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Abstract We present a population density and moment-based description of the
stochastic dynamics of domain Ca®*-mediated inactivation of L-type Ca?" chan-
nels. Our approach accounts for the effect of heterogeneity of local Ca>* signals on
whole cell Ca** currents; however, in contrast with prior work, e.g., Sherman et al.
(Biophys J 58(4):985-995, 1990), we do not assume that Ca>* domain formation
and collapse are fast compared to channel gating. We demonstrate the population
density and moment-based modeling approaches using a 12-state Markov chain
model of an L-type Ca>* channel introduced by Greenstein and Winslow (Biophys J
83(6):2918-2945, 2002). Simulated whole cell voltage clamp responses yield an
inactivation function for the whole cell Ca>* current that agrees with the traditional
approach when domain dynamics are fast. We analyze the voltage-dependence of
Ca’* inactivation that may occur via slow heterogeneous domain [Ca?"]. Next, we
find that when channel permeability is held constant, Ca*t-mediated inactivation of
L-type channels increases as the domain time constant increases, because a slow
domain collapse rate leads to increased mean domain [Ca®*] near open channels;
conversely, when the maximum domain [Ca®*] is held constant, inactivation
decreases as the domain time constant increases. Comparison of simulation results
using population densities and moment equations confirms the computational effi-
ciency of the moment-based approach, and enables the validation of two distinct
methods of truncating and closing the open system of moment equations. In general,
a slow domain time constant requires higher order moment truncation for agreement
between moment-based and population density simulations.
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1 Introduction

Voltage-gated Ca>" channels fall into three main groups: Ca,1 (L-type, L for “long
lasting”), Ca,2 (P-, N-, and R-type), and Ca,3 (T-type, T for “transient”)
(Lipscombe et al. 2002). Among them, plasma membrane L-type Ca’>* channels
(LCCs) are widely expressed in many tissues and are known to play an important
role in Ca’"-dependent responses of electrically excitable cells. In cardiac
myocytes, for example, Ca’>" influx via L-type Ca*" channels into the dyadic
subspace triggers sarcoplasmic reticulum (SR) Ca?" release and muscle cell
contraction (Bers 2002; Cheng et al. 1993; Cannell et al. 1995). L-type Ca>*
channels also play a key role in coupling synaptic excitation to activation of
transcriptional events that contribute to neuronal plasticity (Murphy et al. 1991).
The activation of LCCs is voltage-dependent while the inactivation occurs via both
voltage- and Ca®*-dependent mechanisms; consequently, the formation of Ca®*
microdomains following LCC influx can greatly influence the stochastic gating of
LCCs and the physiology of excitable cells (Haack and Rosenberg 1994; Budde
et al. 2002).

There are four subtypes of LCCs that are denoted Ca, 1.1-1.4. Ca,1.1 is primarily
found in skeletal muscle and Cay1.4 is mainly found in retinal cells (Lipscombe
et al. 2004; Baumann et al. 2004). Ca,1.2 and 1.3 are highly expressed in cardiac
myocytes and cells of the central nervous system (Ertel et al. 2000; Simon et al.
2003). In neuroendocrine cells, Ca, 1.2 and 1.3 are both involved in action potential
generation, bursting activity and hormone secretion (Lipscombe et al. 2004;
Marcantoni et al. 2007). Ca,1.3 is biophysically and pharmacologically distinct
from Ca,1.2. For example, Ca,1.3 activates at a more hyperpolarized voltage, has
faster activation, and slower and less complete voltage-dependent inactivation than
Ca, 1.2 (Koschak et al. 2001; Vandael et al. 2010). In the heart, Ca,1.2-mediated
Ca’*" currents play an important role in systolic events such as excitation-
contraction (EC) coupling (the triggered release of SR Ca’") (Huang et al. 2014)
and the plateau depolarization (phase 2) of the action potential (Christel and Lee
2012). Cay 1.3, on the other hand, is highly expressed in cardiac pacemaker cells and
is the major regulator of ryanodine receptor-dependent (RyR-dependent) local Ca**
release during the diastolic phase (Torrente et al. 2011). Inactivation of Ca,1.2
channels is both voltage- and Ca®"-dependent (Budde et al. 2002); however, certain
Ca,1.4 L-type channels do not exhibit Ca2*-dependent inactivation (Lipscombe
et al. 2004). L-type Ca>* channels that undergo Ca>*-dependent inactivation do not
in fact result in long lasting currents, in spite of the traditional nomenclature
(Lipscombe et al. 2004).

Models of Ca*" inactivation often assume a high density of Ca*" channels and
the slow accumulation of intracellular Ca>" in a cortical shell near the plasma
membrane (Li et al. 1995). In the context of low density Ca?" channels, it may be

@ Springer



Population Density and Moment-based Approaches to...

assumed that spatially localized high [Ca®*] regions (Ca*" domains) form near any
individual channel when that particular channel is open (Fig. 1, left panel). In both
shell and domain models, it is usually assumed that stochastic gating of L-type
channels and the dynamics of the associated domains are independent except
through global coupling via the bulk [Ca’'] and plasma membrane voltage
(Zweifach and Lewis 1995). For example, the domain model proposed and
investigated by Sherman et al. (1990) took this form and further assumed that Ca®*
domains form instantaneously when a channel activates, and collapse instanta-
neously when a channel de-activates or inactivates. This rapid-equilibrium
formulation of domain Ca’'-mediated inactivation of L-type Ca®" channels is
viable and often utilized as an alternative to shell models. Nevertheless, when the
dynamics of Ca*" channel activation and inactivation are not slow compared to
domain formation and collapse, the assumption of rapidly equilibrating domain
[Ca®*] might be inadequate.

In recent years, computational models of cardiac myocytes have been developed
to account for local control of Ca*"-induced Ca*" release and heterogeneous dyadic
subspace and junctional SR [Ca®"] (Greenstein and Winslow 2002; Tanskanen et al.
2005; Hartman et al. 2010; Williams et al. 2011). In these models, a large number
of Ca*" release units (CaRUs) are simulated, each of which is represented by a
discrete-state continuous time Markov chain and associated dyadic subspace and
junctional SR compartment. Unfortunately, when the description of CaRU gating

equilibrium dynamic

(n)
-]mfl'u,.r

Cext

Fig. 1 Comparison of equilibrium and dynamic domain models for Ca*-mediated inactivation of L-type
Ca?* channels. In equilibrium domain models, low density channels are not only locally controlled, but
also inactivated by a domain [Ca2+] that is slaved to the channel state (high concentration when open and
low concentration when closed). The open and closed channels are represented by arrows with open and
filled circles, respectively. In the dynamic domain model presented here, low density channels experience
heterogeneous domain [Ca’"] that depends on channel state in a more realistic and time-dependent
manner. The right panel shows the fluxes associated with a minimal formulation of a single domain.
Extracellular, cytosolic, and domain [Ca®*] are denoted by cexr, Ceyr, and c<">, respectively. The domain
influx rate ( JEZ/)M) is nonzero when the Ca>* channel in the nth domain is open. The diffusion-mediated

flux of the nth domain Ca>" to the cytosol is denoted by _]E’:Z
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includes many channel states, the runtime of the Markov chain modeling approach
can be excessive.

To avoid the computationally demanding task of performing Monte Carlo
simulations of a large number of CaRUs, Williams et al. (2007) presented an
approach to modeling local control and EC coupling in cardiac myocytes that uses
probability densities to represent heterogeneous time-dependent local Ca*" signals
in a large number of dyadic subspaces and junctional SR domains. Population
density approaches are an alternative to Monte Carlo simulations that produce
realistic and computationally efficient models by using a master equation to
represent heterogeneous local Ca®" signals in dyadic subspaces and junctional SR
domains (Williams et al. 2007). This approach involves the numerical solution of
advection-reaction equations for the time-dependent bivariate probability density of
subspace and junctional SR [Ca®"] conditioned on CaRU state, coupled to ordinary
differential equations (ODEs) for the bulk myoplasmic and network SR [Ca’*].

Moreover, an associated moment-based approach to simulating the probability
distribution of junctional SR [Ca®"] was developed and was benchmarked to be
several orders of magnitude faster than conventional Monte Carlo simulation of the
dynamics of local Ca®' associated with a physiological number of CaRUs
(Williams et al. 2008). The moment-based method begins with the derivation of a
system of ODEs describing the time-evolution of the moments of the univariate
probability density functions for junctional SR [Ca*"] jointly distributed with CaRU
state. This open system of ODE:s is then closed using an algebraic relationship that
expresses the third moment of junctional SR [Ca®*] as a function of the first and
second moments.

In this paper, we use the technique of population density and moment-based
modeling (Williams et al. 2007, 2008) to extend the framework for domain Ca**-
mediated inactivation of LCCs in a manner that does not assume a rapidly
equilibrating domain, and accounts for time-dependent dynamics of domain
formation and collapse (Fig. 1, middle panel). We validate this modeling approach
by comparison to the Markov chain stochastic simulation algorithm (SSA)
(Gillespie 1976) and investigate the dependence of the inactivation function on
the exponential time constant of domain collapse.

The remainder of this paper is organized as follows. First, we formulate a
population density approach to modeling domain Ca>"-mediated inactivation of
LCCs. Next, we derive the associated ODEs for the moments of these densities, and
truncate and close the moment equations to produce reduced models that faithfully
reproduce Markov chain and population density results. Using both the population
density and moment-based models, we investigate the voltage-dependence of Ca*"-
inactivation that may occur through local Ca®* signaling in heterogeneous domains,
and how Ca’'-inactivation of L-type channels may be influenced by non-
equilibrium dynamics of domain formation and collapse.
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2 Model Formulation

The compartments and fluxes included in the model formulation are shown in Fig. 1
(right panel), which includes the [Ca®"] in the extracellular space (cey), the cytosol
(Ceyr), and the nth domain (c(")). For simplicity, we here assume that c,; and c,,, are
clamped; however, it is straightforward to extend the model to account for the
dynamics of ¢y, (see Sect. 4). Fluxes between compartments include the influx from
the extracellular space to the nth individual domain (jl(:l’}hm), and the flux from each

domain to the cytoplasm (35.;2).
Consistent with Fig. 1, the time-dependent dynamics of the [Ca®*] in the nth
domain is governed by the following ODE,

de™ 1w w
_ (g m _m 1
ar iy (5 Jinftux J@")’ )

where ¢ = 0 or 1 depending on whether the associated LCC is closed or open. Note
that the superscript i indicates the channel’s state and the superscript () represents the
nth domain. In Eq. 1, g = (24/B4)/(Lcy/ Bey) is an effective volume ratio between
the domain and cytoplasm, where €, and €2.,; are the volumes of domain and cyto-
plasm, respectively, and 8, and f3.,,, account for the buffering capacity of domain and

cytoplasm. The flux from the domain to the cytoplasm is given by jﬁ@ =

vcy,(c<") — Ceyr), Where vy, is the rate constant for Ca’t domain collapse (units of
time~"). Note that Eq. 1 is linear and consequently, in case éi =0,7= 4/ Veyr €an be

interpreted as the exponential time constant of domain collapse. A large value of ©
indicates slow domains and a small 7 indicates fast domains. The voltage- and

Ca’*-dependent influx, jfZ}Zux, is given by the Goldman-Hodgkin-Katz current

equation (Hille 2001). That is, if the nth LCC is open, ]EZ)MX = —Aml,(»,;?,ux /(zF) where
A, = mﬁcy, /Qcy is a whole-cell capacitance scaling factor, C, is the capacitive

membrane area, z = 2 is the valence of Ca’* and F is Faraday’s constant. The Ca>*
M isgivenby ") = Z2FPV(c™ — core=V/V0) /[Vp(1 — e=V/V0)] where

current, Z;, ..., influx

P is the permeability, V is the membrane voltage, Vy = RT/F, R is the gas constant,
and T is the absolute temperature.

2.1 Twelve-state LCC Model

The LCC model used in this paper was introduced by Jafri et al. (1998) and
reparameterized by Greenstein and Winslow (2002). The gating of the LCC is
represented by a continuous-time, discrete-state Markov chain with twelve states,
ten of which are non-conducting (closed) and two of which are conducting (open).
As illustrated in Fig. 2, the upper and lower rows of states are Ca>"-unbound (mode
normal) and Ca>*-bound (mode Ca), respectively. When in mode Ca, transitions to
the open state O¢, are extremely rare, because g/, < g, . Transitions from mode

normal to mode Ca depend on the rate constant y = yoc<”>, which is a linear function
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Fig. 2 Gating scheme of the L-type channel. The 12-state L-type Ca>" channel includes Ca®*-unbound
and Ca®*-bound states (denoted mode normal and mode Ca, respectively). In both modes there are five
closed states (Cy,...,Cy and Ccy, - .., Ccaa) and one open state (O and Oc,). Transitions from mode
normal to mode Ca depend on the rate constants y (proportional to domain [Ca*>*]) and ». Voltage-dependent
transitions are determined by rates «(V) and (V) (mode normal) and ¢/(V) and f'(V) (mode Ca).
Parameters follow Greenstein and Winslow (2002), « = ogexp(o (V — Vp)), = Poexp(f,(V — Vo)),
of =ao, B = B/b,y = ypc™, g = 0.85ms™!, g_ = 2ms7!, g, = 0.005ms!, g° = Tms!,
ap = 2.0, 2y = 0.0012, B, = 0.0882, f; = —0.05,a = 2, b = 1.9356, 7y = 0.44mM ' ms~!,
® = 0.01258 ms~! and Vy = 35mV

3a
— | Cy
203

3’
BYG CCa2

of the domain [Ca®"], that is, high [Ca®*] induces more transitions to mode Ca
(more Ca®"-dependent inactivation). In both mode normal and mode Ca, there are
five closed states (Cy, ..., C4 and Ccq, - - -, Ccaa) and one open state (O and Oc,).
Voltage-dependent transitions are determined by rate constants a(V) and S(V),
which are increasing and decreasing functions of membrane voltage, respectively
(see Fig. 2, caption). We assume that each domain includes a single L-type Ca’*
channel. In the Markov chain model, the SSA method (Gillespie 1976) is utilized to
simulate the dynamics of stochastic gating.

The transition rates between the 12 states of the LCC model can be written as a
12 x 12 infinitesimal generator matrix (Q matrix) that takes the form

O(V,c) = Kd)(v) + ¢k, (2)

where for clarity we have dropped the superscripted index (n) and write ¢ rather than
¢ for domain [Ca’"]. In this expression, K4(V) collects the Ca’"-independent
transitions (both voltage-dependent and voltage-independent with units of time ™),
K. includes the bimolecular association rate constants (units of
time ™! concentration') for the transitions mediated by domain Ca*". Ky(V) and K,
are 12 x 12 matrices consistent with the transition-state diagram (Fig. 2):

[K¢]1,2 =4a  [K, 23 = 30 [K¢]3,4 =20 [K¢]4,5 = [Kolss = 8+
[K¢]2,1 =p [Kqﬁb,z =28 [K¢}4,3 =3B [Kplsq = 4P [K¢]6,5 = 8-
[Kplig =40 [Kylgo =3 [K¢]9,10 =2d [Kqﬁho,n = [Kolii12 = g’+
[K¢]8,7 =p [K¢]9,8 =2 [K¢]10,9 =3f [K¢]11,10 =4 [Kplion =8~
[K¢}7,1 = [Ksb}s,z =w/b [K¢]9,3 = cu/b2 [K¢}10,4 = w/b3 [K<b]11,5 = C0/174
[Kc]m =% [Kc]z,s = Yo [Kc]w = o’ [Kc]4,1o = 0@’ [Kels = 7oa’.

The diagonal elements of K4 and K, are such that each row sums to zero, i.e.,
Kyl = — Z/‘;ei[ch]zj and [K.],; = — Z#i[KC]lj, where i = 1,2,...,12.
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2.2 Population Density Formulation

The population density approach to modeling the domain Ca*"-mediated inactiva-

tion of L-type Ca2* channels is an alternative approach of the Markov chain model.
Assuming a large number (N) of domains, we define a continuous univariate

probability density function for the domain [Ca*"] of a randomly sampled channel,
pi(c,t)dc =Pr{c<é(t)<c+dc and S(r) =i}, (3)

where the index i € {Cy, Cy,...,Oc,} runs over the twelve states of the LCC, and
the tildes on ¢(r) and S(r) indicate random quantities. The time-evolution of these
joint probability densities is governed by the following system of advection-reaction
equations (Bertram and Sherman 1998; Mazzag et al. 2005; Williams et al. 2007,
Huertas and Smith 2007),

0 pi 0 . . .

N LN 1 4

5= ~a e+ el (4)
where i is an index over channel states, Q is the generator matrix given by Eq. 2, the
row vector p = (p©, p©, ..., p%u) collects the time-dependent joint probability

densities for domain [Ca®"], and [pQ]i is the ith element of the vector-matrix
product pQ. In Eq. 4, the reaction terms [pQ}i account for the probability flux
associated with channel state changes. The advection terms of the form —d(f?p') /dc
represent the divergence of the probability flux ¢'(c,r) = fi(c)pi(c,t), where the
advection rates f'(c) account for the state-dependent deterministic dynamics of
domain [Ca?"],

f[ =T (él‘]inﬂux - cht)7 (5)
4d

where i; = NJg. The aggregate flux from Ca’>" domains to cytosol is given by
Joy = vCTyt(c — Ceyr), Where va, = Nv,y, is the total rate of Ca?" domain collapse and
T= Ag / vCTyt is the domain time constant. The total influx term Jj,pm, is linear in
domain [Ca’"] and can be written as Jinfux = Jo — J1c, where g9 =
AP Vepe Ve [[Vy(1 —e=?V/V0)] and 91 = zA,,PTV/[Vp(1 — e=2V/V0)], and
where PT = NP is the total permeability. As mentioned before, the Ca®* influx in
each individual domain is linearly depedent on the influx current (i.e.,
jng)lux = A" /(zF)). Consequently, the whole cell Ca>* current is given by

influx

r
[inﬂux = A—/(—Jo +]1€)(p0 + pOC")dC. (6)

The time evolution of the joint densities p(c, t), i.e., the dependent variables of the
population density model, are found by integrating Eqgs. 4-5 using a total variation
diminishing scheme that has been described previously (Williams et al. 2007,
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Huertas and Smith 2006). The most important observable of the model is the
probability that a randomly sampled LCC is in a given state,

Pr(S(r) = i) = /pi(c, t) de, (7)

where i € {Cy, Cy,...,Oc,}. Another important observable is the expected [Ca®t]
in a randomly sampled domain,

E[d(t) =) / cp'(c, 1) de. (8)
The expected [Ca>"] conditioned on a randomly sampled channel being in state i is

- aon Jepi(et)de

E'[¢)(1) = E[¢|S(r) = i)(r) = Tpcnde” 9)

2.3 Moment-based LCC Model

The probability density approach described above is generally fast compared to the
SSA simulation, in part because the joint densities are univariate. However, this
computational advantage diminishes when an LCC model is complex, because one
joint density is required for each state. In this section, we develop a moment-based
modeling approach that is computationally more efficient than the population
density approach.

We begin by writing the gth moment of the ith joint density as

0 = [ etwite.nde. (10)

This expression implies that the zeroth moments g4 are the time-dependent prob-
abilities that a randomly sampled channel is in state i (Eq. 7). The first moments,
Wi (1) = Ik cp'de, are related to the expected value of domain [Ca®*] conditioned on
channel state: E'[¢] = pi /i) (cf. Eq. 9). The conditional variance in a randomly
sampled domain is a function of the first three moments:
Var'[¢] = i, /) — (4 /i)*. The derivation of the moment-based LCC model
begins by differentiating Eq. 10 with respect to time,

i, op'
Ta_ [zl g, 11
dt /C ot ¢ (1)

The ODEs of the moment-based model are found by replacing the factor 0p’ /0t in
the integrand of Eq. 11 by the advection-reaction equation of the population density
model (Eq. 4), which yields
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i, (f’ 0,
s / ¢ [ [PQ]}

_ /cq d(fipi) + / c? [p(Kd, + CKC)]idC.
Integrating by parts gives

di )
= q/f I plde + [ Ky)' + (g K] (12)

where we have eliminated terms using the fact that ¢'(c,t) = f(c)p'(c,t) = 0 on
the boundary (conservation of probability). We evaluate the first integral of Eq. 12
by substituting Eq. 5 for f and simplifying,

q/ficq—lpidc :q/ <'(20 ;ch) € Cepr 1 pide
g T

- iiJO Ceyt \ éijl 1 i

_q<}u£ + T ,Uq71 q ig +T .uq'

Finally, substituting Eq. 13 into Eq. 12 results in the following equation for ,u;,

dp, & | ce " 5]1 i i i
d_l‘qq<7+ Syt L—q o Jr q+[ﬂqK¢] +[[lq+1KC] . (14)

d T d

(13)

where & =0 for i€ {Co,...,Cs,Ccq0,-..,Ccaa} and =1 for ie {0 Oca},
n, = (ﬂgo, .. .,ufi)fﬂ), By = (chj’r], .. ,,ugj“l) and [p, Ky(V )] and [, 1K.]' are the
ith element of the vector-matrix product of yqK¢(V) and p, ., K, respectively. Note

that Eq. 14 is an open system of ODEs that takes the form

dy i

dto :XO(”07”1>7 (15)
dui ;
d_tq:Xq(”qfhﬂq?.uqul)a q= 172737'” (16)

In particular, note that the equations for the gth moments depend on the (g + 1)th
moments.

2.4 Truncation and Closure of Moment ODEs

Equations 15-16 can be closed by assuming the (¢ + 1)¢h central moment (i.e., the
moment about the mean) is zero, so that ,uf] +1 can be expressed as an algebraic

function of lower moments. For example, the variance Var'|[¢] = E'[(¢ — E/[¢])*] =

wh /iy — (i /i) is the second central moment of the random variable &

@ Springer



X. Wang et al.

conditioned on the channel being in state i. If we assume that the conditional
variance is zero for each state i (i.e., Var [¢] = 0), the second moments are an
algebraic function of the zeroth and first moments: 1 = (u§)2 /i, In this case,
Eqgs. 15-16 can be truncated and closed as follows:

dy i

dto = 15 (Ho, 1), (17)
di i
= 70 (o, 1, o (g, 1) (18)

Closing the moment equations in this manner results in two ODEs per channel
state—one for the zeroth moment ,uf), and the other one for the first moment ,u"l (24
ODEs in total):

d.“i i i

5= K]+ (K] (19)
du E Con) s Eqn 1Y) i i
dm _ (€0, Cor) i (S DY ik K. 20
ar (/15 + ;Mo ;tgrl +r ty + [ Kyl + (K] (20)

. . ; N2
where 1, is a row vector with elements 1 = ()" /.

Alternatively, we assume the 3rd central moments to be zero. In that case, the
truncated and closed moment equations take the form

diy i
dto = Xo(ﬂmﬂ]) (2])
di i
5= 1o 1 ) (22)
di i
dtz = Xz(”17”25”3(”07ﬂ17:u2))5 (23)
where
; 3'ui ui 2 ’ui 3
N3:—2i . (,-1)2 (24)
Ho (1)

This assumption results in a moment-based model that includes 36 ODE:s:

dyiy

dt :[I‘OK¢]i + [mK (25)
dy, Eg Con) Eg 1Y, i i
din _(ao  Cor) i (< D)k K. 26
7 <)§ + . | Ho ig +7: [ Kp]' + (K] (26)

@ Springer



Population Density and Moment-based Approaches to...

&g 1

dﬂi f[JO Ce i i i i
—2=2 Y -2 T + I + [Ky]' + [m:K.] (27)
d

a o\ T

where 15 is a row vector with elements p = 3ubpct /ph — 2(1h) / (1)’
Below, Eqgs. 25-27 are referred to as the “third-order moment truncation

approach” while Eqgs. 19-20 are called the “second-order moment truncation
approach.”

3 Results
3.1 Representative Population Density Simulation Results

To illustrate the population density approach to modeling domain Ca*-mediated
inactivation, we first show simulations of a two-pulse voltage clamp protocol,
analogous to those used in the experimental quantification of Ca**-inactivation of
LCCs (Sherman et al. 1990; Plant 1988). As shown in the top panel of Fig. 3a, the
simulated command voltage began at the holding potential of V;, = —50mV, and
the joint densities of the model equations were equilibrated with this voltage. The
command voltage was then stepped up to various prepulse potentials, V),, and held at
V,, for a prescribed length of time, z,. The voltage was then stepped back down to
the holding potential, V},, for duration #,, and then up to the test potential given by
V;. Channel inactivation was measured by estimating the inactivation function,

A B
100 — v, 25
S g0 T
g 0 [ Y s 8
> o | L 3
> v, | | ’7 g 35
50 ' L 2 4
I <>t =
—_ t t —_
le 0 [;_;p_—] f -4.5 -1 T T 1
< L%—‘ -40 0 40 80
S 54 |
x 1
_E-104 0.9
R 808
=
3 55 & 0.7
= 0.6 ‘ ‘ ‘
- -40 0 40 80
time (ms) 200 ms V_(mV)

p

Fig. 3 Representative simulation results. a The response of the whole cell current (middle panel) and
expected [Ca®"] (bottom panel) to the two-pulse voltage clamp protocol (fop panel). b The peak current
(top panel) and the inactivation function (Eq. 28, bottom panel) to a range of prepulse potentials
(=50<V,<80mV). Parameters: V, =-50mV,V;,=0mV,V,=-50 to 80 mV, 7, =3800ms,
t, = 50ms, T = 10ms, and as in Fig. 2 and Table 1
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Table 1 Parameters for the population density and moment-based model

Symbols Definition Units Value
Faraday’s constant coul mol~! 96,487
R Gas constant mJ mol 'K! 8314
T Absolute temperature K 310
Vi RTIF mV 26.72
Pr Total permeability/specific capacitance cm’s~! uF! 104
Cu Capacitance uF 1.534 x 1074
A, Capacitive to volume ratio mFL™! 356.7
A; Effective volume ratio of domain and cytosol - 0.1
Cext Extracellular Ca>" concentration mM 2
Ceyt Bulk Ca®* concentration uM 0.1
Css Maximum Ca?* concentration (Eq. 30) uM 35

See Fig. 2 for the parameters of the 12-state L-type Ca>" channel

ho(Vy), defined as the normalized peak current during the test voltage pulse as a
function of the prepulse potential (Sherman et al. 1990),

(1) — KLYy

= peakli(V, = V1] (28)

The inactivation function . (V,) gives the fraction of channels that are not inac-
tivated, and takes a value between 0 and 1. When A, = 1, none of the channels are
inactivated; when h,, = 0, all of the channels are inactivated.

The middle and bottom panel of Fig. 3a show the whole cell Ca’" current Tinfrux)
and the mean domain [Ca?t] (E[¢]) during the simulated two-pulse protocol. The
largest inward currents during the test phase occurred when the prepulse voltage V,
was very low or very high (Fig. 3b top panel). This is consistent with the
observation that during the prepulse phase little current was expressed at extreme
voltages, preventing an accumulation of domain Ca®" that could potentially
inactivate LCCs. The spike current at the end of ¢, is a tail current that is caused by
the sudden increase in the driving force for the Ca*" current when the command
voltage is returned to the holding potential (Table 1).

The lower panel of Fig. 3b shows the inactivation curve A, (V,) calculated via
Eq. 28. Similar to the peak current, the inactivation function is biphasic with
minimal Ca®" inactivation (h ~ 1) when the repulse potential is very low or high,
and maximum Ca”" inactivation (h =~ 0.65) for intermediate repulse potentials. The
shape of the inactivated curve is similar to the simulation result in Greenstein and
Winslow (2002) and experimental results such as Ashcroft and Stanfield (1982).

Figure 4a shows the model response to the two-pulse voltage clamp protocol
using a range of domain time constants (7). Slower domain time constants (large t,
purple line) lead to decreased inward whole cell currents during the prepulse phase
(compare green and red lines). This is consistent with the observation that a slow
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Fig. 4 a Command voltage traces, Ca>" current and expected [Ca’"] when domain time constant 7 is
varied. b Snapshot of the sum of the joint densities for open states, p® + pc, at three different times (a,
b, ¢) and three domain time constants. Parameters: 1 = 1 ms (red), 10 ms (green) and 100 ms (purple),
times a, b and ¢ are shown as arrows at —100, 50 and 700 ms in (a), V, = —-50mV,
V, =30mV, V, = 0mV, and as in Fig. 2 and Table 1

domain time constant leads to higher expected domain [Ca®*] and more Ca>*
inactivation.

Figure 4b shows the sum of the joint density functions of open states (i.e.,
p@ + pPc) for three different domain time constants at three different times during
the two-pulse protocol (arrows labeled a, b, ¢ in panel A). Note that these densities
have been normalized for clarity, so the integrated areas no longer correspond to the
probability that a channel is open. Consistent with Fig. 4a, this probability at time
t = 50 ms (b) is higher than at times r = —100 and 700 ms (a and c, respectively),
regardless of the domain time constant. When 7 is small (fast domain), the density
functions (red and green shaded regions) are narrow and J-function-like (small
variance). When t is large (slow domain), the densities have greater variance
(purple shaded regions).

3.2 Comparison of Population Density and Moment Closure Approaches

Figure 5 compares the moment-based model that uses second-order and third-order
truncation methods to the corresponding population density and Markov chain
model. The agreement between the Markov chain (o) and the population density (+
and x) simulations validates our model. When 7 is fast or intermediate (e.g.,
7 = 10 ms), the assumption of zero variance (green) leads to nearly the same result
as the population density model (4 symbols). However, when 7 is slow (e.g., 7 =1

s), the result computed from the second-order moment truncation approach (khaki)
deviates slightly from the population density model (x symbols). As might be
expected, this small error is eliminated using the third-order moment truncation
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Fig. 5 Comparison between different moment closure techniques and the population density model.
Steady-state Ca’*-inactivation function (i, a), total influx current (infuux» b), expected [Ca®*] at closed
state (E€[¢], ¢) and open state (E°[¢], d) as a function of voltage (V). Green and khaki lines are calculated
via the second-order moment-based LCC model when 7 = 10 ms and 1 s, respectively. The purple line is
calculated via the third-order moment-based model when 7 is 1 s. Plus and times symbols are computed
via the population density model when 7 is 10 ms and 1 s respectively. Open circles symbols are
computed using the corresponding Markov chain model, assuming the number of L-type Ca’* channels is
200. Other parameters as in Fig. 2 and Table 1

approach (purple). Moment-based calculations in the remainder of the paper will
utilize the third-order truncation method, which accurately approximate the
population density model for domain time constants in the physiological range
(t=0.1 ms to 1 s).

In general, the runtime of the population density model is fast when 7 is large and
slow when 7 is small. However, even when 7 =1 s and V = 0 mV, the population
density model takes 79 s on average to simulate a 2 s trail (10 trails in total), while
the mean runtime for the third-order moment-based model is only 0.16 s. The
simulation time of the Markov chain model depends on the number of Ca’*
domains (N). When N is 200, the average runtime is 936 s for 2 s simulation. The
models are implemented via MATLAB and simulated on a Mac Pro. The processor
is 2.4 GHz Intel Core i7, and the RAM is 8 GB 1600 MHz DDR3.

3.3 Steady-state Ca’"-inactivation and the Domain Time Constant

When an LCC is open, the time-dependence of domain [Ca®"] can be rewritten as
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dc 1 C — Ceyt

i E(JO —Ji¢) — E— (29)
where 79 and 7; are defined above. From Eq. 29, it is straightforward to derive the
steady state domain [Ca®*] for an open LCC,

90/ %q + Cep/T

YRS (30)

A
The concentration ¢y, is the maximum [Ca®*] that can be achieved in a domain, its
value depends on membrane voltage V, the domain time constant T and the total
permeability PT, where V and PT occur as parameters in jo and 7;. In this section we
investigate how the domain time constant influences steady-state Ca>*-inactivation
under the assumption of fixed total permeability. In the following section, we
consider the related question of the domain time constant’s impact on steady-state
Ca’* inactivation when LCC permeability is adjusted so that the steady-state
domain [Ca®"] (cy) is fixed.

Figure 6 shows how the domain time constant (7) influences the voltage-
dependence of the steady-state Ca’'-dependent inactivation of LCCs in the
population density and moment-based models. For each domain time constant and
voltage, the steady-state fraction of LCCs in four lumped states are shown, namely,
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Fig. 6 Comparison of steady-state probabilities of L-type channel states when the domain time constant
t is varied. The fraction of channels in closed states of mode normal (PS,, ,, a) and mode Ca (P&, b),
and the fraction of channels in open state of mode normal (P,?ormal, ¢) and mode Ca (Pga, d), as a function
of V,,. The khaki, blue and purple lines are the simulation results of the moment-based model when © =
0.1 ms, 10 ms and 1 s, respectively. The corresponding population density simulation results are given by
open circles. Parameters as in Fig. 2 and Table 1
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mode normal open (P¢ ), mode Ca open (P2,), mode normal closed (P

including contributions from states Cy, ..., Cs), and mode Ca closed (Pga, states
Cca0, - - -, Ccaq,)- For all domain time constants studied, increasing the voltage leads
to increased steady-state open probabilities (P9, + P2 ). Slowing the domain

time constant increases the probability that a randomly sampled channel is in mode
Ca (PS, + P2,), regardless of voltage and consistent with our prior observation that

C
normal?

slower domain time constants result in higher domain [Ca’"] (Fig. 4a) and a
decreased probability for a channel to be open (P9 . + P2 ). Note that the four
plots are in different scales, however, the sum of probabilities in different states
should add up to one.

Figure 7a shows the inactivation function (4,) at steady state when t is varied
from 0.1 ms to 1 s. As the domain time constant t increases, the inactivation
function shifts downwards, corresponding to increased Ca’>* channel inactivation.
This results from residual Ca>" lingering in the domain, increasing the expected
[Ca2+] (Fig. 7¢). Although the expected domain [Ca2+] increases with 7, the total
Ca*" current decreases (Fig. 7b) due to a decreased probability for a channel to be
open. Figure 7d shows that the domain Ca>" concentrations are more heterogeneous
(higher variance) with slow domain collapse time, regardless of voltage. This is
consistent with Fig. 4 where a small 7 results in a narrow distribution and low
variance and a large 7 yields a broader distribution and higher variance.
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Fig. 7 Steady-state Ca’'-inactivation and domain time constant t with fixed P7. Ca®*-inactivation
function (fis, A), Ca>* influx current (Iinfiux> B), expected [Ca®*] (E[¢], C) and the variance of [Ca®*] in
different domains (Var[¢], D) calculated via the moment-based model as a function of V. The
corresponding population density simulation results are given by open circles. Parameters: T = 0.1 ms
(khaki), 10 ms (blue) and 1 s (purple), and other parameters as in Fig. 2 and Table 1
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3.4 Ca’*-inactivation When Maximum [Ca’>"] is Fixed

In the parameter studies of Figs. 6 and 7, the permeability PT was held constant as
the domain time constant T was varied. Structuring the parameter study in this
manner allows 7 to influence the domain dynamics by changing the rate of domain
formation and collapse as well as the steady-state domain [Ca’'], given by
¢ss = (90/24 + cew/7)/ (31/ 25 + 1/7). Figure 8 presents an alternative parameter
study that controls for the effect of the domain time constant on the steady-state
domain [Ca®'], thereby highlighting the manner in which the rate of domain

formation and collapse influences Ca>"-mediated inactivation of LCCs.

Figure 8 shows that, for a given voltage and domain time constant 7, increasing
the permeability of the channel (and thus c,, the maximum domain [Ca®"] that can
be achieved) leads to an increase in Ca>"-mediated inactivation (decreased A..). On
the other hand, when the permeability is adjusted so that the maximum domain
[Ca’"] is fixed, decreasing t (faster domain) increases both the expected domain
[Ca®] at open state (Fig. 8c) and Ca2+-dependent inactivation (Fig. 8a). When cj
is fixed, a slower domain leads to smaller variance, i.e., Ca®t channels in different
domains are likely to experience similar [Ca*>"] (Fig. 8d).
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Fig. 8 Steady-state of Ca’'-inactivation and domain time constant T with ¢y and voltage fixed.
hoos Tinflux, E°[¢] and Var[¢] calculated via the moment-based model as a function of the maximum
domain [Ca®*], c¢. The corresponding population density simulations are given by open circles.
Parameters: T = 10 ms (blue), 100 ms (red) and 1 s (purple line), V. = —10mV, and others as Fig. 2 and
Table 1
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4 Conclusions and Discussion
4.1 Summary of Results

In this paper, we have shown how a population density approach (Eq. 4) to
modeling Ca®*-mediated inactivation of L-type Ca>" channels is an extension of
(and improvement upon) biophysical theory that assumes that domain [Ca®*] is
proportional to single channel current (recall Fig. 1). The population density
approach is similar to traditional domain models of Ca’*"-mediated inactivation
(Sherman et al. 1990) in that both assume a large number of low-density Ca’*
channels and a minimally represent action of the heterogeneity of domain [Ca®*]—a
potentially important feature of Ca>"-mediated inactivation that is not captured by
common pool models.

However, the population density approach is distinct from traditional multiscale
models of Ca®*-inactivation in its representation of the time-dependent formation
and collapse of Ca** domains associated with L-type channels. Similar to previous
work focused on local control of excitation-contraction coupling in cardiac
myocytes (Williams et al. 2007), the population density approach to modeling Ca**
inactivation of L-type channels is often preferable to the SSA simulation of the
stochastic dynamics of channels and domains. This is due to the fact that the
computational efficiency of a population density model scales with the number of
states in the Markov chain model of the L-type channel, as opposed to the (far
greater) number of channels present in the plasma membrane of the cell. Traditional
equilibrium domain models also have this advantage, but do not account for the
dynamics of domain formation and collapse that may in some cases influence the
kinetics of Ca>* inactivation (Mazzag et al. 2005; Bertram and Sherman 1998).

The population density formalism allows the derivation of moment-based models
of domain Ca®" inactivation that are extremely computationally efficient. We have
derived two different moment-based models that are distinguished by the number of
ODEs per channel state retained after truncation of the open system of moment
equations as well as by the assumptions made to close the moment equations. Both
the second-order (Eqgs. 19-20, zero variance) and third-order (Eqs. 25-27, zero third
central moment) moment-based models performed well when validated by
comparison to corresponding population density simulations, but the third-order
moment-based model was extremely accurate and valid for a wider range of domain
time constants (Fig. 5). The second-order moment-based model is most accurate
when the domain time constant is relatively small (fast domain, T < 10 ms), because
in that case the joint distributions for domain [Ca*] conditioned on channel state
are very focused (low variance, recall Fig. 5).

Using both the population density and moment-based models, we investigated
the dependence of the steady-state inactivation of the 12-state L-type Ca*" channel
model (Greenstein and Winslow 2002) on the exponential time constant (t) for
domain formation and collapse. When the study was performed using a fixed
permeability for the L-type channel, faster domains (smaller 7) lead to less
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inactivation for a wide range of clamped voltages. When the channel permeability is
chosen to be a function of 7 that results in a fixed maximum domain [Ca’®*t], a
smaller domain time constant leads to increased Ca?t-mediated inactivation,
presumably because the kinetics of domain formation subsequent to channel
opening are more rapid. Similar results are obtained by implementing a four-state
model (Sherman et al. 1990) via the population density and moment-based models
(not shown).

4.2 Limitations and Possible Extensions

Although the computational efficiency of the probability density and moment-based
calculations is notable, the runtimes of both models are proportional to the number
of states in a given L-type channel model. Consequently, both methods may have
little computational advantage if the LCC model of interest is extremely complex.
In addition, the efficiency of the probability density approach is dependent upon the
number of meshpoints used in solving the advection-reaction equations.

For simplicity, we have illustrated the population density and moment-based
models under the assumption that plasma membrane fluxes do not change the bulk
cytosolic [Ca®t] (that is, ¢y is clamped). However, it is straightforward to relax this
assumption and thereby allow a dynamic bulk intercellular [Ca®>"]. For example,
assuming the rate of ATP-dependent plasma membrane Ca’"-efflux is given by
Jour = kout Ccyr, the ODE for bulk cytosolic Ca%t is

dcey y
d;t:JCy[_J()Mh (31)

where ij, is the total flux from domains to cytosol,

eyt() :Z/nyt p'(c, 1) de
:Vz-yt Z / [C - Ccyr(tﬂ pi(C, t) dc

:chyt lz h — cc),,(t)] )

In spite of the fact that we have chosen to illustrate the population density and
moment-based models through simulated voltage clamp recordings, the modeling
formalism is easily modified to simulate current clamp recordings. However, the
modeling of the current clamp experiment might be harder due to the complex
interaction between different channel types.

The 12-state LCC model used in this paper does not account for voltage-
dependent inactivation. However, it is straightforward to implement LCC models
that include both voltage-dependent activation/inactivation and Ca’"-dependent
inactivation. Moreover, the population density approach presented here is well-
suited to investigate whole-cell potassium currents that arise through voltage- and
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Ca’*-dependent stochastic gating of small potassium (SK) and big potassium (BK)
channels, both of which play important physiological roles in the heart, brain and
muscle cells and are often spatially co-localized with L-type Ca’' channels
(Vandael et al. 2010; Vergaraa et al. 1988; Qi et al. 2014; Hammond et al. 2006;
Pribnow et al. 1999). Previous work by Stanley et al. (2011) has shown that the
stochastic gating of Ca®* channels increases the activation of SK channels. Cox
recently presented a Ca, 2.1/BKc, model which suggested that Ca*" channels will
open during a typical cortical neuron action potential, while the associated BKc,
channel opens in only 30 % of trials (Cox 2014). Furthermore, this percentage is
sensitive to the action potential duration, the distance between the two channels in

the signaling complex, and the concentration of intercellular Ca?t buffers (Cox
2014). Extensions of the population density and moment-based model that account

for the dynamic of Ca>" buffering and the geometric relationship between channels
is an important avenue for future research.
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