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Abstract—The current practice of discrete-time electricity
pricing starts to fall short in providing an accurate economic
signal reflecting the continuous-time variations of load and
generation schedule in power systems. This paper introduces the
fundamental mathematical theory of continuous-time marginal
electricity pricing. We first formulate the continuous-time unit
commitment (UC) problem as a constrained variational problem,
and subsequently define the continuous-time economic dispatch
(ED) problem where the binary commitment variables are fixed
to their optimal values. We then prove that the continuous-time
marginal electricity price equals to the Lagrange multiplier of
the variational power balance constraint in the continuous-time
ED problem. The proposed continuous-time marginal price is not
only dependent to the incremental generation cost rate, but also
to the incremental ramping cost rate of the units, thus embedding
the ramping costs in calculation of the marginal electricity
price. The numerical results demonstrate that the continuous-
time marginal price manifests the behavior of the constantly
varying load and generation schedule in power systems.

Index Terms—Continuous-time marginal electricity price, gen-
eration trajectory, ramping trajectory, variational problem.

I. INTRODUCTION

THE fundamental operation goal of a functional power

system is to balance the generation resources and load in

continuous time, respecting the physical characteristics and

limitations of the system. In a market-based framework to

operate power systems, the balancing task is performed in

multiple forward and real-time markets, where energy and

various ancillary service products are traded to ensure the

security of operation. Different pricing schemes are utilized

to price the electricity energy and the ancillary services at

different time scales [1]–[3].

Among the early works on electricity pricing, the seminal

work of Schweppe and colleagues [4], which provides the

fundamentals for spot pricing of electricity, has been the source

of inspiration for a plethora of succeeding works. In [4],

the electricity price is defined in an hourly basis using the

Lagrange multipliers of the hourly power balance constraints.

When the transmission grid is considered, the Lagrange mul-

tipliers associated with the nodal power balance constraints

define the locational marginal prices for electricity [1]. In [5],

in conjunction with active power pricing, the reactive power

is also priced using an optimal power flow model. In [6], a

market is proposed for callable forward contracts treated as

derivative commodities and the associated pricing method is

discussed. In addition to the electricity energy, maintaining

the security of power system operation requires fair and

transparent schemes for procuring and pricing the ancillary

services [7]–[10]. In the early work of [7], an iterative method
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is used to calculate the marginal up spinning reserve cost with

regard to the line flow constraints. In [8], the authors argue

that a socially optimal security level is obtainable through

pricing incentives and providing information on the services

requirements. The importance of security pricing was soon

realized by newly established markets, including New Zealand

and US New England markets [11], [12]. Development of the

efficient solution methods for stochastic optimization models

paved the way to factor the stochastic nature of security pricing

in more recent works [13], [14].

Electricity prices should ideally reflect the true marginal

cost of generation, taking into account all physical system

constraints, and fully compensate all resources for the costs

of supplying electricity [15]. However, due to the approxi-

mate modeling of power system constraints such as ramping

process, as well as the non-convex startup/shutdown costs

and the minimum generation constraints in unit commitment

(UC) problem, the prices may not support the equilibrium

solution of the market. This may result in inability of markets

to cover the operating costs of some resources, where uplift

payments are paid by system operators to make the resources

financially whole and maintain the functionality of markets

[15], [16]. Several methods are proposed in technical liter-

ature that account for non-convexities in deriving marginal

prices. O’Neil et al. proposed that the non-convexities can be

considered as separate commodities in markets and developed

a method to calculate marginal prices as well as the uplift

payments to the resources [17]. A convex hull pricing model

is presented in [18] in which the prices minimize the uplift

payments in markets. Midcontinent ISO (MISO) has recently

embedded this method in its extended locational marginal

pricing process [19], [20]. Recent developments include a

non-convexity pricing method that guarantees non-negative

revenues for generating units [21], as well as an alternative

convex hull pricing scheme for energy and reserve markets

using extreme-point subdifferential [22]. A detailed analysis

of properties and implementation challenges of convex hull

pricing is presented in [23].

Although substantial research efforts are devoted to ad-

dress pricing issues in markets and deliver a consistent and

transparent price signal to the participants, less attention has

been given to account for inter-temporal ramping constraints in

scheduling and pricing of electricity in markets. The increased

sub-hourly variations of net-load due to the large-scale renew-

able integration questions the adequacy of current discrete-

time scheduling and pricing methods, which does not flexibly

schedule the generation fleet to ramp in sub-hourly intervals.

This may leave the system with sufficient capacity but without

ramping capability to respond to fast sub-hourly variations of

load that may lead to ramping scarcity events [24], [25], with

obviously undesirable economic and security consequences
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[26]. In this regard, Federal Energy Regulatory Commission

(FERC) issued the order 764 and amended the pro forma

Open Access Transmission Tariff in order to require the public

utilities to provide sub-hourly (15-minute) schedules for the

transmission customers to reflect changes in the renewable

generation output [27]. In response, the independent system

operators are changing their market rules to integrate the sub-

hourly scheduling in the market clearing practices. In addition,

the MISO and the California ISO (CAISO) are integrating

new ramping services in their markets to address the ramping

challenge, and avoid the ramping scarcity events [25], [28].

In fact, the ramping scarcity events and the associated

price spikes are evidence of a severe bottleneck that lies

in the current ramping model as the finite difference of

discrete-time power samples, which poorly models the actual

continuous-time ramping process of units and hardly captures

the impact of load ramping on the generation schedules and

electricity prices. Although using smaller time steps may

reduce the approximation error, the inherent ambiguity in

ramping definition still remains an issue with the discrete-time

scheduling and pricing models. To address this problem, we

proposed a continuous-time UC model in [29] that schedules

the continuous-time generation and ramping trajectories of

generating units to supply the continuous-time variations of

load. In [29], spline function space of Bernstein polynomials

are utilized to model the continuous-time trajectories and

recast the continuous-time problem into a mixed-integer linear

programming problem with finite-dimensional decision space.

In this paper, we base the mathematical foundation and

define the theory of continuous-time marginal pricing of

electricity in day-ahead markets. In Section II, we revisit the

current discrete-time UC model and present the formulation

of continuous-time UC problem as a constrained variational

problem, where the ramping process of generating units is

modeled by continuous-time ramping trajectory. We define the

continuous-time economic dispatch (ED) problem by fixing

the binary commitment variables to their optimal values in

the UC problem. We then present the necessary and sufficient

optimality conditions of the continuous-time ED problem,

and prove in Section III that the continuous-time marginal

electricity price is defined as the Lagrange multiplier of the

continuous-time power balance constraint of the proposed ED

formulation. We define the incremental ramping cost rate

of generating units as the cost of incremental change in

their ramping, and prove that the continuous-time marginal

electricity price is not only a function of the incremental

generation cost rate, but also of the incremental ramping cost

rate of the units. The numerical results are presented in Section

IV, and conclusions are drawn in Section V.

II. CONTINUOUS-TIME DAY-AHEAD SCHEDULING

The goal of day-ahead power system operation is to sched-

ule the most economical set of generating units to supply the

net-load over the day-ahead scheduling horizon T =[0, T ]. The

traditional scheduling practice subdivides T to N intervals

Tn=[tn, tn+1), T =∪N−1
n=0 Tn of the same length ∆t= tn+1 −

tn, e.g., hourly, where t0 = 0, tN = T . The resulting discrete-

time generation schedules G(tn) = (G1(tn), . . . , GK(tn))
T

and commitment statuses I(tn) = (I1(tn), . . . , IK(tn))
T are

optimized to supply the discrete-time load samples D(tn) at

minimum cost, forming the discrete-time UC problem below:

min
G(tn), I(tn)

N−1
∑

n=0

(

C(G(tn)) + CI(I(tn))
)

∆t, (1)

s.t. f
(

G(tn), I(tn)
)

= 0, (λ(tn)), ∀n, (2)

h
(

G(tn), I(tn),∆t
)

≤ 0, (γ(tn)), ∀n, (3)

where C(G(tn)) =
∑

K Ck(Gk(tn)) represents sum of the

generation costs of the units in each interval n; CI(I(tn))=
∑

K CI
k(Ik(tn)) represents sum of the startup, shutdown, and

fixed costs of the units; f(·) represents the discrete-time

power balance constraints; h(·) represents the set of prevailing

inequality constraints, including the generating units’ capacity

limits, ramping limits, startup and shutdown costs, and mini-

mum on/off time constraints; λ(tn) and γ(tn) are respectively

the Lagrange multipliers associated with the equality and

inequality constraints.

The most common day-ahead pricing practice includes solv-

ing the mixed-integer linear programming (MILP) UC problem

(1)-(3), fixing the binary commitment variables to their optimal

values and sequentially solving the ensuing N single-period

linear programming (LP) economic dispatch (ED) problems

[17]. The optimal Lagrange multipliers λ(tn) of the solution

of the ED problems present the day-ahead marginal prices

at discrete times tn. In addition, non-convexity prices are

determined using the Lagrange multipliers associated with

the equality constraints fixing the commitment variables [17].

Alternative methods include the convex hull pricing in which

the prices minimize the uplift payments in markets [20], [23]

A. Continuous-time UC model

The discrete-time UC problem (1)-(3) schedules for the

discrete-time samples of units’ generation, implying that units

shall follow piecewise constant generation trajectories from

one schedule to the next [30]. This follows that the units’

ramping is modeled as the finite difference between the

consecutive generation samples. Clearly, the discrete-time

generation schedules and the resulting rampings does not

appropriately utilize the flexibility of generating units to com-

pensate the faster variations of net-load that may lead to the

ramping scarcity events. In addition, we argue that calculating

marginal prices using the sequential solution of single-period

ED problems may not appropriately factor the impacts of

ramping constraints in day-ahead prices, and may result in

prices that does not reflect the true marginal generation cost.

As an alternative to the discrete-time modeling approach, let

us assume that the generating units are modeled by continuous-

time generation trajectories G(t) = (G1(t), . . . , GK(t))T

and continuous-time binary commitment variables I(t) =
(I1(t), . . . , IK(t))T , which are scheduled to balance the

continuous-time net-load trajectory D(t) at minimum cost

[29]. In the continuous-time modeling approach, the finite

difference ramping model tends to derivative as the length of

time intervals ∆t approaches to zero, and allows us to define
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the continuous-time ramping trajectory of unit k, Ġk(t), as

the time derivative of its generation trajectory:

Ġk(t) , lim
∆t→0

Gk(tn+1)−Gk(tn)

∆t
=

dGk(t)

dt
. (4)

Defining the explicit continuous-time ramping trajectories

Ġ(t) =
(

Ġ1(t), . . . , ĠK(t)
)T

, we can assume that in contrast

to the cost function Ck(Gk(t)) that is only a function of

generation trajectory, the units are allowed to submit a joint

generation and ramping cost function Ck(Gk(t), Ġk(t)) in

dollar per unit of time, which is a function of both generation

and ramping trajectories [31]. Integration of an explicit ramp-

ing cost would allow the units to compensate the additional

wear and tear cost that they may incur due to more frequent

ramping [32]–[34]. In addition, continuous-time modeling of

G(t), Ġ(t) and I(t) allows us to formulate the continuous-

time UC problem as follows:

min
G(t),I(t)

∫

T

(

C
(

G(t), Ġ(t)
)

+ CI
(

I(t)
)

)

dt, (5)

s.t. f
(

G(t), I(t)
)

= 0, (λ(t)), t ∈ T , (6)

h
(

G(t), Ġ(t), I(t)
)

≤ 0, (γ(t)), t ∈ T , (7)

where C(G(t), Ġ(t))=
∑

K Ck(Gk(t), Ġk(t)), and λ(t) and

γ(t) are respectively the continuous-time Lagrange multiplier

trajectories associated with continuous-time equality and in-

equality constraints (6), (7). The ability to capture the ideal

flexibility of generating units through continuous-time UC

model (5)-(7) would allow us to flexibly schedule the units

to balance the continuous-time shape of net-load over T .

However, the continuous-time UC model (5)-(7) is an infinite-

dimensional computationally-intractable variational problem.

In our previous work [29], we proposed a solution method for

the continuous-time UC problem (5)-(7) where spline function

space of Bernstein polynomials are utilized to model the

continuous-time trajectories and recast the variational problem

into a MILP problem with finite-dimensional decision space.

Coefficients of projecting the continuous-time trajectories in

the function space of Bernstein polynomials represent the

decision variables of the resulting MILP problem [29].

In this paper, we aim to develop the fundamental mathe-

matical theory to define the continuous-time marginal price

associated with the continuous-time UC model. Assume that

we obtain the optimal solutions G∗(t), Ġ
∗
(t) and I

∗(t) of the

continuous-time UC using the function space method proposed

in [29]. We adapt the approach used in [17] and fix binary

variables in the continuous-time UC (5)-(7) to their optimal

values I
∗(t), and define the continuous-time ED problem:

min
G(t)

J(G(t)) =

∫

T

C
(

G(t), Ġ(t)
)

dt, (8)

s.t. 1
T
G(t) = D(t), (λ(t)), t ∈ T , (9)

G(t) ≤ G(t) ≤ G(t), (ν(t),ν(t)), t ∈ T , (10)

Ġ(t) ≤ Ġ(t) ≤ Ġ(t), (µ(t),µ(t)), t ∈ T , (11)

G(0) = G
0, (12)

where G(t) =
(

G1I
∗
1 (t), . . . , GKI∗K(t)

)T
and G(t) =

(

G1I
∗
1 (t), . . . , GKI∗K(t)

)T
are respectively the constant

continuous-time lower and upper capacity bounds, with Gk

and Gk representing the minimum and maximum capac-

ities of unit k; Ġ(t) =
(

Ġ1I
∗
1 (t), . . . , ĠKI∗K(t)

)T
and

Ġ(t) =
(

Ġ1I
∗
1 (t), . . . , ĠKI∗K(t)

)T
are respectively the con-

stant continuous-time lower and upper ramping bounds, where

Ġk and Ġk represent the minimum and maximum ramping

limits of unit k. Note that the cost term CI(I∗(t)) in the UC

objective functional (5) becomes constant as we fix the integer

variables, and thus does not appear in the objective funcional

(8). In addition, the minimum on/off time constraints that

are purely dependent on the integer variables would become

redundant as we fix the integer variables, and thus are not

included in the continuous-time ED problem.

The optimization problem (8)-(12) is a constrained varia-

tional problem, where (8) represents the objective functional

to be minimized over T . The continuous-time power balance

constraint is formulated in (9), and (10)-(11) confine the

generation and ramping trajectories between their minimum

and maximum limits over the scheduling horizon. The vector

of the generation trajectories at time zero, G(0), is set to the

vector of initial values, G0, in (12). The distinct feature of the

constraints (9)-(12) is that they are enforced in every instant of

time over the scheduling horizon T and are called variational

constraints. As a result, the associated Lagrange multipliers

λ(t), ν(t), ν(t), µ(t) and µ(t) are also continuous-time

trajectories defined over T . Using the optimality conditions

of the continuous-time ED problem developed next, we will

prove in Section III that the Lagrange multiplier trajectory λ(t)
defines the continuous-time marginal electricity price.

B. Derivation of Optimality Conditions

Here we intend to derive the necessary and sufficient

optimality conditions for the continuous-time ED problem (8)-

(12). The underlying assumptions for the derivations are: 1)

generation trajectories G(t) are assumed to be C1 (continu-

ously differentiable) functions of t. The physical implication is

that the inertia of the rotating parts of generating units avert the

abrupt changes in generation. The proposed solution method

in [29] ensures C1 continuity of the continuous-time capacity

bounds G(t) and G(t) in (10), thus ensuring C1 continuity of

G(t) over T including startup and shutdown intervals; 2) cost

functions of generation units are independent of each other;

3) the cost functions are C1 and monotonically increasing

convex functions of their arguments; 4) the cost functions are

not explicit functions of t. We have derived the optimality

conditions of a generic constrained variational problem in

Appendix A. In the following, we present the optimality

conditions for the problem (8)-(12), and where required, we

refer to the corresponding derivation in the Appendix A.

Let us first form the Lagrangian associated with the varia-

tional problem in (8)-(12) as:

L
(

G(t), Ġ(t), λ(t),ν(t),ν(t),µ(t),µ(t)
)

=

C
(

G(t), Ġ(t)
)

+ λ(t)
(

D(t)− 1
T
G(t)

)

+ νT (t)
(

G(t)−G(t)
)

+ νT (t)
(

G(t)−G(t)
)

+ µT (t)
(

Ġ(t)− Ġ(t)
)

+ µT (t)
(

Ġ(t)− Ġ(t)
)

. (13)
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The necessary optimality conditions of the continuous-time

ED problem (8)-(12) are derived below.

1) Euler-Lagrange Equations: As proved in Theorem A.1,

the optimal trajectories G
∗(t) of the continuous-time ED

should solve the Euler-Lagrange equations (44). Let us cal-

culate two terms ∂L
∂G(t) and d

dt
∂L

∂Ġ(t)
for the Lagrangian (13):

∂L

∂G(t)
=

∂C(G(t), Ġ(t))

∂G(t)
− λ(t)1− ν(t) + ν(t), (14)

d

dt

∂L

∂Ġ(t)
=

d

dt

(

∂C(G(t), Ġ(t))

∂Ġ(t)

)

− µ̇(t) + µ̇(t). (15)

Using (14), (15), the Euler-Lagrange equations are derived as:

∂C(G(t), Ġ(t))

∂G(t)
−

d

dt

(

∂C(G(t), Ġ(t))

∂Ġ(t)

)

− λ(t)1− ν(t) + ν(t) + µ̇(t)− µ̇(t) = 0. (16)

The Euler-Lagrange equations represent the first-order nec-

essary condition for local optimum of the variational problems,

analogous to the condition that the partial derivatives are zero

at a local extreme point in static optimization. The Euler-

Lagrange equations (16) represent a set of K differential equa-

tions that is to be solved over the entire scheduling horizon

T in order to calculate the optimal generation trajectories and

the Lagrange multiplier trajectories. Solution of the K Euler-

Lagrange equations (16) would require 2K boundary values.

The first K boundary values are provided by the initial values

of generation trajectories in (12), and the second K boundary

values are set by the transversality conditions (17) below.

2) Transversality Conditions: In the power system oper-

ation problems, the generation trajectories are usually free-

ended; this means there is not any specific boundary value

condition for single units that needs to be met at the end of the

scheduling horizon. In this case, as mentioned in the Remark

in Appendix A.1), the optimal generation trajectories should

also satisfy the transversality conditions expressed as follows:

∂L

∂Ġ(t)

∣

∣

∣

t=T
= 0. (17)

3) Complimentarity Slackness Conditions: As discussed

in Appendix A.2), the inequality constraints (10) and (11)

and the associated Lagrange multipliers should satisfy the

complimentarity slackness conditions as follows:

νk(t)(Gk(t)−Gk(t)) = 0, νk(t) ≥ 0, ∀k, ∀t ∈ T , (18)

νk(t)(Gk(t)−Gk(t)) = 0, νk(t) ≥ 0, ∀k, ∀t ∈ T , (19)

µ
k
(t)(Ġk(t)− Ġk(t)) = 0, µ

k
(t) ≥ 0, ∀k, ∀t ∈ T , (20)

µk(t)(Ġk(t)− Ġk(t)) = 0, µk(t) ≥ 0, ∀k, ∀t ∈ T . (21)

The complimentarity slackness conditions ensure that the

Lagrange multiplier associated with an inequality constraint is

either zero when the constraint is not binding, or is a non-

negative number when the constraint is binding.

4) Original Problem Constraints: The optimal trajectories,

of course, should satisfy all the problem constraints (9)-(12).

Suppose that the optimal trajectories G
∗(t), Ġ∗(t) satisfy

the Euler-Lagrange equations (16), the transversality condition

(17), and the complimentarity slackness conditions (18)-(21).

The convexity assumption of cost functions Ck(Gk(t), Ġk(t))
provides the sufficient condition that the trajectories are glob-

ally optimal solution of the problem (8)-(12).

III. CONTINUOUS-TIME MARGINAL ELECTRICITY PRICE

We define the continuous-time marginal electricity price in

the following theorem.

Theorem III.1 (Continuous-time Marginal Electricity Price).

Let G∗(t) and J(G∗(t)) be the optimal generation trajectories

and the optimal objective functional value of the problem

(8)-(12). The optimal Lagrange multiplier trajectory λ(t)
associated with the variational power balance constraint (9)

is the rate at which the objective functional is changed due to

an incremental change in load at time t, and is defined as the

continuous-time marginal electricity price.

Proof. Let D(t) be incremented by an infinitesimally small

and localized C1 trajectory, δD(t), which takes positive values

in (τ, τ+δt) and vanishes to zero at t=τ and t=τ+δt, where

τ ∈ T . This incremental variation is sufficiently small that an

optimal solution still exists and involves the same binding in-

equality constraints, i.e., the incremental load variation δD(t)
results in an incremental change to the optimal trajectories

G
∗(t) and Ġ

∗(t), the operation costs C(G(t), Ġ(t)), and the

total objective functional J . Thus, we express the optimal

value of the objective functional as a continuously differen-

tiable function of load trajectory, i.e., J∗(D(t)). The task here

is to calculate the rate of change of J∗ ≡ J∗(D(t)) due to

the load variation δD(t). We first calculate the incremental

change in J∗ due to incremental load variation δD(t):

4J∗ = J∗ (D(t) + δD(t))− J∗(D(t))

=
∂J∗(D(t))

∂D(t)
δD(t) +O(‖δD(t)‖), (22)

where ‖δD(t)‖ is the L∞ norm of δD(t), and O(‖δD(t)‖)
denotes its higher order functions that tend to zero faster than

‖δD(t)‖. We neglect this term in the right hand side of (22)

and substitute J∗(D(t)) =
∫

T
L∗dt, where the Lagrangian is

defined in (13):

4J∗ =

∫

T

(

∂C(G(t), Ġ(t))

∂D(t)
+ λ(t)− λ(t)1T ∂G(t)

∂D(t)
+

(ν(t)−ν(t))T
∂G(t)

∂D(t)
+(µ(t)−µ(t))T

∂Ġ(t)

∂D(t)

)

δD(t)dt. (23)

Applying the total derivative to the first term of (23) and

rearranging the terms, we have:

4J∗=

∫

T

([

∂C(G(t), Ġ(t))

∂G(t)
−λ(t)1+ν(t)−ν(t)

]T
∂G(t)

∂D(t)

+

[

∂C(G(t), Ġ(t))

∂Ġ(t)
+ µ(t)− µ(t)

]T
∂Ġ(t)

∂D(t)
+ λ(t)

)

δD(t)dt.

(24)
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The incremental load trajectory δD(t) takes positive values in

(τ, τ + δt) and equals zero in [0, τ ]∪ [τ + δt, T ]. Thus, δD(t)
uniformly tends to ‖δD(t)‖ in (τ, τ + δt) when ‖δD(t)‖ is

sufficiently small. Using the integration by parts, changing the

limits of the integral, and taking ‖δD(t)‖ out of the integral,

(24) is rewritten as:

4J∗=‖δD(t)‖

∫ τ+δt

τ

(

λ(t)+

[

∂C(G(t), Ġ(t))

∂G(t)
−λ(t)1+ν(t)

−ν(t)−
d

dt

(

∂C(G(t), Ġ(t))

∂Ġ(t)
+ µ(t)− µ(t)

)]T
∂G(t)

∂D(t)

)

dt

+

(

∂C(G(t), Ġ(t))

∂Ġ(t)
+µ(t)−µ(t)

)T
∂G(t)

∂D(t)

∣

∣

∣

t=τ+δt

t=τ
‖δD(t)‖.

(25)

The second term in the right hand side integral of (25) repeats

the Euler-Lagrange equation (16) and thus is zero. The last

term also becomes zero when ‖δD(t)‖ tends to zero. Thus,

(25) becomes:

4J∗ = ‖δD(t)‖

∫ τ+δt

τ

λ(t)dt = λ(τ)‖δD(t)‖δt. (26)

Dividing (26) by the product of ‖δD(t)‖ and δt and taking

the limits we reach the theorem result and conclude our proof:

lim
δt→0

‖δD(t)‖→0

4J∗

‖δD(t)‖δt
= lim

δt→0

δJ∗

δt
= λ(τ), (27)

where δJ∗ is the first variation of the optimal objective

functional with respect to the incremental variation in load:

δJ∗ = lim
‖δD(t)‖→0

4J∗

‖δD(t)‖
. (28)

The continuous-time marginal electricity price λ(t) defined

in Theorem III.1, in dollar per MW in unit of time, represents

the cost of supplying the incremental load variation at time t.

A. Calculation of Continuous-time Marginal Electricity Price

As shown for the hypothetical generation and ramping

trajectories in Fig. 1, at every time instant t ∈ T , units

supplying the load may belong to one of the groups below:

– Unconstrained Units: the units that their capacity and

ramping constraints are not binding and thus can flexibly

change their generation and ramping (e.g., time periods 1,

3, 5, 7 in Fig. 1). According to the complimentarity slack-

ness conditions (18)-(21), the multipliers νk(t), νk(t),
µ
k
(t) and µk(t) are zero for the unconstrained units. We

show these units by the time-varying set Ku
t ≡ Ku(t).

– Ramp-constrained Units: the units with binding down/up

ramping constraints (11) that can change their generation

with the constant limited down/up ramp rate (e.g., time

periods 4, 8 in Fig. 1). According to the complimentarity

slackness conditions (20)-(21), the multipliers µ
k
(t) or

µk(t) are non-negative numbers for these units. We show

these units by the time-varying set Kr
t ≡ Kr(t).

– Capacity-constrained Units: the units with binding max-

imum/minimum capacity constraints (10) that cannot

t

)(tG
k

1

t

( )
k
G t

2 3 4 5 6 7 8

k
G

k
G

k
G

k
G

Fig. 1. Operating states of generating units

increase/decrease their generation (e.g., time periods 2,

6 in Fig. 1). According to the complimentarity slackness

conditions (18)-(19), the multipliers νk(t) or νk(t) are

non-negative numbers for these units. We show these

units by time-varying set Kc
t ≡ Kc(t).

We aim to derive the value of λ(t) from (23). The incremen-

tal load variation δD(t) at time t ∈ T is compensated flexibly

by the unconstrained units, and by the ramp-constrained units

with a constant rate. Capacity-constrained generating units,

however, cannot contribute to compensate the incremental load

variation, meaning that
∂G(t)
∂D(t) is zero for these units. Further,

the Lagrange multipliers νk(t) and νk(t) are equal to zero

for the unconstrained and ramp-constrained units. Thus, the

term (ν(t)− ν(t))
T ∂G(t)

∂D(t) in (23) is uniformly equal to zero

over T . With similar reasoning, the term
(

µ(t)− µ(t)
)T ∂Ġ(t)

∂D(t)
in (23) would be equal to zero over T . Besides, power

balance constraint (9) requires that 1
T ∂G(t)

∂D(t) be equal to 1

in (23). Exerting these substitutions in (23), we follow similar

technique used in the proof of Theorem III.1 (i.e., changing

the integral limits, replacing δD(t) with ‖δD(t)‖, and taking

the limits where ‖δD(t)‖ and δt tend to zero), and derive the

closed-form value of λ(t) as:

λ(t) =

(

∂C(G(t), Ġ(t))

∂G(t)

)T

∂G(t)

∂D(t)

+

(

∂C(G(t), Ġ(t))

∂Ġ(t)

)T

∂Ġ(t)

∂D(t)
. (29)

Defining ICG
k (t) as the incremental generation cost rate and

ICĠ
k (t) as the incremental ramping cost rate of unit k:

ICG
k (t) ,

∂Ck(Gk(t), Ġk(t))

∂Gk(t)
, (30)

ICĠ
k (t) ,

∂Ck(Gk(t), Ġk(t))

∂Ġk(t)
, (31)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2016.2597288

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON POWER SYSTEMS 6

we can further expand (29), eliminate the zero terms, and

rearrange the remaining terms in summations as follows:

λ(t) =
∑

k∈(Ku

t
∪Kr

t
)

ICG
k (t)

∂Gk(t)

∂D(t)

+
∑

k∈Ku

t

ICĠ
k (t)

∂Ġk(t)

∂D(t)
, t ∈ T , (32)

where
∂Gk(t)
∂D(t) and

∂Ġk(t)
∂D(t) are respectively the generation and

ramping variations of unit k contributing towards balancing

the incremental load variation at time t. Similar to the current

definition of incremental generation cost rate, the incremental

ramping cost rate ICĠ
k (t) represents the cost of incremental

change in ramping of unit k at time t. Accordingly, the

continuous-time marginal electricity price λ(t) in (32) equals

to the weighted average of the incremental generation cost

rates of the unconstrained and the ramp-constrained units, plus

the weighted average of the incremental ramping cost rates of

the unconstrained units.

Corollary 1. In the presence of explicit terms in cost func-

tion for valuating the ramping of the generating units, the

continuous-time marginal electricity price is not only a func-

tion of the generation and the incremental generation cost

rate of the units, but also a function of the ramping and

the incremental ramping cost rate of the units. This result

emphasizes that if the continuous-time generation and ramping

trajectories of the units are explicitly modeled and valuated

in the economic operation planning of power systems, the

resulting Lagrange multiplier trajectory λ(t) of the variational

power balance constraint embeds the impact of ramping costs

in the continuous-time marginal price of electricity.

The corollary 1 of (32) presents a formal mathematical ap-

proach to factor the ramping costs and capability of generating

units in power systems operation. In addition, (32) presents a

mathematically proven approach to merit units based on their

ramping capability, and award those that are better able to

assist power systems in compensating the net-load ramping.

Corollary 2. In the presence of explicit ramping costs, (32)

defines a new criterion for the marginal generating unit in

power system operation, where units merit the others and

become marginal not only for their less incremental generation

cost rate, but also for their less incremental ramping cost

rate. Suppose there are two units with the same incremental

generation cost rate. The unit with less incremental ramping

cost rate would offer an overall less incremental cost, and

thus becomes marginal and sets a lower price for electricity

in (32). In addition, (32) mathematically explains the situation

when the unavailability of ramping capacity from the cheaper

units would increase the marginal electricity price.

Assuming that the cost function of units is merely a function

of their generation trajectory, the second term in (32) is zero

and the continuous-time marginal electricity price becomes:

λ(t) =
∑

k∈(Ku

t
∪Kr

t
)

ICG
k (t)

∂Gk(t)

∂D(t)
, ∀t ∈ T , (33)

which states that the marginal electricity price at the

continuous-time t equals to the weighted average of the

incremental generation cost rates of the unconstrained and

ramp-constrained generating units. While the current discrete-

time calculation of marginal prices using sequential solution of

single-period ED problems may fall short to discern the price

implications of inter-temporal ramping constraints as well as

the fast sub-hourly rampings of the net-load, the continuous-

time marginal electricity price λ(t) in (32) (and in (33)) would

accurately reflect the underlying ramping constraints that gov-

ern the operation of generating units. Thus, the continuous-

time marginal electricity price would provide a more accurate

price signal based on the actual continuous-time loading and

ramping condition of power systems.

Calculation of the continuous-time marginal electricity price

in (32) is an ex-post analysis to the continuous-time UC prob-

lem (5)-(7). We first solve the continuous-time UC using the

MILP formulation developed in [29]. We then fix the binary

variables to the optimal values I
∗(t), and solve the ensuing

LP formulation of the continuous-time ED (8)-(12) in the

function space of Bernstein polynomials. The optimal solution

of Bernstein coefficients would be utilized to reconstruct the

optimal generation and ramping trajectories G
∗(t) and Ġ

∗(t)
of the units, which then are plugged in to (32) in order to

calculate the continuous-time marginal electricity price.

B. Calculation of the Other Lagrange Multipliers

In addition to the Lagrange multiplier λ(t), we can also

calculate the Lagrange multipliers associated with the binding

ramping or capacity constraints of the units.

1) Lagrange Multipliers of the Capacity Constraints:

Suppose that, at time t, generating unit k has reached one

of its minimum or maximum generation capacity limits. The

corresponding non-negative Lagrange multipliers νk(t) or

νk(t) of the binding capacity constraints can be calculated

using the Euler-Lagrange equation (16) as:

νk(t) = ICG
k (t)−

d

dt

(

ICĠ
k (t)

)

− λ(t), (34)

νk(t) = λ(t)− ICG
k (t) +

d

dt

(

ICĠ
k (t)

)

, (35)

where λ(t) is calculated in (32). The multipliers νk(t) and

νk(t) are respectively the sensitivity of the optimal cost

functional J∗ to the incremental changes in the value of

minimum and maximum capacities of unit k at time t. In (34),

the positivity of νk(t) implies that when the unit is scheduled

at minimum capacity at time t, its incremental generation cost

rate minus the time derivative of its incremental ramping cost

rate is more than the marginal price at that time. In addition,

the positivity of νk(t) in (34) implies that the incremental gen-

eration cost rate of the unit generating at maximum capacity

minus the time derivative of its incremental ramping cost rate

is less than the marginal price at that time.

2) Lagrange Multipliers of the Ramping Constraints:

Suppose that generation unit k reaches one of its down or

up ramping limits at time tr, but not any of the capacity

constraints. This case represents the situation that leads to

higher electricity prices, when a cheaper unit still has enough
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generation capacity, but not enough ramping capability to

provide the ramping requirement of net-load. In this case,

the continuous-time ED problem would schedule additional

unit(s) to cater for the ramping requirement of the system, and

thus the marginal price would be set by the more expensive

unit. From the generating units point of view, the implication

is that owning cheaper generation capacity does not ensure

to stay competitive in the electricity market, and the units

may lose the opportunity to generate because they do not

offer competitive ramping capability in the market. This would

provide a natural competency for the generating units (and

possibly storage devices) with higher ramping capability.

The corresponding non-negative Lagrange multipliers µ
k
(t)

or µk(t) of the binding ramping constraints can be calculated

using the Euler-Lagrange equation (16) for t ≥ tr:

µ
k
(t) = ICĠ

k (t)−

∫ t

tr

(

ICG
k (t)− λ(t)

)

dt, (36)

µk(t) =

∫ t

tr

(

ICG
k (t)− λ(t)

)

dt− ICĠ
k (t), (37)

where λ(t) is calculated in (32). The multipliers µ
k
(t) and

µk(t) are respectively the sensitivity of the optimal cost

functional J∗ to the incremental changes in the value of the

down/up ramping limits of unit k at time t.

Note that the case of both generation capacity and ramping

constraints being binding only happens in single instants of

time, i.e., when a generation trajectory ramps up from its

minimum generation with its maximum ramping up capability,

or when a generation unit ramps down from its maximum

generation with its maximum ramping down capability.

IV. NUMERICAL RESULTS

The generating units of the IEEE Reliability Test System

(RTS) [35] are used to implement the proposed continuous-

time pricing model and compare it to the discrete-time ap-

proach. The continuous-time load is constructed using the five-

minute net-load forecast data of CAISO for Jan. 4, 2016 [36],

which is scaled down for the IEEE-RTS peak load of 2850

MW. The value of continuous-time load at mid-point of each

hour is used as the hourly load in the traditional hourly UC

models. Likewise, the value of continuous-time load at mid-

point of each half-hourly interval is considered as the half-

hourly load. As seen in Fig. 2, the hourly and half-hourly

approximations of the load miss the sub-hourly load variations

and rampings. Three cases are studied below.
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Fig. 2. Continuous-time, hourly, and half-hourly load curves

Case 1: In Case 1, we compare the results of continuous-

time scheduling and pricing of electricity, with those of the

traditional hourly and half-hourly approaches. The ramping

costs of the cost functions are assumed to be zero in this case.

We first run the continuous-time, hourly and half-hourly UC

models to determine the optimal schedule and commitment

status of the units. The total operation costs for the three mod-

els are respectively $478, 071, $476, 902 and $476, 895. The

continuous-time UC dispatches more energy than the other

models conveying the highest operation cost. Even though

the half-hourly UC dispatches more energy compared to the

hourly counterpart, additional commitment variables of the

half-hourly model provide higher flexibility to reduce the fixed

operation costs through half-hourly startup and shutdowns.

Therefore the operation costs are almost the same for the

hourly and half-hourly models.

In order to calculate the continuous-time marginal price, we

fix the binary variables in the continuous-time UC model to

their optimum values, solve the ensuing continuous-time ED

problem, and calculate the continuous-time price using (33). In

addition, we fix the binary variables to their optimum values in

the hourly and half-hourly UC models, and sequentially solve

24 and 48 single-period ED problems, where the Lagrange

multipliers of the power balance constraints form the discrete-

time marginal prices. The continuous-time and discrete-time

(hourly and half-hourly) marginal prices are compared in Fig.

3. As expected, the price curves in Fig. 3 follow the shapes of

load curves in Fig. 2. While the hourly and half-hourly prices

provide a single price for each time interval, the continuous-

time price changes constantly over time reflecting the time-

varying load and generation schedule. The continuous-time

UC model commits an additional 12 MW unit at hour 3,

which is used to supply the sub-hourly load not captured by

the hourly and half-hourly models. This results in a minor peak

in the continuous-time price at the time which is not captured

by the other two price curves in Fig. 3.
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Fig. 3. Marginal electricity prices: Case 1

Case 2: In Case 2, we study the impacts of ramping scarcity

on the marginal prices of electricity. For this reason, we reduce

the ramping limits of the units by a factor of 2.5, rerun

the models and recalculate the continuous-time and discrete-

time prices. The operation costs are increased in this case

by $1, 084, $420, and $473 respectively for the continuous-

time, hourly and half-hourly UC models, as compared to Case

1. In this case, the continuous-time UC commits additional

fast-ramping yet more expensive 20MW units to supply the
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ramping requirement of the load at hour 3 that stems from

sensitivity of the model to the units’ tight ramping constraints.

Thus, Fig. 4 shows an spike in the continuous-time marginal

price trajectory, which is due to the utilization of more

expensive units. Finite difference ramping model in the hourly

and half-hourly UC, however, is unable to fully recognize the

unavailability of adequate ramping resources, and schedules

the same generation fleet as in Case 1. While the half-hourly

model is more discerning to ramping limitation and schedules

the fast-ramping 100MW units half hour more than Case

1 to supply the load ramping when it sharply descends at

hour 6, the hourly model merely modifies generation of the

units without altering their commitment. Despite the minimal

changes in the generation schedules, the hourly and half-hourly

marginal prices in Fig. 4 are the same as the prices in Case

1, turning a blind eye to the ramping limitations.
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Fig. 4. Marginal electricity prices: Case 2

Case 3: In Case 3, we examine the behavior of the

continuous-time marginal price in the presence of explicit

ramping costs in the objective function, while the ramping

limitations are the same as Case 1. The 197 MW, 100 MW,

and 20 MW units offer ramping costs in their cost functions

and the remaining units provide ramping with zero cost. The

ramping cost coefficients are assumed to be five percent of the

corresponding generation cost coefficients. The total operation

cost in this case is higher than Case 1 by $2, 689, which is

due to the additional cost of ramping procurement from the

units. The continuous-time marginal price trajectory of Case

3 is decomposed in Fig. 5 to its components as in (32). The

second component of the marginal price, which reflects the

cost of ramping, is non-zero during hours 1-7 and 15-24 due

to the deployment of 197 MW and 100 MW units.
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Fig. 5. Continuous-time marginal electricity price: Case 3

V. CONCLUSIONS

This paper presents the mathematical foundation and defines

the theory of continuous-time marginal pricing of electricity in

day-ahead markets. Using the necessary optimality conditions

of the underlying variational problem, we prove that the

Lagrange multiplier associated with the variational power

balance constraint, in the solution of the continuous-time

UC problem where the commitment variables are fixed to

their optimal values, presents the continuous-time marginal

electricity price. We proved that the continuous-time marginal

price is a function of both the incremental generation cost rate

and the incremental ramping cost rate of the units contributing

towards supplying the incremental load at every instant of

time. While the current discrete-time calculation of marginal

prices using sequential solution of single-period ED problems

may fall short to discern the price implications of inter-

temporal ramping constraints as well as the fast sub-hourly

rampings of the net-load, the continuous-time marginal elec-

tricity price would accurately reflect the underlying ramping

constraints that govern the operation of generating units.

The numerical results demonstrate that the continuous-time

marginal electricity price provides a more accurate price signal

reflecting the time-varying loading condition and generation

schedules. Although the half-hourly model outperforms the

hourly model in the simulation results, it still falls short

in reflecting the continuous-time variations of load and the

corresponding generation schedules in the marginal prices.

In this paper, we put forth the theory of continuous-time

marginal pricing in day-ahead markets, however, design of the

market rules, bidding structure, settlement process, and esti-

mating the incremental ramping cost rates of generating units

are open research questions to be addressed in future works.

In addition, the proposed continuous-time marginal price may

not necessarily minimize the uplift payments associated with

the non-convexities in the UC problem. More research may

be required to enhance the continuous-time pricing model that

not only accurately embeds the continuous-time variations of

loads, but also minimizes the possible uplift payments.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their constructive comments and suggestions, which im-

proved the clarity of the paper. The authors would like to also

thank Dr. Jinye Zhao of ISO-NE who provided information

about the day-ahead pricing practices in electricity markets.

APPENDIX A

NECESSARY OPTIMALITY CONDITIONS FOR

CONSTRAINED VARIATIONAL PROBLEMS

Suppose that we are interested in finding the optimal

values of C1 (continuously differentiable) decision variable

trajectories x(t) = (x1(t), . . . , xK(t))T that minimize a C1

(continuously differentiable) function F (x(t), ẋ(t)) over a

time horizon T =[0, T ], subject to the applicable constraints.

This optimization problem can be formulated as a constrained

variational problem as follows:

min
x(t)

J(x(t))=

∫

T

F (x(t), ẋ(t))dt (38)

s.t. f(x(t), ẋ(t)) = 0, ∀t ∈ T (λ(t)) (39)

h(x(t), ẋ(t)) ≤ 0, ∀t ∈ T (ν(t)) (40)

x(0) = a, x(T ) = b, (41)
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where J(x(t)) is the objective functional, and f and h are C1

functions respectively representing the vectors of variational

(pointwise) equality and inequality constraints; a and b are

the vectors of constant boundary values of the trajectories;

λ(t) and ν(t) are the vectors of piecewise-continuous La-

grange multiplier trajectories associated with the equality and

inequality constraints. The optimal values of the trajectories

that minimize J(x(t)) is shown by x
∗(t), and belong to the set

of admissible functions X that satisfy the problem constraints

in (39)-(41). In the following we first derive the necessary

optimality conditions for the problem with variational equality

constraints. We then approach the problem with variational

inequality constraints.
1) Variational problems with equality constraints: Assume

that the objective functional (38) is only constrained to the

variational equality constraints (39). Let us augment the ob-

jective functional (38) as:

min
x(t)

J(x(t)) =

∫

T

L(x(t), ẋ(t),λ(t))dt, (42)

where the Lagrangian function is defined as:

L(x(t), ẋ(t),λ(t)) = F (x(t), ẋ(t))

+ λT (t)f(x(t), ẋ(t)). (43)

The necessary optimality conditions for the equality-

constrained variational problem that minimizes J(x(t)) sub-

ject to (39) would be equivalent to those for the unconstrained

variational problem (42) [37]. The necessary optimality condi-

tions for the problem (42) are provided in Theorem A.1 [37].

Theorem A.1. Suppose that F (x(t), ẋ(t)) and f(x(t), ẋ(t))
are C1 functions. A necessary condition for x

∗(t) ∈ X
to minimize the objective functional (42) is that x

∗(t) is a

solution to the differential equations:

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)
= 0, (44)

that is called Euler-Lagrange equations.

Proof. The Euler-Lagrange equation is a result of the first

order optimality condition of variational problems, which

states that the first variation of the augmented objective

functional, δJ∗(x(t)), should be zero at the optimal value

of the trajectories [37]. Let x(t) be an admissible function,

and δx(t), called variation of x(t), is an infinitesimally small

deviation from x(t), i.e., ‖δx(t)‖�‖x(t)‖. We first calculate

the variation of J∗(x(t)) with respect to δx(t) as:

∆J∗(x(t)) = J∗(x(t) + δx(t))− J∗(x(t))

=

∫

T

L
(

(x(t) + δx(t)), (ẋ(t) + δẋ(t)),λ(t)
)

dt

−

∫

T

L(x(t), ẋ(t),λ(t))dt. (45)

Let us recast (45) in the following by linearizing L
(

(x(t)+
δx(t)), (ẋ(t)+δẋ(t)),λ(t)

)

using the first-order Taylor expan-

sion:

∆J∗(x(t)) =

∫

T

(

(

∂L

∂x(t)

)T

δx(t) +

(

∂L

∂ẋ(t)

)T

δẋ(t)

)

dt.

(46)

Using integration by parts, the second term in the right hand

side integral of (46) turns into:

∫

T

(

∂L

∂ẋ(t)

)T

δẋ(t)dt =−

∫

T

(

d

dt

∂L

∂ẋ(t)

)T

δx(t)dt

+

(

∂L

∂ẋ(t)

)T

δx(t)
∣

∣

∣

t=T

t=0
. (47)

Since the boundary values are constant, the second term in

the right hand side of (47) equals to zero, for the variations

δx(t)|t=0 and δx(t)|t=T are zero. Substituting (47) in (46):

∆J(x(t)) =

∫

T

(

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)

)T

δx(t)dt. (48)

Using (48), we force the first variation of the objective func-

tional, δJ∗(x(t)), to be equal to zero at the optimal solution:

δJ∗(x(t)) = lim
‖δx(t)‖→0

4J∗

‖δx(t)‖

= lim
‖δx(t)‖→0

∫

T

(

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)

)T
δx(t)

‖δx(t)‖
dt = 0. (49)

Since δx(t) is chosen arbitrarily, the differential equation in

the integral (48) should vanish to zero:

∂L

∂x(t)
−

d

dt

∂L

∂ẋ(t)
= 0. (50)

This concludes our proof.

Remark: Suppose the boundary values x(T ) are not spec-

ified and the trajectories are free at the end of the horizon.

In this case, the second term in the right hand side of (47) is

not equal to zero anymore, and, in addition to Euler-Lagrange

equation, the optimal trajectories x
∗(t) should also satisfy the

following equation that is called transversality condition:

∂L

∂ẋ(t)

∣

∣

∣

t=T
= 0. (51)

2) Variational problems with equality and inequality con-

straints: Let us assume that, in addition to the equality

constraints, the objective functional (38) is also constrained

to the inequality constraints (40). In this case, we define the

Lagrangian function as follows:

L
(

x(t), ẋ(t),λ(t),ν(t),ν(t),µ(t),µ(t)
)

=F (x(t), ẋ(t))

+ λT (t)f(x(t), ẋ(t)) + νT (t)h(x(t), ẋ). (52)

In addition to the Euler-Lagrange equations (44) and the

transversality conditions (51), the variational problems with

inequality constraints should satisfy additional necessary con-

ditions. The fundamental concept here is that the inequality

constraints only restrict the domain of feasibility in the set of

admissible functions X when they are binding. The binding

inequality constraint h(x(t), ẋ(t)) ≤ 0 act like the equality

constraints h(x(t), ẋ(t)) = 0, except that their Lagrange

multipliers are non-negative. This is stated in the following

equations that is know as complimentarity slackness condition:

ν(t)h(x(t), ẋ(t)) = 0, ν(t) ≥ 0. (53)

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2016.2597288

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



IEEE TRANSACTIONS ON POWER SYSTEMS 10

REFERENCES

[1] M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric

Power Systems: Forecasting, Scheduling, and Risk Management. John
Wiley and Sons, 2002.

[2] S. Stoft, Power System Economics: Designing Markets for Electricity.
John Wiley and Sons, 2002.

[3] D. Kirschen and G. Strbac, Fundamentals of Power System Economics.
John Wiley and Sons, 2004.

[4] F. Scwheppe, M. Caraminis, R. Tabors, and R. Bohn, Spot pricing of

electricity. Kluwer Academic Publishers, Norwell, MA, 1988.

[5] M. L. Baughman and S. N. Siddiqi, “Real-time pricing of reactive power:
theory and case study results,” IEEE Trans. Power Systems, vol. 6, no. 1,
pp. 23–29, 1991.

[6] T. W. Gedra and P. P. Varaiya, “Markets and pricing for interruptible
electric power,” IEEE Trans. Power Systems, vol. 8, no. 1, pp. 122–128,
1993.

[7] M. C. Caraminis, R. E. Bohn, and F. C. Schweppe, “System security
control and optimal pricing of electricity,” International Journal of

Electrical Power & Energy Systems, vol. 9, no. 4, pp. 217–224, 1987.

[8] R. J. Kaye, F. F. Wu, and P. Varaiya, “Pricing for system security,” IEEE

Trans. Power Systems, vol. 10, no. 2, pp. 575–583, 1995.

[9] Z. Li and M. Shahidehpour, “Security-constrained unit commitment for
simultaneous clearing of energy and ancillary services markets,” IEEE

Trans. Power Systems, vol. 20, no. 2, pp. 1079–1088, 2005.

[10] J. M. Arroyo and F. D. Galiana, “Energy and reserve pricing in secu-
rity and network-constrained electricity markets,” IEEE Trans. Power

Systems, vol. 20, no. 2, pp. 634–643, 2005.

[11] T. Alvey, D. Goodwin, B. Ma, D. Streiffert, and D. Sun, “A security-
constrained bid-clearing system for the new zealand wholesale electricity
market,” IEEE Trans. Power Systems, vol. 13, no. 2, pp. 340–346, 1998.

[12] K. W. Cheung, P. Shamsollahi, D. Sun, J. Milligan, and M. Potishnak,
“Energy and ancillary service dispatch for the interim iso new england
electricity market,” in Proc. 1999 IEEE Power Industry Computer

Applications. IEEE, 1999, pp. 47–53.

[13] F. Bouffard, F. D. Galiana, and A. J. Conejo, “Market-clearing with
stochastic security-part i: formulation,” IEEE Trans. Power Systems,
vol. 20, no. 4, pp. 1818–1826, 2005.

[14] F. D. Galiana, F. Bouffard, J. M. Arroyo, and J. F. Restrepo, “Scheduling
and pricing of coupled energy and primary, secondary, and tertiary
reserves,” Proceedings of the IEEE, vol. 93, no. 11, pp. 1970–1983,
2005.

[15] “Uplift in rto and iso markets,” Federal Energy Regulatory Commission,
2014.

[16] E. Litvinov, “Design and operation of the locational marginal prices-
based electricity markets,” IET Generation, Transmission & Distribution,
vol. 4, no. 2, pp. 315–323, 2010.

[17] R. P. O’Neill, P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf, and
W. R. Stewart, “Efficient market-clearing prices in markets with non-
convexities,” European journal of operational research, vol. 164, no. 1,
pp. 269–285, 2005.

[18] P. R. Gribik, W. W. Hogan, and S. L. Pope, “Market-clearing electricity
prices and energy uplift,” 2007.

[19] “Extended locational marginal pricing.” [Online]. Avail-
able: https://www.misoenergy.org/Library/Repository/Communication%
20Material/Strategic%20Initiatives/ELMP%20FAQs.pdf

[20] C. Wang, P. B. Luh, P. Gribik, T. Peng, and L. Zhang, “Commitment
cost allocation of fast-start units for approximate extended locational
marginal prices,” IEEE Trans. Power Systems, 2016.

[21] C. Ruiz, A. J. Conejo, and S. A. Gabriel, “Pricing non-convexities in
an electricity pool,” IEEE Trans. Power Systems, vol. 27, no. 3, pp.
1334–1342, 2012.

[22] G. Wang, U. V. Shanbhag, T. Zheng, E. Litvinov, and S. Meyn, “An
extreme-point subdifferential method for convex hull pricing in energy
and reserve marketspart i: Algorithm structure,” IEEE Trans. Power

Systems, vol. 28, no. 3, pp. 2111–2120, 2013.

[23] D. A. Schiro, T. Zheng, F. Zhao, and E. Litvinov, “Convex hull
pricing in electricity markets: Formulation, analysis, and implementation
challenges,” IEEE Trans. Power Systems, 2015.

[24] N. Navid and G. Rosenwald, “Market solutions for managing ramp
flexibility with high penetration of renewable resource,” IEEE Trans.

Sustainable Energy, vol. 3, no. 4, pp. 784–790, 2012.

[25] L. Xu and D. Tretheway, “Flexible ramping products: Incorporating fmm
and eim,” 2014, cAISO.

[26] M. R. Milligan, E. Ela, D. Lew, D. Corbus, and Y.-h. Wan, Advancing

wind integration study methodologies: implications of higher levels of

wind. National Renewable Energy Laboratory, 2010.

[27] “Integration of variable energy resources,” 2012, federal Energy Regu-
latory Commission, Order No. 764.

[28] N. Navid and G. Rosenwald, “Ramp capability product design for miso
markets,” MISO Market Development and Analysis, 2013.

[29] M. Parvania and A. Scaglione, “Unit commitment with continuous-time
generation and ramping trajectory models,” IEEE Trans. Power Systems,
vol. 31, no. 4, pp. 3169–3178, 2016.

[30] M. Carrión and J. M. Arroyo, “A computationally efficient mixed-integer
linear formulation for the thermal unit commitment problem,” IEEE

Trans. Power Systems, vol. 21, no. 3, pp. 1371–1378, 2006.
[31] M. Parvania and A. Scaglione, “Generation ramping valuation in day-

ahead electricity markets,” in Proc. 49th Hawaii International Confer-

ence on System Sciences (HICSS), Kauai, HI, 2016, pp. 2335–2344.
[32] S. Lefton and P. Besuner, “Power plant cycling operations and un-

bundling their effect on plant heat rate,” APTECH Technical Paper

TP134-Available: http://www. aptecheng. com, 2001.
[33] S. A. Lefton and P. Besuner, “The cost of cycling coal fired power

plants,” Coal Power Magazine, vol. 2006, pp. 16–20, 2006.
[34] N. Kumar, P. Besuner, S. Lefton, D. Agan, and D. Hilleman, “Power

plant cycling costs,” NREL technical report, 2012.
[35] R. T. S. T. Force, “The ieee reliability test system-1996,” IEEE Trans.

Power Systems, vol. 14, no. 3, pp. 1010–1020, 1999.
[36] California ISO Operan Access Same-Time Information System, Jan.

2016. [Online]. Available: http://oasis.caiso.com
[37] K. W. Cassel, Variational Methods with Applications in Science and

Engineering. Cambridge University Press, 2013.

Masood Parvania (M’ 2014) is an Assistant Professor and the director of
the U-Smart lab at the Department of Electrical and Computer Engineering
at the University of Utah. He is the Chair of IEEE Power and Energy
Society (PES) Utah Chapter, Chair of the IEEE PES Task Force on Reliability
Impacts of Demand Response Integration, and the Secretary of the IEEE
PES Reliability, Risk and Probability Application (RRPA) Subcommittee. His
research interests include the operation and planning of power and energy
systems, modeling and integration of distributed energy resources, as well as
sustainable renewable energy integration.

Roohallah Khatami (S’ 2015) received the B.S. degree from Iran University
of Science and Technology, Tehran, Iran, in 2007, and the M.S. degree from
Amirkabir University of Technology, Tehran, Iran, in 2013, both in electrical
engineering. He is currently working towards PhD degree at the University of
Utah. His research interests include power systems operation and electricity
markets.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.

The final version of record is available at  http://dx.doi.org/10.1109/TPWRS.2016.2597288

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.


