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Unit Commitment With Continuous-Time Generation
and Ramping Trajectory Models

Masood Parvania, Member, IEEE, and Anna Scaglione, Fellow, IEEE

Abstract—There is increasing evidence of shortage of ramping
resources in the real-time operation of power systems. To explain
and remedy this problem systematically, in this paper we take
a novel look at the way the day-ahead unit commitment (UC)
problem represents the information about load, generation and
ramping constraints. We specifically investigate the approxima-
tion error made in mapping of the original problem, that would
decide the continuous-time generation and ramping trajectories
of the committed generating units, onto the discrete-time problem
that is solved in practice. We first show that current practice
amounts to approximating the trajectories with linear splines. We
then offer a different representation through cubic splines that
provides physically feasible schedules and increases the accuracy
of the continuous-time generation and ramping trajectories by
capturing sub-hourly variations and ramping of load in the
day-ahead power system operation. The corresponding day-ahead
UC model is formulated as an instance of mixed-integer linear
programming (MILP), with the same number of binary variables
as the traditional UC formulation. Numerical simulation over real
load data from the California ISO demonstrate that the proposed
UC model reduces the total day-ahead and real-time operation
cost, and the number of events of ramping scarcity in the real-time
operations.

Index Terms—Continuous-time function space, generation tra-
jectory, mixed-integer linear programming, ramping trajectory,
unit commitment.

[. INTRODUCTION

OWER system operation planning is a continuous-time,

stochastic, mixed integer optimization problem that is
broken into different time scales, each mapped into a corre-
sponding discrete time approximation, taking care of certain
finite set of commitment variables and operation schedules.
The time horizons go from several days ahead to the real-time
operation of few seconds ahead. In a market-based framework
for trading electricity, the generation scheduling problem is
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processed in multiple forward and real-time markets. Among
the markets, it is in the day-ahead market that most of the
electricity trading occurs.

The day-ahead market clearing is handled by solving the unit
commitment (UC) problem which schedules the most economic
set of generating units on an hourly basis, to meet the hourly
forecasted load for the next day [1]. Because of its pivotal role,
the study of the UC problem formulation and solution has been a
very active area of research and development. An efficient for-
mulation for the day-ahead UC problem, proposed in [2], [3],
is an instance of mixed-integer linear programming (MILP) in
which the generation cost function and operating constraints,
and the transmission DC power flow constraints are linear with
respect to all decision variables. The formulation was simplified
in [4] reducing the number of integer variables. Another line
of research is focused on modeling emerging energy resources
in the UC problem, adding new cost terms and constraints and
evaluating their impact on the system efficiency. For instance,
[5] modeled flexible generating units (e.g., fuel switching and
fuel-blending capabilities, combined cycle units), [6] modeled
demand response assets used as contingency reserves to en-
hance system security, and many others.

The current hourly day-ahead UC of sampling hourly the de-
mand and having two hourly decision variables per generating
unit, i.e., the hourly commitment status and generation schedule,
has worked well for compensating the variability and uncer-
tainty of load. However, this practice is starting to fall short
as increasing renewable energy resources add variability to the
system and events of large shortfalls or surpluses occur much
more frequently [7]-[10].

There have been notable research efforts for advancing the
UC problem to cope with renewable integration problems. For
example, in [11] a security-constrained UC algorithm was de-
veloped that takes into account the intermittency and volatility
of wind power generation. A day-ahead UC model with sto-
chastic security was formulated in [12] which is capable of ac-
counting for non-dispatchable and variable wind power gener-
ation. Most recently, the research efforts have been focused on
developing new operation models, market mechanisms and ser-
vices to better take care of fast sub-hourly ramping of renewable
resources. The Midcontinent ISO (MISO) and the California
ISO (CAISO) are proposing new flexible ramping products to
address this operational challenge. In the MISO, the flexible
ramping product is designed to cover the net-load uncertainty
in the next 10 minutes [13], [14]. In the CAISO, the flexible
ramping product is designed to provide load following flexi-
bility for the next 5 minutes and may look ahead several inter-
vals [15], [16]. In [17], an optimization-based model is used to
evaluate the ramping capability requirement considering both
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Fig. 1. Linear spline approximation of the continuous load profile.

security and economics. In [18], a deterministic ramping ca-
pability model with transmission constraint is proposed to en-
sure its deliverability. In [19], both the deterministic and sto-
chastic models are evaluated in designing the market for flexible
ramping products. In [20], a robust economic dispatch model is
developed with ramping capability requirement and compared
with the deterministic model. However, defining new ramping
services, like a flexible ramping product, complicates the market
structure, and raises questions about what is the reasonable level
of cost allocation on these new market products.

The actual real-time load of power system can be divided to a
part that is scheduled for in day-ahead operation, and the devi-
ation between the day-ahead load profile and the real-time load
that needs to be supplied by the available resources at the subse-
quent stages of operation, depending to different ISOs' market
structure. The real-time load deviation results from two kinds
of error in day-ahead load profile: 1) error due to the imper-
fect forecast, 2) error due to the day-ahead load profile approx-
imation. Here, we argue that the ramping scarcity problems are
originated, partly, due to the inherent error in current practice of
day-ahead load profile approximation. In fact, ramping events
and constraints are inter-temporal continuous-time mathemat-
ical objects. The natural implication of the current UC formu-
lation is that, within the hour, generators shall follow a linear
ramp from one value to the next. Intuitively, looking at Fig. 1,
the linear trajectory does not fully capture the prior information
about sub-hourly variations of the net-load and one must expect
deviation which will have to be handled in the real-time opera-
tion. If this short-term deviation is beyond the coverage of the
hourly day-ahead dispatch decisions, the short-term operations
may be left with sufficient capacity but without ramping capa-
bility to respond to sub-hourly net-load variations, as was ob-
served by multiple ISOs [14], [15], with obviously undesirable
economic and security consequences.

These observations demonstrate that the current hourly
day-ahead UC model does not efficiently utilize the available
ramping capability of the generation resources and the prior
information about the load. The question, that this work tries
to address, is twofold: 1) whether or not the problems we are
experiencing (e.g., ramping scarcity events) are tied to the in-
herent errors in our discrete-time approximation of ramps, and
2) if forecasts of hourly samples incorporate all the information
about the variability expected in the net-load.
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A. Contribution and Paper Structure

To address the questions posed above we propose and an-
alyze a different approach to sampling the information and
decision variables in the day-ahead UC problem. The main
goal of our proposed UC model is to reduce the approximation
error in describing the continuous-time ramping phenomena
in the day-ahead operation, capturing more accurately the
essential information available about the day-ahead net-load
evolution in time, while revealing the potential operational
flexibility of generating units that have significant impact on
the day-ahead operation solution, but is not captured by current
UC formulation. In this paper, the continuous-time variations of
generation trajectory are modeled by representing the decision
variables for generating units as the coefficients of a cubic Her-
mite splines expansion. The cubic Hermite spline coefficients
represent the generation value and its derivative (i.e., ramp) at
the starting and ending point of the scheduling intervals. We
also define and model the continuous-time ramping trajectory
of generating units as the derivative of the generation trajec-
tory. In order to incorporate the continuous-time generation
and ramping trajectory models in the UC problem, a function
space-based optimization model is proposed that models all
the prevailing UC constraints and the generation cost function
using the coefficients of generation trajectory model in the
function space of cubic Hermite spline. The application of our
proposed UC model would modify the day-ahead commitment
and schedule of generating units, and would line up the gener-
ation fleet in such a way that the composition of online units is
better prepared to respond to the sub-hourly variations of the
net-load in real-time operation.

The rest of the paper is organized as follows:
Section III presents the interpretation of the current UC model
in the function space of linear splines. The proposed models
for continuous-time generation and ramping trajectories of
generating units are presented in Section I'V. Section V presents
the proposed UC model that integrates the continuous-time
generation and ramping trajectories. The numerical simulations
using the real load data of CAISO is presented in Section VI,
and finally the conclusions and future works are discussed in
Section VII.

B. Notation

The following notation is utilized throughout the paper: bold-
face letters indicate vectors and matrices, while the lower case
letters indicate scalar values. The subscripts k, m, n respectively
are the indexes of generating units, time intervals (hours), and
the segments in the linearize cost function. The letters N, G,
I, T, v, respectively indicate the net-load, generation, commit-
ment variables, auxiliary generation variables, and linearized
cost function derivatives in each range (i.e., prices), while to
refer to the whole cost functions we use the letter C. Capacity
limits are marked with the superscripts max and min. We use
B,(t), H; ;(t) with 4,j € {0,1}, to refer to Bernstein polyno-
mials and cubic Hermite polynomials, and place superscripts B
and I to distinguish the load and generation coefficients of their
trajectory expressed as a linear combination on such polyno-
mials. Continuous time is £, a specific time is %, (i.e., the hour)
and the letter 7, is used to refer to a specific function of time
that is the argument of the polynomial basis used for the rep-
resentation of load and/or generation trajectory within a certain
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mth interval, while T,,, = £,,, —t,,,_1. Startup and shutdown are
marked by SU, 5D respectively, used as superscripts for costs
and ramping constraints, where the letter R is used. Minimum
On/Off Time are T,,,, and T,z .

II. GENERATION TRAJECTORY FROM THE CURRENT UC

The notion of generation trajectory has not been given de-
tailed attention in day-ahead power system operation, and there
is not uniform agreement on the definition/model of the day-
ahead ramping trajectory of generating units. The current UC
practice is to provide hourly constant schedules for the energy
produced by the generating units during the hour. This could
be interpreted as scheduling a piecewise constant trajectory, as
ISOs and technical papers often indicate (see e.g., [2], [3], [21]).
The area of the piecewise constant generation trajectory in an
hour is the actual energy that is scheduled for each generating
unit in the day-ahead operation. A strict interpretation of such
piecewise constant generation trajectory (i.e., taking its time
derivative) would imply that at the beginning of each hour gen-
erating units should instantly jump to the next hour schedule,
which is not physically feasible nor it is compatible with how
the schedule ramping constraints are enforced. In practice, sub-
sequent real-time operation instructions are dispatched to make
a smooth transition between the hourly constant schedules. For
instance, CAISO instructs a 20-min linear ramp across hourly
boundaries, where the generating units should start ramping 10
minutes before the next hour schedule until 10 minutes after
[21]. However, this operation instruction is an ex-post instruc-
tion that is not co-optimized along with the day-ahead sched-
uling decisions, so it is not capable of affecting and improving
the day-ahead UC decisions.

Alternately, the generation trajectory of units can be inter-
preted as being consistent with the hourly ramping constraint in
the current UC formulation that is modeled as finite difference
between two consecutive hourly generation schedules. This
ramping constraint implies that the generating units follow a
linear trajectory from a hourly generation schedule to the next,
meaning that its derivative, i.e., the ramping trajectory, is a
piecewise constant curve. In the next Section I1I, we mathemat-
ically formalize the linear interpretation of generation trajectory
in current UC formulation. This helps explaining more easily
our idea of using third order polynomials to discretize the
decisions on the continuous-time generation trajectory, which
is described in Section IV.

III. CONTINUOUS-TIME GENERATION TRAJECTORY

The day-ahead UC problem is a continuous-time optimiza-
tion problem in nature, expressed as follows:

min / C(G(#), T(8))dt
Q
st F(G(),1(1) = 0
h(G(t),G'(t),I(t)) <0 (D

where the objective is to minimize the total continuous-time
generation cost of generating units over the day-ahead sched-
uling horizon € including the startup and shutdown costs; G(%),
G'(1) and I(t) respectively represent the vector of continuous-
time generation trajectory, continuous-time ramping trajectory,
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and the continuous-time binary commitment variables; f(-) and
h(-) are respectively the prevailing UC equality and inequality
constraints, including balance constraint, and generating units'
capacity, ramping, minimum on/off time, and startup and shut-
down cost constraints.

The conversion from continuous-time generation trajectory
and commitment variables to discrete variables is based on the
notion that the continuous-time variables lie in a Hilbert func-
tion space with countable dimensions [22]. In the current market
practice, the variables I(¢) are limited to hourly changes of com-
mitment status. The continuous-time generation trajectory vari-
able G(t), though, is flexible to change between two consecu-
tive hourly schedules. Next we first show that the hourly day-
ahead schedule of generating units and hourly day-ahead load
forecast profiles of the current discrete-time UC solution (ap-
proximating (1)) lie in a linear function space. Since all polyno-
mial splines of the same order are equivalent (they span the same
sub-space), we choose to interpret the generation schedule, con-
straints and cost function in terms of shifts of Bernstein polyno-
mials of degree 1.

A. Continuous-Time Model of Hourly Day-Ahead Load Profile

There are several different family of splines that can be used
to approximate the continuous-time trajectory (space) of a data
set with the desired level of accuracy, as the order of the basis
grows [23], [24]. Among the polynomial splines, the Bernstein
polynomials of degree n are defined as [23]:

n

By (t) = <k>tk(1 — )" (1), ke [0,n],tec[0,1). (2)

When we are interested in the piecewise approximation of a
set of data points, a bold feature of the Bernstein polynomials is
that they can be utilized to more easily impose smoothness con-
ditions not only at the break points but also inside the interval
of interest, working only on the coefficients of the Bernstein
spline expansion [23]. The linear spline approximation of the
load shown in Fig. 1, can be mathematically expressed in each
hourly sub-interval m in the function space of the two Bernstein
polynomials of degree 1, i.e., By 1(f) =t and By 1({) =1 — ¢,
weighted by the value of load at the beginning and end of the
hour, as follows:

N(t) = NB°By1(t) + NE'B11(t), tm <t <ilmi1 ()

where NEY = N(t,,) and NB! = N(t,,,1) are the coeffi-
cients of the load representation in the linear function space.
Defining the vectors:

Bi(t) = (Boa(t); Bi,i(t)", Np = (NS NIHT, ()

the linear expansion in (3) can be expressed in matrix form over
the day-ahead scheduling horizon as

M-1
N(t) = Bl (7n)Nn )
m=0
where 7, = (¢t —tm)/(tmi1 — tm) translates and rescales

Bi(¢) to cover each period ¢, < t < %p,y1. The contin-
uous-time load model in (5) represent the piecewise linear load
profile in Fig. 1 in the 20 -dimensional function space of the
Bernstein polynomials of degree 1.
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B. Continuous-Time Day-Ahead Generation Trajectory

The continuous-time generation trajectory corresponding to
the discrete-time schedule of generating units is also an element
of the same 2} -dimensional function space spanned by M =
24 shifts of the Bernstein polynomials of degree 1, i.e.,

M-1

Gr(t) = Y BY (7m)Gim

m=0

(6)

where Grm = (Gro,: Gir,)” represents the coefficients of
the continuous-time generation trajectory of generating unit & at
hourly interval m. In this case, the coefficients of the expansion
equal to the hourly generation schedules:

) Gk: m Gk(tm+1)'

We note that although the continuous-time generation
schedule lies in the 2M-dimensional function space, the
number of degrees of freedom is obviously M, due to genera-
tion continuity at the intersection of hourly intervals:

Gk m Gk (t (7)

Gk m—1 — Gk: m = Gk(tm)7 Vm > 1. (8)
The quadratic cost function of generating units can be approx-
imated by a piecewise linear cost function as follows to preserve

the linearity of the UC formulation [4]:

Co(Crlt), Tu(1) = Cu(@T™) D+ 3 Apn O kn(t) ©)

where the capacity range of generating unit k& is di-
vided to N sections using intermediate generation points
go = GM g1.g5,...,9n, = GT* and Nj number of
auxiliary generation variables I'y, ,,(¢) are defined to model the
generation schedule in each of the linear sections. The total
generation of generating unit & can be stated in terms of the
auxiliary generation variables I' ,, (¢) as follows:

Nk 1
G ( ) GmmI Z Fk n (10)
0 Srk,n( ) S In+1 — Gn- (ll)

The auxiliary generation variables T'y, ,,(¢) can be also ex-
pressed in the 2M-dimensional function space spanned by

{B1(7m) %:—01:
M-1
Trn(t) =Y B (7o) Thnm. (12)
m=0

The continuous-time relation in (10), is equivalent to the fol-
lowing constraint on the coefficients:

Np—1

E I‘k,n,m
n=0

where It = (I (tm), I (tm 1)) 7, and G2 is the minimum
generation capacity of unit . We assume that the cost function
coefficients v , (t) in (9) are constant over each period, i.e.,

Gk:,m = kainlk.m + (13)

’Wi,n(t) ~ 'Ws.n(tm)a t'm S t < tm+17 (14)
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which is a fair assumption in an hourly market environment
where the units offer bids for the hourly intervals. The total gen-
eration cost of generating unit & over the day-ahead scheduling
horizon €} can be calculated using the function space represen-
tation of I'y, ,,(¢) in (12) as follows:

M-—-1
/Q Ch(Gr(t), (Nt = 3 | C(GP™) Ty ()
m=0

+Z’W€n

In the following Section IV, we lift the order of the contin-
uous-time representation of the load profile and for the corre-
sponding generation trajectory using cubic splines.

Fk n( M)] - (15)

IV. CUBIC SPLINE MODEL OF GENERATION TRAJECTORY

In this section we propose to use the cubic spline function
space for modeling continuous-time generation trajectory, in
lieu of the linear splines. Cubic splines interpolates points with
minimum curvature while providing additional flexibility to fit
the continuous-time load variations [24]. Correspondingly, the
load is also modeled through a cubic spline expansion.

We favor the expansion on two celebrated bases of cubic
splines: the cubic Hermite basis and Bernstein polynomials
of degree 3. The former are preferred because they allow us
to define the coefficients of the expansion as samples of the
generation and its rate of change, i.e., the ramp. The latter are
useful as a proxy expansion to enforce the capacity and ramping
constraints for the continuous-time generation trajectory, while
working with the same number of coefficients.

Remark IV.1: Increasing the order of polynomials to approx-
imate the load and model the continuous-time generation tra-
jectory of units is a simple generalization of our idea, and may
potentially capture more volatile load variations, reducing the
approximation error in day-ahead load profile. However, as dis-
cussed in more detail in Section VI, this would increase the com-
putation time of the resulting UC problem.

Let us start with the cubic Hermite splines model of the day-
ahead load profile. Rather than sampling uniformly, we gener-
alize the model and split the day-ahead scheduling horizon €}
into M intervals, using arbitrary points 0,%1,%2,...,%tps. The
four cubic Hermite polynomial basis in ¢ € [0, 1) are [24]:

Hoo(t) = (23 — 32 + 1)II(¢)
Hou(t) = (% — 20 + )II(1)
Hiyo(t) = (—2t% + 31°)TI(¢)
Hu(t) = (8 — *)1(1)

which are entries of the vector:
= (Hoo(t), Hor(t), Hio(t), Hi1(t))".

The coefficients of the cubic Hermite approximation
of load over the mth interval are denoted as the vector
NE — (N9 NOL NI0NIWT “and the corresponding cubic

Hermite approximation of the day-ahead load profile is:

H()

M-1

N@)= > H"(r,)NJ

m=0

(16)
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The important feature of (16) is that the coefficients of the
cubic Hermite approximation of load are uniquely defined by
the value of load and the load derivative (i.e., ramp) at the
starting and ending point of the intervals, i.e.,

N = N(tm), N = N(tmi1), )
Nr(;)zl :Nl(tn1)7 ]\Trlnl = ‘er(tnlJFl)' (18)

The linear spline expansion only ensured continuity of the
load but not of its derivative. The C'! continuity [24] (i.e., conti-
nuity of the load and of the load derivative) in the cubic Hermite
approximation is imposed through the constraint:

N0 — prlo
m

m—11

01 __ 11
Nm - Nm—l

Ym>0 (19)
and implies that there are in reality 2/ parameters defining
N (t) in the function space of cubic Hermite splines.
Introducing B3 (t) = (Bo_rg(t), BLg(t)7 Bzﬂg(t), Bg_g(t))T,
the vector of Bernstein polynomials of degree 3, defined in (2)
for n = 3, the cubic Hermite basis functions can be written in
terms of Bernstein polynomials of degree 3 as follows [23]:

H(t) = WB3(?) (20)
where the change of basis matrix W is:
11 0 0
0+ 0 0
W = : (21)
0 0 1 1
1
00 —3 0

Using (20), N(t) in (16) can be rewritten in terms of Bern-
stein polynomials of degree 3 as

M-1 M-1
N(t) = Bi(r)W'N] = > BI(r,)N7 (22)
m=0

m=0

where NB = WT NI is the vector of coefficients for Bernstein
polynomial approximation of the load in the mth interval.

Correspondingly, the continuous-time generation trajectory
of units over the day-ahead scheduling horizon can be expressed
as follows:

M-1 M-1
Gr(t)= Z H” (Tm)Gf,m = Z Bg (T’nl)GE,m (23)
m=0 m=0

where G,fHM = (GY,.. G Gl Git)T and GP =
(GPY, GkBi}n, Gkan, Gﬁ%)T are, respectively, the coeffi-
cients vectors of the cubic Hermite and Bernstein polynomial
models of unit k£ in interval m, which are linearly related as
Gﬁm = WTGkHM.

As shown in (23), the cubic Hermite spline and the Bernstein
polynomial of degree 3 represent two interchangeable bases
for modeling generation trajectory and we will switch between
these two representations throughout the rest of the paper to en-
force different constraints. To illustrate the relationship between
the two sets of parameters, Fig. 2 shows the parameters of the
two continuous-time generation trajectory models for an hypo-
thetical generation trajectory. In Fig. 2(a), G and G,lcf]m are

,m

respectively the values of the generation at the beginning and
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Fig. 2. Coefficients of a) cubic Hermite, b) Bernstein polynomials of degree 3.

(@

ending points of the interval, while G and G} represent
the ramping of the generation trajectofy at the béginning and
ending points of the interval, respectively. The two Bernstein
coefficients G and G'3, in Fig. 2(b) are respectively equal
to the cubic Hermite coefficients G}°,, and G°,,, . The Bernstein
point GZ!  is obtained by moving in the direction of the deriva-
tive in the beginning point for one third of the time interval, and
the point G,E 2 is obtained by moving in the opposite direction
of the derivative in the ending point for one third of the time
interval. This linear relationship between the two models is ex-
pressed in (23).

The C! continuity property enforces that only the first two
cubic Hermite coefficients, i.e., G4, and G}, are indepen-
dent in each interval, which respectively represent the value of
the generation and the generation ramping at the beginning point
of the interval at time #,,. The two coefficients G}°, and G}'
in each interval are not independent and are respectively equal
to the values of the generation and generation ramping at the
beginning point of the subsequent interval.

The motivation for modeling the continuous-time generation
trajectory of the generating units using the Bernstein polynomial
of degree 3 in (23) is twofold. First, the derivatives of the Bern-
stein polynomials of degree n can be expressed as the degree of
the polynomial, multiplied by the difference of two Bernstein
polynomials of degree n— 1 [23]. Specifically, for degree 3 we
can write:

By, 3(t) = 3(By-12(t) — Bra(t)) (24)
which can be written in matrix as follows:
Bj(t) = KBa(t) (25)

where By (¢) is the vector of Bernstein polynomials of degree
2, and K is the linear matrix relating the derivatives of B3 ()
with Bz (#), defined as follows:

3 0 0
3 -3 0

K= (26)
0 3 -3
0 0 3

Using (25), the continuous-time ramping trajectory of gen-
erating unit & can be defined in a space spanned by Bernstein
polynomials of degree 2 as follows:

M-1

Gi(t) = Z Bg(Tm)G;c},Bm

m=0

@7
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where Gi5 . = (G50, GiBL GiP2 )T represents the vector of
Bernstein coefficients of the contlnuous-time ramping trajec-
tory, which can be expressed in terms of cubic Hermite splines
as follows:

G, =K'GZ,, =K'"W'G{,, (28)
where
Gim =3(Gim — Gilm) = Gim (29)
Gif = 3(6E2, — )
= 3(Gllc(,]m Gk m) G Gk m (30)
G,BQ = 3(GkB,3n - Gszn) = Gi}nz (31)

The second motivation for using Bernstein polynomials is
that the continuous-time generation and ramping trajectories
satisfy the so called convex hull property [23], namely that the
continuous-time trajectories will never be outside of the convex
hull formed by the four Bernstein points, shown in Fig. 2(b). Ac-
cordingly, the lower and upper bounds of the continuous-time
generation and ramping trajectories within the interval m can
be respectively represented by the associated Bernstein coeffi-
cients in (32)—(35).

,min  {B (mn)GEy ) 2 min{GEL}  (32)
. ax B 3 (Tm)Gr ) <max{G{,}  (33)
tmgr?gi?mﬂ{ 7 ()G } > min{G}j’Bm (34)
., ax B 2 ()G} < max{Gi7, ). (39)

One of the important advantages of the continuous-time mod-
eling of generation trajectory using cubic Hermite and Bernstein
polynomials in (23) is that the generation cost function (9) can
be accurately computed for continuous-time generation trajec-
tory, as opposed to the hourly constant generation schedule. At
this regard, we also express the auxiliary generation variables
I'% ,,(t) in the linearized cost function (9), in the function space
of cubic Hermite polynomials as follows:

M-1

Z HT T1n)Pk n,m

m=0

Len( (36)

where I‘an m 18 the vector of their cubic Hermite coefficients:

(Fknm7rhnm7rknm7rknm)T' (37)

I‘knm*

V. THE PROPOSED UNIT COMMITMENT MODEL

In this section, we propose a function space-based UC for-
mulation that incorporates the continuous-time generation and
ramping trajectories developed in (23) and (27). The flow of data
in the proposed model is shown in Fig. 3. The day-ahead load
profile is approximated by the cubic Hermite polynomials as in
(16), and the respective coefficients N are fed into the pro-
posed UC model. The continuous-time generation and ramping
trajectories of generating unit k& are represented by the coeffi-
cients G kom> G/B  defined over M intervals of the scheduling
horizon §2. The continuous-time binary commitment variable
of generating unit &, I;(¢), is assumed to be constant in each
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Fig. 3. The proposed UC model.

interval m, equaling to the commitment decision at the begin-
ning of the interval Ij(2,,), resulting in the following contin-
uous-time piecewise constant representation of the commitment
variable:

M-1

L) = Y Liltm)[u(t —tm) — u(t —tmy1)l.  (38)
m=0

The coefficients G, G5, and the binary variables I (t,5,)

act as the decision variables of the proposed UC model, and
their optimal solution would be utilized to reconstruct the con-
tinuous-time generation and ramping trajectories of the gener-
ating units, as shown in Fig. 3. In the following, we formulate
the elements of our proposed UC model.

A. Objective Function

As presented in (1), the objective of the UC problem is to
minimize the total continuous-time generation cost of gener-
ating units over the scheduling horizon, including the startup
and shutdown cost. The continuous-time generation cost func-
tion is derived in terms of the cubic Hermite coefficients of the
auxiliary generation variables, I'y,, ..., by integrating the lin-
earized cost function in (9) as follows:

M-1

>

. i1
L (Gin) / Ie(t)dt
t

m

/Ck (Gi(t), I (t))dt

m=0
Np—1

+ g e () Chn)” [/:+1 H(Tm)dt} ] (39)

where the cost coefficients Ci,(GF™) and i, (¢ ) are con-
stant over each interval m. By calculating the integrals in (39),
the objective function of the proposed UC model, including the
total generation, startup and shutdown costs, can be written as
follows:

K M-1
mlnz Z C +CSD( m,)+Tm,<Ck(G§cnin)Ik(tm)
k=1m=0
Np—1 reo 4 rio rot Tl
k,n, m k.nm kn.m kn,m
n{tm — )
+ ngo’?k, ( |: 9 + 12 :|

(40)

The startup and shutdown costs in (40) are triggered when the
units are committed or shutdown, which are respectively identi-
fied by the increment change in the binary variable in (41), (42).
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In addition, the bounds of the auxiliary generation variables in
(11) are translated in (43) into the constraints on the associated
Bernstein coefficients, thanks to the convex hull property of the
Bernstein polynomials explained in Section IV.

VY [Te(tn) — Te(t—1)] SC2Y (4,,) VE,¥m (41)
VP (It 1) — I(tm)] S CPP (4) VE,¥Ym (42)
0<WTITE  <g..1— g, Vn,Vk,Vm. (43)

kn,m

B. Balance and Generation Continuity Constraints

The continuous-time balance between generation and load
is assured in (44) by balancing the four cubic Hermite coeffi-
cients of the continuous-time load and generation trajectory in
each interval m. Unlike the current UC models where the gener-
ating units are scheduled to balance the hourly samples of load,
the continuous-time generation trajectory would be scheduled
in (44) to balance the continuous-time variations and ramping
of load within the intervals, as represented by the cubic Hermite
spline model. In addition, constraints (45) assure the C* conti-
nuity of the generation trajectory over the scheduling horizon. In
(46), the Bernstein coefficient of the continuous-time generation
trajectory of generating units, i.e., WX G are stated in terms
of the coefficients of the auxiliary genera’tion variables, where
L = (Ie(tn)s I (tm)y Te(tms1 ), Le(tms1)) T s the vector
of applicable binary variables. In (46), due to the C' continuity
of the generation trajectory, the first two cubic Hermite coeffi-
cients of generation variables are associated with the commit-
ment status of units in interval m, while the last two coefficients
are associated with the commitment status of units in interval
m+1.

K
Y G, =NZ vym (44)
k=1

Gllﬂ(,)m = Gg,onrklﬂ Glln,lm = Gg,lm+1 Vkv vm (45)

Nk—l
WIGH, =GP+ > WITE, . (46)
n=0

C. Generation Capacity and Ramping Constraints

As mentioned in Section IV, the convex hull property of
Bernstein polynomials allow us to enforce the generation
capacity constraint in continuous-time by capping the four
Bernstein coefficients of the generation trajectory as follows:

WIGH,, > Gl Wk, Ym @7)
WTGT, <GPPIy, Vk,Vm. (48)

The continuous-time ramping constraints can be applied in a
similar way by capping the Bernstein coefficients of the con-
tinuous-time ramping trajectory of generating units derived in
(29)—(31), only two of which are independent in each interval
due to the ramping continuity constraint in (45). The ramping up
and down constraints for the first Bernstein coefficient of gen-
eration ramping trajectory, (which also account for the startup
and shutdown ramp rates) are defined as:

G < B Ik (tm—1) + B Lk (tm) — In(tm—1)]

k.m
+ G~ (b)) Yk, Ym (49)
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~Giom <R Leltm) + BEP [T (tm—1) = In(tm)]

G = Ti(tm—1)] Vk,¥Ym (50)

where RY, RP | RZY, RP respectively represent the ramp up,
ramp down, startup ramp, and shutdown ramp limits of gen-
erating unit k. The ramping up and down constraints for the
second Bernstein coefficient of generation ramping trajectory
are defined as:

Gilm < B Ti(tm) + m[1=Ix(tm)] Yk, Ym (51)
—G;CB;L < Rlek(tm+1) + T]z[l—[k(thrl)} Vk,Ym=0...M -2
(52)

where n; and 7, are constants and respectively equal to the
upper bounds of GB! and —G'PL in interval m when the unit is
turning on and off in the subseqﬁent interval. The second terms
in the right-hand-side of (51) and (52) assure that the constraint

does not prevent the unit from turning on and off, respectively.

D. Minimum On/Off Time Constraints

The minimum on and minimum off time constraints can be
formulated as follows:

m+Te—1
> T Tt = T Ti(tm) — T (tm—1)] (53)
nH»T,?ff—l
Z Lo [1 - Ik(tm’)] z Tl?ﬁ [Ik(tm—l)*lk(tm)](sét)

where 72" and T represent the minimum on and off times of
generating unit k.

In summary, (40)—(54) present our proposed UC model with
continuous-time generation and ramping trajectory modeling
which is formulated as a MILP problem and can be solved
using any MILP solver. The solution of the proposed UC
model would provide optimum continuous-time generation
trajectory dispatch for each generating unit, in terms of the
four cubic Hermite coefficients in each hour, as opposed to
the hourly generation dispatch provided by the current UC
model. The proposed UC model also provides the optimum
continuous-time ramping trajectory for generating units that is
unique to our approach.

VI. NUMERICAL RESULTS

To analyze and compare the UC formulations we use the
data regarding 32 generating units of the IEEE Reliability Test
System (RTS) [25] and load data from the CAISO. In Cases 1
and 2, we respectively study and analyze the results of running
the current day-ahead (DA) UC model and our proposed UC
with continuous-time generation and ramping trajectory models
on the IEEE-RTS and CAISO load data. In both cases, we also
simulated the real-time (RT) economic dispatch in five-minute
intervals, which schedules for the deviations of day-ahead
dispatch from the real-time five-minute load forecast data. Note
that, depending on the market structure of different ISOs, there
are additional scheduling stages between the day-ahead UC
and RT economic dispatch, essentially trying to reduce the DA
load deviations from the RT load. In addition, we assumed the
real-time load deviation is served by the generating units
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Fig. 4. (a) DA load profiles in Cases 1 and 2, (b) RT deviation from DA load
profiles.

offering a single real-time energy bid equaling to 1.3 times their
highest day-ahead energy offer. We took the five-minute net-
load forecast data of CAISO for Feb. 2, 2015 [26], scaled it
down to the original IEEE-RTS peak load of 2850 MW, and
generated the hourly day-ahead load forecast where the fore-
cast standard deviation is considered to be %1 of the load at
the time. Correspondingly, the ramping capability of IEEE-RTS
units are scaled down with the ratio of twelve. The N2 and
N0 coefficients of the cubic Hermite model of load respec-
tively equal to the value of hourly load forecast at hours m and
m++1 while the three-point finite difference method [24] is uti-
lized to calculate the N°! and N1 coefficients. The two DA
load profiles and their deviation from the RT load are shown
in Fig. 4(a) and (b) respectively. The impact of solar genera-
tion on reducing the CAISO's load during sunlight and the re-
sulting ramping events is obvious in Fig. 4(a). The errors shown
in Fig. 4(b) are due to both the imperfect net-load forecast and
the approximation error of the DA net-load profile. The latter
is dominant in Case 1 with piecewise constant DA net-load ap-
proximation, where a significant amount of load is left out for
RT operation.! The proposed cubic Hermite load model reduces
the approximation error, embedding the sub-hourly variations in
DA load profile.

The DA and RT simulation results for both cases are summa-
rized in Table I. In Table I, the DA operation cost in the proposed
UC model is increased by $5,095.7, while the RT operation cost
is reduced by $10,651.6 (%63) as compared to Case 1, resulting
in the total reduction of $5,555.9 in daily operation cost in Case

IThe choice of calculating the energy matching the hourly samples (or any
other arbitrary point within the hour) could be improved and potentially replaced
with an estimate of the hourly energy demand. However the curve is sufficiently
smooth to make these difference negligible in the resulting schedule and cost.
The advantage of this specific choice is that the first and the third Hermite co-
efficients in each interval are the same as the hourly load forecasts (at the ends
of the interval) utilized in the traditional UC formulation, which is essential to
make the two models comparable.
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TABLE I
SCHEDULING RESULTS
Case DA Operation | RT Operation | Total DA and RT RT Ramping
Cost ($) Cost ($) Operation Cost ($) | Scarcity Events
Case 1 471,130.7 16,882.9 488,013.6 27
Case 2 476,226.4 6,231.3 482,457.7 0

2. In Fig. 4(b), the piecewise constant load profile used in tradi-
tional UC model leaves out a substantial amount of net-load for
RT operation. The net-load presents several fast ramping events
specially when the solar generation starts to rise in the early
morning and suddenly drops during sunset. The substantial load
deviation and several fast ramping events causes the relatively
high RT operation cost for Case 1 in Table I. In addition, due
to the lack of ramping capacity in RT operation, 27 ramping
scarcity events are observed in Case 1; that is, the RT eco-
nomic dispatch becomes infeasible due to insufficient ramping
capacity of generation units, which reveals the inadequacy of
the current UC model in accounting the sub-hourly variations
of net-load. Thus, the RT operation cost is not defined for the
27 ramping scarcity events in Case 1. We used the average op-
eration cost of other feasible intervals as the operation cost of
27 infeasible intervals. From the total RT operation of $16,882.9
in Case 1, $1,577.3 is related to the scarcity events. However,
no violations of the power balance is observed in the RT oper-
ation of Case 2, which demonstrates the ability of the proposed
UC model to effectively schedule the available ramping capa-
bility of units to cater to the fast ramping of the net-load. Note
that consideration of additional scheduling stages between the
day-ahead UC and RT economic dispatch may result in fewer
real-time scarcity events in Case 1. However, this simulation as-
sumption is equally applied for both cases and compares the re-
sults of the two methods under equal conditions, showcasing the
ability of the proposed model to outperform the current practice.

The continuous-time generation trajectories for two cases are
shown in Fig. 5, where the units are grouped to 9 groups with
various capacities, costs and characteristics. In Fig. 5(a), the tra-
ditional way of interpreting the UC schedule provides a constant
hourly setting for the generating units and results in a piecewise
constant generation trajectory. In Fig. 5(b), the proposed UC
model provides a continuous-time schedule for generating units
which efficiently utilizes their ramping capability to follow the
continuous-time variations of the net-load, while leaving less
energy to schedule in the RT operation. In Case 1, a total of
twenty units are committed, while in the proposed model in
Case 2, additional five units are committed to secure adequate
ramping capacity in the hours 1-3 when there is a fast ramp
in the net-load. Moreover, in Case 2, the 197 MW units are
not committed in the hours 16-24; instead the 100 MW units
with more than twice the ramping capacity are kept on to also
supply the fast ramping of net-load caused by solar generation
during hours 6-16. This result highlights that consideration of
sub-hourly ramping in day-ahead operation would modify the
day-ahead commitment and schedule of generating units in such
a way that the composition of online units is better prepared to
respond to the sub-hourly variations of the net-load in real-time
operation. So, it is of practical importance to account for the
additional sub-hourly ramping of generating units in day-ahead
operation.
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The continuous-time ramping requirement of net-load and its
breakdown to the scheduled ramping trajectory of generating
units are shown in Fig. 6. In Fig. 6, the proposed UC model
accounts for continuous-time ramping of load, which manifest
several sub-hourly spikes, and schedules the generating units in
day-ahead to deliver the continuous-time ramping requirement
of load in real-time operation.

In order to evaluate the performance of our proposed model
in different loading and forecast error conditions, we repeated
the same Cases 1 and 2 in Fig. 7 for the CAISO's load data of
the entire month of Feb. 2015 [26], and also added the results
obtained from the traditional UC model with 48 half-hour pe-
riods. From the scatter diagram in Fig. 7(a), we can clearly see
that our proposed UC model outperforms the other two cases
in terms of real-time and total operation cost reduction, even
compared to the half-hourly UC solution. Note that the latter
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could have benefited from having twice the binary variables for
half-hourly commitment status changes, which is prevented in
this test for our model; this indicates that the brute-force solu-
tion of increasing the number of scheduling intervals is infe-
rior compared to our solution. In addition, Fig. 7(b) reveals that
our proposed UC model results in much fewer ramping scarcity
events.

A. Computation Time

The computation time of simulating the day-ahead operation
of IEEE-RTS with 32 generating units for the CAISO load data
of Feb. 2, 2015, using the traditional 24-hour UC model, 48 half-
hourly UC model, and the proposed function space-based UC
model are respectively 0.257 s, 0.572 s, and 1.369 s, while the
upper bound on the duality gap is set to be zero. The study cases
were solved using CPLEX 12.2 [27] on a desktop computer with
a 2.9 GHz i7 processor and 16 GB of RAM. Our proposed UC
model has the same number of binary variables as compared to
the traditional 24-hour UC model, but the reason for increased
computation time is that it includes additional continuous vari-
ables, and equality and inequality constraints. The number of
continuous generation variables is increased from 1 to 4 in each
interval for each generating unit. The number of equality bal-
ance constraints is increased from 1 to 4 equality constraints in
each interval. The number of inequality capacity and ramping
constraints is increased from 2 and 2, respectively to 8 and 6
constraints in each interval for each generating unit. There are
also additional two constraints in each interval for each gen-
erating unit enforcing the C'! continuity of the generation tra-
jectory. However, having the same number of binary variables
is promising for large-scale implementation of our proposed
model. In fact, the computation time of a MILP problem, due
to the nature of branch-and-cut algorithm, is almost an expo-
nential function with respect to the number of integer variables
[28].
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As highlighted in Remark IV.1, increasing the order of poly-
nomials to approximate the load and model the continuous-time
generation trajectory of units would increase the computation
time of the problem. This is, however, an important feature of
our proposed model that offers customizable levels of accu-
racy and computation complexity in approximating the decision
space of day-ahead power system operation, which can be tuned
by the system operator.

VII. CONCLUSION AND FUTURE WORK

This paper introduces a new formulation of the day-ahead UC
problem aimed at optimally scheduling of continuous-time gen-
eration and ramping trajectories of generating units. The pro-
posed model preserves the MILP structure of current UC prac-
tice, with the same number of binary variables in the problem.
Our numerical results on CAISO's real load data show that the
commitment and schedule of the units in the proposed model is
different from those of the current practice and that the applica-
tion of proposed UC model has the potential of reducing signif-
icantly the number of ramping scarcity events in the real-time
operation and of reducing the total operation costs.

In future work, one of the important features of our proposed
ramping trajectory model that we will investigate is the defini-
tion of a ramping market because of the possibility of bidding on
the ramping trajectory. In addition, consideration of transmis-
sion network power flow and constraints, inclusion of various
reserve services, and definition of the associated market prices
are in order. Also not considered in this work is how to appropri-
ately tune the net-load forecasts and deal with uncertainty in the
proposed UC model, which are natural extensions of the current
framework and essential ones to fully cope with the stochastic
nature of load and renewable energy resources.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive comments and suggestions, which improved
the clarity of the paper.

REFERENCES

[1] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric
Power Systems: Forecasting, Scheduling, and Risk Management.
New York, NY, USA: Wiley, 2002.

[2] J. M. Arroyo and A. J. Conejo, “Multiperiod auction for a pool-based
electricity market,” I[EEE Trans. Power Syst., vol. 17, no. 4, pp.
1225-1231, Nov. 2002.

[3] A. L. Motto, F. D. Galiana, A. J. Conejo, and J. M. Arroyo, “Network-
constrained multiperiod auction for a pool-based electricity market,”
IEEE Trans. Power Syst., vol. 17, no. 3, pp. 646—653, Aug. 2002.

[4] M. Carrion and J. M. Arroyo, “A computationally efficient mixed-in-
teger linear formulation for the thermal unit commitment problem,”
IEEE Trans. Power Syst., vol. 21, no. 3, pp. 1371-1378, Aug. 2006.

[5] B. Lu and M. Shahidehpour, “Unit commitment with flexible gener-
ating units,” IEEE Trans. Power Syst., vol. 20, no. 2, pp. 1022-1034,
May 2005.

[6] M. Parvania and M. Fotuhi-Firuzabad, “Demand response scheduling
by stochastic SCUC,” IEEE Trans. Smart Grid, vol. 1,no. 1, pp. 89-98,
2010.

[71 M. R. Milligan, E. Ela, D. Lew, D. Corbus, and Y.-h. Wan, Advancing
Wind Integration Study Methodologies: Implications of Higher Levels
of Wind, National Renewable Energy Lab., 2010.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 31, NO. 4, JULY 2016

[8] M. Milligan et al., “Operating reserves and wind power integration:
An international comparison,” in Proc. 9th Int. Workshop Large-Scale
Integration of Wind Power Into Power Systems, 2010, pp. 18-29.

[9] U.Helman et al., Integration of Renewable Resources: Operational Re-
quirements and Generation Fleet Capability at 20% RPS, 2010.

[10] Growing Wind: Final Report of the Nyiso 2010 Wind Generation
Study, 2010.

[11] J. Wang, M. Shahidehpour, and Z. Li, “Security-constrained unit com-
mitment with volatile wind power generation,” IEEE Trans. Power
Syst., vol. 23, no. 3, pp. 1319-1327, Aug. 2008.

[12] F. Bouffard and F. Galiana, “Stochastic security for operations plan-
ning with significant wind power generation,” IEEE Trans. Power
Syst., vol. 23, no. 2, pp. 306-316, May 2008.

[13] N. Navid and G. Rosenwald, “Market solutions for managing ramp
flexibility with high penetration of renewable resource,” IEEE Trans.
Sustain. Energy, vol. 3, no. 4, pp. 784-790, 2012.

[14] N. Navid and G. Rosenwald, “Ramp capability product design for
MISO markets,” White Paper, Jul. 2013.

[15] L. Xu and D. Tretheway, Flexible Ramping Products: Revised Draft
Final Proposal, 2012.

[16] K. H. Abdul-Rahman, H. Alarian, M. Rothleder, P. Ristanovic, B.
Vesovic, and B. Lu, “Enhanced system reliability using flexible ramp
constraint in CAISO market,” in Proc. 2012 IEEE Power and Energy
Soc. General Meeting, 2012, pp. 1-6.

[17] C. Wang, P. Luh, and N. Navid, “Requirement design for a reliable
and efficient ramp capability product,” in Proc. 2013 IEEE Power and
Energy Soc. General Meeting, 2013, pp. 1-5.

[18] N. A. Brown, V. Ajjarapu, and N. Navid, “Economic dispatch with
deliverable ramping capability constraint for high wind penetration,”
in Proc. 2014 IEEE Power and Energy Soc. General Meeting, 2014,
pp. 1-5.

[19] B. Wang and B. Hobbs, “Flexiramp market design for real-time op-
erations: Can it approach the stochastic optimization ideal?,” in Proc.
2013 IEEE Power and Energy Soc. General Meeting, 2013, pp. 1-5.

[20] A. A. Thatte, X. A. Sun, and L. Xie, “Robust optimization based eco-
nomic dispatch for managing system ramp requirement,” in Proc. 47th
Hawaii Int. Conf. System Sciences (HICSS), 2014, pp. 2344-2352.

[21] CAISO, Business Practice Manual for Market Operations, Sep. 30,
2014 [Online]. Available: http://caiso.com

[22] S.Mallat, 4 wavelet Tour of Signal Processing. New York, NY, USA:
Academic, 1999.

[23] P. Dierckx, Curve and Surface Fitting with Splines.
Oxford Univ. Press, 1993.

[24] P. Prenter, Splines and Variational Methods.
Dover, 2008.

[25] R. T. S. T. Force, “The IEEE reliability test system — 1996,” IEEE
Trans. Power Syst., vol. 14, no. 3, pp. 1010-1020, Aug. 1999.

[26] California ISO Open Access Same-Time Information System (OASIS),
Apr. 2015 [Online]. Available: http://oasis.caiso.com

[27] CPLEX 12.2 Manual. Armonk, NY, USA, IBM Corp., 2011.

[28] T. Li and M. Shahidehpour, “Price-based unit commitment: A case
of Lagrangian relaxation versus mixed integer programming,” /[EEE
Trans. Power Syst., vol. 20, no. 4, pp. 2015-2025, Nov. 2005.

Oxford, U.K.:

New York, NY, USA:

Masood Parvania (M’14) is an Assistant Professor and the director of the
U-Smart lab at the Department of Electrical and Computer Engineering at the
University of Utah. His research interests include the operation and planning
of power and energy systems, modeling and integration of distributed energy
resources, as well as sustainable renewable energy integration.

Dr. Parvania is currently the Chair of the IEEE Power and Energy Society
(PES) Task Force on Reliability Impacts of Demand Response Integration, and
the Secretary of the IEEE PES Reliability, Risk and Probability Application
(RRPA) Subcommittee.

Anna Scaglione (F’11) is a Professor in Electrical, Computer and Energy Engi-
neering at Arizona State University. Her expertise is in the broad area of signal
processing for communication and power systems.

Dr. Scaglione was Editor-in-Chief of the IEEE SIGNAL PROCESSING
LETTERS, and was in the Board of Governors of the Signal Processing Society
from 2012 to 2014. She is recipient of the 2013 IEEE Donald G. Fink Prize
Paper Award, the 2013 SPS Young Author best paper award (with her student),
the 2000 IEEE Signal Processing Transactions Best Paper Award, the Smart-
Gridcomm 2014 Best Student Paper Award, the Ellersick Best Paper Award
(MILCOM 2005) and the NSF Career Award in 2002.



