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Abstract—The current practice of discrete-time electricity
pricing starts to fall short in providing an accurate economic
signal reflecting the continuous-time variations of load and
generation schedule in power systems. This paper introduces the
fundamental mathematical theory of continuous-time marginal
electricity pricing. We first formulate the continuous-time unit
commitment (UC) problem as a constrained variational problem,
and subsequently define the continuous-time economic dispatch
(ED) problem where the binary commitment variables are fixed
to their optimal values. We then prove that the continuous-time
marginal electricity price equals to the Lagrange multiplier of
the variational power balance constraint in the continuous-time
ED problem. The proposed continuous-time marginal price is not
only dependent to the incremental generation cost rate, but also
to the incremental ramping cost rate of the units, thus embedding
the ramping costs in calculation of the marginal electricity
price. The numerical results demonstrate that the continuous-
time marginal price manifests the behavior of the constantly
varying load and generation schedule in power systems.

Index Terms—Continuous-time marginal electricity price, gen-
eration trajectory, ramping trajectory, variational problem.

I. INTRODUCTION

HE fundamental operation goal of a functional power

system is to balance the generation resources and load in
continuous time, respecting the physical characteristics and
limitations of the system. In a market-based framework to
operate power systems, the balancing task is performed in
multiple forward and real-time markets, where energy and
various ancillary service products are traded to ensure the
security of operation. Different pricing schemes are utilized
to price the electricity energy and the ancillary services at
different time scales [1]-[3].

Among the early works on electricity pricing, the seminal
work of Schweppe and colleagues [4], which provides the
fundamentals for spot pricing of electricity, has been the source
of inspiration for a plethora of succeeding works. In [4],
the electricity price is defined in an hourly basis using the
Lagrange multipliers of the hourly power balance constraints.
When the transmission grid is considered, the Lagrange mul-
tipliers associated with the nodal power balance constraints
define the locational marginal prices for electricity [1]. In [5],
in conjunction with active power pricing, the reactive power
is also priced using an optimal power flow model. In [6], a
market is proposed for callable forward contracts treated as
derivative commodities and the associated pricing method is
discussed. In addition to the electricity energy, maintaining
the security of power system operation requires fair and
transparent schemes for procuring and pricing the ancillary
services [7]-[10]. In the early work of [7], an iterative method
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is used to calculate the marginal up spinning reserve cost with
regard to the line flow constraints. In [8], the authors argue
that a socially optimal security level is obtainable through
pricing incentives and providing information on the services
requirements. The importance of security pricing was soon
realized by newly established markets, including New Zealand
and US New England markets [11], [12]. Development of the
efficient solution methods for stochastic optimization models
paved the way to factor the stochastic nature of security pricing
in more recent works [13], [14].

Electricity prices should ideally reflect the true marginal
cost of generation, taking into account all physical system
constraints, and fully compensate all resources for the costs
of supplying electricity [15]. However, due to the approxi-
mate modeling of power system constraints such as ramping
process, as well as the non-convex startup/shutdown costs
and the minimum generation constraints in unit commitment
(UC) problem, the prices may not support the equilibrium
solution of the market. This may result in inability of markets
to cover the operating costs of some resources, where uplift
payments are paid by system operators to make the resources
financially whole and maintain the functionality of markets
[15], [16]. Several methods are proposed in technical liter-
ature that account for non-convexities in deriving marginal
prices. O’Neil et al. proposed that the non-convexities can be
considered as separate commodities in markets and developed
a method to calculate marginal prices as well as the uplift
payments to the resources [17]. A convex hull pricing model
is presented in [18] in which the prices minimize the uplift
payments in markets. Midcontinent ISO (MISO) has recently
embedded this method in its extended locational marginal
pricing process [19], [20]. Recent developments include a
non-convexity pricing method that guarantees non-negative
revenues for generating units [21], as well as an alternative
convex hull pricing scheme for energy and reserve markets
using extreme-point subdifferential [22]. A detailed analysis
of properties and implementation challenges of convex hull
pricing is presented in [23].

Although substantial research efforts are devoted to ad-
dress pricing issues in markets and deliver a consistent and
transparent price signal to the participants, less attention has
been given to account for inter-temporal ramping constraints in
scheduling and pricing of electricity in markets. The increased
sub-hourly variations of net-load due to the large-scale renew-
able integration questions the adequacy of current discrete-
time scheduling and pricing methods, which does not flexibly
schedule the generation fleet to ramp in sub-hourly intervals.
This may leave the system with sufficient capacity but without
ramping capability to respond to fast sub-hourly variations of
load that may lead to ramping scarcity events [24], [25], with
obviously undesirable economic and security consequences
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[26]. In this regard, Federal Energy Regulatory Commission
(FERC) issued the order 764 and amended the pro forma
Open Access Transmission Tariff in order to require the public
utilities to provide sub-hourly (15-minute) schedules for the
transmission customers to reflect changes in the renewable
generation output [27]. In response, the independent system
operators are changing their market rules to integrate the sub-
hourly scheduling in the market clearing practices. In addition,
the MISO and the California ISO (CAISO) are integrating
new ramping services in their markets to address the ramping
challenge, and avoid the ramping scarcity events [25], [28].

In fact, the ramping scarcity events and the associated
price spikes are evidence of a severe bottleneck that lies
in the current ramping model as the finite difference of
discrete-time power samples, which poorly models the actual
continuous-time ramping process of units and hardly captures
the impact of load ramping on the generation schedules and
electricity prices. Although using smaller time steps may
reduce the approximation error, the inherent ambiguity in
ramping definition still remains an issue with the discrete-time
scheduling and pricing models. To address this problem, we
proposed a continuous-time UC model in [29] that schedules
the continuous-time generation and ramping trajectories of
generating units to supply the continuous-time variations of
load. In [29], spline function space of Bernstein polynomials
are utilized to model the continuous-time trajectories and
recast the continuous-time problem into a mixed-integer linear
programming problem with finite-dimensional decision space.

In this paper, we base the mathematical foundation and
define the theory of continuous-time marginal pricing of
electricity in day-ahead markets. In Section II, we revisit the
current discrete-time UC model and present the formulation
of continuous-time UC problem as a constrained variational
problem, where the ramping process of generating units is
modeled by continuous-time ramping trajectory. We define the
continuous-time economic dispatch (ED) problem by fixing
the binary commitment variables to their optimal values in
the UC problem. We then present the necessary and sufficient
optimality conditions of the continuous-time ED problem,
and prove in Section III that the continuous-time marginal
electricity price is defined as the Lagrange multiplier of the
continuous-time power balance constraint of the proposed ED
formulation. We define the incremental ramping cost rate
of generating units as the cost of incremental change in
their ramping, and prove that the continuous-time marginal
electricity price is not only a function of the incremental
generation cost rate, but also of the incremental ramping cost
rate of the units. The numerical results are presented in Section
1V, and conclusions are drawn in Section V.

II. CONTINUOUS-TIME DAY-AHEAD SCHEDULING

The goal of day-ahead power system operation is to sched-
ule the most economical set of generating units to supply the
net-load over the day-ahead scheduling horizon 7 =10, T]. The
traditional scheduling practice subdivides 7 to N intervals
Tn=[tn,tns1), T:Uﬁ[:_olﬁl of the same length At=t, 11 —
tn, e.g., hourly, where o = 0, ;v = T'. The resulting discrete-
time generation schedules G(t,) = (G1(tn),. .., Gk (tn))T
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and commitment statuses I(t,) = (I1(tn), ..., Ix(t,))T are
optimized to supply the discrete-time load samples D(t,) at
minimum cost, forming the discrete-time UC problem below:

N-1

> (C(G(tn) + CT(I(tn))) At, (1)

n=0

min
G(tn), I(tn)

, (Atn)), Vn, (2)
(v(tn)), Vn, (3)

where C(G(t,)) = > Cu(Gr(tn)) represents sum of the
generation costs of the units in each interval n; C*(I(t,)) =
> CE(Ii(ty,)) represents sum of the startup, shutdown, and
fixed costs of the units; f(-) represents the discrete-time
power balance constraints; h(-) represents the set of prevailing
inequality constraints, including the generating units’ capacity
limits, ramping limits, startup and shutdown costs, and mini-
mum on/off time constraints; A(¢,,) and ~(¢,) are respectively
the Lagrange multipliers associated with the equality and
inequality constraints.

The most common day-ahead pricing practice includes solv-
ing the mixed-integer linear programming (MILP) UC problem
(1)-(3), fixing the binary commitment variables to their optimal
values and sequentially solving the ensuing N single-period
linear programming (LP) economic dispatch (ED) problems
[17]. The optimal Lagrange multipliers A(¢,) of the solution
of the ED problems present the day-ahead marginal prices
at discrete times t,. In addition, non-convexity prices are
determined using the Lagrange multipliers associated with
the equality constraints fixing the commitment variables [17].
Alternative methods include the convex hull pricing in which
the prices minimize the uplift payments in markets [20], [23]

A. Continuous-time UC model

The discrete-time UC problem (1)-(3) schedules for the
discrete-time samples of units’ generation, implying that units
shall follow piecewise constant generation trajectories from
one schedule to the next [30]. This follows that the units’
ramping is modeled as the finite difference between the
consecutive generation samples. Clearly, the discrete-time
generation schedules and the resulting rampings does not
appropriately utilize the flexibility of generating units to com-
pensate the faster variations of net-load that may lead to the
ramping scarcity events. In addition, we argue that calculating
marginal prices using the sequential solution of single-period
ED problems may not appropriately factor the impacts of
ramping constraints in day-ahead prices, and may result in
prices that does not reflect the true marginal generation cost.

As an alternative to the discrete-time modeling approach, let
us assume that the generating units are modeled by continuous-
time generation trajectories G(t) = (Gi(t),...,Gxk(t)T
and continuous-time binary commitment variables I(t) =
(I1(t),...,Ix(t))T, which are scheduled to balance the
continuous-time net-load trajectory D(¢) at minimum cost
[29]. In the continuous-time modeling approach, the finite
difference ramping model tends to derivative as the length of
time intervals At approaches to zero, and allows us to define
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the continuous-time ramping trajectory of unit k, Gy (t), as
the time derivative of its generation trajectory:

: s i Grltng1) — Gr(tn)  dGi(t)
Gi(t) = Jim At =—a - W
Defining the explicit continuous-time ramping trajectories
G(t) = (Gi(1), ..., GK(t))T, we can assume that in contrast
to the cost function Cj(G(t)) that is only a function of
generation trajectory, the units are allowed to submit a joint
generation and ramping cost function Cj(Gy(t), Gx(t)) in
dollar per unit of time, which is a function of both generation
and ramping trajectories [31]. Integration of an explicit ramp-
ing cost would allow the units to compensate the additional
wear and tear cost that they may incur due to more frequent
ramping [32]-[34]. In addition, continuous-time modeling of
G(t), G(t) and I(¢) allows us to formulate the continuous-
time UC problem as follows:
min

gmin [ (clew.cw) i) e ©

st. f(G(1),1(t)) =0, At), teT, (6
h(G(t),G(t),I(t)) <0, (v(), teT,

where C(G(t),G(t)):ZK Cr(Gr(t),Gr(t)), and A(t) and
~(t) are respectively the continuous-time Lagrange multiplier
trajectories associated with continuous-time equality and in-
equality constraints (6), (7). The ability to capture the ideal
flexibility of generating units through continuous-time UC
model (5)-(7) would allow us to flexibly schedule the units
to balance the continuous-time shape of net-load over 7.
However, the continuous-time UC model (5)-(7) is an infinite-
dimensional computationally-intractable variational problem.
In our previous work [29], we proposed a solution method for
the continuous-time UC problem (5)-(7) where spline function
space of Bernstein polynomials are utilized to model the
continuous-time trajectories and recast the variational problem
into a MILP problem with finite-dimensional decision space.
Coefficients of projecting the continuous-time trajectories in
the function space of Bernstein polynomials represent the
decision variables of the resulting MILP problem [29].

In this paper, we aim to develop the fundamental mathe-
matical theory to define the continuous-time marginal price
associated with the continuous-time UC model. Assume that
we obtain the optimal solutions G*(¢), G (t) and I* () of the
continuous-time UC using the function space method proposed
in [29]. We adapt the approach used in [17] and fix binary
variables in the continuous-time UC (5)-(7) to their optimal
values I"(¢), and define the continuous-time ED problem:

rél(ig J(G(t)):/Tc(G(t),c';(t))dt, (8)
st. 1TG(t) = D(¢), (A1), teT, 9)
G(t) < G(t) <G(t), (et),7(t), teT, (10)

G < G(1) < G),  (u),BW), teT, (D

G(0) = GY, 12)

where G(t) = (GiI{(t),...,Grli(t) and G(t) =
(GiI;(t),...,GkI K(t))T are respectively the constant
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continuous-time lower and upper capacity bounds, with G},
and G}, representing the minimum and maximum capac-
ities of unit k; G(t) = (Qllf(t), e ,QKI}{(t))T and
G(t) = (Gllf(t), ce GKI}(t))T are respectively the con-
stant continuous-time lower and upper ramping bounds, where
Qk and Gj, represent the minimum and maximum ramping
limits of unit k. Note that the cost term C(I*(¢)) in the UC
objective functional (5) becomes constant as we fix the integer
variables, and thus does not appear in the objective funcional
(8). In addition, the minimum on/off time constraints that
are purely dependent on the integer variables would become
redundant as we fix the integer variables, and thus are not
included in the continuous-time ED problem.

The optimization problem (8)-(12) is a constrained varia-
tional problem, where (8) represents the objective functional
to be minimized over 7. The continuous-time power balance
constraint is formulated in (9), and (10)-(11) confine the
generation and ramping trajectories between their minimum
and maximum limits over the scheduling horizon. The vector
of the generation trajectories at time zero, G(0), is set to the
vector of initial values, G°, in (12). The distinct feature of the
constraints (9)-(12) is that they are enforced in every instant of
time over the scheduling horizon 7 and are called variational
constraints. As a result, the associated Lagrange multipliers
A(t), v(t), U(t), pu(t) and @(t) are also continuous-time
trajectories defined over 7. Using the optimality conditions
of the continuous-time ED problem developed next, we will
prove in Section III that the Lagrange multiplier trajectory A(t)
defines the continuous-time marginal electricity price.

B. Derivation of Optimality Conditions

Here we intend to derive the necessary and sufficient
optimality conditions for the continuous-time ED problem (8)-
(12). The underlying assumptions for the derivations are: 1)
generation trajectories G(t) are assumed to be C! (continu-
ously differentiable) functions of ¢. The physical implication is
that the inertia of the rotating parts of generating units avert the
abrupt changes in generation. The proposed solution method
in [29] ensures C'! continuity of the continuous-time capacity
bounds G (t) and G(t) in (10), thus ensuring C'' continuity of
G(t) over T including startup and shutdown intervals; 2) cost
functions of generation units are independent of each other;
3) the cost functions are C'' and monotonically increasing
convex functions of their arguments; 4) the cost functions are
not explicit functions of ¢. We have derived the optimality
conditions of a generic constrained variational problem in
Appendix A. In the following, we present the optimality
conditions for the problem (8)-(12), and where required, we
refer to the corresponding derivation in the Appendix A.

Let us first form the Lagrangian associated with the varia-
tional problem in (8)-(12) as:

(13)
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The necessary optimality conditions of the continuous-time
ED problem (8)-(12) are derived below.

1) Euler-Lagrange Equations: As proved in Theorem A.1,
the optimal trajectories G*(¢) of the continuous-time ED
should solve the Euler-Lagrange equations (44). Let us cal-

culate two terms agﬁ(t) and % Bgft) for the Lagrangian (13):

oL AC(G(t),G(1)) B
aGH ~ acm | Wr-e@+wd), a9
d 9L _d [9C(GM).GM)) . =

dta(';(t)dt< aG (1) ) A(t) + A1) (15)

Using (14), (15), the Euler-Lagrange equations are derived as:

G (1) :

9C(G(t),G(t) d [9C(G(t),G(t))
dt OG(t)
— A1 — u(t) +T(t) + fult) — A(t) = 0.

(16)

The Euler-Lagrange equations represent the first-order nec-
essary condition for local optimum of the variational problems,
analogous to the condition that the partial derivatives are zero
at a local extreme point in static optimization. The Euler-
Lagrange equations (16) represent a set of K differential equa-
tions that is to be solved over the entire scheduling horizon
T in order to calculate the optimal generation trajectories and
the Lagrange multiplier trajectories. Solution of the K Euler-
Lagrange equations (16) would require 2K boundary values.
The first K boundary values are provided by the initial values
of generation trajectories in (12), and the second K boundary
values are set by the transversality conditions (17) below.

2) Transversality Conditions: In the power system oper-
ation problems, the generation trajectories are usually free-
ended; this means there is not any specific boundary value
condition for single units that needs to be met at the end of the
scheduling horizon. In this case, as mentioned in the Remark
in Appendix A.l), the optimal generation trajectories should
also satisfy the transversality conditions expressed as follows:

oL
OG(t) lt=T

=0. a7

3) Complimentarity Slackness Conditions: As discussed
in Appendix A.2), the inequality constraints (10) and (11)
and the associated Lagrange multipliers should satisfy the
complimentarity slackness conditions as follows:

v (0)(Gh(t) — Gr(t)) =0, v, (t) >0, Vk,VteT, (18)
(1) (Gr(t) — Gr(t)) =0, Tr(t) >0, Vk,VtT, (19)
1, (1) (Gi(t) = Ge(t)) =0, p, (t) >0, VEVEET, (20)
T (D) (Gi(t) — Gr(t)) =0, T(t) 20, VEVteT. Q1)

The complimentarity slackness conditions ensure that the
Lagrange multiplier associated with an inequality constraint is
either zero when the constraint is not binding, or is a non-
negative number when the constraint is binding.
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4) Original Problem Constraints: The optimal trajectories,
of course, should satisfy all the problem constraints (9)-(12).

Suppose that the optimal trajectories G*(t), G*(t) satisfy
the Euler-Lagrange equations (16), the transversality condition
(17), and the complimentarity slackness conditions (18)-(21).
The convexity assumption of cost functions Cy (G (t), G (t))
provides the sufficient condition that the trajectories are glob-
ally optimal solution of the problem (8)-(12).

III. CONTINUOUS-TIME MARGINAL ELECTRICITY PRICE

We define the continuous-time marginal electricity price in
the following theorem.

Theorem III.1 (Continuous-time Marginal Electricity Price).
Let G*(t) and J(G*(t)) be the optimal generation trajectories
and the optimal objective functional value of the problem
(8)-(12). The optimal Lagrange multiplier trajectory A(t)
associated with the variational power balance constraint (9)
is the rate at which the objective functional is changed due to
an incremental change in load at time t, and is defined as the
continuous-time marginal electricity price.

Proof. Let D(t) be incremented by an infinitesimally small
and localized C* trajectory, § D(t), which takes positive values
in (7, 7+4dt) and vanishes to zero at t =7 and t=7-+dt, where
7 € T. This incremental variation is sufficiently small that an
optimal solution still exists and involves the same binding in-
equality constraints, i.e., the incremental load variation 6 D(t)
results in an incremental change to the optimal trajectories
G*(t) and G*(t), the operation costs C(G (t), G(t)), and the
total objective functional .J. Thus, we express the optimal
value of the objective functional as a continuously differen-
tiable function of load trajectory, i.e., J*(D(t)). The task here
is to calculate the rate of change of J* = J*(D(¢)) due to
the load variation §D(t). We first calculate the incremental
change in J* due to incremental load variation 6D (¢):

AT = J*(D(t) +0D(t)) — J*(D(t))
_ 91 (D@))
~ 0D(1)
where [|[0D(t)|| is the Lo norm of §dD(t), and O(||6D(¢)||)
denotes its higher order functions that tend to zero faster than
[[6D(t)]|. We neglect this term in the right hand side of (22)
and substitute J*(D(t)) = [-L*dt, where the Lagrangian is
defined in (13):

. 9C(G(1), G(t)) N 7 0G(t)
AT _/T( B A AT g

sD(t) + O(lsD®)),  (22)

79G(1)

0D(t)
Applying the total derivative to the first term of (23) and
rearranging the terms, we have:

>6D(t)dt. (23)

AJ*:/T(PC(G@)’G“))_)\(t)1+u(t)—u(t)]TaG(t)

aG(D) YWl 3D
9C(GW),G(1) TG
(24)
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The incremental load trajectory dD(t) takes positive values in
(1,7 + 0t) and equals zero in [0, 7] U [T 4 dt, T]. Thus, §D(t)
uniformly tends to ||0D(¢)|| in (7,7 + 6t) when ||0D(¢)|| is
sufficiently small. Using the integration by parts, changing the
limits of the integral, and taking || D(t)|| out of the integral,
(24) is rewritten as:

T+0t .
AJ*:HéD(t)H/ <A(t>+{cwwlw(t)
d (9C(G(1), G(1) T oG
- dt( oG (t *“(t)—ﬂ(t))} aD(t))dt
(G(1), G(1)) TOG(t) =
( 0G(1) TR “(t)) aD(t)’t:T HéD((tz)!).

The second term in the right hand side integral of (25) repeats
the Euler-Lagrange equation (16) and thus is zero. The last
term also becomes zero when ||dD(t)| tends to zero. Thus,
(25) becomes:

T4+0t
AJ* = ||6D(t)H/ At)dt =

Dividing (26) by the product of ||§D(t)|| and 6t and taking
the limits we reach the theorem result and conclude our proof:

. AJ* . 0JF
s oot - e e — AN
16D (t)]|—0

where §J* is the first variation of the optimal objective
functional with respect to the incremental variation in load:
. AJ*
= im .
lsD(n)ll=0 [[6D(#)]|

AXT)9D@)||6t.  (26)

27)

*

(28)

O

The continuous-time marginal electricity price A(¢) defined
in Theorem III.1, in dollar per MW in unit of time, represents
the cost of supplying the incremental load variation at time t.

A. Calculation of Continuous-time Marginal Electricity Price

As shown for the hypothetical generation and ramping
trajectories in Fig. 1, at every time instant ¢ € 7, units
supplying the load may belong to one of the groups below:

— Unconstrained Units: the units that their capacity and
ramping constraints are not binding and thus can flexibly
change their generation and ramping (e.g., time periods 1,
3,5, 7 in Fig. 1). According to the complimentarity slack-
ness conditions (18)-(21), the multipliers v, (t), T(t),
#,.(t) and 1, () are zero for the unconstrained units. We
show these units by the time-varying set K}* = K"(t).

— Ramp-constrained Units: the units with binding down/up
ramping constraints (11) that can change their generation
with the constant limited down/up ramp rate (e.g., time
periods 4, 8 in Fig. 1). According to the complimentarity
slackness conditions (20)-(21), the multipliers Hk(t) or
[ (t) are non-negative numbers for these units. We show
these units by the time-varying set K} = K" (¢).

— Capacity-constrained Units: the units with binding max-
imum/minimum capacity constraints (10) that cannot

http://dx.doi.org/10.1109/TPWRS.2016.2597288

_4G()
Gk / ‘,"'
- \
G, t
1 2 3 45 6 7 8
_ AG'k(,)
G, §
t
G,
Fig. 1. Operating states of generating units

increase/decrease their generation (e.g., time periods 2,
6 in Fig. 1). According to the complimentarity slackness
conditions (18)-(19), the multipliers Ty (t) or v, (t) are
non-negative numbers for these units. We show these
units by time-varying set K7 = K°(t).

We aim to derive the value of A(¢) from (23). The incremen-
tal load variation § D(t) at time ¢ € T is compensated flexibly
by the unconstrained units, and by the ramp-constrained units
with a constant rate. Capacity-constrained generating units,
however, cannot contribute to compensate the incremental load

.. . 0G (1) - .

variation, meaning that aD(1) 1S Zero for these units. Further,
the Lagrange multipliers v (¢) and 7 (t) are equal to zero
for the unconstrained and ramp-constrained units. Thus, the
term ((t) — v(t))" ggg) in (23) is uniformly equal to zero
over 7. With similar reasoning, the term (7z(t) — H(t))T gg’g
in (23) would be equal to zero over 7. Besides, power
balance constraint (9) requires that 17 ggég be equal to 1
in (23). Exerting these substitutions in (23), we follow similar
technique used in the proof of Theorem III.1 (i.e., changing
the integral limits, replacing 6 D(¢) with ||0D(t)]|, and taking
the limits where ||0D(t)|| and 6t tend to zero), and derive the
closed-form value of A(t) as

M) = (ac«;(t),)c;(t)))

el
aD(t)

Gl
L (occw.cm))
OG(t)

Defining IC{ (t) as the incremental generation cost rate and
ICE(t) as the incremental ramping cost rate of unit k:

aG (1)
aD(t)’

(29)

S 2 ack(g’éz)(; )Gk(t)), (30)
s TGO,
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we can further expand (29), eliminate the zero terms, and
rearrange the remaining terms in summations as follows:

5 9G (1)

ICF (t) ==t
ke(KFUKY)

M) = aD(1)
S o sy

, teT, 32

, 550 T (32)
kEKY

where 83%’“((:)) d %%“((tt)) are respectively the generation and

ramping variations of unit k£ contributing towards balancing
the incremental load variation at time ¢. Similar to the current
definition of incremental generation cost rate, the incremental
ramping cost rate [ CkG (t) represents the cost of incremental
change in ramping of unit k at time t. Accordingly, the
continuous-time marginal electricity price A(¢) in (32) equals
to the weighted average of the incremental generation cost
rates of the unconstrained and the ramp-constrained units, plus
the weighted average of the incremental ramping cost rates of
the unconstrained units.

Corollary 1. In the presence of explicit terms in cost func-
tion for valuating the ramping of the generating units, the
continuous-time marginal electricity price is not only a func-
tion of the generation and the incremental generation cost
rate of the units, but also a function of the ramping and
the incremental ramping cost rate of the units. This result
emphasizes that if the continuous-time generation and ramping
trajectories of the units are explicitly modeled and valuated
in the economic operation planning of power systems, the
resulting Lagrange multiplier trajectory \(t) of the variational
power balance constraint embeds the impact of ramping costs
in the continuous-time marginal price of electricity.

The corollary 1 of (32) presents a formal mathematical ap-
proach to factor the ramping costs and capability of generating
units in power systems operation. In addition, (32) presents a
mathematically proven approach to merit units based on their
ramping capability, and award those that are better able to
assist power systems in compensating the net-load ramping.

Corollary 2. In the presence of explicit ramping costs, (32)
defines a new criterion for the marginal generating unit in
power system operation, where units merit the others and
become marginal not only for their less incremental generation
cost rate, but also for their less incremental ramping cost
rate. Suppose there are two units with the same incremental
generation cost rate. The unit with less incremental ramping
cost rate would offer an overall less incremental cost, and
thus becomes marginal and sets a lower price for electricity
in (32). In addition, (32) mathematically explains the situation
when the unavailability of ramping capacity from the cheaper
units would increase the marginal electricity price.

Assuming that the cost function of units is merely a function
of their generation trajectory, the second term in (32) is zero
and the continuous-time marginal electricity price becomes:

A= Y IG,?@)M vteT, (33)
ke(KH*UKT)

aD(t)’
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which states that the marginal electricity price at the
continuous-time ¢ equals to the weighted average of the
incremental generation cost rates of the unconstrained and
ramp-constrained generating units. While the current discrete-
time calculation of marginal prices using sequential solution of
single-period ED problems may fall short to discern the price
implications of inter-temporal ramping constraints as well as
the fast sub-hourly rampings of the net-load, the continuous-
time marginal electricity price A(¢) in (32) (and in (33)) would
accurately reflect the underlying ramping constraints that gov-
ern the operation of generating units. Thus, the continuous-
time marginal electricity price would provide a more accurate
price signal based on the actual continuous-time loading and
ramping condition of power systems.

Calculation of the continuous-time marginal electricity price
in (32) is an ex-post analysis to the continuous-time UC prob-
lem (5)-(7). We first solve the continuous-time UC using the
MILP formulation developed in [29]. We then fix the binary
variables to the optimal values I*(¢), and solve the ensuing
LP formulation of the continuous-time ED (8)-(12) in the
function space of Bernstein polynomials. The optimal solution
of Bernstein coefficients would be utilized to reconstruct the
optimal generation and ramping trajectories G*(¢) and G*(t)
of the units, which then are plugged in to (32) in order to
calculate the continuous-time marginal electricity price.

B. Calculation of the Other Lagrange Multipliers

In addition to the Lagrange multiplier A(t), we can also
calculate the Lagrange multipliers associated with the binding
ramping or capacity constraints of the units.

1) Lagrange Multipliers of the Capacity Constraints:
Suppose that, at time ¢, generating unit k has reached one
of its minimum or maximum generation capacity limits. The
corresponding non-negative Lagrange multipliers v, (t) or
Tk(t) of the binding capacity constraints can be calculated
using the Euler-Lagrange equation (16) as:

< (108 0) - A0,

Tr(t) = A(t) — ICS (1) + % (IO,?(t)) :

where A(t) is calculated in (32). The multipliers v (¢) and
Ui (t) are respectively the sensitivity of the optimal cost
functional J* to the incremental changes in the value of
minimum and maximum capacities of unit k at time ¢. In (34),
the positivity of v, (t) implies that when the unit is scheduled
at minimum capacity at time ¢, its incremental generation cost
rate minus the time derivative of its incremental ramping cost
rate is more than the marginal price at that time. In addition,
the positivity of 7 (¢) in (34) implies that the incremental gen-
eration cost rate of the unit generating at maximum capacity
minus the time derivative of its incremental ramping cost rate
is less than the marginal price at that time.

2) Lagrange Multipliers of the Ramping Constraints:
Suppose that generation unit k reaches one of its down or
up ramping limits at time ¢,, but not any of the capacity
constraints. This case represents the situation that leads to
higher electricity prices, when a cheaper unit still has enough

v (t) =ICF (t) — (34)

(35)
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generation capacity, but not enough ramping capability to
provide the ramping requirement of net-load. In this case,
the continuous-time ED problem would schedule additional
unit(s) to cater for the ramping requirement of the system, and
thus the marginal price would be set by the more expensive
unit. From the generating units point of view, the implication
is that owning cheaper generation capacity does not ensure
to stay competitive in the electricity market, and the units
may lose the opportunity to generate because they do not
offer competitive ramping capability in the market. This would
provide a natural competency for the generating units (and
possibly storage devices) with higher ramping capability.

The corresponding non-negative Lagrange multipliers u k(t)
or Ti;,(t) of the binding ramping constraints can be calculated
using the Euler-Lagrange equation (16) for t > ¢,.:

(0= 1050~ [ (1080 - A0, @)

r

t
m) = [ (1CEW® -0y di-16E0. @D
tr
where A(t) is calculated in (32). The multipliers p, (¢) and
i, (t) are respectively the sensitivity of the optimal cost
functional J* to the incremental changes in the value of the
down/up ramping limits of unit & at time ¢.

Note that the case of both generation capacity and ramping
constraints being binding only happens in single instants of
time, i.e., when a generation trajectory ramps up from its
minimum generation with its maximum ramping up capability,
or when a generation unit ramps down from its maximum
generation with its maximum ramping down capability.

I'V. NUMERICAL RESULTS

The generating units of the IEEE Reliability Test System
(RTS) [35] are used to implement the proposed continuous-
time pricing model and compare it to the discrete-time ap-
proach. The continuous-time load is constructed using the five-
minute net-load forecast data of CAISO for Jan. 4, 2016 [36],
which is scaled down for the IEEE-RTS peak load of 2850
MW. The value of continuous-time load at mid-point of each
hour is used as the hourly load in the traditional hourly UC
models. Likewise, the value of continuous-time load at mid-
point of each half-hourly interval is considered as the half-
hourly load. As seen in Fig. 2, the hourly and half-hourly
approximations of the load miss the sub-hourly load variations
and rampings. Three cases are studied below.

3000

Continuous-time Load

2800 Hourly Load

= === Half-hourly Load

2600

Load (MW)
2
3

2200

2000

1800

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour

Fig. 2. Continuous-time, hourly, and half-hourly load curves
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Case I: In Case 1, we compare the results of continuous-
time scheduling and pricing of electricity, with those of the
traditional hourly and half-hourly approaches. The ramping
costs of the cost functions are assumed to be zero in this case.
We first run the continuous-time, hourly and half-hourly UC
models to determine the optimal schedule and commitment
status of the units. The total operation costs for the three mod-
els are respectively $478,071, $476,902 and $476,895. The
continuous-time UC dispatches more energy than the other
models conveying the highest operation cost. Even though
the half-hourly UC dispatches more energy compared to the
hourly counterpart, additional commitment variables of the
half-hourly model provide higher flexibility to reduce the fixed
operation costs through half-hourly startup and shutdowns.
Therefore the operation costs are almost the same for the
hourly and half-hourly models.

In order to calculate the continuous-time marginal price, we
fix the binary variables in the continuous-time UC model to
their optimum values, solve the ensuing continuous-time ED
problem, and calculate the continuous-time price using (33). In
addition, we fix the binary variables to their optimum values in
the hourly and half-hourly UC models, and sequentially solve
24 and 48 single-period ED problems, where the Lagrange
multipliers of the power balance constraints form the discrete-
time marginal prices. The continuous-time and discrete-time
(hourly and half-hourly) marginal prices are compared in Fig.
3. As expected, the price curves in Fig. 3 follow the shapes of
load curves in Fig. 2. While the hourly and half-hourly prices
provide a single price for each time interval, the continuous-
time price changes constantly over time reflecting the time-
varying load and generation schedule. The continuous-time
UC model commits an additional 12 MW unit at hour 3,
which is used to supply the sub-hourly load not captured by
the hourly and half-hourly models. This results in a minor peak
in the continuous-time price at the time which is not captured
by the other two price curves in Fig. 3.

32

Continuous-time Price
28 | Hourly Price
= === Half-hourly Price

24

Marginal Price ($ per MW in unit of time)

Hour

Fig. 3. Marginal electricity prices: Case 1

Case 2: In Case 2, we study the impacts of ramping scarcity
on the marginal prices of electricity. For this reason, we reduce
the ramping limits of the units by a factor of 2.5, rerun
the models and recalculate the continuous-time and discrete-
time prices. The operation costs are increased in this case
by $1,084, $420, and $473 respectively for the continuous-
time, hourly and half-hourly UC models, as compared to Case
1. In this case, the continuous-time UC commits additional
fast-ramping yet more expensive 20MW units to supply the
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ramping requirement of the load at hour 3 that stems from
sensitivity of the model to the units’ tight ramping constraints.
Thus, Fig. 4 shows an spike in the continuous-time marginal
price trajectory, which is due to the utilization of more
expensive units. Finite difference ramping model in the hourly
and half-hourly UC, however, is unable to fully recognize the
unavailability of adequate ramping resources, and schedules
the same generation fleet as in Case 1. While the half-hourly
model is more discerning to ramping limitation and schedules
the fast-ramping 100MW units half hour more than Case
1 to supply the load ramping when it sharply descends at
hour 6, the hourly model merely modifies generation of the
units without altering their commitment. Despite the minimal
changes in the generation schedules, the hourly and half-hourly
marginal prices in Fig. 4 are the same as the prices in Case

1, turning a blind eye to the ramping limitations.
36

Continuous-time Price
Hourly Price

32

====Half-hourly Price

28

24

Marginal Price ($ per MW in unit of time)

Hour

Fig. 4. Marginal electricity prices: Case 2

Case 3: In Case 3, we examine the behavior of the
continuous-time marginal price in the presence of explicit
ramping costs in the objective function, while the ramping
limitations are the same as Case 1. The 197 MW, 100 MW,
and 20 MW units offer ramping costs in their cost functions
and the remaining units provide ramping with zero cost. The
ramping cost coefficients are assumed to be five percent of the
corresponding generation cost coefficients. The total operation
cost in this case is higher than Case 1 by $2,689, which is
due to the additional cost of ramping procurement from the
units. The continuous-time marginal price trajectory of Case
3 is decomposed in Fig. 5 to its components as in (32). The
second component of the marginal price, which reflects the
cost of ramping, is non-zero during hours 1-7 and 15-24 due
to the deployment of 197 MW and 100 MW units.

Continuous-time Price
(Total) 3
= = - Continuous-time Price
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—
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Fig. 5. Continuous-time marginal electricity price: Case 3

2nd Component of Marginal Price ($ per
MW in unit of time)

Marginal Price ($ per MW in unit of time)

V. CONCLUSIONS

This paper presents the mathematical foundation and defines
the theory of continuous-time marginal pricing of electricity in

http://dx.doi.org/10.1109/TPWRS.2016.2597288

day-ahead markets. Using the necessary optimality conditions
of the underlying variational problem, we prove that the
Lagrange multiplier associated with the variational power
balance constraint, in the solution of the continuous-time
UC problem where the commitment variables are fixed to
their optimal values, presents the continuous-time marginal
electricity price. We proved that the continuous-time marginal
price is a function of both the incremental generation cost rate
and the incremental ramping cost rate of the units contributing
towards supplying the incremental load at every instant of
time. While the current discrete-time calculation of marginal
prices using sequential solution of single-period ED problems
may fall short to discern the price implications of inter-
temporal ramping constraints as well as the fast sub-hourly
rampings of the net-load, the continuous-time marginal elec-
tricity price would accurately reflect the underlying ramping
constraints that govern the operation of generating units.
The numerical results demonstrate that the continuous-time
marginal electricity price provides a more accurate price signal
reflecting the time-varying loading condition and generation
schedules. Although the half-hourly model outperforms the
hourly model in the simulation results, it still falls short
in reflecting the continuous-time variations of load and the
corresponding generation schedules in the marginal prices.

In this paper, we put forth the theory of continuous-time
marginal pricing in day-ahead markets, however, design of the
market rules, bidding structure, settlement process, and esti-
mating the incremental ramping cost rates of generating units
are open research questions to be addressed in future works.
In addition, the proposed continuous-time marginal price may
not necessarily minimize the uplift payments associated with
the non-convexities in the UC problem. More research may
be required to enhance the continuous-time pricing model that
not only accurately embeds the continuous-time variations of
loads, but also minimizes the possible uplift payments.
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APPENDIX A
NECESSARY OPTIMALITY CONDITIONS FOR
CONSTRAINED VARIATIONAL PROBLEMS

Suppose that we are interested in finding the optimal
values of C' (continuously differentiable) decision variable
trajectories x(t) = (z1(t),...,2x(¢))T that minimize a C!
(continuously differentiable) function F'(x(t),%(t)) over a
time horizon 7 =0, T}, subject to the applicable constraints.
This optimization problem can be formulated as a constrained
variational problem as follows:

min J(x(t)) :/ F(x(t),x(t))dt (38)
x(t) T

s.t. f(x(t),%(t)) =0, VieT (A1) (39)

h(x(t),x(t)) <0, vteT (v(t)) (40)

x(0) = a, x(T) = b, 41)
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where J(x(t)) is the objective functional, and f and h are C"*
functions respectively representing the vectors of variational
(pointwise) equality and inequality constraints; a and b are
the vectors of constant boundary values of the trajectories;
A(t) and v(t) are the vectors of piecewise-continuous La-
grange multiplier trajectories associated with the equality and
inequality constraints. The optimal values of the trajectories
that minimize J(x(t)) is shown by x*(¢), and belong to the set
of admissible functions X" that satisfy the problem constraints
in (39)-(41). In the following we first derive the necessary
optimality conditions for the problem with variational equality
constraints. We then approach the problem with variational
inequality constraints.

1) Variational problems with equality constraints: Assume
that the objective functional (38) is only constrained to the
variational equality constraints (39). Let us augment the ob-
jective functional (38) as:

m&n J(x / L(x A(t))dt, (42)
where the Lagrangian function is defined as:
L(x(t),%(t), A1) = F(x(t), %(t))
+AT(OF(x(8), (). (43)

The necessary optimality conditions for the equality-
constrained variational problem that minimizes J(x(¢)) sub-
ject to (39) would be equivalent to those for the unconstrained
variational problem (42) [37]. The necessary optimality condi-
tions for the problem (42) are provided in Theorem A.1 [37].

Theorem A.l. Suppose that F(x(t),x(t)) and £(x(t),%(t))
are Cl functions. A necessary condition for x*(t) € X
to minimize the objective functional (42) is that x*(t) is a
solution to the differential equations:

oL d oL

ox(t)  dtox@) “4)
that is called Euler-Lagrange equations.

Proof. The Euler-Lagrange equation is a result of the first
order optimality condition of variational problems, which
states that the first variation of the augmented objective
functional, 6.J*(x(¢)), should be zero at the optimal value
of the trajectories [37]. Let x(¢) be an admissible function,
and 6x(t), called variation of x(t), is an infinitesimally small
deviation from x(t), i.e., || ox(¢) || <|| x(¢) ||. We first calculate
the variation of J*(x(t)) with respect to 0x(¢) as:

AT (x(t)) = J*(x(t) + 0x(t)) — J*(x(t))
/,c( t) + 0x(t)), (x(t) 4+ 0%(t)), A(t))dt
- / L(x(t),%(t), A(t))dt. (45)
-

Let us recast (45) in the following by linearizing £((x(t)+
6x(t)), (%(t)+6%(t)), A(t)) using the first-order Taylor expan-
sion:

AJ*(x(t)) = /T ((aift))Téx(t) + (8i€5)> ox%(t )) dt.

(46)
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Using integration by parts, the second term in the right hand
side integral of (46) turns into:

A (a?'c@)%"‘“)dt AL ai@)gx(t)dt

+ (%)Tcix(t)’:j.

Since the boundary values are constant, the second term in
the right hand side of (47) equals to zero, for the variations
0x(t)|t=0 and 0x(t)|;=r are zero. Substituting (47) in (46):

(47)

2160 = | (50 -

Using (48), we force the first variation of the objective func-
tional, §.J*(x(t)), to be equal to zero at the optimal solution:

d oc
dt ox(t)

T
) Sx(t)dt.  (48)

ANJ*
OJ  (x(t lim
(e(t) = s dim T[ox@)]
o oL d oL ®
wxlé%%o/T(ax(t) dta>'<<t>> Tox(ey =0 @9

Since §x(t) is chosen arbitrarily, the differential equation in
the integral (48) should vanish to zero:

oL d oL
ox(t)  dtox(t) 0 50)
This concludes our proof. O

Remark: Suppose the boundary values x(7') are not spec-
ified and the trajectories are free at the end of the horizon.
In this case, the second term in the right hand side of (47) is
not equal to zero anymore, and, in addition to Euler-Lagrange
equation, the optimal trajectories x*(¢) should also satisfy the
following equation that is called transversality condition:

oL
0%(t) le=1

=0. (51)

2) Variational problems with equality and inequality con-
straints: Let us assume that, in addition to the equality
constraints, the objective functional (38) is also constrained
to the inequality constraints (40). In this case, we define the
Lagrangian function as follows:

L(x(t),%(t), A1), v(t), U(t), w(t), Im(t)) = F(x(t), %(t))
+ AT(OF(x(t), %(t)) + T (Hh(x(t), %). (52)

In addition to the Euler-Lagrange equations (44) and the
transversality conditions (51), the variational problems with
inequality constraints should satisfy additional necessary con-
ditions. The fundamental concept here is that the inequality
constraints only restrict the domain of feasibility in the set of
admissible functions X when they are binding. The binding
inequality constraint h(x(t),%(t)) < 0 act like the equality
constraints h(x(t),%(t)) = 0, except that their Lagrange
multipliers are non-negative. This is stated in the following
equations that is know as complimentarity slackness condition:

V(OR(x(t), %() = 0, v(t) > 0. (53)
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