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Abstract

Finite deformation constitutive relations are developed for a class of plastically anisotropic porous solids with an underlying
evolving microstructure. They are based on a model obtained by homogenization for rigid-perfectly plastic materials containing
non-spherical voids. To facilitate numerical implementation, heuristic extensions are proposed to incorporate weak elasticity, strain
hardening and accurate void shape evolution. A semi-implicit time integration scheme is used along with the Newton—Raphson
method to solve the system of equations resulting from the discretization of the constitutive equations. The procedure to calculate
the consistent tangent matrix, which is needed to solve the global force—displacement matrix equation, is summarized. The
framework is used to illustrate the predictive capabilities of the model, first under conditions previously assessed against finite
element cell model calculations, then under conditions heretofore not examined. The latter include situations of initial anisotropy
as well as situations involving significant void distortions, not only in terms of void enlargement or shape change, but also in terms
of void rotations. In particular, various combinations of stress triaxiality, initial void shape, void orientation, matrix orthotropy
properties and loading directions are simulated. In addition, the finite element implementation of the model is addressed and
illustrated for simple cases.
© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The damage mechanics of ductile materials has been widely studied both experimentally and computationally. The
most widely used model of ductile damage was developed by Gurson [1] who derived a plastic yield function through
the homogenization of a representative volume element in the form of a spherical shell. The model has been improved
for computational purposes by Tvergaard and Needleman [2] and further extensions have been proposed since [3].
Other ductile damage models have been developed, e.g. within the framework of continuum thermomechanics [4—6]
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(see [7] for a review) or homogenization [8—11] and used in various simulations of damage and metal forming
processes [12—-14].

Recent progress has been either on computational methods, often implemented with relatively simple constitutive
relations, or on micromechanical analyses often aimed at assessing advanced constitutive relations. An example of
the first type of investigations concerns the development of nonlocal formulations suitable for numerical analysis.
Because the various damage mechanisms represented in the available models cause softening, they eventually lead
to ill-posedness of the incremental problem. One manifestation of the latter is the pathological mesh dependence
in the computed solution. To address this, weakly nonlocal models have been introduced in simulations of ductile
damage [15-17]. The mesh sensitivity is prevented under certain circumstances using an integral condition on the
increment of the damage quantity [11,16,18]. Furthermore, gradient enhanced models were developed to suppress
mesh-sensitive localization [19,20]. Similarly, a strain-gradient based model was used by Lorentz et al. [21] who
also employed a mixed finite element formulation to avoid volumetric locking in near-incompressible plastic flow.
More recently, a second-gradient model that possesses the same number of degrees of freedom per node as those
of first-gradient models was proposed and used to remove mesh sensitivity and improve convergence [20]. Ductile
damage accumulation eventually causes materials to develop cracks and fracture. In order to seamlessly represent
damage to cracking transitions, attempts have been made to integrate the computational scheme for crack tip
discontinuity and ductile damage formulations. Crack propagation can thus be simulated by combining the GTN
(Gurson—Tvergaard—Needleman) model [2] and extended finite element method [22]. Another approach in this regard
is to combine ductile damage and a cohesive zone model to alleviate difficulties associated with crack tip discontinuity.
A variant of this consists of using a finite-thickness band (nonlocal type) formulation [23].

Another direction in ductile damage investigations has focused on the anisotropy in damage evolution. Physically,
the anisotropy can be rooted in that of the undamaged material (referred to here as plastic anisotropy) or manifests
through the evolution of the shape and orientation of voids and microcracks; this type of anisotropy is referred to
as morphological. Both the plastic and morphological anisotropies can be initial or induced, although the former
is generally initial and the latter essentially induced. There is a great deal of interest in developing accurate yield
functions for anisotropic materials in the absence of damage [24-26]. The use of advanced anisotropic yield functions
may have significant implications when ductile fracture follows from the onset of plastic instabilities [27]. However,
these models did not set out to incorporate the effects of damage, except in uncoupled ways [28]. In some formulations
based on continuum thermomechanics, the damage variable (with an appropriate tensorial representation as discussed
in [29]) is taken to evolve dependent upon stress (or strain) directions [30,31]. One advantage of this approach is
the relative simplicity of the constitutive relations, including for damage evolution. On the other hand, they are
generally semi-coupled in that the influence of field variables describing damage and plastic flow enter two separate
thermodynamic potentials. By way of contrast, the coupling between damage and plasticity is seamlessly realized
in the homogenization based models [8,10,32—37] that are built on earlier isotropic formulations [1,2]. In particular,
fully coupled models that account for both plastic and morphological anisotropies were independently developed
by Keralavarma and Benzerga [38,39] and Monchiet et al. [40] who considered rigid-perfectly plastic materials
containing spheroidal voids. In addition, in [39] evolution equations were developed for the internal variables. The
constitutive relations and associated evolution equations for damage related entities are quite complex owing to the
mathematical nature of scale transitions.

While computational methods for implementing isotropic dilatant plasticity models are now well established,
e.g., [7,17,41] little is available on anisotropic models where the source of anisotropy is microstructural and hence
evolving. A particularly challenging problem consists of formulating robust, accurate and fast-converging methods
for dealing with microstructural spins. Benzerga et al. [42,43] first proposed a finite-element implementation of
homogenization-based anisotropic porous metal plasticity. In their formulation, the voids were taken to rotate with
the material, following [32,34]. Aravas and Ponte Castaneda [44] proposed an alternative method which accounts
for the change in the orientation of axes for ellipsoidal cavities. They used explicit integration on several internal
state variables, including the void orientation. Here, an efficient semi-implicit time-integration algorithm for dealing
with finite-element implementation of anisotropic porous metal plasticity is proposed, which enables in principle
large time-step computations. Heuristic extensions of the model in [39] are proposed to incorporate weak elasticity
and accurate void shape evolution, and enable computational analyses of boundary-value problems, which are still
lacking for this class of models. The complete constitutive model is presented in Section 2. The time integration
scheme and the finite-element implementation are provided in detail in Section 3. In Section 4, simulation results are
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compiled which cover various combinations of void shapes and orientations, plastic anisotropy, and loading directions.
The notation used in this paper is as follows. First order tensors, i.e. vectors, are denoted using a bar underneath.
Second and fourth order tensors are denoted by bold and double-stroke letters, respectively. For example, I and I
are the fourth and second order identity tensors, respectively. Tensor operations are defined as follows, Ab = A;;b;,
AB = A;jBjr,A : B = A;jB;j, and (a ® b);j = a;b; for the dyadic product, with the summation convention used
over repeated indices. The roman subscript m indicates the average of the diagonal components of a second order
tensor: A, = Agi/3.

2. Constitutive relations

The constitutive framework is that for a porous plastic solid made up of a plastically anisotropic matrix containing
aligned nonspherical voids with arbitrary initial orientations [39]; see Fig. 1. To enable numerical implementation and
application to engineering materials, the formulation in [39] is extended as follows.! The rate of deformation tensor
D is additively decomposed into:

D =D° +DP, (1)
where the elastic part is given by:

pP=L":¢g @)

. . . . . v
with L the isotropic tensor of elastic moduli and o the Jaumann stress rate defined by:

v .
o=0+0{2— o, 3)
1 The model may be implemented following various strategies within either a hypoelastic or hyperelastic formulation. The choice made here is

set by the structure of the user-defined routine of the commercial code Abaqus.
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Fig. 1. Schematic diagram of microstructure that consists of an aggregate of aligned spheroidal voids surrounded by the anisotropic matrix.
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where 2 is the skew symmetric part of the velocity gradient. The plastic part of D is given by normality to a yield
surface” F(o) =0

a
DP = Ai(a) “)
do
where A is the plastic multiplier and
& o:X 2 2
Flo)=C—y +28+ D(g+ fleosh{,k—— | =@+ D" = (g + /) (5)

where oeq is an equivalent stress that could be based on advanced anisotropic plasticity in the absence of porosity [26,
36]. In the original model [39], yielding in the matrix is taken to obey Hill’s criterion [45] and o¢q is defined as:
3
2 ST
aeqzza.H.a (6)

where H is related to Hill’s anisotropy tensor p through:

1
H=p+1X®©Q+0®X), p=J:h:] I=I-2Ial 7)

Here, Q is a constant tensor and X a void-shape dependent tensor, which are both transversely isotropic in the frame
associated with the void (Fig. 1), and are given by:

1
Q=5 ®n +n,®n,) +n3@n3, ”
X=wn @n +ny@ny) + (1 - 200)n; @ n, "

where n5 is the void axis and n and n, are orthogonal base vectors arbitrarily chosen in the transverse plane. Also, o
in (5) is the flow strength of the matrix material in a reference direction. In practice, o is selected as the yield strength
in one of the principal directions of orthotropy and the components of the anisotropy tensor p are scaled accordingly.
In addition, f denotes the porosity and the criterion parameters C, g and « in (5) as well as  in (7) and oz in (9)
are functions of f and eventually the void aspect ratio w and the components of p. Their expressions are provided
in Appendix A. In (7) J denotes the deviatoric projection operator, i.e., J;jx = %((Sikaﬂ + 8i18j1) — %8,-]-81(1, and h
denotes the anisotropy tensor in the space of deviatoric stresses.

Microstructural changes are specified in terms of evolution equations of the porosity, f, the void aspect ratio, w,
and the void axis, ns, which constitute the internal state variables. The orientation of the principal axes of orthotropy,
denoted by ¢; , et and eg (Fig. 1), is taken to rotate with the material. Note that the current matrix anisotropy basis
and the basis tied to the voids do not necessarily coincide, even when they do initially. Also, in general the principal
loading directions are not aligned with either (e; , e, eg) or (n;, n,, n3); see Fig. 1. The evolution of porosity is
governed by plastic incompressibility such that:

: dF
f=0-HDY=0-fHA— (10)

dom

with due account of the hydrostatic part in the flow rule (4). The void aspect ratio is defined such that w > 1
corresponds to prolate voids. It is evolved according to (with S = In(w)):

§=0Q: [(1 + kwkek7)DP + 3 (%X - X) DI%} (11

where X" is defined similar to X in (9) with a; replaced by a1, a function of f and w defined in Appendix A. In the
original model [39] kyw = kf = k7~ = O but here, following [34], they are given by

9 o] — aGar
kw(w) = 51_—%1[1, (12)

2Tnarate dependent formulation, F (o) = 0 may be used as a gauge surface as in [2] and [43].



S. Kweon et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 495-534 499

ke(f) = (1—/f)? (13)
T2 4+ 7%
1— + fore = +1
k7 (T, €)= 7247 € = sgn(omoy3) (14)
l— —— fore=-—1,
18
7o O3 (15)
%or’ o/

where 7 is the stress triaxiality and € is related to the third stress invariant; also see [43]. In the above equations
the function alGar( f, w) is given in Appendix A. Heuristic functions ky, kf and k7 correct the mismatch due to void
shape, porosity and stress triaxiality, respectively, between unit cell simulation results and model predictions. We shall
use the shorthand notation k& = 1 + kykrk7 wherever appropriate. Note that the evolution equation of w includes an
implicit dependence upon matrix anisotropy through the macroscopic rate of plastic deformation, DP, which is derived
from the yield criterion (5) by normality.

The evolution of void orientation is obtained using the following kinematical relation

Hh=w-n;, o=02"+02 (16)

where the rotation tensor @ accounts for the macroscopic spin of the material and the local plastic distortion following
Kailasam and Ponte Castaneda [46]. Specifically, the void spin tensor £2" is related to the continuum spin tensor {2
via:

'=02-C:DP a7
where C is the fourth order spin concentration tensor given by
C=-1- P:A A=[I-1-/S"" (18)

with A the strain concentration tensor and P and S the Eshelby tensors [47] for a spheroidal inclusion of zero stiffness
in an incompressible linear viscous matrix. Also, in (16) 2! is an additional contribution to the effective void rotation
that comes from mere distortion of void boundaries. The components of this antisymmetric tensor in the frame tied to
the voids are given by:

2
1
2 +1D}’3 (i=12w#l) (19)

I [ _
2, =0, 2 = w2 —

with DV representing the distortion of the void, which in [33] is related to the plastic rate of deformation through
D' =A:DP (20)

where the concentration tensor A is given by (18),. Since A is based on Eshelby’s tensor, it inevitably leads to
inaccurate predictions in the nonlinear case [48]. The following form is therefore preferred:

1
D’ =kDP +3 (7X“ - X) DY, 1)

which underlies the evolution of void shape, Eq. (11), with the provision of the heuristic function k. Defining the
plastic spin tensor as £2° = 2 — @ one obtains [46]
2 2
w; +w j
2 2
i), wiw; Wi W)

QP=C:DP—% >

(@ @n;+n;®n):a:D | on, 22)
by combining Eqgs. (17) and (16); and adopting the notation w; = wy = w and w3 = 1. Writing the above equation
in direct form follows the formulation in [44]. It enables straightforward evaluation of the components of @ with
respect to a laboratory frame. The case w = 1 requires a careful treatment, see Section 3.1. It is worth mentioning



500 S. Kweon et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 495-534

that more recent developments within an “iterative” approach [49] alleviate some of the inaccuracies of estimate (20).
No attempt has been made here to compare heuristics (21) with such new estimates. Also, as noted in [39], the
concentration tensors used in (17)—(20) are in all rigor limited to isotropic matrices. Only numerical estimates are
available for anisotropic matrices [50]. Nevertheless, as in Eq. (11) for the void shape evolution, Eq. (17) includes an
implicit (approximate) dependence of £2¥ on material anisotropy through the macroscopic rate of deformation.

Finally, isotropic strain hardening of the matrix material is incorporated as in the GTN model. The effective stress
o is taken to depend on some effective plastic strain €. Here, a power law of the form:

G =os(1 +&/e)™ (23)
is used. The evolution of € is obtained using

o :DP = (1— f)se. (24)

3. Numerical implementation
3.1. Corotational formulation

The anisotropic ductile damage model presented in the previous section is formulated within a corotational
framework [51]. The constitutive relations are expressed in an intermediate configuration, which is rotated from
the current one by R*, the rotation tensor that results from the polar decomposition of the incremental deformation
gradient:

AF = R*U*. 25)

Incremental objectivity is preserved by using the Jaumann rate (3) in (2). Quantities defined in the rotated configuration
are indicated by the tilde () symbol. Constitutive descriptions need to be written only for the stretch part of
deformations since the rotation part is taken care of by rotating quantities to the intermediate configuration.
Standard transformation rules apply, e.g., A = R*TAR*. The constitutive equations are then rewritten in the rotated
configuration. For example, the hypoelastic law, which is written in the current configuration in Eq. (2), is converted
to

oL 6)

in the rotated configuration. Note that L = L because of the assumed isotropic elasticity. The objective rate Z is
replaced by ¢, which is the main advantage of utilizing the corotational formulation. In other words, the constitutive
updating is done without calculating the objective rate. The yield criterion, Eq. (5), is simply re-written as F(6) = 0
with tensors H, X and Q replaced with H, X and Q respectively. The flow rule (4) corresponding to yield criterion (5)
writes:

Dpz/{ H:o ; (K&ix> ’_—‘]. @)
o o (o2

Combining (26) and (27) the additive decomposition (1) leads to:

1 L 8 . & : X 5( ~
L™7:64+4|3C 1)(g + f)x sinh | Kk — — | =D. (28)
o o
Using (27) again, Egs. (10) and (11), respectively giving the evolution of the void volume fraction and void shape, are
recast into
. 1:H:6 X\I1:X
f=0-nHNA 3CG—+2(g+1)(g+f)K sinh P = (29)
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and
. ~ H:é . G:X\X
S =AkQ:|3C—5—+2(g+ D(g+ fksinh | k— —
o o o
~ 1~ - I:H:6 5:X\1:X
+AQ: | =X"-X 3C_—0+2(g+1)(g+f)/csinh Ka_ — 30)
f o2 o o
and that giving the evolution of the matrix plastic strain, Eq. (24), into
. 1 6:MH:6 . 6:X\o:X
€= A]3C—— +2(g+1)(g + f)xsinh | «k — - . 3D
1—f o3 o o2
The equation for the evolution of void orientation, (16), is transformed into
iy = — 27, (32)

where —£2” formally replaces w of (16) due to the kinematical relationship between the rotated and current
configurations. Based on Eq. (22), 2 is given by

HP *T * ~ T 1 2: wi2+w? ~ ~ ~ ~ X Ep~ ~
2 iy Wi W
s Wi j

For a spherical void (w = 1), the void axis n; is a priori ill-defined. It is determined as the direction of maximum
“stretching of the void”, i.e. based on the diagonalization of the void distortion tensor DV given by (21) above. This
is clearly an approximation since for general strain states, the void shape actually becomes ellipsoidal [10,46,48].
More generally, passage through w = 1 requires additional care in evaluating functions ky, (Eq. (12)), e2 (Eq. (A.2)2),
C (Eq. (A.8)2) and o1 (Eq. (A.10)). All these functions admit finite asymptotic values in the limit w — 1. In the
computations, whenever the void aspect ratio is close to 1, say 0.99 < w < 1.01, the above functions are replaced
with their asymptotic values, see e.g., [3].

3.2. Time integration method

To integrate the above constitutive equations, a semi-implicit integration algorithm is employed. The state variables
in the rotated configuration are assembled in the vector set

vl = [&/, 6m, f, S, &, A} (34)

where the deviatoric—volumetric decomposition [52] is applied to the Cauchy stress o to facilitate the convergence in
the Newton—Raphson procedure employed below. The void orientation, n5, is an additional state variable for which
an explicit update is justified below, hence the semi-implicit character of the proposed scheme. The (differential)
equations for the above variables are (28), (29), (30), (31), (23), and (5), respectively. This coupled system is solved
using an implicit method following a backward Euler scheme. The residuals are collected in the following vector set

(RI" = [R(;f, Rs,. Ry Rs, Re, RA] (35)
and their expressions are as follows:

1 (6’ —a¢ J:H:6 X\ J:X -

Ry=— (290 44|32 1 2(g+ D(g+ fresinh [« o2 ) =2 | — Dy (36)
21 At o2 o o

- - [:H:6 . 5:X\1:X -

Rz, = ——|6m— Gm)o | + 4| 3C——— +2(g + (g + fHrsinh [ k—= | == | — D (7

K At o o o
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f—ro [:H:6 . 6:X\I1:X
Rf = —(1—f)/l|:3C_—2+2(g+1)(g+f)KSth<K - )—} (38)
At o o o
Rs = 2= _ iy [3CH.}& +2(g + (g + f)x sinh <K61X) r}
At o o o
~ 1 - ~ I:H:6 . G:X\I:X
—AQ:(—X”—X) [3c_—2+2(g+1)(g+f)/<smh<'< = )—} (39)
f o o o
€ — & 6:H:6 , 6:X\o6:X
Re=— —l_f/l[3c = +2(g+1)(g+f)/<smh(f< = ) 52} (40)
36 :H:6 G:X 2 2
RA=C§T+2(8+1)(g+f)cosh K -+ =@+ /) (1)

where V and V respectively denote the state variables at the beginning and at the end of the increment A¢. Also, K

and p are the bulk and shear moduli, respectively. Note that the residual on the plastic multiplier, Eq. (41), is written

in terms of imposing the yield criterion at the end of each increment, which corresponds to the consistency condition.
An iterative Newton—Raphson procedure is employed to solve the above equation set [R]” = 0

a[R] 17!
[V]ig1 =1[V]i — [L} [R] (42)

oVl
where the Jacobian matrix d[R]/d[V] is to be evaluated and the subscript i represents iteration number. To ensure fast
convergence a consistent tangent matrix (denoted by IL'") is calculated and used in subsequent global equilibrium
steps. Computing IL"*" involves the following steps

oV ] d[R17'[oR
A = (43)
| 0D | o[V] oD
where
'av'T_[a&/ Iom Of S 0€ 8/1} )
loD| LoD’ oD’ oD’ oD’ D’ oD
and
I:aRj|T_ I:aR&/ 0Rs, ORy O0Rs OR: 3RAi| (45)
ab] Loab’ oD D’ oD’ oD’ oD |
Note that the Jacobian in Eq. (42) is used again in Eq. (43). Then IL®" is obtained from (43) as:
1 /36’ 00,
La = — —~+1®—f“). 46
At(aD oD (46)

For completeness, the components of the Jacobian and other terms are provided in Appendix B.
On the other hand, the equation for the evolution of void orientation, (32), is integrated using an explicit scheme
and an exponential map. Thus, the void axis 715 is updated as follows:

ity = expm(—£2° A1) (7i3)o. (47)

An implicit update of the void orientation is not used because the corresponding gradient of the exponential map
function is quite stiff. Preliminary attempts in this direction have led to overly stiff jacobians, very small time steps
and convergence issues. It should be noted that use of explicit updates on internal state parameters is not uncommon
[17,44]. The algorithm used in the implementation is summarized in Fig. 2.
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Input from ABAQUS: &, D @ From ABAQUS

| Initialize ¢', @, and state variables I

| Set the convergence tolerance |
Calculate the variable vector [V]" =6, 5, , f>S,&, Al
N|

v

Calculate the residual vector
IRI[ =[Rz, Ram ) R_/a Rs, R; R, 1

v
Update the variable using the Newton-Raphson method

1
JIR]
Vl,=lV]-|—| IR
Wl =1V}, LVL}I |

Return @, L**" to ABAQUS

v
Rotate void orientation by the exponential map

= expm(— -épAt)(is)

0

Output to ABAQUS: &, IL“‘“@ To ABAQUS

Fig. 2. Flowchart of the integration algorithm in the user-defined material subroutine (UMAT).

4. Ilustrations

Simulation results are shown for two types of calculations. In the first, the constitutive relations are integrated
for a material point homogeneously deformed and subjected to various proportional stressing histories. In the
second, illustrative boundary-value problems are solved in Abaqus using the developed UMAT both in two and
three dimensions. Given the extent of the results, no direct comparisons with voided cell model calculations or
experiments are attempted. However, in a subset of calculations, the parameters and loading conditions correspond
to situations analyzed in the literature by means of the cell model. This subset is used for benchmarking the model
and its implementation. Then, more general situations are considered, which to the authors’ knowledge have not yet
been considered in cell models, although some situations begin to be simulated in some detail for isotropic matrices
[53-55]. Here, considered are situations where the initial orientation of elongated or flat voids is misaligned with
either the principal loading axes, the principal directions of orthotropy of the matrix material, or both. Simpler aligned
configurations are also considered where the exact void shape evolution is known to depart from spheroidal. The
results of these calculations are critically assessed toward employing the constitutive framework, for example in
modeling the initial anisotropies that are characteristic of many engineering alloys.

In all calculations, the parameters that remain fixed are: the elastic constants £ = 210 GPa and v = 0.3; the
yield stress in some principal direction, say eg, os = 420 MPa, the hardening exponent N = 0.1 (unless otherwise
noted) and €9 = 0.002. The parameters that are varied are: the initial void volume fraction, fj, the initial void aspect
ratio, wy, the initial void orientation, (n5)¢, the anisotropy coefficients of the matrix, s;, and where appropriate the
stress triaxiality ratio, 7. In the finite element calculations of Section 4.8 triaxiality variations are an outcome of the
calculations and therefore the effect of some parameters, namely the 4;’s, on 7 are quantified. In the “material point”
calculations, the results are presented in terms of an equivalent stress defined as

3
Oeqv = 50’ ro’ (48)
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0.1 |
.
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Fig. 3. Illustration of code verification against the Gurson model from the ABAQUS standard library for biaxial tension of isotropic nonhardening
matrix containing spherical voids (fp = 0.0001, w = 1). (a) Normalized stress oeqy /0 versus equivalent strain geqy in (49). (b) Porosity versus geqy.

versus an equivalent strain defined as

2 t
Sequ =1/ € : €, € :/ Ddt. 49)
3 0

4.1. Spherical voids in isotropic matrix

In order to benchmark the code against the Gurson model implementation in the ABAQUS standard library, a
version of the code was used where void shape evolution is precluded (S = w = 0 instead of evolution equation (11)).
Also, the matrix material is taken to be isotropic and nonhardening (N = 0). A biaxial tension simulation was
performed in the x;—x; plane so that 0 = oe; ® ¢; +0e, ® e, with o > 0, keeping the stress triaxiality as 7 = 2/3.

Fig. 3 shows the comparison between the two implementations in terms of stress—strain curves and porosity
evolution. This result shows that when the initial void shape is spherical and constrained to remain so, the model
prediction matches that of the Gurson model from the standard library. This and further direct assessments for other
conditions provide an effective way of code verification.

4.2. Spheroidal voids in isotropic matrix: aligned configuration

Results are here shown for an isotropic von Mises matrix containing spheroidal voids whose common main axis 75
is aligned with the principal loading direction e5. The loading is taken to be axisymmetric about e5. In other words, this
is the configuration for which the model rigorously applies since under any other circumstances, the void shape would
depart from spheroidal. The effect of void shape is studied by analyzing the cases wy = 1/6, wg = 1 and wo = 6 for
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various triaxialities, 7 = 1/3, 1 and 3, and for two values of the initial porosity fy = 0.0001 and fy = 0.01. Similar

conditions have been studied in detail by means of cell models [56].

Fig. 4 shows results for a low stress triaxiality, 7 = 1/3 (uniaxial loading), up to an equivalent strain of 2.5. It
is often reported that void shape effects are important at low triaxialities. This is true but the case 7 = 1/3 is quite
peculiar. Although large shape changes are induced (Fig. 4(e), (f)), the effect of void shape on the stress—strain curve
is negligible (Fig. 4(a), (b)). The small effect seen in the case of a large initial porosity (Fig. 4(b)) is attributed to a
reduction in effective flow strength, roughly by a factor 1 — f. As shown in Fig. 4(c), (d), the porosity first increases
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then saturates. This behavior has been discussed before, e.g., [3,32,34]. In essence, as the voids elongate their growth
rate becomes insensitive to the axial stress; the growth of cylindrical voids is driven, not by mean total stress, but by
the mean lateral stress, which is zero in uniaxial loading. The saturation value of f increases with decreasing void
aspect ratio, as the void sectional area normal to the loading direction is larger for the oblate void. Also, note that the
initial rate of change in the void aspect ratio is higher than in steady state: in fact the void initially elongates roughly
twice as fast as the “specimen” then elongates roughly at the same rate as the specimen.
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Fig. 5 shows the results for a moderate stress triaxiality of 7 = 1. The main difference from the 7 = 1/3 case
is the porosity-induced softening, notably for fo = 0.01 (Fig. 5(b)). In the fo = 0.0001 case, the softening is not
observed until a strain above 1 for wy = 1/6 and even beyond for the spherical or prolate voids (Fig. 5(a)) despite
the two-orders of magnitude increase in porosity (Fig. 5(c)). The porosity versus strain curves are exponential, as
would arise from integrating the evolution equation, Eq. (29). They also embody an exponential dependence upon
stress triaxiality for 7 strictly greater than 1/3, as is well known. Note that the void aspect ratio changes nonlinearly
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with geqy. What is of particular importance here is that for sufficiently large porosities, oblate voids induce a softening
effect that is stronger than a simple (1 — f)o reduction.

Fig. 6 shows the results for a high triaxiality value, 7 = 3. The overall trend is similar to the 7 = 1 case but here
the softening is weakly sensitive to initial void shape. Note that in (d), the oblate wy = 1/6 case does not show the
fastest increase anymore; instead it is the prolate wy = 6 case that has the highest porosity growth, which may seem
counterintuitive. This behavior is explained by the effect of lateral stresses, which are larger in magnitude at high
triaxiality, on the growth of prolate voids. Observe the flattening of initially spherical or prolate voids in (e) and (f)
despite the fact that the major normal stress is along the void axis. The oblate voids, on the other hand, elongate at the
beginning then flatten slowly as the plastic strain increases. The results of this section are consistent with previously
published results, e.g. [3,56] and demonstrate proper implementation of the model.
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4.3. Spheroidal voids in isotropic matrix: loading perpendicular to the void axis

Consider yet again some axisymmetric loading about e; but now the major stress is perpendicular to the void axis,
i.e., e3 L ns. The axial symmetry of the global problem is now broken but the current void shape is still approximated
by the closest spheroidal shape at the same porosity. As in the case of parallel loading, uniaxial loading (7 = 1/3) is
analyzed first. The results are only shown for the fo = 0.0001 case for brevity, Fig. 7. The results of parallel loading
from Fig. 4 are included for comparison purposes. For the low porosity considered, the load orientation does not
affect the stress—strain response, although it significantly affects the evolution of porosity and void shape, as shown in
(b) and (c). For the wy = 6 prolate void, perpendicular loading leads to a greater increase in porosity but saturation



510 S. Kweon et al. / Comput. Methods Appl. Mech. Engrg. 310 (2016) 495-534
a b 400
350
«
s 300 |
E 250
<
2
g o1 £ 200 p
=
3
8 150 |
<
g
S 05} 100
S o
50 |
0 L L L 0 |
0 0.5 1 1.5 0 0.5 1.5 2
Strain g4, Strain g,
c 3 d o
80
S 70t
g 60 -
z
g 50
£ L
@ S
340 b,
= N,
k]
1r =
9
0=n/8 —— £ 8y=n/8
0.5 - 5
N T — 5 (O —
0=3M/8 --vevveee . [ T
0 . . . X !
0 0.5 1 1.5 2.5 0 0.5 1.5 2 2.5

Strain g4,

Strain €eqv

Fig. 9. Misaligned loading for 7 = 1, fy = 0.0001 and wy = 6. Spheroidal void in the isotropic matrix. (a) Normalized stress, (b) normalized
porosity f/fp, (c) void aspect ratio S = In w, (d) orientation angle, 6, of the void axis from the loading direction.

occurs after sufficient straining. The void aspect ratio decreases (Fig. 7(c)), as expected, until it becomes equivalent to
a spherical void. At this point, the void axis is determined on the basis of the maximum stretch, which here is along e;,
as explained at the end of Section 3.1. From then on, the void is approximated as a prolate void with an axis ny = ej.
Under the type of loading considered, the prolate void elongates. This explains the apparent slope discontinuity in
Fig. 7(c). For the wg = 1/6 oblate void, perpendicular loading leads to a steady increase in porosity, in contrast with
the case of parallel loading. Also, the void develops an effectively more oblate shape as S decreases, consistent with
physical intuition. The results in Fig. 7(b) are qualitatively rationalized in terms of effective void cross-sectional area
normal to the main loading.

Next, consider the case of higher triaxialities. Only the case of 7 = 1 is shown for brevity. Comparison between
the parallel and perpendicular loadings is shown in Fig. 8. Observe the marked difference in equivalent stress among
the various cases. In increasing order, the rate of growth of porosity follows the pattern (wo = 1/6, perpendicular),
(wo = 1/6, parallel), (wog = 6, perpendicular), (wo = 1) and (wg = 6, parallel), which is almost the same as the order
of the void sectional area normal to the major load direction, the exception being the first two. In fact, the initial rates of
f follow the above order. Although not clearly seen in Fig. 8(b), the porosity curves of the (wg = 1/6, perpendicular)
and (wo = 1/6, parallel) cases cross each other at geqy ~ 0.25. This trend for wy = 1/6 can be rationalized on the basis
of void shape evolution, Fig. 8(c). In the parallel loading case, the void opens up and eventually becomes prolate. By
way of contrast, in the perpendicular loading case, the initially oblate void remains oblate (in the sense of an effective
shape). The observed trend is then explained by the growth rate of flat voids being faster than that of prolate voids
of comparable volume. For the initially prolate void (wo = 1/6) loaded perpendicular to its axis, the reversal in void
shape evolution after passing through w = 1 (sphere) is due to a change in the void axis (see 7 = 1/3 case above).
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4.4. Spheroidal voids in isotropic matrix: misaligned loadings

Consider now loadings that are neither parallel nor perpendicular to the common axis of voids. Let 6 be the current
angle’ between the loading axis e3 and the void axis ny with 6y denoting its initial value.

Fig. 9 shows results obtained for an initially prolate void with a triaxiality 7 = 1. Three initial void orientations
are considered, 7 /8, 7 /4 and 37 /8. In addition to the stress—strain curves, porosity evolution and void shape change,
the evolution of void orientation 6 is also shown in part (d). Although not included in the figure, the results previously
shown for the parallel and perpendicular loading cases encompass the three orientations shown in terms of rate of
growth of porosity. The evolution of void shape for the slightly misaligned void (8y = 7/8) is closest to the parallel
loading case of Fig. 8, which corresponds to 6y = O but the rate of elongation is slower. On the other hand, the
evolution of void shape for the strongly misaligned void (6y = 37/8) is closest to the perpendicular loading case of
Fig. 8, which corresponds to 6y = /2, but here a non-monotone evolution of void shape is recorded without the void
going through a spherical shape or abruptly changing its void axis. The latter behavior is explained by examining the
changes in void orientation, Fig. 9(d). Misaligned prolate voids tend to rotate so as to align their axis with the major
normal stress (& — 0). This is seen in the asymptotic behavior in Fig. 9(d), irrespective of the initial orientation. In
the early stages of deformation, when the void is sufficiently inclined (6y = 37/8), its shape evolves toward a sphere

3 For a fixed global axis e3, the void axis may lie on any generatrice of the cone defined by solid angle 6. For an isotropic matrix the specific
choice of n3 does not matter.
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as the void opens up. This explains the initial decrease in void aspect ratio, Fig. 9(c). However, when the void has
aligned itself with the major stress it elongates, which is the expected trend for a prolate void deformed at a triaxiality
of 7 = 1. This explains the non-monotone evolution of S in Fig. 9(c) for the strongly misaligned void. More generally,
the evolution of void shape for misaligned prolate voids results from the competition between the tendency to become
spherical due to the effective void-sectional area being larger and the tendency to elongate subsequent to alignment
with the major stress. Note that the reversal from void flattening to elongation in Fig. 9(c) begins before the void
has completely oriented itself along the major stress. Typically, the reversal seems to occur when the voids are about
~25°-35° from the loading axis.

Results for an initially misoriented oblate void are gathered in Fig. 10, for the same triaxiality 7 = 1. As shown
in Fig. 10(d), the angle 6 evolves toward 90°, irrespective of initial orientation 0° < 6y < 90°. Unlike prolate
voids, oblate ones rotate to align their n; axis perpendicular to the major stress. What is common to both cases is that
misoriented voids align themselves to minimize the sectional area normal to the major loading direction. The evolution
of the void aspect ratio (Fig. 10(c)) is rationalized on the basis of previous results for parallel and perpendicular loading
and the evolution of void orientation. The shape parameter S evolves toward zero at the beginning of the simulations,
i.e., the voids tend to becoming spheres due to the triaxial loading. Once the orientation of the void reaches a value
within 30° of the asymptotic value (see Fig. 10(d)) the void begins to flatten, albeit slowly, consistent with the imposed
triaxiality.

The larger the initial misalignment, the faster the porosity growth (Figs. 9(b) and 10(b)). The effect of misalignment
is smaller in the wog = 1/6 case. However, when the extreme cases of parallel and perpendicular loading are included
the effects are comparable over the full range of orientations. This illustrates once again that the interactions between
porosity growth, void shape changes and void reorientations are strongly nonlinear.
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Table 1
The matrix anisotropy coefficients, /;, used in the calculations,
expressed in the basis of material orthotropy (ey , e, eg).

hy ht hs hts hsL hrr
Isotropic 1.000 1.000 1.000 1.000 1.000 1.000
MAT1 1.000 1.000 1.000 2.333 2.333 1.000
MAT2 1.000 1.000 1.000 0.500 0.500 1.000
MAT3 1.650 0.778 0.893 1.378 0.943 1.627

4.5. Spherical void in anisotropic matrix

The effect of plastic anisotropy of the matrix is first investigated for the case of spherical voids embedded therein.
Focus is on the case 7 = 1 and fp = 0.001. One of the principal directions of orthotropy, here eg, is taken along the
main loading axis e;. Simulations were carried out for three anisotropic matrices, see Table 1. Previous cell model
calculations [35] assuming similar initial parameters were performed for the transversely isotropic matrices (MAT1
and MAT?2 in the table, the notation being taken from [39]). Here, in addition, a 3D anisotropic case is considered as
MATS3. In this case, the idealization of the void shape as spheroidal is an approximation: even under axially symmetric
loading the void would develop into an ellipsoid (more generally a 3D void) because of matrix anisotropy. The
stress versus strain curves and corresponding porosity evolution curves are shown in Fig. 11. The trends obtained
for materials MAT1 and MAT?2 are similar to the Fig. 13 in [39], which enables further verification of the proposed
implementation. The new results for MAT3 are intermediate between the reference isotropic matrix and MAT1.

The interpretation of the observed strong effect of matrix anisotropy on void growth follows the rationale developed
by Benzerga and Besson [35] and further expanded in [57]. It is emphasized here for completeness along with other
details. First, note that a large value of a Hill coefficient in a given direction means that the material is weak/soft
in that direction. The isotropic matrix, MAT1 and MAT?2 have the same Hill parameters sy, AT and hg in the three
principal directions, L, T, and S (Table 1). The triaxial loading in the simulations does not involve any shear stress,
i.e., 010 = o013 = 03 = 0. Yet, the responses of the three materials are different, Fig. 11. The reason for this is
that plastic flow in the absence of voids, i.e., f = 0, exhibits the same response for the isotropic, MAT1 and MAT?2
matrices in case of shear-free loadings. However, with the voids present the microscopic stress state within the RVE
(Representative Volume Element which contains a void and the matrix) involves non-zero shear stress components
even when the macroscopic stress state is shear-free. The effect of the inhomogeneous stress state including shear
stress components within the RVE is taken into account by the second term in the yield criterion Eq. (5), which writes:

2(g + 1)(g + f)cosh (Ka(;X> ) (50)

The interaction between plastic anisotropy and porosity is taken into account through the parameter «, whose full
expression is given in Appendix A. In the case of a spherical void, x reduces to the following simplified form first
derived in [35]:

TS AN I |
hts  hsL  hrr '

2 |5 hiht + hhs +hshy © 5 ©b
The above equation indicates that « is nonlinearly related to the /;’s. As shown in Eq. (29), the rate of porosity evo-
lution increases exponentially with k. Therefore, large values of A, ATs and kg, can induce large porosity-induced
softening, a behavior that has been checked using cell model calculations [35,57]. Interestingly, although Eq. (51) is
nonlinear in the Hill coefficients, the overall trend can be explained by simply summing up all the Hill coefficients.
With this rationale, MAT1 is the softest (weakest) material and MAT?2 is the hardest (strongest) material despite the
same normal Hill coefficients (hr, AT and hg); The order of the sum of the Hill coefficients is as follows, 8.666
(MAT1), 7.269 (MAT3), 6 (Isotropic) and 5 (MAT?2). The order of porosity is the same as the order of the sum of the
Hill coefficients and the order of strength is opposite to the order of the sum of the Hill coefficients.
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4.6. Spheroidal voids in anisotropic matrix: parallel loading

With the above results in mind for the net effect of plastic anisotropy on void growth, the combined effects of the
two sources of macroscopic anisotropy (void shape and matrix anisotropy) are now considered. As in the previous
section the loading is parallel to principal direction S (e; = eg). In addition, the major applied load is parallel to the
void axis (e; = n3), as in Section 4.2. Here again, 7 = 1 and fp = 0.001.

Fig. 12 shows the results corresponding to MAT1, MAT2 and the isotropic matrix. The overall trend is similar to the
Fig. 13 in [39], which provides further verification of the implementation regarding the anisotropy part. In MAT?2, the
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strongest matrix, the effect of the initial void shape is small as indicated by the small difference in porosity evolution.
On the other hand, in MAT1, the weakest matrix, the effect of the initial void shape is significant. Porosity evolution
is faster in the oblate case (wp = 1/2) than the prolate case (wg = 2), as in the isotropic matrix case, Fig. 8. Observe
the faster increase of w in MAT2 compared with MAT1, Fig. 12(c). This means that the void elongates faster in the
stronger matrix (MAT?2). The latter matrix squeezes the void faster due to its higher shear strength (s and hgy ). This
leads to a nontrivial coupling between void shape and plastic anisotropy effects.

Fig. 13 shows the results for MAT3. MAT3 is weaker than the isotropic matrix, consistent with the results obtained
for spherical voids, Fig. 11. The sum of the Hill coefficients of MAT3 (7.269) is larger than that of the isotropic
matrix (6), and this leads to a faster void growth, hence to more softening. As shown in Figs. 4-8, porosity evolution
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is faster in the oblate case (wg = 1/2) than the prolate case (wg = 2). Note that the void elongates faster in the
isotropic matrix than in MAT3; the isotropic matrix, which is stronger, squeezes the void more than does the weaker
matrix (MAT3) because of its higher shear strength (check the values of 4ts and Agy in Table 1).

4.7. Spheroidal voids in anisotropic matrix: misaligned loadings

Here, the effect of matrix anisotropy on the evolution of void shape and orientation under misaligned loading
conditions is investigated using 7 = 1, fo = 0.0001 and e; = eg. However, the void axis makes an angle 6p with the
major applied load, as in Section 4.4. The strongest matrix (MAT2) and the weakest (MAT1) and two different initial
void aspect ratios, wy = 6 and wy = 1/6 are employed for comparison. Three different initial misaligned angles of
g = /8,609 = /4, and Oy = 37/8 are simulated.

The results are shown in Figs. 14—17. Regardless of material type and initial orientation (6y # m/2), the final
orientation of the void axis n5 rotates to the main loading axis in the case of the wy = 6 prolate voids and to a direction
perpendicular to the main loading axis in the case of the oblate wg = 1/6. This trend is consistent with that obtained
for the isotropic matrix, Figs. 9 and 10. However, the extent of the effect of initial misalignment on damage growth
and the stress—strain response depends on both the matrix and initial void shape. Indeed, the influence of 6y is strong
for the MAT 1 matrix with prolate voids (Fig. 14), small for the same matrix with oblate voids (Fig. 15), negligible for
the MAT2 matrix with prolate voids (Fig. 16), and small again for the same matrix with oblate voids (Fig. 17). These
results illustrate nontrivial coupling between matrix anisotropy, void shape and void orientation effects.
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f/fo, (c) void aspect ratio S = In w, (d) orientation angle, 6, of the void axis from the loading direction.
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4.8. Finite element simulations

A series of calculations were carried out using tensile specimens under axisymmetric, plane strain and fully 3D
conditions. The parameter space investigated is not as wide as for single element computations. The aim here is to
demonstrate boundary-value problem solutions using the proposed constitutive framework. The specimen geometry
is shown in Fig. 18 and corresponds to an ASTM standard with relative dimensions Ly = 57, Wy = 19, tp = 3.2,
by = 29 and R = 76, ty denoting the thickness where relevant. To reduce the computational cost, only a small portion
of the grip section is modeled such that [p = 136.

For the 3D simulations, a quarter of the specimen is used as shown in Fig. 19(a) utilizing symmetry with respect to
the planes x| = 0 and x3 = 0. The boundary conditions are:

lo . lo . lo
T (xl,?m) =0, 175) <x1,§,x3> =U, T3 <x1757x3> =0 (52)
lo . lo lo
Tl (-xl’_zwx?ﬁ) :Oa u (XI,_E,X:%) :07 T3 <xls_§7x3) :O (53)
11(0, x2, x3) =0, 15(0, x2, x3) =0, 13(0, x2,x3) =0 54
T1(x1,x2,0) =0, Tr(x1,x2,0) =0, u3(x1,x2,0) =0 (55)

where 7; denote the traction components and u; the displacement components. Also, U is a prescribed displacement
rate. A uniform grid is used in the gauge section, Fig. 19(a), using 14 160 eight-noded brick elements (C3D8).
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Fig. 18. Geometry of tensile specimen and other definitions.

For the plane strain and axisymmetric tensile simulations, the in-plane dimensions are the same as those of the 3D
standard specimen, Fig. 18. Only one half of the plane strain specimen is analyzed using symmetry with respect to the
x1 = 0 plane. For both cases, the main boundary conditions are as follows

l . It .
Ti (xl, 5‘)) =0, o <x1, 5‘)) =U (56)
T, xl,—l—o =0, o x1,—l—0 =0. 57
2 2

11(0, x2) =0, 150, x2) = 0. (58)

Fig. 19(b) shows the mesh employed in the 2D simulations. A total of 4720 four-noded CAX4 and CPE4 elements
are used for the axisymmetric and plane strain simulations, respectively.

In all simulations, the initial porosity value employed is fiy = 0.001 and the initial void aspect ratio is set to woy = 1.
The elastic and flow parameters are those specified at the beginning of Section 4. Two matrix materials are used: the
isotropic material, for reference, and MAT3; see Table 1. For the anisotropic material MAT?3, the principal directions
of orthotropy, L, T and S, are set to align with the x1, xo and x3 directions, respectively. Clearly, an axisymmetric
calculation for MAT3 would be irrelevant. However, a plane strain calculation is carried out with the x;—x; plane of
deformation being identified with the L-T plane.

Fig. 20 shows the global responses in terms of normalized load versus nominal strain measure E"" = U, /Ly,
where U, is the displacement of the gauge section having length Lo (see Fig. 18). For the isotropic material, the
maximum load is higher in plane strain than under axisymmetric tension by roughly a factor of 1.15 at initial yield
and 1.173 subsequently, up to necking (Fig. 20(a)). This is due to the triaxial state of stress in plane strain. The initial
load drop is due to necking but subsequent softening occurs faster in plane strain. This is a signature of the higher
triaxiality effect on damage growth, which will be analyzed further below. As a result, the responses for the plane
strain and axisymmetric specimens intersect after sufficient damage-induced softening.
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a b

Fig. 19. Finite element meshes used for (a) the 3D tensile specimen and (b) the 2D tensile specimen, i.e., axi-symmetric and plane strain.

The plane strain response of the anisotropic material MAT3 is softer than that of the reference isotropic material,
Fig. 20(a). At first sight, this is surprising since MAT3 is stronger along the T direction (ht = 0.778), which is
the loading direction, x;. The trend is actually reversed in the 3D thin specimen, as shown in Fig. 20(b). In general,
however, the yield strength of an anisotropic material loaded along a principal direction depends on all three principal
Hill coefficients, not only A1 = 0.778. The weight of each coefficient depends on the stress state. For instance, in
axisymmetric tension it is the combination 4hT + hy, + hg that matters, whereas in plane stress the ig coefficient does
not affect yielding.

To gain insight into the differences observed among all specimens, spatial distributions of key internal variables
are now examined. Fig. 21 shows contours of porosity f and void aspect ratio S = In w for the plane strain tensile
specimens at £ = In(Ag/A) = 1.0. Here, A and Ag respectively denote the current and initial areas at the neck. The
development of porosity damage occurs much faster in the isotropic material than in material MAT3 (compare (a) and
(c)). This is opposite to what was observed in Fig. 11. This hints at a nontrivial coupling between plastic constraint
and plastic anisotropy effects on ductile damage evolution. This issue will be analyzed more quantitatively below.
From the contours of void aspect ratio, (b) and (d), it is clear that voids elongate more at the center of the specimen
when the anisotropic material MAT3 is used. Note that node-interpolated values are shown for the porosity while
element-averaged values are shown for the void aspect ratio to display the results in various ways.

Fig. 22 shows contours of porosity and void aspect ratio for the axisymmetric tensile specimen at the same value
of logarithmic strain as in Fig. 21, i.e. E = 1. Recall that only the isotropic matrix is employed in the axisymmetric
simulations. At the same overall strain level, the porosity levels are lower in the axisymmetric specimen compared
with the plane strain specimen, which is expected based on triaxiality levels. For the same reason, void elongation is
more significant in the axisymmetric specimen.
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Fig. 23 shows contours of porosity for the 3D tensile specimen simulation, again at E = 1 as above, but also
at E™™ = 0.15. The contours of the void aspect ratio are not shown for brevity since the patterns are similar to
those of the axisymmetric case. Unlike in the plane strain specimens, porosity evolution is faster in MAT3, a trend
which is consistent with the material point simulations in Fig. 11. This trend is already evident at incipient necking
(E™™M = (.15) and further develops at large strains (E = 1). For both materials, necking occurs almost at the same
time in-plane and out-of-plane, with the latter being more intense.

In order to quantify further the above trends, Fig. 24 shows the evolution of porosity f, stress triaxiality 7, and
void aspect ratio S = In w at the center of each specimen with the logarithmic strain E. First, consider the case of the
isotropic material. Prior to necking, there is little porosity growth (Fig. 24(a)), in fact none in the axisymmetric and 3D
specimens, although the voids elongate in all cases (Fig. 24(c)). In plane strain, stress triaxiality is about 0.4875, from
the elastic analytic expression 7 = (1 4+ v)/(3+/vZ — v + 1) for v = 0.3. In 3D and axisymmetry, stress triaxiality
starts at 1/3, which is the value for homogeneous uniaxial tension. Post-necking, the higher triaxiality prevailing in
the plane strain specimen (Fig. 24(b)) causes a much greater porosity growth. The 3D and axisymmetric curves are
close to each other. Upon continued straining, stress triaxiality becomes higher in the axisymmetric specimen than in
3D, the out-of-plane stress, 033, being smaller in 3D specimen due to the small thickness.

With the reference isotropic material in mind, consider next the simulations involving material MAT3. The
expectation based on homogeneous axisymmetric deformation results (Fig. 11) is that MAT3 be less resistant to void
growth than the isotropic material. This is exactly what is observed in the 3D specimens. However, in plane strain the
trend is reversed and the rate of porosity growth is much slower in MAT3. This behavior is explained in part by the
lower triaxiality prevailing in the MAT3 plane strain specimen (Fig. 24(b)). Unlike in the material point simulations
of Fig. 11 where the triaxiality was held constant, here spatial and temporal variations of 7 are the outcome of the
boundary-value problem solution as affected by plastic flow anisotropy. Thus, plastic anisotropy effects on void growth
manifest in quite different ways depending on the level (and direction) of plastic constraint.
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Fig. 21. Contours of porosity f (interpolated at nodes) and void aspect ratio S = In w (element averaged) for the plane strain tensile specimen
simulations at £ = 1.0. (a) f, isotropic matrix; (b) S, isotropic matrix; (c) f, MAT3, (d) S, MAT3. Insets show enlarged views of necks (color
online).

Prior to necking, the evolution of void aspect ratio (at the center) is the same for all specimens, Fig. 24(c). Referring
to evolution equation (11), it is noted that the contribution of the term proportional to the mean plastic dilatation D, is
either nil (zero porosity growth in the 3D and axisymmetric specimens) or negligibly small (nonzero but small porosity
growth in the plane strain bar due to 7 > 1/3). Also, the contribution of the triaxiality-dependent heuristic function k7
in the deviatoric term is small for 7 below, say 0.5. Since prior to necking the logarithmic strain E is a measure of true
strain, it is expected that the rate of void shape change be the same in all uniaxial specimens, irrespective of constraint.
Beyond the onset of necking, two factors contribute to the differences seen among the various specimens. As the
triaxiality rises above 0.5 in all specimens, the contribution of heuristic function k7 increases. Most importantly, the
increase in porosity induced by the rising triaxiality affects void shape in two ways: both through the D, and heuristic
function k¢ in (11). In plane strain, the void aspect ratio is the smallest because of the higher triaxiality prevailing
therein. The effect of plastic anisotropy on the evolution of w is (for the loading paths considered and probably most
others) either small in the 3D thin specimen or moderate in the plane strain specimen. Such trends should be compared
more carefully with unit cell calculations.

5. Discussion

Constitutive relations have been presented and implemented to model damage accumulation in ductile materials.
They extend the well known Gurson model to a wider space of damage-related microstructural parameters. Models
with the capability of representing void shape changes and reorientations had been developed in [8,32,34,58,59]
and [10,46,49] and applied in e.g. [13,42-44,60]. The model used here captures these as well as matrix anisotropy
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Fig. 22. Contours of porosity f and void aspect ratio S = In w for the axisymmetric tensile specimen simulation at nominal strain £ = 1.0. Only
the isotropic matrix is used. (a) f (nodal), (b) S = In w (element averaged) (color online).

effects, which strongly couple with void shape effects. The plastic anisotropy parameters may be viewed as plasticity-
related microstructural parameters, although here they were taken as non-evolving. Because the model is derived
from homogenization theory, the mathematical expressions of the microstructure-dependent functions entering the
model are quite involved (see Appendix). However, the model involves a priori no adjustable parameter and, since all
functions are analytic, there is no difficulty in implementing the model.

The anisotropy considered in this paper is limited to the quadratic Hill model. There are other important models
that deal with plastic anisotropy in different ways. It is straightforward to replace the quadratic term of the new
potential with other forms representing approximately the plastic anisotropy of the fully dense matrix, as in previous
implementations in an object-oriented code [42]. One difficulty, however, would be to obtain from first principles
the functional dependence of the criterion parameters, such as «, upon the anisotropy parameters. In addition, the
anisotropy axes of the matrix material were taken to rotate with the material for simplicity. In many instances, not
only the axes can rotate independent of the material, as a result of say grain rotations in polycrystals, but also the
magnitudes of the anisotropy coefficients evolve due for example to an evolving slip system activity [61]. Crystal
plasticity based damage models naturally take into account the evolution of (matrix) anisotropy, e.g., [37]. However,
their use in large-scale simulations of ductile fracture remains to be demonstrated. Alternatively, coupled plasticity
and damage formulations accounting for the plastic spin have recently been proposed [62].

While the model has been verified to some extent against cell model calculations, e.g., [57,63], a quantitative
assessment of the model’s predictive abilities over the full range of internal parameters is a daunting task, especially
for misaligned orientations. Therefore, emphasis was laid here on trends obtained for loading cases and parameter
values heretofore not considered in the literature. Note that in practice, the model is expected to be employed in
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Fig. 23. Contours of porosity f for the 3D tensile specimen (a), (¢) at nominal strain E"™™ = 0.15 (element averaged) and (b), (d) at E = 1.0
(interpolated at nodes). (a), (b) Isotropic matrix, (c), (d) MAT3 (color online).

situations where the underlying assumptions, e.g. a spheroidal void shape, are known to break down.* Under such
circumstances, it was important to critically assess the predictions made using the model in the absence of exact
solutions. Along these lines, it is important to note that the results shown in Fig. 5 for void shape effects in the absence
of plastic anisotropy can be further improved by introducing a void-shape dependent Tvergaard parameter, q,,, as
suggested in [64]. Indeed, the results in Fig. 5 suggest a much smaller difference between the wg = 1 and wyp = 6
cases than inferred from cell model calculations [56]. Heuristic parameter g, is key to obtaining improved results.
It has not been used here because there is a priori no basis for assessing its potential dependence upon the plastic
anisotropy coefficients or loading orientation. Following [42] it can be considered as independent of these parameters;
hence using:

qw =14+ (q —1)/cosh S (59)

where ¢ is the value taken by g, for a spherical void.

The model can be used to describe damage processes involving significant void rotations (e.g., Fig. 14), as would
prevail under shear-dominated loadings, or to represent anisotropic damage evolution depending on the main loading
direction (e.g., Fig. 8). The latter capability was used by Benzerga et al. [43] to model the anisotropic fracture of steel
for situations where the principal loading directions were aligned with the principal directions of the microstructure.
The formulation presented here proves promising to extend the modeling range to off-axes loadings where shear
loads are induced and void rotations may play a prominent role. This aspect of the model was illustrated here for

4 The use of the Gurson model is no different in this regard. One can hardly think of any practical loading where spherical voids would retain
their initial shape.
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void aspect ratio S = Inw at the center of the

homogeneously deformed material points assuming proportional stressing histories. It should be emphasized that in
the finite element simulations of Section 4.8, the necking induced surface curvatures lead to void rotations near the
surfaces, consistent with experimental observations [65]. However, these are not as important as the void rotations
expected under off-axes loadings. It remains to be seen how the model can predict damage accumulation under such

circumstances.

Finally, the constitutive relations presented focus on plasticity and damage by void distortion (growth/shrinkage and
rotation) but do not deal with the initial and final stages of damage. The effect of progressive cavitation through void
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nucleation rules may be incorporated with no difficulty, by amending Eq. (10) with a nucleation term, for example
following [66]. Most importantly, the model should be supplemented with a void coalescence model using either
the phenomenological approach in [2] or micromechanical models that include evolution equations for the internal
variables, as initiated in [67] and recently further developed on more rigorous grounds [68,69] including for combined
tension and shear loading [70]. Here, without such models, the loss of stress carrying capacity follows directly from
damage induced softening. In the full boundary-value problem solutions of Section 4.8, the large strains attained at
maximum-damage locations lead to significant element distortion. The use of void coalescence models would enable
a faster drop in load bearing capacity, in keeping with physical experiments, hence alleviating some of the numerical
difficulties associated with modeling damage to fracture initiation transitions.

6. Conclusion

A computational procedure was developed to implement a recent anisotropic model of porous material plasticity
that takes into account the concurrent effects of void shape and matrix orthotropy [39] in a finite deformation setting.
The procedure is based upon the corotational formulation of the constitutive relations. A semi-implicit scheme was
employed to integrate the latter (explicit only in the void rotation) and the Newton—Raphson method was used to obtain
the converged state variables and the consistent tangent matrix needed to solve the global force—displacement matrix
equation in nonlinear boundary value problems. Using the proposed procedure, implementation of the model enabled
a series of simulations for various combinations of stress triaxiality, void aspect ratio, porosity, loading directions and
Hill anisotropy parameters to be performed. In addition, using a concurrent finite-element implementation a series of
preliminary calculations were carried out to investigate the effect of stress and strain state in uniaxial bars on damage
accumulation up to large strains. The main findings are summarized as follows.

e Code verification was addressed by comparing computation results with those obtained using the Gurson model of
the standard library of Abaqus as well as available results from the literature. Then, model predictions for various
loading orientations and plastic anisotropies were assessed.

e Under uniaxial axisymmetric loading, voids elongate indefinitely with no incidence on the stress—strain curve
unless (i) the initial porosity is sufficiently large; (ii) the initial void shape is sufficiently oblate; or (iii) the loading
direction is normal to the void axis for oblate voids. In practice, uniaxial bars of ductile materials are rarely observed
to fail prior to necking. The results obtained for perpendicular loading rationalize the possibility of fracture under
pure tension, for example if void nucleation occurs by particle cracking and the cracks are closely spaced.

e For moderate to high triaxialities, damage accumulation occurs at a faster rate for perpendicular loading (i.e. when
the major normal stress is perpendicular to the void axis) irrespective of void aspect ratio.

e Under off-axes loadings, prolate voids rotate so as to align with the major load direction whereas oblate voids
rotate to align perpendicular to the major load. The rate of realignment depends on the initial orientation and stress
triaxiality, and to a lesser extent, on plastic anisotropy and porosity.

e Plastic anisotropy has a large effect on the net rate of void growth, irrespective of load orientation and stress
triaxiality. This result is a major finding due to homogenization theory and scale transition. In particular, it could
not be arrived at by phenomenological models of continuum thermomechanics as discussed in [35].

e Concurrent effects of plastic constraint and anisotropy lead to non trivial couplings. While the scalar invariant
(51) of the anisotropy tensor provides a simple means of quantifying the effect of anisotropy on porosity growth
rates, in general the effect of plastic anisotropy also manifests through (i) different evolution of stress triaxiality,
which ultimately strengthens or counteracts the effect of «B; and (ii) the interaction between plastic constraint
and anisotropy, as illustrated by the finite element simulations.

e In order to be used for ductile fracture simulations, the model should be supplemented with a void coalescence
model. This would in turn limit the strains at which complete loss of load carrying capacity occurs at the level of
an integration point.

e As it stands, the formulation lacks a length scale. In the absence of strong macroscopic gradients of mechanical
fields, as in the simulations presented here, the results are not so much mesh-sensitive. More generally, enhanced
formulations of the constitutive relations are needed to address the ill-posedness of the incremental problem when
softening occurs.
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Appendix A. Criterion parameters

The parameters that appear in criterion (5) are functions of porosity f, void aspect ratio w and the Hill anisotropy
coefficients. They are g, «, a2, 1, C, and «1. The “secondary porosity” g is non-zero for oblate voids only:

3 3 N
I S Gl LS (A1)

g=0 (p) g=m— m ”

where (p) and (o) stand for “prolate” and “oblate”, respectively. Also, e; and e; are respectively the eccentricities of
the void and the outer boundary of the spheroidal RVE used in deriving the model. Both are implicit functions of f
and w:

1
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where
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and the anisotropy factors & and &, are defined by
N N N N N N A N N 1/2
he2 2(h11 + hop + h3z — ho3 — h31 — h12) + 3(has + hss + heo)
15 (A.5)
R N o N
he =h* — Z(hll + hop + 2hes — 2h12)
where A ij denote the components of the fourth order tensor 1?1, formal inverse of h [35]
p=J:h:]J, p:D=p:p=1J (A.6)

expressed in Voigt notation, in the frame (n,, n,, n3) of Fig. 1. Tensors h and b are symmetric positive definite, i.e.
hijri = hjirw = hijik = hij and Vo # 0, ¢ : h : 0 > 0. In the frame (e[, ey, eg) the six Hill coefficients are
denoted as hy, ht, hs, hts, hst, and hyt. Next,

(1+e€3) ®
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where H* =2,/hy (a1 — a2), Q* = \/hy(1 — f) and h, is given by
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Above, H* and Q* depend on an additional parameter «1, given by

er = (1= eDanh e ] /2e}) ®)
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—e1(1—ed) + /1 —e?sin”! elj| /(2¢3)  (0).

Note that oy and o1 are identical to those given by [34] for isotropic matrices.
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Eq. (A.8) was mistyped in Ref. [63]. The correct expressions given here correspond to those originally published in
[39].

Appendix B. Jacobian matrix

The components of the Jacobian matrix are given as follows, with R4 p = % and 0 is the second-rank zero
tensor.
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