As the system is weakly reversible, accordance implies concordance
(Corollary 4.28(iii)). Thus IC100 and IC200 hold by Theorem 3. Further, PC2 holds automat-
ically as the system is weakly reversible (Remark 4.27). As BC1 also holds, each nontrivial
stoichiometry class contains a unique equilibrium, which is positive (Remark 5.1).

Remark. This example demonstrates that CRNs which are not simple (namely, have
species occurring on both sides of some reaction) may be accordant and concordant and hence
very well-behaved.

The following five examples are all of CRNs which admit no positive equilibria in the
sense of Definition 4.23. However, they nevertheless illustrate various interesting points about
injectivity and multistationarity in CRNs.

Example 9 (well-behaved on stoichiometry classes and with outflows).A ! B, B + C ⌦ D,
2C +A ⌦ E. The stoichiometric matrix � and �Dv

t for this system are

� =

0

BBBB@

�1 0 1
1 �1 0
0 �1 �2
0 1 0
0 0 1

1

CCCCA
, �Dv

t =

0

BBBB@

� 0 +
0 � 0
0 � �
0 + 0
0 0 +

1

CCCCA
.

Report. General kinetics. � has rank 3, � and �Dv

t are compatible and 3-strongly
compatible, namely, the CRN is accordant and concordant, and IC100 and IC200 follow by
Theorem 3. Stoichiometry classes are bounded, but the system admits no positive equilibria,
so stoichiometry classes contain equilibria, but these are all boundary equilibria.

Remark. In this example (and several others to follow), as the CRN admits no positive
equilibria, it is conclusion IC200 telling us that the fully open system is injective which is likely
to be of greatest interest. It is interesting to note that the DSR graph of this CRN satisfies
the graph-theoretic condition for concordance in Theorem 2.1 of Shinar and Feinberg [42],
although it fails Condition (⇤) in Banaji and Craciun [7].

Example 10 (well-behaved with outflows, but not on stoichiometry classes).Consider the sys-
tem of two irreversible reactions A + D ! B + D, 2A + D ! C + D. The stoichiometric
matrix � and �Dv

t for this system are

� =

0

BB@

�1 �2
1 0
0 1
0 0

1

CCA , �Dv

t =

0

BB@

� �
0 0
0 0
� �

1

CCA .

Report. (i) General kinetics. � has rank 2 and � and �Dv

t are compatible but not
2-strongly compatible, namely, the CRN is accordant, but not concordant. By Theorem 3,
IC200 holds, namely, the fully open system forbids multiple equilibria, but the CRN fails IC1
for some choice of power-law general kinetics (Theorem 3). (ii) Mass action kinetics. The
CRN fails condition IC1 for some choice of mass action kinetics, namely, the vector field is
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noninjective on the relative interior of some nontrivial stoichiometry class. Again, this clearly
does not imply multiple positive equilibria on a stoichiometry class.

Remark. This is an example of a CRN where accordance does not imply concordance as
the system is structurally discordant, namely, � �2 �Dv

t = 0 for all Dv in the rate pattern
(Corollary 4.28(i)). Equivalently, det

�

(�Dv) = 0 everywhere.
Example 11 (well-behaved with mass action but not more generally).A + B ⌦ C, 2A +

2B ! B + D. This system has irreversible stoichiometric matrix �, �Dv

t, and ��
l

as
follows:

� =

0

BB@

�1 1 �2
�1 1 �1
1 �1 0
0 0 1

1

CCA , �Dv

t =

0

BB@

� 0 �
� 0 �
0 � 0
0 0 0

1

CCA , ��
l

=

0

BB@

�1 0 �2
�1 0 �2
0 �1 0
0 0 0

1

CCA .

Report. (i) General kinetics. r = rank� = 2, and the system is neither accordant nor
concordant, namely, none of the following hold: � m �Dv

t, � �r �Dv

t

> 0, or � �r �Dv

t

< 0.
By Theorem 3(a) there exists a choice of power-law general kinetics such that the system
fails condition IC1. Note, however, that the system admits no positive equilibria, and hence
we cannot claim the existence of multiple positive equilibria on a stoichiometry class for any
kinetics. By Theorem 3(b) the fully open system has multiple positive equilibria for some
choice of power-law general kinetics. (ii) Mass action kinetics. The CRN is semiaccordant
and semiconcordant (namely, � m ��

l

and � �r ��
l

> 0) and so, by Theorem 5(a) and (b),
IC1a and IC200 hold: with mass action kinetics, the CRN is injective on positive stoichiometry
classes, and its fully open extension is also injective.

Remark. As the system is semiaccordant and semiconcordant, it is normal (Corollary 4.42).
This is an example of a normal CRN which is not weakly reversible.

The next system is the same as the previous one, but with the first reaction now irre-
versible. We see that this change has weakened the claims we are able to make.

Example 12 (setting some reactions to be irreversible can weaken conclusions).A + B ! C,

2A+ 2B ! B +D. This system has stoichiometric matrix �, �Dv

t, and ��
l

as follows:

� =

0

BB@

�1 �2
�1 �1
1 0
0 1

1

CCA , �Dv

t =

0

BB@

� �
� �
0 0
0 0

1

CCA , ��
l

=

0

BB@

�1 �2
�1 �2
0 0
0 0

1

CCA .

Report. (i) General kinetics. As in the previous example, r = rank� = 2 and the system
is neither accordant nor concordant and so, by Theorem 3(b), the fully open system has
multiple positive equilibria for some choice of power-law general kinetics. It fails condition
IC1 for some choice of power-law general kinetics but does not admit positive equilibria, so
this does not translate into multiple positive equilibria. (ii) Mass action kinetics. The system
is semiaccordant (� m ��

l

) and so, by Theorem 5(b), IC200 holds—with mass action the fully
open system forbids multiple positive equilibria. As the system is not semiconcordant (neither
� �r ��

l

> 0 nor � �r ��
l

< 0 holds), Theorem 5(a) tells us that the CRN fails condition IC1
for some choice of rate constants.

Remark. Clearly this CRN fails to be normal (Definition 4.18) as ��r �
l

= 0 (whenever �
l

has lower rank that � the failure to be normal is immediate). It is, however, not structurally
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discordant (Definition 4.18), illustrating that normal CRNs are a proper subset of those which
are not structurally discordant.

Example 13 (an autocatalytic system).Consider the simple, autocatalytic system A ! B !
2A. Here the stoichiometric matrix � and �Dv

t are

� =

✓
�1 2
1 �1

◆
, �Dv

t =

✓
� 0
0 �

◆
.

Report. (i) General kinetics. r = rank� = 2, � �r �Dv

t

< 0 (the system is concordant),
and PC1 holds, so by Lemma 4.13 and Remark 4.14, claim IC100 holds. The system does not,
however, admit any equilibria other than the trivial one. As the system is not accordant,
by Theorem 3(b), the fully open system has multiple positive equilibria for some choice of
power-law general kinetics. (ii) Mass action kinetics. As � fails to be WSD, by Theorem 6(c),
the system fails condition IC200, namely, the fully open system fails to be injective for some
choice of rate constants and inflows and outflows.

6. Concluding remarks. Results and examples have been presented illustrating a variety
of claims about injectivity and multistationarity which can be made about a CRN, with either
mass action or general kinetics, or other related classes of kinetics, primarily using various
matrix-related tests. While graph-theoretic approaches have been mentioned only in passing,
the practical significance of these approaches becomes particularly important for large systems.
Where Condition (⇤) in Appendix F implies compatibility of a pair of matrices, and hence
accordance of a CRN, an important task for the future is to develop e�cient DSR graph
conditions for r-strong compatibility of a pair of matrices, and hence concordance of a CRN.

Of the many claims in this paper, we highlight the remarkable parallels between injectivity
results for general kinetics and for mass action. For example, given a CRN R with irreversible
stoichiometric matrix � and corresponding left stoichiometric matrix �

l

, and its fully open
extension R

o

, we have the following parallels:
(1) Injectivity on stoichiometry classes. Concordance, namely, �-nonsingularity of the

qualitative class Q(�
l

), is equivalent to injectivity of R in the sense of IC100 under
the assumption of general kinetics. Semiconcordance, namely, �-nonsingularity of
the semiclass Q0(�

l

), is equivalent to injectivity of R in the sense of IC100 under the
assumption of mass action kinetics.

(2) Injectivity of the fully open system. Accordance, namely, � m Q(��
l

), is equivalent
to injectivity of R

o

on the nonnegative orthant (i.e., R satisfies IC200) under the as-
sumption of general kinetics. Semiaccordance, namely, � m Q0(��

l

), is equivalent to
injectivity of R

o

on the nonnegative orthant (i.e., R satisfies IC200) under the assump-
tion of mass action kinetics.

(3) Nondegeneracy conditions. Accordance implies concordance if and only if R is not
structurally discordant, namely, Q(�

l

) is not �-singular. Semiaccordance implies semi-
concordance if and only if R is normal, namely, Q0(�

l

) is not �-singular.
Underlying these parallels is the fact that the derivatives of reaction rates of an irreversible
CRN can explore qualitative classes (resp., semiclasses) on Rn

�0

under the assumption of gen-
eral kinetics (resp., mass action). This combines with the fact that whether we assume general
kinetics (or some closely related class) or fixed power-law kinetics (with mass action as a spe-
cial case), collective nonsingularity of all the allowed systems, namely, nonsingularity of each
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Jacobian, or its restriction to the stoichiometric subspace, is necessary and su�cient for injec-
tivity of all the associated vector fields, or their restrictions to stoichiometry classes. On the
other hand, in all cases there are elegant combinatorial conditions for collective nonsingularity:
the “compatibility” conditions, relating signs of minors of matrices.

It is noteworthy that for both general kinetics and mass action, the proof that (collective)
nonsingularity implies injectivity on stoichiometry classes uses the fundamental theorem of
calculus (Theorems 1 and 2): even though the set of allowed Jacobian matrices of a power-law
system is in general not a convex set, by passing to logarithmic coordinates and back again, we
can use an essentially convex approach to obtain conclusions about injectivity. The proofs in
the other direction, that singularity of some CRN in the class implies the failure of injectivity
for some CRN in the class, follow direct constructive approaches where we use the freedom to
choose exponents, rate constants, etc., accorded by power-law functions.

Where showing that collective nonsingularity is equivalent to collective injectivity is fairly
straightforward for the classes of functions encountered here, inferring the existence of multiple
equilibria from the failure of collective nonsingularity is trickier. Theorems 3(a), 3(b), 4(a),
4(b), and 5(d) provide conditions for multiple equilibria, but we sometimes need additional
conditions beyond the failure of collective nonsingularity (the possibility of positive equilibria
in Theorem 3(a), the strong incompatibility condition of Theorem 5(d)). This brings us to
the most obvious gap in this work: we do not provide su�cient conditions for the existence of
multiple positive equilibria on a stoichiometry class for a non-fully open CRN with M -power-
law kinetics. Certainly, failure of M -concordance is necessary but may not be su�cient. The
question of when, for instance, a mass action CRN which is not fully open is capable of multiple
positive equilibria on a stoichiometry class has fundamentally algebraic aspects, beyond the
techniques of this paper.

Another more practical gap in this work involves incomplete algorithmic implementation
of the results. For example, analysis of the examples in section 5 does not include the results
of Theorem 5(d), and so we never in the reports on examples claim definitively the existence
of multiple positive equilibria of a fully open system with mass action kinetics: at the time of
writing, a check for strong incompatibility of a pair of matrices (Definition 2.28) has not been
implemented in CoNtRol [10].

Developments in CRN theory are occurring rapidly and the intersection of distinct branches
of theory has the potential to provide increasingly strong claims about CRNs based on anal-
ysis of their structure alone. In the examples above we have already seen hints of this: for
instance, in Example 4 a generic quasi-convergence result based on monotonicity combines
with a claim about the existence of a unique equilibrium to allow stronger conclusions.

Appendix A. The reduced determinant of a matrix-product. Let 0 6= � 2 Rn⇥m and
V 2 Rm⇥n. Let r = rank�. Choose any basis for im� and write the vectors of this basis as
the columns of a matrix �

0

. Define Q via � = �
0

Q, and choose (any) left inverse �0 to �
0

to
get �0� = Q. So � = �

0

�0�.
Given x 2 im�, define new coordinates y on im� via x = �

0

y. We have �V �
0

y =
�
0

�0�V �
0

y = �
0

z, where z = �0�V �
0

y. Thus we have a map y 7! �0�V �
0

y

def
= J

1

y, which
describes the action of �V in the local coordinates on im�.

Suppose we choose a di↵erent basis for im�, whose vectors are arranged as the columns of
a matrix �

1

with left-inverse �00; in a similar way we derive a map y 7! �00�V �
1

y

def
= J

2

y which
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again describes the action of �V on im� in the coordinates associated with �
1

. It is easy to
see that J

1

and J

2

are similar. Define R via �
1

= �
0

R; clearly R is (square and) nonsingular
since both �

0

and �
1

define bases for im�. Moreover �
1

R

�1 = �
0

and so R

�1 = �00�
0

. So

J

2

= �00�V �
1

= �00�V �
0

R = �00(�
0

�0�)V �
0

R = R

�1�0�V �
0

R = R

�1

J

1

R,

showing that J

1

and J

2

are similar. Thus although there is no unique choice of matrix
describing the action of �V on im�, since all choices lead to similar matrices their determinant,
characteristic polynomial, eigenvalues, etc., are uniquely defined. In particular, given a matrix
product �V , we define det

�

(�V ) = det(�0�V �
0

) (with any choice of �
0

,�0 as above) as the
“reduced determinant” of �V .

Clearly if rank� = n, then det
�

(�V ) = det(�V ). We show that more generally det
�

(�V ) =P
|↵|=r

(�V )[↵], where r = rank�, namely, det
�

(�V ) is, up to a sign-change, the coe�cient of

the term of order n� r in the characteristic polynomial of �V . Choose ↵

0 ✓ n,�

0 ✓ m with
|↵0| = |�0| = r such that �[↵0|�0] 6= 0. Observe that by assumption, �

0

def
= �(n|�0) has rank r.

As above, let �0 be any left-inverse of �
0

so that � = �
0

�0� and define J
1

= �0�V �
0

as above.
For each ↵,�, we have

(A.1) �[↵|�] = (�
0

�0�)[↵|�] =
X

|�|=r

�
0

[↵|r]�0[r|�]�[�|�] .

So,
X

|↵|=r

(�V )[↵] =
X

|↵|=|�|=r

�[↵|�]V [�|↵]

=
X

|↵|=|�|=|�|=r

�
0

[↵|r]�0[r|�]�[�|�]V [�|↵] (using (A.1))

=
X

|�|=r

�0[r|�]
X

|↵|=|�|=r

�[�|�]V [�|↵]�
0

[↵|r]

=
X

|�|=r

�0[r|�] (�V �
0

)[�|r]

= (�0�V �
0

)[r|r] = det(J
1

) = det
�

(�V ) .

Lemma A.1. det
�

(�V ) 6= 0 if and only if rank(�V �) = r.
Proof. Observe that (trivially) rank(�V �)  r, and rank(�V �) < r if and only if there

exists 0 6= y 2 im� such that �V y = 0. On the other hand, choosing �
0

and �0 as above,
det

�

(�V ) = 0 if and only if there exists z 6= 0 such that (�0�V �
0

)z = 0.
Suppose rank(�V �) < r, choose nonzero y 2 im� such that �V y = 0, and write y = �

0

z

(z 6= 0). Immediately, �0�V �
0

z = 0 so det
�

(�V ) = 0.
Conversely, suppose det

�

(�V ) = 0 and choose z 6= 0 such that �0�V �
0

z = 0. This
implies that �V �

0

z = 0 since by definition im� \ ker�0 = {0}. But 0 6= �
0

z 2 im�. So
rank(�V �)<r.

Lemma A.2. Let � 2 Rn⇥m, V 2 Rm⇥n, and �V be positive definite on im� in the sense
that 0 6= z 2 im� ) z

t�V z > 0. Then det
�

�V > 0.
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Proof. Fix some basis for im� and, as in the preceding discussion, let J be the matrix
describing the action of �V in this basis, so that det

�

�V = detJ . By Lemma A.1, zt�V z > 0
for all 0 6= z 2 im� implies that det

�

�V 6= 0, namely, detJ 6= 0. Consider the spectrum
of J , namely the list of eigenvalues of �V associated with im�, say, (�

1

,�

2

, . . . ,�

r

). As
detJ 6= 0, none of these eigenvalues is 0. If one, say, �

1

, is real and negative, then choosing a
corresponding eigenvector z 2 im�, we get the contradiction 0 < z

t�V z = �

1

|z|2 < 0. As (i)
any real eigenvalues of J are positive and (ii) any nonreal eigenvalues of J come in complex
conjugate pairs, the product �

1

�

2

· · ·�
r

> 0, namely, detJ = det
�

�V > 0.

Appendix B. General kinetics, weak general kinetics, positive general kinetics. Given a
CRN, let I

j,l

be the set of indices of species occurring on the left of reaction j and I
j,r

be the
set of indices of the species occurring on the right of reaction j. The following assumptions
about the function v(x) in (4.1) apply in the case of “general kinetics,” where v is assumed
to be C

1 on Rn

�0

. They are collectively termed “Assumption K”:
(A) If reaction j is irreversible, then

(i) v

j

� 0 with v

j

= 0 if and only if x
i

= 0 for some i 2 I
j,l

,
(ii) @v

j

/@x

i

� 0 for each i 2 I
j,l

. If x
i

> 0 for all i 2 I
j,l

, then @v

j

/@x

i

> 0 for each
i 2 I

j,l

.
(B) If reaction j is reversible, then

(i) if x
i

= 0 for some i 2 I
j,l

(resp., for some i 2 I
j,r

), then v

j

 0 (resp., v
j

� 0);
(ii) if x

i

= 0 for some i 2 I
j,l

(resp., for some i 2 I
j,r

), then v

j

< 0 (resp., v
j

> 0) if
and only if x

i

0
> 0 for each i

0 2 I
j,r

(resp., for each i

0 2 I
j,l

);
(iii) if k 2 I

j,l

, k 62 I
j,r

, and x

i

> 0 for all i 2 I
j,l

, then @v

j

(x)/@x
k

> 0 (resp., if
k 2 I

j,r

, k 62 I
j,l

, and x

i

> 0 for all i 2 I
j,r

, then @v

j

(x)/@x
k

< 0).
These assumptions are similar to the assumptions made in [11], although there the case where
species may occur on both sides of the same reaction was excluded. The reader may confirm
that the assumptions here imply the ones in [11] in that case. Note that the assumptions
for a reversible reaction are presented for completeness but can actually be inferred from the
assumptions for irreversible reactions.

For “weak general kinetics” (Definition 4.5), where we assume that v is defined and con-
tinuous on Rn

�0

, and C

1 on Rn

�0

, we replace A(ii) with “@v
j

/@x

i

> 0 on Rn

�0

for each i 2 I
j,l

.”
For “positive general kinetics” (Definition 4.5), where we assume only that v is defined

and C

1 on Rn

�0

, Assumption K reduces to Assumption K
o

, which consists of the following:
(A

o

) If reaction j is irreversible, then (i) v
j

> 0, (ii) @v
j

/@x

i

> 0 for each i 2 I
j,l

.
(B

o

) If reaction j is reversible, then k 2 I
j,l

, k 62 I
j,r

, and x

i

> 0 for all i 2 I
j,l

, then
@v

j

(x)/@x
k

> 0 (resp., if k 2 I
j,r

, k 62 I
j,l

, and x

i

> 0 for all i 2 I
j,r

, then
@v

j

(x)/@x
k

< 0).
The following lemma is a straightforward result. Versions of it have appeared in previ-

ous literature, with slightly di↵erent technical assumptions (see, for example, Appendix I of
Feinberg [24]).

Lemma B.1. Let the system (4.1) satisfy Assumption K. Then for any x 2 Rn

�0

, any j,
and any i such that x

i

= 0 there holds ẋ

i

= �
ij

v

j

(x) � 0. Consequently, for such a system
Rn

�0

is forward invariant.
Proof. The result in fact requires only Assumptions (A)(i) and (B)(i). Let C

i

refer to the
ith species and R

j

to the jth reaction. Let x 2 Rn

�0

be such that x
i

= 0.
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• If C
i

does not participate in R

j

, then �
ij

= 0, and so �
ij

v

j

(x) = 0.
• Suppose R

j

is irreversible. If C
i

occurs on the left of R
j

, then, by (A)(i), v
j

(x) = 0
and consequently �

ij

v

j

(x) = 0. If C
i

occurs only on the right of R
j

, then �
ij

> 0 and,
by (A)(i), v

j

� 0, so �
ij

v

j

(x) � 0.
• Suppose R

j

is reversible. If C
i

occurs on both sides of R
j

, then, by (B)(i), v
j

(x) = 0.
If C

i

occurs only on the left of R
j

, then �
ij

< 0 and, by B(i), v
j

(x)  0; consequently
�
ij

v

j

(x) � 0. If C
i

occurs only on the right of R
j

, then �
ij

> 0 and, by B(i), v
j

(x) � 0;
again �

ij

v

j

(x) � 0.
Thus x

i

= 0 implies ẋ
i

=
P

j

�
ij

v

j

(x) � 0, and so Rn

�0

is forward invariant.

Appendix C. Concordance. Consider a CRN with irreversible stoichiometric matrix � 2
Rn⇥m. Let �

l

� 0 be the left stoichiometric matrix so that by Assumption K
o

, Dv(x) 2 Q(�t

l

)
for x � 0. Let r = rank�. We show that concordance of a system of irreversible reactions
as defined by Shinar and Feinberg [41] is equivalent to the condition � �r Q(�

l

) > 0 or
� �r Q(�

l

) < 0, which is the form taken by concordance as defined here for such a system
(Lemma 4.19). First observe that

� �r Q(�
l

) > 0 or � �r Q(�
l

) < 0
, [� �r M > 0 or � �r M < 0] 8M 2 Q(�

l

) (as Q(�t

l

) is path connected)
, rank(�V �) = r 8V 2 Q(�t

l

) (Lemma 2.32)
, [�V �y = 0 , �y = 0 8V 2 Q(�t

l

)] (⇤).

We now show that (⇤) is equivalent to concordance. Consider the negation of (⇤), namely,

“there exists y 2 Rm and V 2 Q(�t

l

) such that �
def
= �y 6= 0, but �V � = 0.” In other words,

“there is some V 2 Q(�t

l

) which can map a nonzero vector in the image of � to the kernel
of �.”

(i) If (⇤) fails, the system is discordant. Suppose (⇤) fails so there exist V 2 Q(�t

l

),
↵ 2 ker�, and 0 6= � 2 im� such that ↵ = V �. Note that ↵

i

=
P

j

V

ij

�

j

and that

V

ij

2 Q((�
l

)
ji

). Fix i. Since V � 0 and V 2 Q(�t

l

),
(1) if ↵

i

= (V �)
i

= 0, then either (�
l

)
ji

> 0 ) �

j

= 0, or there exist j

1

6= j

2

such that
�

j1�j2 < 0 and (�
l

)
j1i, (�l

)
j2i > 0;

(2) if ↵
i

= (V �)
i

> 0, there exists j s.t. (�
l

)
ji

�

j

> 0; if ↵
i

= (V �)
i

< 0, there exists j s.t.
(�

l

)
ji

�

j

< 0.
The existence of ↵ 2 ker�, 0 6= � 2 im� satisfying (1) and (2) above means (by definition)
that the system is discordant.

(ii) If the system is discordant, then (⇤) fails. Suppose the system is discordant, namely,
there is a pair 0 6= � 2 im�, ↵ 2 ker� such that

(1) whenever ↵

i

= 0, then either (�
l

)
ji

> 0 ) �

j

= 0, or there exist j

1

6= j

2

such that
�

j1�j2 < 0 and (�
l

)
j1i, (�l

)
j2i > 0 (discordance condition ii);

(2) whenever ↵
i

> 0, there exists j s.t. (�
l

)
ji

�

j

> 0; whenever ↵

i

< 0, there exists j s.t.
(�

l

)
ji

�

j

< 0 (discordance condition i).
Then there exists V 2 Q(�t

l

) such that V � = ↵ and hence �y 6= 0, but �V �y = 0, namely,
(⇤) fails. This follows straightforwardly:

• If ↵
i

= 0 and (�
l

)
ji

> 0 ) �

j

= 0, then trivially 0 = ↵

i

= (V �)
i

for any V 2 Q(�t

l

).
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• If ↵
i

= 0 and there exist j
1

6= j

2

such that �
j1�j2 < 0 and (�

l

)
j1i, (�l

)
j2i > 0, then we

can clearly choose V

i 2 Q((�
l

)
i

) (the ith row of V in qualitative class of ith column
of �

l

) such that V i

� = 0 = ↵

i

.
• If ↵

i

> 0 and there exists j s.t. (�
l

)
ji

�

j

> 0, , then we can clearly choose V i 2 Q((�
l

)
i

)
such that V i

� = ↵

i

.
• If ↵

i

< 0 and there exists j s.t. (�
l

)
ji

�

j

< 0, , then we can clearly choose V i 2 Q((�
l

)
i

)
such that V i

� = ↵

i

.

Appendix D. Additional information.
Claim BC1 (bounded stoichiometry classes). The following is well known (Appendix

1 of Horn and Jackson [34], for example).
Lemma D.1. Stoichiometry classes of a CRN with stoichiometric matrix � 2 Rn⇥m are

bounded if and only if there exists 0 ⌧ p 2 ker�t.
Proof. Recall that stoichiometry classes are simply the intersections of cosets of im� with

Rn

�0

and that ker�t is the orthogonal complement of im�. The proof is now easily inferred
from Theorem 4 in Ben-Israel [13].

Note that if BC1 holds, then all nonempty stoichiometry classes are bounded polyhedra.
As they are also forward invariant under the local semiflow generated by (4.1) (Lemma B.1
in Appendix B), they contain equilibria as a consequence of the Brouwer fixed point theorem
([47], for example).

Claim PC0 (nonexistence of positive equilibria). In many situations a very simple
result on the nonexistence of positive equilibria can be applied. The following lemma is an
amalgamation of easy and well-known facts (see, for example, section 5.3 of Feinberg [24] for
related results).

Lemma D.2. Let � 2 Rn⇥m be the stoichiometric matrix of a CRN and � 2 Rn⇥m

0
the

corresponding irreversible stoichiometric matrix. (i) If ker� \ Rn

�0

= ;, then, with general
kinetics on Rn

�0

, or any power-law kinetics, the CRN has no positive equilibria. (ii) If ker�\
Rn

�0

6= ;, then the CRN with mass action kinetics has a positive equilibrium for some choice
of rate constants.

Proof. (i) We prove the contrapositive. Let v : Rn ! Rm be the rate function of the
original CRN (not necessarily irreversible). Without loss of generality let reactions 1, . . . , r
be reversible and reactions r+ 1, . . . ,m be irreversible. Suppose the CRN has an equilibrium
x

eq

� 0 and let w = v(x
eq

) so that �w = 0. Assuming only that reaction rates of irreversible
reactions on Rn

�0

are positive (certainly true for positive general kinetics, or any power-law
kinetics), w

r+1

, . . . , w

m

are all positive. Let

� = (�
1

| ��
1

| · · · |�
r

| ��
r

|�
r+1

|�
r+2

| · · · |�
m

)

be the irreversible stoichiometric matrix of the system. For k = 1, . . . , r, define w

k+

=
1 +max{w

k

, 0}, w
k� = 1�min{w

k

, 0}, so that w
k+

, w

k� > 0 and w

k

= w

k+

� w

k�. Define

w = (w
1+

, w

1�, . . . , wr+

, w

r�, wr+1

, . . . , w

m

)t .

By construction w � 0, and clearly �w = �w = 0, and thus ker� \ Rn

�0

6= ;.
(ii) Let 0 ⌧ z 2 ker�. Define x = 1 and choose E 2 D

m

via E

ii

= z

i

. Then for
any matrix of exponents M 2 Rm⇥n (including, in particular, M = �t

l

, where �
l

is the left
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stoichiometric matrix corresponding to �), �E exp(M lnx) = �E1 = �z = 0, and thus x is a
positive equilibrium of the system.

Remark D.3. A variety of conditions on a network with mass action kinetics are known
to guarantee that it has a positive equilibrium for all choices of rate constants. However,
ker� \ Rn

�0

6= ; is not su�cient—see Remark 5.3B in Feinberg [24].

Claims PC1 and PC2 (persistence of solutions). A siphon of a CRN is a nonempty
subset ⌃ of the chemical species such that (under the assumption of general kinetics) if all
species in ⌃ are absent, then no reaction is able to produce any species of ⌃. Corresponding
to siphon ⌃ is a subset F

⌃

of @Rn

�0

where all concentrations of species from ⌃ are zero
and all others nonzero, termed a “siphon face” in [22]; it is easy to show (for a CRN with
general kinetics, and in fact under considerably weaker assumptions) that all nonzero !-limit
points of the system on @Rn

�0

must in fact lie on siphon faces (see Banaji and Mierczyński
[11], for example). A siphon is termed “critical” if a nontrivial stoichiometry class intersects
the corresponding siphon face. Note that in the literature siphons have also been called
“semilocking sets,” and critical siphons have also been called “relevant,” while noncritical
siphons have been termed “stoichiometrically infeasible” and “structurally nonemptiable.”

PC2 occurs if the system has no critical siphons, in which case no positive initial condition
can have an !-limit point on @Rn

�0

. The absence of critical siphons, implying “structural
persistence” of the CRN, occurs if for each siphon ⌃, there exists a nonnegative and nonzero
vector in ker�t orthogonal to F

⌃

, or in the terminology of [3], each siphon contains the
“support of a P-semiflow.” This condition for the absence of critical siphons is also stated
without proof in Remark 6.1.E of Feinberg [24]. Verification of this condition involves checking
whether certain linear equalities and inequalities are satisfiable and is easily implemented
computationally. Details and an example of the calculations are provided in Donnell and
Banaji [22], while the computations are implemented in CoNtRol [10]. Where the calculations
implemented in [10] involve linear programming, an algebraic algorithm for verifying the
absence of critical siphons is given in Shiu and Sturmfels [43]. Note also that if a network
is concordant and weakly reversible, then the absence of critical siphons is automatic by
Theorem 6.3 in Shinar and Feinberg [41], reproved by elementary means in the next appendix.

PC1 is satisfied if the system has no siphons, other than possibly the set of all species,
corresponding to siphon face {0}. If the set of all species is a siphon, then it is noncritical
(an indirect consequence in this case is that stoichiometry classes must be bounded as the
stoichiometric subspace has trivial intersection with the nonnegative orthant). Since a CRN
satisfying PC1 has either no siphons or a single noncritical siphon at the origin, it also satisfies
PC2.

Appendix E. Elementary proof that a concordant, weakly reversible CRN has no critical
siphons. Shinar and Feinberg [41] provide two proofs of the claim reproved by direct means
in this appendix. One uses unpublished results of Deng et al. [20], who prove that nontrivial
stoichiometry classes of weakly reversible CRNs with mass action kinetics contain positive
equilibria. The second proof relies on classical results of Horn and Jackson on the existence and
uniqueness of complex balanced equilibria for CRNs with mass action kinetics [34]. As both
hypotheses and conclusions of the theorem are fundamentally linear algebraic/combinatorial,
and have little to do with chemical kinetics at all (as remarked by the authors themselves),
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we provide a proof which does not rely on results for mass action systems. We require the
following fact.

Lemma E.1 (Theorem 7.2 in Craciun and Feinberg [18]). Every weakly reversible CRN is nor-
mal.

Proof. Consider a CRN with irreversible stoichiometric matrix � 2 Rn⇥m and left stoichio-
metric matrix �

l

and whose complex digraph G is weakly reversible. Assume that G has no
loops: this assumption is without loss of generality as det

�

(�V ) =
P

|↵|=|�|=rank�

�[↵|�]V [�|↵]
is unchanged (for arbitrary V of appropriate dimension) by the addition of a column of zeros
to �.

To prove the lemma we will show that �D�t

l

is negative definite on Im� for some D 2 D
m

,
namely, zt�D�t

l

z < 0 for all 0 6= z 2 Im�. Then rank�D�t

l

� = rank�, implying normality
since D�t

l

2 Q0(�t

l

). Specifying some order on the complexes, let Y be the matrix of complexes
and ⇥ the (signed) incidence matrix of G (namely, ⇥

ik

= �1,⇥
jk

= 1 i↵ edge k is (i, j)), so
that � = Y⇥. Define ⇥

l

= ⇥� and ⇥
r

= ⇥
+

, so that �
l

= Y⇥
l

. For arbitrary Y , we aim to
construct D such that

z

t

Y⇥D⇥t

l

Y

t

z < 0 or equivalently � z

t

Y (⇥D⇥t

l

+⇥
l

D⇥t)Y t

z > 0

for all 0 6= z 2 ImY⇥. Each column of ⇥
l

(resp., ✓
r

) has exactly one nonzero entry and so its
nonzero rows form an orthogonal basis for Im⇥t

l

. Define

L(G) ⌘ (�⇥⇥t

l

)
ij

=
X

k

⇥
ik

(�⇥
l

)
jk

=

8
<

:

q if i = j and vertex i has q out-edges,
�r if there are r edges (i, j) in G,

0 otherwise.

We see that L(G) is the transpose of a digraph analogue of the Laplacian matrix of a graph
(where the diagonal entries count the outdegree of a vertex, and the o↵-diagonal ij entry
counts the number of edges (i, j)).

Let C be a cycle in G and consider the subgraph G

C

which has all the vertices of G but
edges only from C. The incidence matrix ⇥

C

of G
C

is simply ⇥ with all entries corresponding
to edges (namely, columns of ⇥) not in C set to zero. We can confirm easily that L(G

C

) ⌘
⇥

C

⇥t

C,l

= ⇥
C

⇥t

l

. Consider the matrix ⇥ ⌘
P

i

⇥
Ci , where the sum is over all cycles. If edge

j occurs in k

j

2 N
0

cycles, then column j of ⇥ appears as column j of ⇥
Ci for k

j

values of
i, and so column j of ⇥ is simply k

j

times column j of ⇥. If G is weakly reversible, then
each edge occurs in some cycle, namely, k

j

� 1 for each j, and consequently ⇥ = ⇥D, where
D = diag(k

1

, k

2

, . . .) 2 D
m

.
Now fix a cycle C and observe that⇥

C

⇥t

C

= �(⇥
C

⇥t

C,l

+⇥
C,l

⇥t

C

): this is a straightforward

computation, where we need only note that ⇥
C,r

⇥t

C,r

= ⇥
C,l

⇥t

C,l

as each nonzero row of ⇥
C

contains exactly one +1 and one �1, and all rows of ⇥
C,l

(resp., ⇥
C,r

) are orthogonal. Thus

�(⇥D⇥t

l

+⇥
l

D⇥t) =
X

i

�(⇥
Ci⇥

t

l

+⇥
l

⇥t

Ci
) =

X

i

⇥
Ci⇥

t

Ci
= ⇥̃⇥̃t

,

where ⇥̃ = [⇥
C1 |⇥C2 | · · · |⇥Ck ], and hence, for any z 2 Rn,

�z

t

Y (⇥D⇥t

l

+⇥
l

D⇥t)Y t

z = z

t

Y ⇥̃⇥̃t

Y

t

z = |⇥̃t

Y

t

z|2 � 0 .
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with z

t

Y ⇥̃⇥̃t

Y

t

z = 0 i↵ ⇥̃t

Y

t

z = 0. On the other hand, ker ⇥̃t = ker⇥t as ⇥̃t includes
precisely the rows of ⇥

t

, perhaps reordered and with some repetition, and no others. So
⇥̃t

Y

t

z = 0 i↵ ⇥t

Y

t

z = 0. Fixing 0 6= z 2 ImY⇥, ⇥t

Y

t

z 6= 0, and consequently �z

t

Y (⇥D⇥t

l

+
⇥

l

D⇥t)Y t

z > 0 as desired.
It is useful to note the following immediate corollary.
Corollary E.2. Given a weakly reversible CRN with irreversible stoichiometric matrix �

and corresponding left-stoichiometric matric �
l

, there exists positive diagonal matrix D such
that det

�

(��D�t

l

) > 0.
Proof. By the proof of Lemma E.1, there exists positive diagonal D such that ��D�t

l

is
positive definite on im�. By Lemma A.2, this implies that det

�

(��D�t

l

) > 0.
Theorem 7 (Theorem 6.3 in Shinar and Feinberg [41]). A weakly reversible CRN with a crit-

ical siphon is discordant.
Proof. Consider a weakly reversible CRN on n species with a critical siphon ; 6= ⌃ ✓ n.

Let �,�
l

2 Rn⇥m be the irreversible stoichiometric matrix and left stoichiometric matrix of the
system, respectively, and G its complex digraph. The strategy will be to find 0 6= y

0 2 im�,
and M 2 Q(�t

l

), such that �My

0 = 0, thus showing that the system is discordant.
Let S = n\⌃ be the set of 0  k < n species not in the siphon. Define

F = {x 2 Rn |x
i

> 0, i 2 S and x

i

= 0, i 62 S}

to be the corresponding face of Rn

�0

. Order the species and reactions so that

� =


�S

0

���� �0

�
, �

l

=


�S

l

0

���� �0

l

�
.

Here the superscript S refers to reactions involving species only from S, while the superscript
0 refers to the remaining reactions. We allow �S and �S

l

to be empty matrices in the case
that S is empty (corresponding to n being the critical siphon): all arguments remain valid in
this case. Let �

S

have s columns, where 0  s < m: whether or not S is empty, the set of
reactions supported on S may be empty but cannot be all of the reactions as ⌃ is critical—if
�0 were empty, then im� ✓ spanF , and ⌃ would then clearly be noncritical. We refer to the
reactions of �S as the S-reactions and the others as the non-S-reactions.

Observe that a non-S-reaction can share no complexes with an S-reaction: otherwise,
as ⌃ is a siphon, any shared complexes must figure only as product complexes for non-S-
reactions, violating weak reversibility. Thus the S-reactions and non-S-reactions are made
up from distinct sets of connected components of G, namely, each forms a weakly reversible
subsystem of the CRN (this is also observed in the original proof of Shinar and Feinberg [41]).
Consequently, as any union of cycles in G corresponds to a nonnegative vector in ker� with
support precisely equal to the reactions in these cycles, there exists a strictly positive vector
q

0 2 Rm�s in ker�0.
Choose p 2 Rn

�0

and a vector y 2 im� such that p� y 2 F . Geometrically, we begin at a
point on the critical siphon face F and move along its stoichiometry class into Rn

�0

, possible
by definition of a critical siphon: y is the vector traveled. Let

y =


y

S

y

0

�
,
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where y

S and y

0 have their natural meanings. By construction, entries in y

0 are all positive,
while the signs of entries in y

S are unknown. In the case k = 0, yS is empty, and y is a strictly
positive vector.

We now consider the subsystem of S-reactions, assuming for the time being that it is
nonempty, namely, s > 0 (and hence certainly k > 0). As it is a weakly reversible system
of reactions it is normal (Lemma E.1) and hence not structurally discordant, and so there
exists some M

S 2 Q((�S

l

)t) such that imM

S�S � ker�S = Rs. As a consequence, we can
write M

S

y

S = ↵ + �, where ↵ 2 imM

S�S and � 2 ker�S . Choosing y

S,1 2 im�S such that
M

S

y

S,1 = �↵, and hence M

S(yS + y

S,1) = �, we see that �S

M

S(yS + y

S,1) = 0. Now set

y

0 =


y

S + y

S,1

y

0

�
and write M 2 Q((�

l

)t) as M =


M

S | 0
M

0

�
.

Choose the entries of M0 (corresponding to non-S-reactions) as follows. For i > s, reaction
i must have a species on the left in ⌃, for otherwise (since ⌃ is a siphon) it would produce
only species in S, namely, there exists j > k such that (�

l

)
ji

> 0. Since y0
j

> 0, we can choose

entries in row i of M 2 Q(�t

l

) such that (My

0)
i

= q

0

i�s

> 0, namely, �0

M

0

y

0 = �0

q

0 = 0. We
now have

�My

0 =


�S

0

���� �0

� 
M

S | 0
M

0

� 
y

S + y

S,1

y

0

�

=


�S

M

S 0
0 0

� 
y

S + y

S,1

y

0

�
+ �0

M

0


y

S + y

S,1

y

0

�

=


�S

M

S(yS + y

S,1)
0

�
+ �0

M

0

y

0 = 0 + 0 = 0 .

As 0 6= y

0 2 im�, this concludes the proof that the system is discordant in the case that the
S-subsystem is nonempty. In case the S-subsystem is empty, � = �0, M = M

0 and either of
the following holds:

(i) k = 0, in which case y = y

0 (i.e., yS is empty). Then �My = �0

M

0

y

0; as above we
can construct M0 such that M0

y

0 = q

0, giving �0

M

0

y

0 = 0.
(ii) Otherwise y

S is not empty, but we choose y

S,1 = 0. We apply the construction above
to get M0 such that M0

y = q

0, so �My = �0

M

0

y = �0

q

0 = 0.

Appendix F. DSR graphs and Condition (⇤). We follow the constructions in Angeli,
Banaji, and Pantea [2] based on those in Banaji and Craciun [7], though with minor technical
di↵erences, the most important of which is that what is here termed G

A,B

was termed G

A,B

t

in [7]. A great deal more explanation and justification for the construction of the DSR graph,
and explanation of Condition (⇤), are given in [7].

DSR graph of a matrix pair. Given A 2 Rn⇥m, B 2 Rm⇥n, construct a signed,
labeled, bipartite, generalized graph G

A,B

on n + m vertices as follows: beginning with n

vertices X

1

, . . . , X

n

and m vertices Y

1

, . . . , Y

m

, add the directed edge Y

j

X

i

i↵ A

ij

6= 0, and
give this edge the sign of A

ij

and label |A
ij

|; add the directed edge X

i

Y

j

i↵ B

ji

6= 0, and give
this edge the sign of B

ji

(and no label). If a pair of edges X
i

Y

j

and Y

j

X

i

both exist and have
the same sign, merge these into a single undirected edge with the label inherited from X

i

Y

j

.
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Note that edges of G
A,B

may be directed from an X-vertex to a Y -vertex, or from a Y -vertex
to an X-vertex, or may be undirected. Any edges which remain unlabeled at the end of the
construction must be directed from an X vertex to a Y vertex and can be given the formal
label 1. We follow the convention that edge-labels of 1 are omitted.

SR graph of a matrix. G

A

, the SR graph of a matrix A, is the DSR graph G

A,A

t . By
construction, all edges in G

A,A

t are undirected and have finite labels, namely, the magnitudes
of entries of A. G

A

can thus be seen as a representation of the matrix.
DSR graph of a CRN. Given a CRN R with stoichiometric matrix � and rate vector

v(x) in (4.1), for each x 2 Rn

�0

, define G

�,�Dv(x)

to be the DSR graph of the matrix pair
�,�Dv(x). The DSR graph G of R is a formal union of the DSR graphs G

�,�Dv(x)

as follows:
all G

�,�Dv(x)

have the same vertex set and this is the vertex set of G; the edge set of G

is the union of edges of all the G

�,�Dv(x)

, where two edges are considered to be equal if
they have the same direction, sign, and label. Assumption K

o

allows the DSR graph of any
CRN to be constructed from knowledge of the reactions alone (see the DSR graphs shown
in section 5). Note, however, that the DSR graph of a CRN di↵ers depending on whether
a reversible reaction is treated as a single reaction or a pair of irreversible reactions, and
the choice to treat a reversible reaction as a pair of irreversible reactions, or not, can a↵ect
whether Condition (⇤) below holds for the DSR graph of the CRN.

SR graph of a CRN. The SR graph of a CRN is just the DSR graph with all direction
removed from edges.

Cycles in DSR graphs. Consider a DSR graph G, some of whose edges may be directed:
each edge e 2 E(G) has a sign ±1 and a numerical label l(e) 2 N [ {1}. A cycle c in a DSR
graph G is a path from some vertex to itself which repeats no other vertices, and which
respects the orientation of any directed edges traversed. Its length |c| is the number of edges
(or vertices) in c, and the sign of c is the product of the edge-signs in c. As G is bipartite,
any cycle c has even length and we can define

P (c) = (�1)|c|/2sign(c).

c is termed an e-cycle if P (c) = 1 and an o-cycle otherwise. If c = (e
1

, e

2

, . . . , e

2r

), then c is
an s-cycle if all edges in c have finite labels and

rY

i=1

l(e
2i�1

) =
rY

i=1

l(e
2i

).

Two oriented cycles in G are compatibly oriented if each induces the same orientation on every
edge in their intersection. Two cycles (possibly unoriented) in G are compatibly oriented if
there is an orientation for each so that this requirement is fulfilled. Two cycles of G have
S-to-R intersection if they are compatibly oriented and each component of their intersection
contains an odd number of edges (this is trivially fulfilled if their intersection includes no
edges).

Condition (⇤). A DSR graph G satisfies Condition (⇤) if all its e-cycles are s-cycles and
no two e-cycles have S-to-R intersection.

Note that Condition (⇤) is su�cient but not necessary to ensure that a CRN is accordant,
namely, that � m �V

t for each V in the rate pattern of the CRN. Construction of the
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DSR graph of a CRN, and calculation of whether it satisfies Condition (⇤), are automated in
CoNtRol [10].
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[46] C. Soulé, Graphic requirements for multistationarity, Complexus, 1 (2003), pp. 123–133.
[47] E. H. Spanier, Algebraic Topology, Springer, New York, 1981.
[48] R. Thomas, On the relation between the logical structure of systems and their ability to generate multiple

steady states or sustained oscillations, in Numerical Methods in the Study of Critical Phenomena,



INJECTIVITY AND MULTISTATIONARITY IN CRNs 869

J. Della-Dora, J. Demongeot, and B. Lacolle, eds., Springer Ser. Synergetics 9, Springer, New York,
1981, pp. 180–193.

[49] C. Thomassen, Sign-nonsingular matrices and even cycles in directed graphs, Linear Algebra Appl., 75
(1986), pp. 27–41.

[50] C. Wiuf and E. Feliu, Power-law kinetics and determinant criteria for the preclusion of multistation-
arity in networks of interacting species, SIAM J. Appl. Dyn. Syst., 12 (2013), pp. 1685–1721.

[51] H. Whitney, Functions di↵erentiable on the boundaries of regions, Ann. of Math., 35 (1934), pp. 482–485.


