
Contents lists available at ScienceDirect

Journal of the Mechanics and Physics of Solids

Journal of the Mechanics and Physics of Solids 94 (2016) 273–297
http://d
0022-50

n Corr
E-m
journal homepage: www.elsevier.com/locate/jmps
On plastic flow in notched hexagonal close packed single crystals

Balaji Selvarajou a, Babak Kondori b,c, A. Amine Benzerga b,c,d,
Shailendra P. Joshi a,n

a Department of Mechanical Engineering, National University of Singapore, Singapore 117576, Singapore
b Department of Materials Science & Engineering, Texas A&M University, College Station, TX 77843, United States
c Center for Intelligent Multifunctional Materials and Structures, TEES, College Station, TX 77843, United States
d Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843, United States
a r t i c l e i n f o

Article history:
Received 10 August 2015
Received in revised form
15 April 2016
Accepted 16 April 2016
Available online 19 April 2016

Keywords:
Magnesium
Stress triaxiality
Crystal plasticity
Material anisotropy
Failure
x.doi.org/10.1016/j.jmps.2016.04.023
96/& 2016 Elsevier Ltd. All rights reserved.

esponding author.
ail address: shailendra@nus.edu.sg (S.P. Josh
a b s t r a c t

The micromechanics of anisotropic plastic flow by combined slip and twinning is in-
vestigated computationally in single crystal notched specimens. Constitutive relations for
hexagonal close packed materials are used which take into account elastic anisotropy, thirty
potential deformation systems, various hardening mechanisms and rate-sensitivity. The
specimens are loaded perpendicular to the c-axis but the presence of a notch generates
three-dimensional triaxial stress states. The study is motivated by recent experiments on a
polycrystalline magnesium alloy. To enable comparisons with these where appropriate,
three sets of activation thresholds for the various deformation systems are used. For the
conditions that most closely mimic the alloy material, attention is focused on the relative
roles of pyramidal 〈 + 〉c a and prismatic 〈 〉a slip, as well as on the emergence of {1012̄}[101̄1]
extension twinning at sufficiently high triaxiality. In all cases, the spatial variations of stress
triaxiality and plastic strain, inclusive of various system activities, are quantified along with
their evolution upon straining. The implications of these findings in fundamental under-
standing of ductile failure of HCP alloys in general and Mg alloys in particular are discussed.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In materials with high crystal structure symmetry, e.g. FCC metals, plastic flow mainly occurs via dislocation mediated
slip. There, the critical resolved shear stresses (CRSS) for activating different slip systems are nearly the same (Asaro and
Needleman, 1985). This renders weakly anisotropic plasticity at the single crystal level. In such materials, plastic flow an-
isotropy may occur due to texture or grain elongation arising, for example, from severe pre-deformation during processing
(Asaro and Needleman, 1985; Wenk and Van Houtte, 2004). A more fundamental origin of plastic anisotropy arises from
disparate activation thresholds for various deformation mechanisms, a situation which is typical of materials with low
crystal symmetry. We refer to this as inherent plastic anisotropy – the ratio of the CRSS of a slip/twin system relative to
another slip/twin system. An example of this kind are materials with hexagonal close packed (HCP) crystal structure, which
can deform by slip and twinning (Christian and Mahajan, 1995). In pure magnesium (Mg) the CRSS ratio of the hardest to
softest slip modes is of order 100 (Kelley, 1967; Chapuis and Driver, 2011). Due to the low symmetry of the crystal structure,
this type of anisotropy couples into polycrystalline texture effects.
i).
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The strong anisotropy of HCP metals such as Mg is often referred to as the origin of their damage intolerance (Bohlen
et al., 2007), although it has not prevented some other HCP metal alloys, such as Zr- or Ti-based alloys, from being used as
structural materials. There is a fair amount of research on characterizing plastic anisotropy in HCP metals in relation with
fundamental deformation mechanisms: Ti (Wu et al., 2008), Zr (Lebensohn and Tomé, 1993), Mg (Staroselsky and Anand,
2003; Agnew and Duygulu, 2005), among many others. Most studies focus, however, on uniaxial loading conditions. On the
other hand, the influence of plastic anisotropy on failure under multiaxial stress states is not well understood. While this is
generally relevant to textured polycrystals of high-symmetry materials, it is particularly important for low-symmetry
materials. From considerations of failure micromechanics, the three-dimensional character of stress state at the current
material point can be quantified by the stress triaxiality ratio, henceforth referred to simply as triaxiality, T σ σ= /h e where sh
is the hydrostatic stress and se is the von Mises equivalent stress. In metals, positive (tensile) triaxiality has implications on
the nucleation and evolution of voids (Gurson, 1977; Benzerga and Leblond, 2010; Pineau et al., 2016). A common ex-
perimental approach to investigating triaxiality effects is to adopt notched specimens where various triaxiality levels can be
generated by choosing appropriate notch geometries (Hancock and MacKenzie, 1976; Pineau et al., 2016). While smooth
round bar specimens result in a constant T = 1/3 (before necking), those with circular notches can produce T≲ ≲0.5 1.5
depending on the notch root radius (Needleman and Tvergaard, 1984).

An important consideration in the ductile fracture of any metallic alloy is the interplay between plastic strain and
triaxiality. In particular, notched bars are ideal specimens to investigate such competition (Needleman and Tvergaard, 1984).
In round notched bars, the plastic strain is usually maximum at the notch root, particularly in the early stages of straining.
By way of contrast, the maximum triaxiality moves to the center of the bar after a short transient. In ductile metals a
macroscopic crack typically initiates at the center of the bar, indicating a strong triaxiality effect (Hancock and MacKenzie,
1976; Needleman and Tvergaard, 1984; Hancock and Brown, 1983). Fig. 1a illustrates this situation for steel. In less ductile
metals, the macroscopic crack initiates close to but away from the notch root, then eventually links to the surface in the form
of a shear crack (in certain planes). This situation applies to Mg alloy AZ31, as shown in Fig. 1b. While this observation
indicates that crack initiation in less ductile metals is driven by plastic strain concentrations (Alves and Jones, 1999), a
mediating effect of triaxiality is not excluded. What is of particular importance, therefore, is that a fine description of
plasticity in these materials is needed to develop a consistent theory of damage accumulation to fracture.

Anisotropic models coupling plasticity and damage by way of homogenization have been developed with increasing
levels of sophistication (Benzerga and Leblond, 2010; Benzerga et al., 2016). In these models, anisotropic plasticity is ty-
pically represented using quadratic yield criteria (Benzerga and Besson, 2001; Keralavarma and Benzerga, 2008; Monchiet
et al., 2008) or relatively simple accounts of tension–compression asymmetry (Stewart and Cazacu, 2011). Applications of
such models to engineering materials remain scarce, even for high-symmetry materials, e.g. Benzerga et al. (2004a,b) and
Tanguy et al. (2008). In the above applications, the net anisotropy in fracture is often traceable to void shape and spatial
distribution effects. On the sole basis of experiments, it is unclear to what extent the plastic anisotropy of the matrix itself
Fig. 1. Comparison between the outline and location of macroscopic cracks in (a) a low carbon medium alloy steel (Benzerga, 2000) and (b) AZ31
magnesium alloy (Kondori, 2015).
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affects rates of damage accumulation. Theory, on the other hand, suggests potentially strong effects either on the basis of
micromechanical finite element calculations (Benzerga and Besson, 2001; Yerra et al., 2010; Keralavarma et al., 2011) or
analytical models (Benzerga and Besson, 2001; Keralavarma and Benzerga, 2010). Despite this progress, making a definite
assessment of plastic anisotropy effects in ductile damage of high-symmetry materials is subject to interpretation. On the other
hand, the strong plastic anisotropy of HCP metals offers a way to decouple its effects from any morphological anisotropy effects.

Quite recently, Kondori and Benzerga (2014a) conducted notched bar experiments on hot-rolled AZ31 Mg alloy to
produce multiaxial stress states. Their results revealed several characteristic features that were distinct from other aniso-
tropic materials. First, the limit load exhibited a saturation trend upon increasing notch acuity, a behavior theretofore not
reported for other materials. Second, the fracture locus (strain to failure versus triaxiality) exhibited a non-monotonic trend
in contrast with other metallic alloys in the same triaxiality range. The strain to fracture was maximum at moderate values
of T and was lowest under uniaxial loading, in strong contrast with other materials. They attributed the observed behavior
to (i) the change from slanted fracture in uniaxial bars to flat mode of failure in notched bars; (ii) change in the damage
initiation mechanism from twinning-induced microcracks under uniaxial tension to void nucleation, notably at second
phase particles, followed by their growth and coalescence in notched bars; and (iii) increased ease of deformation along the
plate normal direction and the activation of additional deformation mechanisms, such as extension twinning, at higher
triaxialities. Finally, Kondori and Benzerga (2014a) provided some details on the evolution of macroscopic plastic anisotropy
in terms of the steady-state anisotropy ratio and its variation with triaxiality. Kaushik et al. (2014) conducted three-point
bending experiments on notched Mg single crystals. Interestingly, they pointed out that profuse { ¯ }1012 extension twinning
at the notch root enhances the fracture toughness.

With the above in mind, the research reported here sets out to address the complex interplay of plastic anisotropy and
triaxiality in HCP metals using the experiments of Kondori and Benzerga (2014a) as a primary source for modeling and
comparison. To this end, the crystal plasticity simulation framework previously developed by Zhang and Joshi (2012) is
employed. The framework has recently been used to model indentation in single crystal Mg (Selvarajou et al., 2014) and
picked up some key aspects of the orientation dependence of pile-up and sink-in activities and their micromechanistic
underpinnings, as revealed in experiments (Shin et al., 2013). Within this framework the relative contributions of slip and
twinning can be explored by means of three-dimensional finite element (FE) simulations of smooth and notched Mg bars.
Fig. 2. Geometry and finite element meshes for the analyzed smooth and notched specimens.
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One can address the issue of how relative activities evolve with strain at increasing amounts of triaxiality and how such
activities are spatially distributed within a notched bar. In particular, issues related to the evolution of plastic anisotropy,
activation of extension twinning in notched bars loaded in-plane, as conjectured by Kondori and Benzerga (2014a), or the
saturation of limit loads can be examined. Note that modeling mechanism-based failure of anisotropic materials under
triaxial stress states is not attempted in this work. Coupled models of crystal plasticity and damage are beginning to emerge
(Mbiakop et al., 2015; Han et al., 2013; Paux et al., 2015). However, available models are applicable to high-symmetry
materials.

Here, attention is restricted to single crystal specimens. These act as surrogates of the real polycrystalline scenario.
Indeed, rolled sheets or plates exhibit a strong basal texture; the basal planes of most grains are oriented parallel to the
plate. To first order, a single crystal orientation that is appropriately aligned with the loading direction may be considered as
an extreme case of such texture. In addition, the anisotropy of deformation at the polycrystalline level is directly affected by
the material anisotropy at the single crystal level. Understanding the latter is therefore a necessary first step. Since the
degree of inherent plastic anisotropy in Mg depends on the alloying composition, we consider three sets of material
parameters that reflect anisotropies of pure and alloyed Mg.
2. Formulation

Calculations are carried out for initially round notched bars. Also, some calculations on a smooth bar are used for re-
ference. All calculations are fully three-dimensional due to anisotropy. Three notch geometries are considered following
Kondori and Benzerga (2014a) and are denoted ξRN with ξ ϕ= R10 / 0, R being the notch radius and ϕ0 the notch root
diameter, Fig. 2. Dimensions that are kept fixed are the diameter of the cylindrical part, ϕc, the length of the specimen, L0,
and ϕ0. Here, ϕ ϕ/ c0 and ϕ L/c 0 are taken according to 3.9:7 and 7:40 ratios, respectively. Fig. 2 also shows cross-sections of the
finite element meshes used. Each model is discretized into nearly 23,000 eight-node hexahedral finite elements with re-
duced integration.

The polycrystalline AZ31B rolled plate used by Kondori and Benzerga (2014a) had a strong basal texture. As inferred from
their (0002) and ( ¯ )1010 pole figures, most grains have their c-axis oriented along the plate normal (or short-transverse, S)
direction and their [ ¯ ]1010 direction aligned with the transverse (T) direction. Loading was along the rolling (or longitudinal,
L) direction. To mimic the crystallographic orientation used in the experiments, the loading axis (global z-axis) was aligned
in the simulations with the crystal [ ¯ ]1210 direction and the crystal [0001] and [ ¯ ]1010 directions were aligned with the global
x- and y- axes, respectively.

A displacement rate U̇y was applied at the top surface of the specimen so that the nominal strain rate was
̇ = × − −U L/ 1 10 sy 0

3 1. Sufficient constraints were applied on the top surface to avoid any rigid body motion. Since the applied
displacement rate in all specimens is the same, the axial strain rate realized in the notch regionwould be specimen dependent.
Yet, the very low rate sensitivity chosen below ensures that the results are independent of strain rate. To verify this, a cal-
culation performed for the RN2 specimen at a nominal strain rate about 25 times higher revealed negligible strain rate effects.

The constitutive framework is that of rate-dependent crystal plasticity developed by Zhang and Joshi (2012) based on
earlier work by Staroselsky and Anand (1998) and Kalidindi (1998). It accounts for transversely isotropic elastic response,
which for Mg single crystals is determined by the following elastic constants (in GPa):

= = = =C C C C59.4, 25.61, 21.4, 61.611 12 13 33 and =C 16.044 (Slutsky and Garland, 1957).
The velocity gradient is additively decomposed into an elastic, Le, and plastic, Lp, parts:
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where F is the deformation gradient with multiplicative decomposition F Fe p, and Ḟ its material time derivative. Withmi and
si respectively denoting the current slip/twin plane normal and direction vectors for the ith system, the plastic velocity
gradient is written as the sum of three components:
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where γ i̇ denotes the shear rate on the ith system, βf is the twin volume fraction of the βth twin system, and Ns and Ntw are
the total number of slip and twin systems respectively. The same number of slip systems is assumed in the parent and twins
and the stress at a material point is taken as the weighted average of the stress in the parent and twinned regions. The
Jaumann rate of Cauchy stress σ∇⁎ is

σ σ+ ( ) = ( )∇⁎ I D C D: : 3e e

where σ is the Cauchy stress tensor, De is the elastic rate of stretching tensor, C is the fourth-order elasticity tensor and I is
the second order identity tensor. The reader is referred to Huang (1991) for detailed information on the calculation of σ∇⁎



Table 1
Material parameters for pure Mg.

τ0 (MPa) h0 (MPa) τs (MPa)

Basal slip 0.5 20 –

Prismatic 〈 〉a slip 25 1500 85
Pyramidal 〈 〉a slip 25 1500 85
Pyramidal 〈 + 〉c a

slip
40 3000 150

τ0 (MPa) het (MPa) _τs et (MPa) _het sl (MPa)

Extension twinning 3.5 100 20 100

τ0 (MPa) Hct (MPa) _Hct sl (MPa) b

Contraction
twinning

55 6000 15 0.05
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and De.
A total of thirty slip and twin systems are accounted for: (1) three basal 〈 〉a slip systems (( )〈 ¯ 〉)0001 1120 ; (2) three

prismatic 〈 〉a slip systems ({ ¯ }〈 ¯ 〉)1010 1120 ; (3) six pyramidal 〈 〉a slip systems ({ ¯ }〈 ¯ 〉)1011 1120 ; (4) six pyramidal 〈 + 〉c a slip
systems ({ ¯ }〈 ¯ 〉)1122 1123 ; (5) six extension twin systems ({ ¯ }〈 ¯ 〉)1012 1011 ; and (6) six contraction twin systems
({ ¯ }〈 ¯ ¯ 〉)1011 1012 . Following Zhang and Joshi (2012) constitutive relations for slip and twinning are used.

� Constitutive equations for slip: Each slip rate γ i̇ in Eq. (2) is given by a power law:

γ γ τ τ̇ = ̇ ( )
( )g

sgn
4

i
i

i

m
i

0

where the reference slip rate γ0̇ and rate-sensitivity exponent m are material parameters, στ = · ·m si i i is the resolved shear
stress based on the Schmid law and gi is the current strength of the ith slip system given by
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Here, τ i
0 denotes the critical resolved shear stress (CRSS). Also, ̇ −gsl sl

i and ̇ −gtw sl
i are hardening terms due to slip–slip and

twin–slip interactions, respectively. The former is governed by
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where γ̄ is the cumulative slip and ≤ ≤q1 2. The functions γ( ¯)h and γ( ¯)qh thus represent self and latent hardening. For basal
slip, a linear non-saturation type hardening law is employed while non-basal slip follows a saturation type hyperbolic
hardening function. One constitutive choice is
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Table 2
Comparison of material parameters of pure Mg (high plastic anisotropy), alloy-1 (intermediate plastic anisotropy) and alloy-2 (low plastic anisotropy).

Slip/twin system Pure Mg Alloy-1 Alloy-2

τ0 (MPa) τ

τ prism
0

0

τ0 (MPa) τ

τ prism
0

0

τ0 (MPa) τ

τ prism
0

0

Basal slip 0.5 0.02 10a 0.18 10a 0.18
Prismatic 〈 〉a slip 25 1 55a 1 55a 1
Pyramidal 〈 〉a slip 25 1 55a 1 55a 1
Pyramidal 〈 + 〉c a slip 40 1.6 70a 1.3 60a 1.1
Extension twinning 3.5 0.14 15a 0.27 15a 0.27
Contraction twinning 55 1.4 85b 1.55 85b 1.55

a Agnew et al. (2003), Lou et al. (2007), Hong et al. (2010), Hutchinson and Barnett (2010).
b Assumed.
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where hi
0 is the initial hardening modulus and τis is the saturation stress of the ith slip system. The twin–slip interaction

hardening term ̇ −gtw sl
i will be specified below.

� Constitutive equations for twinning: The rate of plastic shear γ ̇β on the βth twin system accrues due to a change in the
twin volume fraction βf via

γ γ̇ = ̇ ( )β βf 8tw

where γtw is the twinning shear. For Mg the theoretical values of γtw for extension twinning (ET) and contraction twinning
(CT) are 0.129 and 0.138, respectively. The evolution of twin volume fraction in the parent region is assumed to follow
Schmid law and is described by power laws for both systems
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are average reference values, mt is the rate-sensitivity exponent for twinning, and βs is the current strength
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to slip–twin interactions. Hardening due to twin–twin interaction follows a hyperbolic function
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for contraction twinning. In Eq. (11) γ̄et denotes the total shear strain on all ET systems. Also, the initial hardening modulus
βhet and the saturation stress τ _βs et are material parameters. Likewise, in Eq. (12) Hct and b are hardening parameters, Nct being

the total number of CT systems. Following Zhang and Joshi (2012) hardening of the twin systems is taken to be independent
of slip so that ̇ =−s 0sl tw

i in Eq. (10). On the other hand, twinning is assumed to affect the slip hardening, and the term ̇ −gtw sl
i in

Eq. (5) is given by
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with parameters defined analogous to the above. Although not directly evident in Eq. (2), double twinning is accommodated
in the formulation as follows. For a particular twin mode (extension twinning versus contraction twinning), when the total
twin volume fraction reaches a critical value fc (set equal to 0.9) the lattice is rotated to the twinned orientation in-
stantaneously. Specifically, the new orientation is that of the twin system with the largest fβ value (Tomé et al., 1991). After
reorientation, deformation systems are reset accordingly and resolved stresses are calculated using their new orientation.
Any twinning that would occur in the reoriented region would de facto correspond to double twinning.

The above constitutive model has been implemented as a User MATerial (UMAT) subroutine in ®ABAQUS/STANDARD
(Systèmes, 2012). For algorithmic and other details the reader is referred to Zhang and Joshi (2012).
3. Results and discussion

The material parameters entering Eqs. (4) through (13) are provided in Table 1 and are representative of pure Mg. Also,
γ ̇ = −0.001 s0

1, m¼50 and q¼1 for all slip systems; and ̇ = −f 0.001 set
0 1, ̇ = −f 0.0001 sct

0 1 and =m 50t . Two other sets of CRSS
parameters are used which are representative of alloys. Table 2 gathers actual and normalized CRSS values used alongside
their counterparts for pure Mg from Table 1. Of these, alloy-2 closely represents CRSS ratios of AZ31B (Lou et al., 2007; Hong
et al., 2010). Note that the CRSS ratio of the softer basal slip system is increased while the CRSS ratio of the harder pyramidal
〈 + 〉c a slip system is reduced in both alloys. For simplicity, the same hardening rates of pure Mg are retained in the alloys.

The overall mechanical responses are given in terms of the normalized load ( = )s F A/ 0 versus normalized diametric



Fig. 3. Normalized load vs. normalized diametric reduction in the smooth and notched specimens of pure Mg single crystal. The open symbol in the
smooth specimen indicates the initiation of strain localization.
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reduction δ ϕ ϕ( = Δ )α α/ 0 where F is the total force along the loading direction, π ϕ=( ( ) )A /40 0
2 is the initial cross-sectional area

at the notch root, and ϕΔ α is the reduction in diameter along direction α (either T or S). Also, the net total strain is given by

Aε ε ε= + ( )[ ] [ ¯ ] 140001 1010

where ε ϕ ϕ= ( )α αln / 0 is the net strain in lateral direction α. Following Kondori and Benzerga (2014a), the strain anisotropy
ratio is defined as:

RL ε ε= ( )[ ¯ ] [ ]/ 151010 0001

The calculations were terminated at a displacement =U L/ 0.20y 0 in the smooth bar and =U L/ 0.02y 0 in the notched bars.
These values correspond to Aε = 0.2 in the smooth bar and Aε = 0.3 in the notched bars. In the smooth specimen, values of Aε
reported after necking are taken at the neck.

3.1. Deformation of pure Mg

3.1.1. Overall mechanical responses
Fig. 3 shows the load versus diameter reduction responses of the notched and smooth bars. The limit load (maximum



Fig. 4. Evolution of deformation anisotropy ratio RL( ) as a function of areal strain Aε in smooth and notched pure Mg specimens.

Fig. 5. Dependence of RL on triaxiality for pure Mg corresponding to Aε = 0.1. The shaded ovals indicate deformed cross-sectional shapes and the light
outline indicates original circular cross-section. The deformation is scaled up by a factor of 5.
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load attained) increases with increasing notch acuity, as expected based on increasing the triaxiality. Moreover, it is im-
mediately clear that the smooth and RN10 bars have a greater propensity to deform along [ ¯ ] =1010 T (Fig. 3b) than along
[ ] =0001 S (Fig. 3a) while relatively, the RN4 and RN2 bars exhibit more ease to deform along [0001]. The deformation
anisotropy is intense in the smooth specimen: the load drops precipitously with very small diametric reduction along the
[0001] direction, while the same load drop extends over a wider range of diametric reduction in the [ ¯ ]1010 direction. In the
smooth specimen, strain localization occurs and a neck develops as a result of modeling the loading ends (see the mesh of
Fig. 2).

The deformation anisotropy may be characterized by RL in Eq. (15). Fig. 4 shows the evolution of RL with the net strain
measure Aε in Eq. (14). Since Eq. (15) includes contributions from elastic strains the transient response is affected by the
elastic–plastic transition, which eventually reflects in a non-monotonic evolution of RL (the initial value of RL is 1.54 due to
elastic anisotropy). After a transient, the values of RL are significantly higher in the smooth specimen compared to the
notched specimens and those of the RN4 and RN2 bars are closer together. Fig. 5 shows the computed RL values and
sketched cross-sections of the original and deformed specimens at Aε = 0.1. In all cases RL > 1, which means that initially
circular cross-sections have become oval with the major and minor axes along [0001] and [ ¯ ]1010 , respectively.

3.1.2. Triaxiality distribution in the notch
Fig. 6 shows contour plots of triaxiality T in the RN10 and RN2 specimens at Aε = 0.1. As expected based on anisotropy,

the distribution of T varies from one longitudinal section to the other. In views that contain the [0001]¼S direction, the
triaxiality is maximum at the center, as expected for plastically isotropic (Alves and Jones, 1999) or even moderately



Fig. 6. Distribution of triaxiality in the (a) RN10 and (b) RN2 specimens of pure Mg single crystal at Aε = 0.1. (c) shows the triaxiality along [0001] and
[ ¯ ]1010 in the minimum section.
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anisotropic materials (Benzerga et al., 1999). This is better quantified in Fig. 6c (left plots) at various overall strain levels. On
the other hand, in views that contain the [ ¯ ] =1010 T direction, the maximum triaxiality is attained away from the center, at
η ∼ ± –[ ¯ ] 0.25 0.351010 (depending on strain level) where η ϕ=α α αr / refers to the radial position normalized by the current
notch root diameter along α. This trend is stronger in the RN2 specimen, as quantified in Fig. 6c (right plots). Other features
are not so typical of isotropic materials. Pockets of relatively high triaxiality are for instance noted in the L–S view of the
RN10 specimen away from the equator (Fig. 6a). In fact, Kondori and Benzerga (2014a) reported surface cracks at such
locations. Furthermore, the location of the absolute maximum triaxiality in the L–S view of the RN2 specimen is not in the
equator, as probed quantitatively in Fig. 6c, but above and below it (Fig. 6b).

In some respects, therefore, the triaxiality distributions are quite distinct from commonly expected trends. They are
induced by the strong plastic anisotropy of the pure Mg single crystals.
3.1.3. Deformation micromechanics
In a smooth single crystal specimen subjected to tensile loading along [ ¯ ]1210 (Fig. 2a), the mechanisms available to



Fig. 7. Evolution of relative activity in (a) smooth, (b) RN10 and (c) RN2 specimens of pure Mg single crystal.
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accommodate plastic deformation are: (i) pyramidal 〈 + 〉c a slip and { ¯ }〈 ¯ ¯ 〉1011 1012 (contraction) twinning for contraction
along [0001], (ii) prismatic 〈 〉a , pyramidal 〈 〉a , pyramidal 〈 + 〉c a slip and { ¯ }〈 ¯ ¯ 〉1011 1012 (contraction) twinning for contraction
along [ ¯ ]1010 , and (iii) prismatic 〈 〉a , pyramidal 〈 〉a , pyramidal 〈 + 〉c a slip and { ¯ }〈 ¯ ¯ 〉1011 1012 (contraction) twinning for



Fig. 8. Distribution of lateral normal stresses σ[ ]0001 and σ[ ¯ ]1010 in RN10 (a, b) and RN2 (c, d) specimens of pure Mg single crystal at Aε = 0.1.
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extension in the loading direction [ ¯ ]1210 . In comparison, highly non-homogeneous stress states in notched specimens are
expected to complicate the plastic flow process. The micromechanics that governs this process can be analyzed by ex-
amining the volume averaged relative activity, ζ i, of each slip or twin system
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where Γ ̇ represents the total shear rate due to all deformation systems. Averaging is carried over the whole gauge section in
smooth bars and the notched region only in notched ones.

Fig. 7 shows the evolution of ζ α for the slip and twin systems for the smooth, RN10 and RN2 specimens. The relative
activities for the RN4 specimens show consistent trend and are omitted here for brevity. In the smooth specimen (Fig. 7a)
prismatic 〈 〉a slip dominates, as expected. No other deformation mechanism is readily available to accommodate contraction
along the c-axis. Thus, in the absence of elasticity, one would expect an infinite value of RL, which is the trend seen at large
strains in Fig. 4. The drop in RL at Aε ∼ 0.02 is due to the brief activity of contraction twinning to accommodate ε[ ]0001 .
However, due to its non-saturation type hardening and high hardening rate (Eq. (12)), subsequent evolution of contraction
twinning becomes progressively difficult. Though pyramidal 〈 + 〉c a slip systems possess higher Schmid factor and lower
CRSS compared to contraction twinning systems, its activation is precluded due to latent hardening from the strain accrued
on the prismatic 〈 〉a system. On the other hand, the model does not consider prior latent hardening of contraction twin
systems (a physical basis of this assumption is discussed in Zhang and Joshi, 2012) and therefore, it is preferentially acti-
vated, albeit only over a short range of strain. This effect implies that the deformation anisotropy depends not only on the
self-hardening characteristics of relevant slip/twin systems, but also on the latent hardening between various slip and twin
systems.

By way of comparison, the relative activity evolution in notched specimens is more complex (Fig. 7b, c). While prismatic
〈 〉a slip continues to be an important deformation mode for accommodating plastic deformation along [ ¯ ]1010 , both RN10
(Fig. 7b) and RN2 (Fig. 7c) specimens exhibit increasing influence of pyramidal 〈 + 〉c a slip that accommodates plastic de-
formation along [0001]. Note that despite the presence of latent hardening, pyramidal 〈 + 〉c a slip does activate in notched
specimens. Two factors lead to an increase in the resolved shear stress (RSS) for pyramidal 〈 + 〉c a slip. First, the overall
normalized load carried by the notched specimens is higher than the load in smooth specimen (Fig. 3). Second, in the notch
specimens, lateral stresses arise along [0001] σ( )[ ]0001 and [ ¯ ]1010 σ( )[ ¯ ]1010 . Fig. 8a, b and c, d show the contours of the lateral
normal stresses in the RN10 and RN2 specimens respectively at Aε = 0.1. In the smooth specimen, tensile stress along [ ¯ ]1210
contributes to positive RSS on the pyramidal 〈 + 〉c a slip planes. In the notch specimens, in addition to the tensile stress
along [ ¯ ]1210 , compressive stress along the c-axis (negative σ[ ]0001 restricted to a small region near the notch root) and tensile



Fig. 9. Plastic strain distributions in the (a) smooth, (b) RN10 and (c) RN2 specimens of pure Mg single crystal at Aε = 0.1. Strain localization along [ ¯ ]1010 in
the mid-section of the smooth specimen is seen in panel (a).
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stress along [ ¯ ]1010 (positive σ[ ¯ ]1010 ) enhance the RSS on the pyramidal 〈 + 〉c a slip planes in the notch regions. These factors
lead to the activity of pyramidal 〈 + 〉c a slip in the notched specimens though latent hardening prevents its activity in the
smooth specimen. Owing to the triaxial stress state, basal slip, pyramidal 〈 〉a slip, contraction twinning and extension
twinning modes are also activated at various stages of deformation. Moreover, the influence of these secondary deformation
modes is enhanced with increasing triaxiality (Fig. 7c). This dependence of relative slip and twin system activity on the
triaxiality has a remarkable effect on the evolution of the deformation anisotropy, as seen in Fig. 5. The overall lowering ofRL

with increasing stress triaxiality results from the activation of pyramidal 〈 + 〉c a slip along [0001] relative to the prismatic 〈 〉a
slip along [ ¯ ]1010 .

The preceding results provide insight into the average mechanical response. In particular, the relative activities of the
underlying slip and twinning systems are averaged over the specimens. It is also useful to examine how the presence of a
notch influences the spatial distribution of these deformation modes. This information is important because notch induced
triaxiality activates different deformation systems that otherwise may not co-exist under uniaxial stress conditions. For
instance, pyramidal 〈 + 〉c a slip and extension twinning do not co-exist under uniaxial loading of single crystals. The ensuing
slip–twin and twin–twin interactions may have implications on the post-yield behavior, including softening and fracture
(Yoo, 1981). In the following, we discuss the micromechanics of slip and twinning modes. For brevity, all the results are
presented at a fixed areal strain of Aε = 0.1.

(i) Total plastic strain: Fig. 9 shows the total accumulated plastic strain ( ∫Γ γ= ∑ ( ′) ′α
α

= t td
t N

0 1 where t is time-like
parameter) in the smooth, RN10 and RN2 specimens viewed along the [0001] and [ ¯ ]1010 directions. In the smooth
specimen, the presence of the specimen grips and the waist region leads to an inhomogeneous stress state akin to the
stress state in the experiments. At fixed Aε , the gradient of plastic strain is steeper in the RN2 specimen. Also, the plastic



Fig. 10. Variation of equivalent plastic strain along [0001] and [ ¯ ]1010 in the minimum section of the pure Mg notch specimens.
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zone is restricted to the notch region in the RN10 specimen whereas it extends well beyond the notch in the RN2
specimen. Further, for a given notched specimen, Γ values are larger along [0001] than along [ ¯ ]1010 . The complex
distribution of triaxiality discussed in Section 3.1.2 motivates an inspection of the notch effects on the distribution of the
equivalent plastic strain. This is important because, evolution of damage (e.g. voids) is usually described in terms of the
equivalent plastic strain ε( )p

eq along with triaxiality (Rice and Tracey, 1969). To this end, Fig. 10 shows the variation of ε p
eq

along [0001] and [ ¯ ]1010 in the minimum section of the notch specimens where ε ε ε=p
ij
p

ij
p

eq
2
3

. Here, εij
p
are the

components of the plastic strain tensor, ∫ε = ′tD dp t p
0

, with Dp being the symmetric part of Lp. In RN10 specimen, the
difference between the maximum (occurs at the notch root) and the minimum (occurs at the notch center) equivalent
plastic strain along [0001] is small resulting in a nearly uniform distribution. Further, it remains so with increasing Aε .
Likewise, the variation along [ ¯ ]1010 is also small, although the peak occurs at a distance ϕ∼ [ ¯ ]0.2 1010 while the minimum
is still at the notch center. In RN2 specimen, the ε p

eq distribution trends are similar along [0001] and [ ¯ ]1010 with the
maximum at notch root and minimum at the notch center. Note that the plastic strain gradient is larger in RN2
compared to RN10 indicating larger strain concentration at the notch root.

(ii) Prismatic 〈 〉a slip: Fig. 11 shows that prismatic 〈 〉a slip is active in both smooth and notched specimens. Only two of the
three variants accrue slip as the variant with the slip plane parallel to the loading direction cannot be active. In notched
specimens, the peak plastic strain on these slip systems is preferentially located close to the notch root along [ ¯ ]1010 and
its magnitude is larger in the RN2 specimen. Interestingly, it was noted earlier that the relative activity of prismatic 〈 〉a
slip decreases with increasing triaxiality (cf. Fig. 7). As the relative activity depends on the product of material volume of
interest and the amount of slip in that volume, increasing triaxiality implies two things: (1) the volume over which
prismatic 〈 〉a slip occurs decreases, and (2) other slip/twin modes become increasingly important, both in terms of
magnitude and their spatial distribution.

(iii) Basal slip: In the smooth specimen, the Schmid factors of all three basal systems are identically zero. On the other hand,
in notched specimens the stress concentration at the intersection of the notched region with the rest of the uniform
region appears to introduce sufficiently high local RSS on the basal systems causing them to be active (Fig. 12). The basal
slip system shown here is one with Burgers vector parallel to the loading direction. The slip on this slip system is an
order of magnitude higher than the other two basal slip systems (not shown for brevity).

(iv) Pyramidal 〈 + 〉c a slip: For reasons discussed earlier in the section, pyramidal 〈 + 〉c a slip is inactive in the smooth
specimen despite having the highest Schmid factor. Fig. 13 shows the pyramidal 〈 + 〉c a slip in the RN10 and RN2



Fig. 11. Prismatic 〈 〉a slip in the (a) smooth, (b) RN10 and (c) RN2 specimens of pure Mg single crystal.
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specimens. In the notched specimens, strain is accrued on two of the six pyramidal 〈 + 〉c a slip variants where Burgers
vector, the slip plane normal and the loading direction are coplanar.

(v) Twinning: Contraction twinning activity is evident in both smooth and notch specimens (Fig. 7). On the other hand,
extension twinning is inactive in the smooth specimen, because the c-axis is under contraction. In the notched
specimens however, the lateral stresses along [0001] and [ ¯ ]1010 vary from compression to tension within the notch
region (Fig. 8); as a result, the stress state in this region favors extension twinning at some locations and contraction
twinning at other locations. Although both, extension and contraction twinning are active in the notched specimens, the
accrued volume fraction (v.f.) is below the critical twin v.f. ( )fc set as the criterion for twin induced lattice reorientation
in this work, at least up to Aε = 0.1. In fact, for the material parameters considered in this set of simulations the twinning
reorientation criterion is not satisfied up to Aε ∼ 0.4. The underpinnings of low twin v.f.'s are different in the case of
extension and contraction twinning. Given the polar nature of twinning, twin v.f. evolves as a function of the effective
RSS on twin systems, which depends delicately on the intensity of triaxial stress state within the notch. It turns out that
this stress state results in a positive RSS along { ¯ }〈 ¯ 〉1012 1011 , but is small and evolves slowly so that the total extension
twin v.f. remains below the critical value over a large range of applied strain. On the other hand, the RSS on
{ ¯ }〈 ¯ 〉1011 1012 is sufficiently high for contraction twinning, but the non-saturation type hardening of these twin systems
results in low twin v.f. The role of extension twinning will be discussed further below.

3.2. Effect of inherent plastic anisotropy: Mg alloys

The pure Mg analyses presented in the previous section have provided some qualitative trends that already corroborate
some experimental findings. However, pure Mg single crystals possess high plastic anisotropy (Zhang and Joshi, 2012;
Raeisinia et al., 2011) compared with their alloyed counterparts even at dilute concentrations (Akhtar and Teghtsoonian,
1969a,b).

This raises the issue of the influence of plastic anisotropy on the micromechanics of deformation as well as other
macroscopic indicators such as limit loads and anisotropy ratios. Agnew and Duygulu (2005) noted that the ratio of the CRSS



Fig. 13. Pyramidal 〈 + 〉c a slip in the (a) RN10 and (b) RN2 specimens of pure Mg single crystal. Though the Schmid factor for pyramidal 〈 + 〉c a slip in the
smooth specimen is high, it is inactive due to latent hardening.

Fig. 12. Basal slip in the (a) RN10 and (b) RN2 specimens of pure Mg single crystal. Basal slip is inactive in the smooth specimen since the Schmid factor is
zero.
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of pyramidal 〈 + 〉c a to prismatic 〈 〉a slip influences the deformation anisotropy in AZ31 when loaded along both, transverse
and rolling directions. Following their observations, the pyramidal 〈 + 〉c a CRSS in the two alloy cases were modified while
keeping the remaining CRSS values the same, see Table 2. First, we compare the diametric reduction δ( )[ ]0001 as a function of
overall stress triaxiality in the pure Mg, alloy-1 and alloy-2 specimens together with the experimental results of Kondori and
Benzerga (2014b) (Fig. 14). The experimental result is known at areal strain corresponding to fracture initiation Aε( )f , which is
indicated in the figure and the simulation results are presented at the same strain, although our model does not consider
fracture. As pointed out by Kondori and Benzerga (2014a), the experimental trend is non-monotonic with the highest
fracture initiation strain for RN10 specimen. The alloy 2 simulations capture this trend while the pure Mg and alloy-1
simulations fail to do so. Note that in terms of the CRSS ratios the plastic anisotropy of alloy-1 is not significantly different
from that of alloy-2. The remarkable difference between the two alloy cases is particularly interesting as it highlights the
marked influence of plastic anisotropy.

Fig. 15 compares the limit load measured from the experiments and the load values obtained in the simulations at strain
corresponding to the experimental limit load. The experiments show an increase in limit load with increasing triaxiality; the



Fig. 15. Comparison of load obtained from the simulations in the pure Mg, alloy-1 and alloy-2 specimens with the limit load in the experiments as a
function of triaxiality.

Fig. 14. Comparison of diametric reduction at fracture initiation strain in the pure Mg, alloy-1 and alloy-2 specimens with the experiments as a function of
triaxiality.
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increase in limit load between RN10 and RN4 is smaller than the increase observed between the smooth and RN10 specimens.
This weaker increase in the limit load with increasing triaxiality is captured in the alloy-2 specimens. The limit load depends
on the plastic flow anisotropy, self-hardening of slip/twin systems, latent-hardening between various slip/twin systems and
the stress state triaxiality. The simulations capture the qualitative trend of weaker dependence of load on triaxiality at higher
triaxiality; quantitative match with experiments is possible only if the hardening rates of the slip/twin systems are modified to
represent AZ31B (as noted earlier in this section, the hardening rates of pure Mg are retained for the alloys).

Fig. 16 shows the trends of RL with Aε for the two alloy cases (Fig. 16a) and as a function of stress triaxiality at experi-
mentally reported fracture initiation strain Aε( )f , see Fig. 16b. Comparing Fig. 16a with its pure Mg counterpart (Fig. 4) reveals
several insights. First, for a given triaxiality a reduced CRSS anisotropy leads to a monotonic reduction in the deformation
anisotropy. Second, there is a qualitative change in the manner in which RL evolves in smooth specimens for the two alloy
cases. While the alloy-1 exhibits a tempered but similar trend as in pure Mg, in alloy-2,RL continues to decrease beyond the
initial peak. The latter implies that the deformation along the [0001] evolves more rapidly compared to the deformation
along [ ¯ ]1010 . Third, the simulations of alloy cases predict a transition of RL > 1 toRL < 1with increasing triaxiality, which is
consistent with the experiments of Kondori and Benzerga (2014a), as seen in Fig. 16b. Moreover, the RL values for alloy-2
compare well with the experimentally reported values over the range of stress triaxiality.



Fig. 16. (a) Evolution of deformation anisotropy in the alloy-1 and alloy-2 specimens with overall areal strain, and (b) comparison ofRL in the pure, alloy-1
and alloy-2 specimens with the experiments. The experimentalRL values correspond to the fracture initiation strain and the same strain is used to extract
RL from the simulations. The dashed line in (b) represents RL for an isotropic material.
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3.2.1. Distribution of triaxiality in notch regions
Fig. 17 shows the variation of triaxiality along [0001] and [ ¯ ]1010 in the minimum cross-section at different Aε in alloy-2

single crystals. When compared with pure Mg (Fig. 6c), strong qualitative similarities are noted: in the RN10 specimen,
along both [0001] and [ ¯ ]1010 , Tmin and Tmax occur at the notch root and at the center of the notch, respectively. The non-
monotonic distribution in the RN2 specimen is also similar to the pure Mg case. This non-monotonic behavior is observed
along both [0001] and [ ¯ ]1010 though the effect is much more pronounced along [ ¯ ]1010 . As in the pure Mg case, Tmax is
located at ϕ∼ [ ¯ ]0.25 1010 from the notch root. Although not shown here, the non-monotonic behavior also persists in RN2
specimens of alloy-1 single crystal.



Fig. 17. Triaxiality along [0001] and [ ¯ ]1010 in the minimum section of alloy-2 single crystal.
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3.2.2. Deformation micromechanics of Mg alloys
Fig. 18 compares the relative activity evolution of all slip and twin systems in alloy-2 for the smooth, RN10 and RN2

specimens. The results for alloy-1 case follow the same trend and are omitted here for brevity. In smooth specimen, in
addition to the prismatic 〈 〉a slip activity, pyramidal 〈 + 〉c a slip contributes to the overall plasticity. This is distinct from the
pure Mg smooth specimen where pyramidal 〈 + 〉c a is absent altogether (cf. Fig. 7a). Although the pyramidal 〈 + 〉c a slip
activity is significant, it is still the second most active deformation system despite having the highest Schmid factor; the
CRSS of prismatic 〈 〉a slip is lower compared to pyramidal 〈 + 〉c a slip. The maximum strength (the saturation stress) that the
prismatic 〈 〉a slip systems attain before their hardening saturates is also lower than the maximum strength that the pyr-
amidal 〈 + 〉c a slip systems attain (Table 2). The higher relative activity of prismatic 〈 〉a slip is attributed to the lower CRSS
and saturation stress of prismatic 〈 〉a slip systems. For Aε≤ ≤0.04 0.12, the RL remains nearly constant as the prismatic 〈 〉a
slip and pyramidal 〈 + 〉c a slip activities are also constant.

In notched specimens, pyramidal 〈 + 〉c a slip is as important as the prismatic 〈 〉a slip. Its contribution increases with
increasing triaxiality; in fact, in the RN2 case, it contributes more to the total plasticity than any other deformation me-
chanism, which explains the drop inRL below 1. The basal and pyramidal 〈 〉a slip modes as well as contraction twinning also
make non-negligible contributions to the overall plasticity in the presence of notch and their activities also become more
conspicuous with increasing triaxiality. Although extension twinning activity appears to be weak, lattice reorientation
occurs at large strains in regions of high stress intensity.

As in the pure Mg case, we now discuss the spatial distribution of different slip and twinning plastic strain at a fixed
strain Aε = 0.1 for the alloy-2 specimens.

1. Slip: For a given applied macroscopic strain, the plastic strain is expected to be the same irrespective of the plastic ani-
sotropy of the material. The magnitude and distribution of the total plastic slip in the smooth and notched specimens of
alloy-2 single crystal is nearly identical to the pure Mg specimens and therefore not repeated here. The magnitudes of
prismatic 〈 〉a slip and pyramidal 〈 + 〉c a slip are lower and higher respectively, compared to the pure Mg specimens for the
entire range of triaxiality considered, but their distributions are essentially the same as in Figs. 11 and 13 respectively.
Likewise, the distributions of ε p

eq along [0001] and [ ¯ ]1010 are qualitatively similar to their pure Mg counterparts in Fig. 10. A
key difference between the micromechanics of pure Mg and alloy-2 specimens is in the occurrence of twinning in the latter.

2. Extension twinning: Uniaxial tensile stress along [ ¯ ]1210 in the smooth specimen does not favor extension twinning. In
notched specimens however, lateral stresses (σ[ ]0001 , σ[ ¯ ]1010 ) exist in the notch region, which can cause extension twinning
(Fig. 19a). Fig. 19b, c and d, e show the contours of the lateral stresses in the RN10 and RN2 specimens respectively at
Aε = 0.1. A noteworthy feature is that the lateral stresses range from being compressive in some regions of the notch to
tensile in other regions of the notch. For extension twinning to occur, the net stress should be such that the RSS satisfies
the polarity of twinning. For the present case, a tensile (positive) σ[ ]0001 and a compressive (negative) σ[ ¯ ]1010 will result in



Fig. 18. Evolution of relative activity in (a) smooth, (b) RN10 and (c) RN2 specimens of the alloy-2 single crystal.
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meeting this requirement, as indicated in Fig. 19a. Note that, although the shear stress σ[ ¯ ]−[ ¯ ]1210 1010 in the notch region also
contributes to the RSS on the extension twin systems its magnitude is two orders of magnitude lower than σ[ ]0001 and
σ[ ¯ ]1010 . As such, its contribution to extension twinning is negligible.



Fig. 19. (a) Lateral normal stresses that promote extension twinning in the notch region. Panels (b–e) show the distribution of lateral stresses σ[ ]0001 and
σ[ ¯ ]1010 in RN10 (b, c) and RN2 (d, e) specimens of alloy-2 single crystal at Aε = 0.1.
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For a given notch acuity the lateral stresses at a fixed Aε are higher in alloy-2 specimen compared to the pure Mg
specimen, because of the higher CRSS values for the alloy. As a result, the alloy-2 specimen has higher propensity to
twinning than its pure Mg counterpart. Moreover, for the alloy-2 case the lateral stresses are higher for RN2 (at fixed Aε )
than RN10 and correspondingly its twinned volume is also larger, which can be seen as an effect of stress triaxiality on
twinning.
Fig. 20 shows the distribution of extension twin v.f. in the RN10 and RN2 specimens at two nominal strains, Aε = 0.1
(Fig. 20a and b) and Aε = 0.35 (Fig. 20c and d). The latter also indicates the locations of the regions that have undergone
twin induced lattice reorientation. Relating the distribution of lateral stresses (Fig. 19) and the distribution of extension
twin v.f. (Fig. 20), we observe that for a given stress triaxiality condition, regions of twinned volumes are not the regions
with maximum tensile σ[ ]0001 or the maximum compressive σ[ ¯ ]1010 occur. Instead, twinning arises as a result of the complex
interaction of the tensile and compressive lateral stresses along [0001] and [ ¯ ]1010 , respectively. Twinned regions are
concentrated at the surface of notch root (along diametrical [0001]) in the RN2 specimen. In the RN10 specimens, the
twinned regions are located at the surface of the notch above and below the notch root.



Fig. 20. Extension twin v.f. at Aε = 0.1 in (a) RN10 (b) RN2, at Aε = 0.35 in (c) RN10 (d) RN2 specimens of alloy-2 single crystal.
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3. Contraction twinning: Fig. 21 shows the distribution of contraction twin v.f. in the smooth, RN10 and RN2 specimens.
Although strain has accrued on the contraction twin planes, the v.f. is much below the critical v.f. required for twin
induced lattice reorientation. The low contraction twin v.f. in the simulations is because of the assumed values of CRSS
and hardening parameters (there is lack of sufficient information on contraction twinning in literature). In addition, our
model adopts a non-saturation hardening evolution for this mode, which makes it more difficult to sustain. Though the
simulations do not predict the existence of reoriented regions, Kondori and Benzerga (2014a) suggest that contraction
twinning is one of the two possible damage initiation sites. The role of contraction twins in initiating failure has been
invoked in the past (Yoshinaga and Horiuchi, 1963; Barnett, 2007). It is noteworthy that the CRSS value used for
contraction twinning of the alloys was assumed (due to lack of data from literature); in fact the CRSS and hardening
parameters used in the simulations might be higher than the parameters corresponding to AZ31 leading to the absence of
twin reoriented regions in the simulations.

Since the deformation anisotropy depends on the activity of various deformation systems it is tempting to establish a
relationship, if only approximate, between the two for loading along the rolling direction. In general, a simple relationship
may not be possible because of the inhomogeneous deformation over the specimen volume. However, for local regions
where deformations are homogeneous, we may define a ratio RL
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where N is the total number of deformation systems, αP is the symmetric part of the Schmid tensor. Note that a deformation
system causing strain in [ ¯ ]1010 may also cause strain in [0001] and vice versa. For the case where there is no such coupling



Fig. 21. Contraction twin v.f. in (a) smooth, (b) RN10 (c) RN2 specimens of alloy-2 single crystal. ⪡f fc
CT even at high values of strain.
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the relationship becomes tractable; e.g. for the smooth specimen case
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where ζ γ γ= ̇ ̇α α/ total is the area averaged relative activity in the cross-sectional plane.
As shown in Fig. 22 there is a good correspondence betweenRL′ obtained directly from the simulations and (Eq. (18)) at

all strains for alloy-2 and for small to moderate strains for pure Mg. The deviation beyond moderate strains in the case of
pure Mg is because elastic strains, which form a significant component of ε[ ]0001 in pure Mg, are ignored in calculating but
are included in RL′ .
4. Closing remarks

In this work, the interplay between stress triaxiality and inherent plastic anisotropy was investigated in Mg single
crystals using crystal plasticity finite element simulations. Details aside, the results indicate the following:

� For all the specimen geometries considered, the initial circular cross sections transform into an oval upon deformation.
This behavior is characteristic of anisotropic materials and is caused by unequal straining of the primary deformation
systems in the specimen cross section.

� The initial CRSS parameters play an important role in setting up the macroscopic deformation anisotropy. This leads to
qualitative and quantitative differences between the pure Mg and alloy predictions. In addition to the activity of non-
basal systems relative to basal slip, much of the macroscopic deformation anisotropy and its micromechanics depends on
the contributions of non-basal systems relative to each other.

� In situations where alloying reduces the inherent plastic anisotropy (such as the cases considered here) the macroscopic
deformation anisotropy in smooth specimens also decreases. In comparison, the behavior of such alloyed notched spe-
cimens is more subtle because of the emergence of lateral stresses that can trigger special deformation systems (e.g.
extension twinning). This dependence of deformation mechanisms on the inherent plastic anisotropy is important be-
cause of its likely implications on the ductility and failure mode.

� The dependence of the deformation anisotropy on the plastic anisotropy can be well corroborated with changes in the
underlying micromechanics. Since at the single crystal level the material anisotropy is a function of the alloying, mod-
ifying alloy composition to tune the anisotropy between the basal and non-basal slip and amongst the non-basal slip
systems, is desirable in order to design for ductility under triaxial stress states.



Fig. 22. Comparison of RL′ obtained from the simulations and calculated using the relative activity values.
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� Triaxiality and plastic strain distributions in notched specimens corroborate qualitatively some observations of nascent or
well developed cracks in various locations, notably close to the notch root and eventually away from the equator. Unlike
most metallic materials where the locations of peak triaxiality and peak plastic strain are such that cracking initiates at
the center, in HCP materials such as Mg the separation between triaxiality and plastic strain peaks is more complex.

� Textural variations in actual polycrystalline HCP microstructures most likely will mediate the effect of inherent (single
crystal level) plastic anisotropy. The trends from the present work establish a basis for more detailed investigations and
will serve as a benchmark to rationalize the deformation micromechanics of polycrystalline microstructures. A com-
prehensive investigation of plastic anisotropy, texture and triaxiality effects is key to developing micromechanics based
damage models for HCP materials.
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