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a b s t r a c t

Historically, research on the neuroendocrinology of aggression has been dominated by the paradigm that
the brain receives sex steroid hormones, such as testosterone (T), from the gonads, and then these gonadal
hormones modulate behaviorally relevant neural circuits. While this paradigm has been extremely useful
for advancing the field, recent studies reveal important alternatives. For example, most vertebrate species
are seasonal breeders, and many species show aggression outside of the breeding season, when the gonads
are regressed and circulating levels of gonadal steroids are relatively low. Studies in diverse avian and
mammalian species suggest that adrenal dehydroepiandrosterone (DHEA), an androgen precursor and
prohormone, is important for the expression of aggression when gonadal T synthesis is low. Circulating
DHEA can be converted into active sex steroids within the brain. In addition, the brain can synthesize
sex steroids de novo from cholesterol, thereby uncoupling brain steroid levels from circulating steroid
levels. These alternative mechanisms to provide sex steroids to specific neural circuits may have evolved
to avoid the costs of high circulating T levels during the non-breeding season. Physiological indicators of

season (e.g., melatonin) may allow animals to switch from one neuroendocrine mechanism to another
across the year. DHEA and neurosteroids are likely to be important for the control of multiple behaviors
in many species, including humans. These studies yield fundamental insights into the regulation of DHEA
secretion, the mechanisms by which DHEA affects behavior, and the brain regions and neural processes
that are modulated by DHEA. It is clear that the brain is an important site of DHEA synthesis and action.

This article is part of a Special Issue entitled ‘Essential role of DHEA’.

© 2014 Elsevier Ltd. All rights reserved.
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many cases [11,12]. Alternatively, the androgen pre-
A is synthesized in extra-gonadal organs, such as the
ds, liver, and brain. Adrenal steroids, as well as neurally
steroids (neurosteroids), may play important roles in

ggressive responses [13–15]. Collectively, these results
ated several possible pathways by which steroids can
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for DHEA in the regulation of aggression, including a
of the potential mechanisms and sites of action.
ortant to note that there is a long evolutionary his-
eparates birds from mammals, and these divergent
y have evolved different mechanisms that account for

cross comparative studies. The evolutionary lineages
to the Diapsida (reptiles and birds) and the Synapsida
diverged approximately 310 million years ago (MYA).

are represented in the fossil record about 220 MYA,
rds appeared in the fossil record about 150–200 MYA,
diverged from reptiles. This shows deep evolutionary
between the two classes of vertebrates discussed in this
ther, within the mammalian clade, rodents and primates
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dent from circulating T levels. The males and females
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omplement studies of rodents in controlled laboratory

d mammalian aggression

lian studies of aggression have predominantly focused
of T in males. These studies have revealed regulation by

ammalian species [55–59] but not others [10,60,61],
that there are species-specific adaptations. Nonetheless,
e studies can shed light on common themes and general
In fact, it is increasingly clear that DHEA is an impor-
or of aggression, especially in rodent species other than
ce [10,60,61]. Like birds, studies of mammalian species
seasonal changes in gonadal hormones and aggression

useful for expanding this working paradigm to female
and aggression in non-reproductive contexts and have
ly revealed novel mechanisms of aggression.

nd rodent aggression

synthesis and metabolism
d DHEA-sulfate (DHEA-S) are not secreted in apprecia-
s by the adrenal cortices of laboratory rats and mice
t they are clearly secreted by the adrenal cortices of
ts, such as hamsters and squirrels [67–72]. Circulat-

an cross the blood–brain–barrier and be metabolized to
gens and estrogens within the brain, as the rodent brain
ritical steroidogenic enzymes such as aromatase, 3�-
�-HSD [73–78]. In addition, the rodent brain is capable

steroid synthesis from cholesterol [13,14,63,64,79–81].
t of “neurosteroids” (i.e., brain-derived steroids) was
ced to describe the high levels of DHEA and purported
n in the rat brain, even after castration and adrenalec-
6]. It is now clear that DHEA and other steroids (e.g.,
olone) can be synthesized de novo from cholesterol

rodent brain and can act locally on specific neural sub-
gulate behavior [15]. For example, in mice, male–male
is associated with changes in neurosteroid synthesis
DHEA is found throughout the adult rodent brain, it

entirely clear how DHEA is synthesized, given that a
ynthetic enzyme (P450c17 or CYP17A1) is detected in

es [83–85] but not detected in other studies (reviewed
lternative mechanisms of brain DHEA synthesis, inde-
P450c17 activity, have been proposed, but this issue

clear [86,87].
ological inhibition of steroid sulfatase, the enzyme that
EA-S to DHEA, increases aggression in male mice [88].
DHEA-S administration acutely increases aggression in
ena test [88]. More recently, the neural expression lev-
id sulfatase, sulfotransferase, and sulfatase-modifying
re associated with inter-strain differences in mouse
[89]. Taken together, these results suggest an important
EA-S in rodent aggression.

ble mechanisms of action
s very low affinity for the androgen receptor (AR) and
would be required to activate brain AR or ER to affect
has been suggested that some neurosteroids were lig-
e ancestral ER and progesterone receptor, based on
unction analyses [91].
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ibed above, the rodent brain expresses aromatase, 3�-
�-HSD, and thus it can convert circulating DHEA and/or
thesized DHEA into active androgens and estrogens in a
ific manner [81,83–86,92–95] Locally produced andro-
trogens can then bind with high affinity to intracellular
well as membrane-associated AR or ER (e.g., GPER-1)

and glia. This is likely a key mechanism by which DHEA
essive behavior in rodents.
on, DHEA may have neural effects that do not require
rsion to androgens or estrogens. For example, DHEA can
-aminobutyric acid (GABA) neurotransmission via bind-
A receptors [14,63,64,79,96,97]. DHEA also modulates
transmitter receptors, including N-methyl-d-aspartate
eptors and sigma receptors [13,14,63,64,79,80,96–99].
k suggests that DHEA directly binds to nerve growth
tors [100–102], consistent with the idea that DHEA is
hic factor and involved in neurogenesis and neuronal
,103].

nal changes in endocrine function
f the recent work on DHEA and rodent aggression
onducted in a seasonal context, taking advantage of
changes that occur naturally in the field or in the
n response to experimental manipulations of photope-
,61]. Note that laboratory rats and mice do not show
es in reproductive function in response to photope-
ulations and are typically housed under 12 h of light
104–107]. For such reasons, the importance of photope-
asonality in neuroendocrine function and behavior in
s widely underappreciated [10,60,61,104,105].
e over 2000 species of rodents (∼40% of the total number
ammalian species). Most of the rodent species that live
erate zone are seasonal breeders, maintaining repro-

ction during summer and suppressing it during winter.
is the main environmental cue used by rodents (and

species) to appropriately time reproduction [108]. For
hamsters, reproductive activity occurs during long

ke” days (e.g., >12.5 h of light), whereas reproductive
, including profound regression of the gonads and
reases in circulating T and E2 levels, occurs during short
” days (e.g., <12.5 h of light) [108]. Short-day exposure
irculating T levels in male hamsters but can increase
DHEA levels [68].

nal aggression in males
rian hamsters (Mesocricetus auratus) in short days dis-
sed territorial aggression compared with subjects in
espite gonadal regression and low circulating T levels

y animals [68,109,110]. Short-day exposure, however,
fect the frequency of flank marking, a form of social
tion thought to be androgen-dependent [111]. In males
ys, flank marking continues to be displayed at high
g social encounters and in response to conspecific
though circulating levels of T are low [9,68,111,112].

ngs support the idea that factors other than T regu-
arking, as well as overt aggression, in this species.

nged maintenance in short days (>15 weeks), ham-
lly undergo spontaneous gonadal recrudescence (i.e.,
onad mass and circulating T levels), despite continued
e on short days. In such animals, levels of aggression
d resemble those of long-day animals by ∼21 weeks
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rian hamster (Phodopus sungorus) is another seasonally
d well-studied rodent species. Like Syrian hamsters,
ale Siberian hamsters are considerably more aggres-
ng-day subjects [110,113]. Specifically, male Siberian

regulation
Unlike othe
in hamsters
information
during time
iology 145 (2015) 261–272 265

oused in short days (8L:16D) for 10 weeks display
umber of attacks during a resident-intruder test and
er latency to initial attack, relative to subjects in long
D). Note that short-day subjects have regressed testes

rculating levels of T. Prolonged maintenance in short
eeks) resulted in spontaneous gonadal recrudescence,
onad mass and circulating T levels returned to long-
[113]. Gonadally recrudesced subjects displayed less
than gonadally regressed subjects, even though both
oups experienced the same short photoperiod; levels
n in gonadally recrudesced hamsters were similar to

ng-day hamsters [113]. Furthermore, when short-day
an hamsters were implanted with capsules containing
on decreased compared with short-day control ani-
suggesting that short-day increases in aggression are

lated to serum T concentrations.
ian hamsters, serum DHEA levels are elevated under
, when aggression is also elevated, however, nei-
term nor long-term treatments with exogenous DHEA
gression in either long-day or short-day subjects, sug-
t endogenous DHEA levels are not limiting [71,72]. It
ssible that neural conversion of DHEA to androgens or
the limiting step and that giving exogenous DHEA does

e the levels of biologically active steroids (e.g., T, E2) in
hus, elevated DHEA might be necessary but not suffi-
it increased aggression in this and other species.
er test the hypothesis that changes in DHEA levels or
bolism regulate aggression in male Siberian hamsters,
A levels were assessed prior to and in response to an
interaction [72]. DHEA and T concentrations were also
uring the day (noon) and the night (midnight). Although
no significant differences in serum DHEA concentrations
ese times, there was a trend toward reduced circulat-
f DHEA at midnight [72]. In contrast, in male Syrian
here are robust diel changes in circulating DHEA lev-
EA levels peak 30 min prior to lights-off and remain
ring the night [70]. Further, in Siberian hamsters, post-
DHEA levels were lower than pre-aggression DHEA
nly in animals tested during the night and not during

]. A different pattern of results was found for serum T
-aggression T levels were higher than pre-aggression
t again only during the night. Consistent with these
ression was greater during the night, when circulating
elatonin are at their peak. These data suggest that cir-
EA may be converted to active sex steroids within the

hereby influence aggressive behavior. The enzyme 3�-
es the conversion of DHEA to androstenedione, which
converted by 17�-HSD to T. Aggressive encounters at
ause rapid increases in 3�-HSD or 17�-HSD activity in
periphery.

native mechanism underlying short day increases in
involves nitric oxide (NO). Reduced NO levels are asso-

short day increases in aggression, and aggression is
correlated with neuronal nitric oxide synthase (nNOS)
in brain regions known to regulate aggression [114].
been shown that adrenalectomy blocks nNOS [115]
ay increases in aggression [116], suggesting that nNOS
d by adrenal hormones. In another study, however,
A levels were not altered in short days or with phar-
l blockade of nNOS [117]. These data suggest that an
mong steroids, nNOS, and NO may be involved in the

of aggression, but these interactions are still not clear.
r species, the adaptive function of “winter” aggression
is not known, due to limited availability of life history
for these species. Presumably, protection of a territory

s of reduced food availability would ensure overwinter
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., as in red squirrels [67]), but this hypothesis remains
.

nal aggression in females
n hamsters, unlike most rodent species, females are
ssive than males [118,119]. Photoperiodic changes in
have been demonstrated in female Syrian hamsters
]. Female hamsters were housed in long days (14L:10D)

ys (6L:18D) for 12 weeks, and then both offensive and
ggression were tested [121]. Female hamsters main-
ort days displayed less defensive aggression than those
s, and thus had a higher ratio of offensive to defen-
sion than long-day animals [121]. To further examine
ogical mechanisms mediating short-day aggression in
his species, the effects of short days on circulating lev-
al steroids were assessed [69]. Short-day females were
ssive than long-day females, had lower serum cortisol
levels, but higher serum DHEA-S levels [69]. Further,
E2 reduced aggression in long-day but not short-day
9]. These interesting data suggest that DHEA-S may play
moting female aggression in this species.

e Siberian hamsters, aggression is increased during the
ng season. Increased secretion of DHEA by the adrenal
ng the non-breeding season may be involved, but this
n directly tested. In a pilot study of long- and short-day
rian hamsters, an ACTH challenge was administered and
A and cortisol levels were measured after 30, 60, and
ese values were compared to baseline levels before the
nge. In both long- and short-day females, cortisol lev-

ificantly elevated at 30 and 60 min, and then return to
120 min (Fig. 2). Interestingly, DHEA levels are signifi-
ted at 30 and 60 min, but only in short-day females and
day females (Fig. 2). As expected, aggression is signifi-
ted in short- compared to long-days females (Fig. 2).
of photoperiod is specific to aggression; other social
cluding ano-genital investigation, facial investigation,

ng do not differ between photoperiods (Fig. 2; N. Ren-
emas, unpublished data). These data demonstrate that

emales are more aggressive and have a more sensitive
t least with respect to DHEA secretion, than long-day
nsistent with a role for DHEA in female aggression.
e and male red squirrels (Tamiasciurus hudsonicus), cir-
EA levels at baseline and in response to ACTH challenges
ined in the field under natural conditions in northern
]. Both females and males of this species are highly
uring both the breeding and non-breeding seasons, in

fend food stores on their territories that are essential
ter survival. Red squirrels display considerably higher
levels of DHEA than those seen in laboratory rats and
During the breeding season (summer), females have
r circulating DHEA levels than males. In both females
serum DHEA levels rapidly increased following ACTH
suggesting that circulating DHEA is secreted by adreno-
ls. While aggression was not specifically addressed,
gs demonstrate that DHEA levels are elevated at times

itorial aggression in the field.

l melatonin and seasonal aggression
lly all mammals, photoperiodic responses are medi-
nges in the pineal indolamine melatonin. Melatonin is
the pineal gland into the general circulation predom-
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08]. Thus, changes in day length result in changes in the
elatonin secretion. It is the precise pattern of melatonin

nd not the amount of melatonin per se, that provides a
l “code” for day length [108].

aggression
Syrian ham
subjects, w
long-day su
on aggressi
groups. (C) Aggression was significantly higher in short-day females
females, but non-aggressive behaviors (ano-genital investigation and
haviors) were not different. N.M. Rendon and G.E. Demas, unpublished

Syrian hamsters, timed daily melatonin injections
short-day patterns of melatonin) to long-day subjects

gression. Because these melatonin injections occurred
days, testes mass and circulating levels of T were

supporting the idea that photoperiodic changes in

are independent of gonadal steroids [110]. In female
sters, pinealectomy decreases aggression in short-day
hereas melatonin treatment increases aggression in
bjects [121]. Ovariectomy, in contrast, has no effect

on. In a subsequent study of female Syrian hamsters,
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Fig. 3. Theoretical model regarding DHEA and seasonal changes in aggression in Siberian hamsters. Different photoperiods in long days (LD) and short days (SD) produce
different melatonin profiles. These melatonin profiles modulate many physiological systems, including those that regulate aggression. During LD, sex steroid hormones are
predominantly from a gonadal source (solid lines), and during SD, switch to a predominantly adrenal source (solid lines). Dotted lines symbolize less abundant levels than solid
lines, showing SD. Du
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d to active androgens or estrogens, which can bind to their respective receptors. F

rcentage of subjects showed aggression in short days
g days [120]. Short-day aggression was attenuated by

y, but treatment with E2 (alone or in combination
terone) had no effect on aggression. These results also
hypothesis that photoperiodic changes in aggression

ed by pineal melatonin, but independent of gonadal
this species. Future studies should examine the effects
n administration on circulating DHEA levels in Syrian

Siberian hamsters, treatment of long-day animals
day like levels of melatonin also mimics photoperi-
s in aggression. Long-day hamsters were given daily
f melatonin 2 h before lights-off, for 10 days, to mimic
evels of melatonin, and these subjects displayed ele-
ssion when compared with control subjects [116]. As
us studies, these results were not likely due to changes
steroids, as serum T levels were unaffected by this
otocol. More recently, we tested the hypothesis that
of melatonin secretion mediates short-day increases
n in female Siberian hamsters. Aggression and circu-

s of DHEA, T and E2 were examined in long-day and
males. Two additional groups of females were housed
s that received daily “timed” injections of melatonin
lights-off for 10 weeks) or daily “mis-timed” injections

serum
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and fu
aggres
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The in
mals, h
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sured
dle of the light phase, which do not mimic a short-day
elatonin). Following 10 weeks of treatment, animals

hort days or receiving timed melatonin injections dis-
oductive regression and increased aggression. These
displayed elevated serum DHEA levels but reduced

that house
photoperio
deficiency o
gene encod
last step of
ring SD, DHEA can act on the brain by serving as a prohormone and
r, DHEA may act as a neurosteroid by being produced de novo in the

vels, compared with long-day hamsters. Further, the
roup and timed melatonin injection group, but not the
oup or mis-timed melatonin injection group, showed

erum E2 levels following an aggression trial, when com-
seline E2 levels. Serum DHEA levels were not affected by
on trial, but nonetheless circulating DHEA might have
e substrate for E2 synthesis (N. Rendon and G. Demas,
d results). These data suggest a role for melatonin in
ression, in DHEA secretion, and also in behaviorally
synthesis (Fig. 3).
cts of melatonin on rodent aggression may be due to
ns on neural substrates (e.g., hypothalamus, limbic sys-
irect actions via the HPA axis and adrenal hormones
pport of the latter hypothesis, changes in both the size
n of the adrenal gland are associated with changes in
[123]. In house mice, males housed in long days and
h melatonin display increased territorial aggression but
drenal mass compared to saline-treated animals [123].
es in aggression displayed by melatonin-treated ani-
ver, can be blocked by adrenalectomy [123]. Further,
gical blockade of ACTH release attenuated melatonin-
reases in aggression [123]. It is possible that blockade
ease reduced DHEA secretion, but DHEA was not mea-
is study. These results are particularly intriguing given

mice are generally reproductively non-responsive to

d manipulations [106], and further, because melatonin-
bserved in house mice may be explained by lack of the
ing the HIOMT enzyme, responsible for catalysis of the
melatonin synthesis [104].
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cently, research has implicated changes in adreno-
mones in mediating melatonin-induced aggression in
msters. As described previously, long-day hamsters
h short-day like levels of melatonin display increased
comparable to levels seen in short-day hamsters [116].

edullation, which eliminates adrenal catecholamines
hrine) but leaves adrenocortical steroids (i.e., cortisol,
no effect on melatonin-induced aggression [116]. Col-
ese results support the hypothesis that the effects of
melatonin on aggression are mediated by adrenocor-
s. However, it is currently not known which class of

mones may mediate this effect, as DHEA and cortisol
een implicated in aggression in rodents [122,124–127].
, in laboratory rats and mice, corticosterone is the pre-

drenal glucocorticoid, and these species secrete little to
DHEA. In contrast, in hamsters, as in humans, cortisol is
inant adrenal glucocorticoid [128], and both hamsters
s secrete adrenal DHEA and DHEA-S [69–72,128,129].
in also facilitates DHEA secretion from adrenal glands
both hamsters and mice [60,130]. Specifically, incuba-
red adrenal glands for 2 h with a combination of ACTH

nin results in higher concentrations of DHEA in the cul-
compared with ACTH alone. These results suggest that
lays a permissive role in adrenal DHEA secretion. Cir-
EA may, in turn, be converted to active sex steroids
brain to influence aggressive behavior. As discussed
enzyme 3�-HSD catalyzes the conversion of DHEA to
dione, which can then be converted to T. It is possible
ed aggression when melatonin levels are elevated (e.g.,
r nighttime) may be driven by increased adrenal DHEA
d subsequent rapid increases in 3�-HSD activity in the

riphery thus leading to increased T. Increased 3�-HSD
uld be consistent with the pattern of results in animals
httime (rapid decrease in DHEA and increase in T levels
reviously reported [71]. Taken together, studies of lab-

and mice, together with studies of “non-traditional”
els, show that DHEA has a central role in an impor-

behavior such as aggression, in both sexes and across
vironments.

nd non-human primate aggression

w non-human primate species that have been exam-
renal cortex secretes DHEA and DHEA-S in all cases,

s in DHEA levels across life stages vary considerably
s to species [131]. The roles of DHEA and DHEA-S in

gression are largely unknown. Measurement of fecal
etabolites, a common way hormones are measured in
primates, may not give a complete picture of plasma

or their identities. Further, fecal androgen metabolite
ramatically altered by biotic factors such as diet [132].
n-human primates, aggression is unrelated to fecal T
,134]. But of course, a lack of a correlation between
and fecal T does not necessarily mean that aggression
ndent [132]. One study has assessed circulating DHEA-

ild baboons [135]. DHEA-S concentrations were high
e and female baboons and showed marked age-related
both sexes; however, circulating levels of DHEA-S were

ed with aggression [135].
, plasma DHEA-S and cortisol concentrations were

young (6–8 yr) and old (20–27 yr) female rhesus
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zymes for DHEA synthesis and metabolism are
n several areas of the rhesus macaque brain, with an age-
ease in hippocampal expression of CYP17A1, 3BHSD1/2
sulfatase [137,138].

nd human aggression

ns in circulating DHEA and DHEA-S levels have been
in a range of psychiatric disorders in humans [139]. The
laris of the human adrenal cortex secretes both DHEA
S, but circulating levels of DHEA-S are generally 1000
r than those of DHEA. Further, circulating DHEA-S levels
0 times higher than those of T and 1000–10,000 times
those of E2 [140].

and aggression during childhood and adolescence
um DHEA and T levels are associated with increased
in children [141]. Several studies have focused on
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