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Population density approaches to modeling local control of Ca®™-
induced Ca®>" release in cardiac myocytes can be used to construct
minimal whole cell models that accurately represent heterogeneous
local Ca?" signals. Unfortunately, the computational complexity of
such “local/global” whole cell models scales with the number of Ca®*
release unit (CaRU) states, which is a rapidly increasing function of
the number of ryanodine receptors (RyRs) per CaRU. Here we present
an alternative approach based on a Langevin description of the
collective gating of RyRs coupled by local Ca?>* concentration
([Ca®*]). The computational efficiency of this approach no longer
depends on the number of RyRs per CaRU. When the RyR model is
minimal, Langevin equations may be replaced by a single Fokker-
Planck equation, yielding an extremely compact and efficient local/
global whole cell model that reproduces and helps interpret recent
experiments that investigate Ca®>* homeostasis in permeabilized ven-
tricular myocytes. Our calculations show that elevated myoplasmic
[Ca®*] promotes elevated network sarcoplasmic reticulum (SR)
[Ca?"] via SR Ca?"-ATPase-mediated Ca>" uptake. However, ele-
vated myoplasmic [Ca?"] may also activate RyRs and promote
stochastic SR Ca?* release, which can in turn decrease SR [Ca*™"].
Increasing myoplasmic [Ca®*] results in an exponential increase in
spark-mediated release and a linear increase in nonspark-mediated
release, consistent with recent experiments. The model exhibits two
steady-state release fluxes for the same network SR [Ca®*] depending
on whether myoplasmic [Ca®>*] is low or high. In the later case,
spontaneous release decreases SR [Ca®*] in a manner that maintains
robust Ca®>" sparks.

Langevin equation; Fokker-Planck equation; calcium release site;
multiscale whole cell model; calcium homeostasis

INTRACELLULAR cALCIUM (Ca?™) signaling involves a complex
interplay between global (cell-wide) changes in Ca®>* concen-
tration ([Ca®*]) and local (subcellular) Ca>* release events.
Local signals are caused by plasma membrane Ca®* influx and
release of Ca®>* from intracellular stores, primarily the endo-
plasmic/sarcoplasmic reticulum (ER/SR). Spatially localized
Ca®" release events mediated by clusters of intracellular Ca®*
channels, IP3 receptors (IPsRs) or ryanodine receptors (RyRs)
on the ER/SR membrane, are referred to as “Ca®™" sparks” or
“puffs” (see Ref. 2 for review).
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While plasma membrane ion channels in a small cell expe-
rience essentially the same time course of membrane voltage,
intracellular Ca>* channels experience radically different local
[Ca®*], even during global Ca®" responses, and clusters of
IP;Rs and RyRs are in fact only locally coupled via the
buffered diffusion of intracellular Ca®>*. That is, when one or
several of the channels in a Ca®>* release unit (CaRU) are open,
the [Ca®*] experienced by spatially localized channels is dra-
matically different from the [Ca>*] in the bulk myoplasm. For
this reason, conventional whole cell modeling of Ca*>* dynam-
ics based on Hodgkin-Huxley-like gating variables for the
dynamics of intracellular channels is not always appropriate.

Mechanistic models of ER/SR Ca®" release often represent
the stochastic gating of Ca®" channels using Monte Carlo
methods. When these approaches are applied to cardiac myo-
cytes, voltage-gated L-type Ca®" channel(s) interact with a
cluster of RyRs through changes in [Ca®*] in small “dyadic
subspaces” between the sarcolemmal and SR membranes.
These models also sometimes consider depletion of junctional
SR [Ca®*] that may influence Ca** spark termination and
refractoriness (31, 32, 35). Realistic global (cell-wide) SR
Ca®" release can be reproduced by Monte Carlo simulation
of the stochastic triggering of sparks from hundreds to
thousands of CaRUs (19, 20, 29, 32). However, such sim-
ulations of local control of excitation-contraction coupling are
computationally demanding, especially when each CaRU is com-
posed of interacting Markov chain models of individual RyRs
(e.g., see Ref. 23).

Population density approaches are an alternative to Monte
Carlo simulations that produce realistic and computationally
efficient models by using a master equation to represent het-
erogeneous local Ca?* signals in dyadic subspaces and junc-
tional SR domains (37). This approach involves the numerical
solution of advection-reaction equations for the time-depen-
dent bivariate probability density of subspace and junctional
SR [Ca®*] conditioned on CaRU state, coupled to ordinary
differential equations (ODEs) for the bulk myoplasmic and
network SR [Ca®*]. This methodology was validated in prior
work (37) and an associated moment-based approach to sim-
ulating the probability distribution of junctional SR [Ca®*] was
benchmarked to be several orders of magnitude faster than
conventional Monte Carlo simulation of the dynamics of local
Ca®" associated with a physiological number of CaRUs (38).

One disadvantage of the population density approaches to
modeling local control is that their run times (computational
efficiency) are proportional to the number of CaRU states.
When realistically modeled as the collective gating of identical
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and indistinguishable RyRs, the number of CaRU states is
exponential in the number of channel states. Population density
and moment-based methods for multiscale (i.e., local/global)
whole cell modeling are limited by this state-space explosion.

Here we present an alternative local/global whole cell mod-
eling approach based on a Langevin formulation of the sto-
chastic Ca®" release via CaRUs. We assume that the number of
RyRs per CaRU is large enough that the fraction of channels in
each state can be treated as a continuous variable. We show
that the Langevin description of the collective gating of RyRs
is a good approximation to the corresponding discrete-state
continuous-time Markov chain model when the number of
RyRs per release site is in the physiological range. By coupling
the numerical solution of such Langevin equations to balance
equations for the bulk myoplasmic and network SR [Ca®>*], a
local/global whole cell model is produced whose run time
scales with the number of states in the Markov chain model for
an individual RyR, as opposed to the far greater number of
states in a compositionally defined CaRU. When the RyR
model is minimal, these Langevin equations may be replaced
by a single Fokker-Planck equation for a randomly sampled
CaRU, yielding an extremely compact and efficient local/
global whole cell model. We illustrate the usefulness and
computational efficiency of the Fokker-Planck equation-based
local/global whole cell model by performing parameter studies
motivated by recent experiments (3, 40).

In intact ventricular myocytes of the healthy heart, the
balance of diastolic SR Ca>" leak and uptake maintains the
appropriate SR Ca®™ load. While the SR Ca" leak is mediated
primarily by RyRs, the contributions of spark- and nonspark-
mediated SR Ca®* release depend on the concentration of both
myoplasmic and SR [Ca?*] (10, 27, 30, 40). When SR [Ca?*]
is low, SR Ca’" leak occurs primarily through spark-indepen-
dent pathways. Conversely, when SR [Ca®*] is high, sponta-
neous Ca?* sparks make a large contribution to SR leak. In
pathophysiological conditions that include SR Ca?* overload,
increased SR Ca" leak may generate spontaneous sparks that
trigger Ca®>*-induced Ca®" release (CICR) from neighboring
CaRUs, thereby initiating arrhythmogenic spontaneous Ca?*
waves (9).

With the use of permeabilized ventricular myocytes, a re-
duced experimental preparation that allows precise control of
myoplasic [Ca®"], Bovo et al. (3) observed that increasing
myoplasmic [Ca®*] results in an exponential increase in spark-
mediated release and a linear increase in nonspark-mediated
release. These results are reproduced by the Fokker-Planck
equation-based local/global whole cell model that is the focus
of this article. In addition, the model predicts potentially
significant characteristics of Ca®>* homeostasis in permeabil-
ized cells. For example, in the local/global whole cell model,
two distinct steady states may exist for a given network SR
[Ca%*]. One steady-state corresponds to low myoplasmic
[Ca®*] and small SR Ca?* release flux that is dominated by
stochastic leak, while the other corresponds to high myoplas-
mic [Ca®*] and large release flux mediated by Ca?" sparks.
Interestingly, for any clamped myoplasmic [Ca®*] that is large
enough to trigger spark-mediated release, the local/global
model predicts that the resulting spontaneous stochastic Ca®*
release tends to decrease the network SR Ca®" load just
enough to maintain robust Ca>" sparks.

H511
METHODS

Markov chain description of a Ca®™ release site. The most straight-
forward starting point for the presentation of the Langevin description
of a Ca?" release site (CaRU) is the following two-state Markov chain
model of a stochastically gating RyR,

kten
(closed) C=0 (open), 1)

=
where c is the local [Ca®*], k"¢ and k™ are transition rates with units
of reciprocal time, k" is an association rate constant with units of
concentration ™time ™!, and 7 is the cooperativity of Ca>* binding.
Under the assumption that a collection of N two-state RyRs are
instantaneously coupled by a local [Ca?] associated with the RyR
cluster, the transition diagram for the CaRU as a collective entity is (8)

Nkt (N—DEkFe]  2kteR o, kel
0 1 N-1 N, 2
k™ 2% (N—=1)&k~ Nk~
where the states {0, 1, ..., N} correspond to the number of open

channels (No) and ¢, is the local [Ca®>"] experienced by RyRs when
No = n.

Figure 1A shows a Markov chain simulation of a CaRU composed
of N = 20 two-state channels. For simplicity we here assume that the
local [Ca?*] is a linear function of No, that is,

C, = Cy, t nCs, 3)

where c.. is the bulk or background [Ca?"] and c« determines the
increment in local [Ca®"] following an individual RyR opening. The
corresponding relationship between No and local [Ca®*] is more
realistic in the local/global whole cell model (Egs. 24 and 25).

Langevin Ca?™ release site model. We will write fo(f) as the
time-varying fraction of open RyRs, that is,

No(?)

fol(t) = T )]

The Langevin equation that corresponds to a CaRU composed of N
two-state channels (see above) is a stochastic ordinary differential
equation (SDE) of the form

d
§:k+(cw+5fo)“(l ~fo) =k fo + &(1), (5)

where ¢ = Nc- and &(¢) is a rapidly varying forcing term (Gaussian
white noise) with zero mean

(&(r))=0. (6)

As discussed in APPENDIX A, the magnitude of the noise term, &(7), is
characterized by the two-time covariance (16, 26),

EET)) =v(fo)d(t — 1), )

where 8 is the Dirac delta function and y(fo) is the infinitesimal
variance of fo and is given by

k(e +Sfo)™(1 = fo) + &k fo
N .

V(fo) = ®

With the use of parameters that lead to Ca®* sparks, Fig. 1B shows
that the Langevin simulation of a 20-channel CaRU is qualitatively
similar to the corresponding Markov chain simulation (Fig. 1A).
Equivalence of Markov chain and Langevin formulations. The
Langevin CaRU model is expected to well approximate the Markov
chain model when the number of RyRs per CaRU (W) is sufficiently
large. To determine whether this convergence occurs for a physiolog-
ical number of RyRs (10-200 per CaRU in skeletal and cardiac
myocytes; Ref. 11), we compare the stationary distributions for No
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20
Fig. 1. Comparison and agreement of the Ca>*
release site model using Markov chain and
Langevin formulation. A: Markov chain simu- o 10

lation of 20 two-state ryanodine receptors p=d

(RyRs) coupled via local Ca®" concentration

([Ca®*]) (Eq. 2) using Gillespie’s stochastic

simulation algorithm (17). B: Langevin simula-

tion obtained by numerically integrating Egs.

5-8 using the Euler-Maruyama method (15). 0

C: stationary distribution of the Markov chain

(calculated analytically, Eq. 2, white histo- B

gram) and the binned (discretized) probability 20

distribution for the Langevin formulation (cal-

culated from simulations, black histogram) and

Fokker-Planck equation (calculated analyti-

cally, Eq. 14, + symbols). D: stationary distri-

bution of Fokker-Planck equation (Eqs. /4 and

15). Parameters are chosen to illustrate the

phenomenon of stochastic Ca’* excitability:
=0.15pM " ms Lk~ =0.05ms™ !, cx =

0.06 pM, m = 2.

o

time (s) N

(Fig. 1C). The white histogram of Fig. 1C shows that the bimodal
Markov chain stationary distribution has a local maxima near No = 0
and No = 15. This distribution reflects the fact that the N RyRs are
usually closed but occasionally open in concert as is characteristic for
Ca?" sparks. Comparison to the corresponding distribution of the
Langevin model (black histogram) shows that the SDE formulation is
a good approximation to the Markov chain, even when the number of
RyRs per CaRU is on the low end of the physiological range.

In the Langevin CaRU formulation, the state space for fo is
continuous (0 = fo = 1). The Fokker-Planck equation solved by the
probability density function for the fraction of open channels, p(f, 7),
is given by (12)

ap 1 6*

— 9

o p] 33 fz[w] 9
where p(f,))df = Pr{f = fo(t) < f + df}. Note that in these

expressions, fo is the random variable and f is the independent

variable of the probability density. The drift and diffusion terms in Egq.
9 are given by

a(f)=vi—v7, (10)

v(f) = (v +v7)/N, (11

where v=(f) are the rates of the elementary processes leading to an
increase and decrease in the fraction of open channels, that is,

vi(f) =k (e + )1 - f),
v () =k
and ¢ = c«N as above (Egq. 5).
Setting the left-hand side of Eg. 9 equal to zero (dpdt = 0),

denoting the stationary density by pss(f) and applying boundary
conditions ps(f) — 0 as f — =, it can be shown that (12)

(12)
(3)

0
pss(f) = ;exp{zU} (14)

where 6 is a normalization constant such that [ps(f)df = 1 and
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is an accumulation function with a lower limit of integration satisfying
a(H/y() = 0 for f = a. In fact, U may be any antiderivative satisfying
U’ = a/y, because the normalization of ps determines the constant of
integration.

Figure 1D shows the stationary density pss(f) for the 20-channel
Fokker-Planck CaRU model described above. The + symbols in Fig.
1C are binned values of ps(f) that may be compared with (and agree
with) the stationary distributions of the Markov chain (white histo-
gram) and Langevin (black histogram) descriptions. APPENDIX B pro-
vides more comparisons of Markov chain, Langevin, and Fokker-
Planck CaRU simulations.

Full local/global whole cell model. Having validated the Langevin
CaRU model in the previous sections, we are prepared to construct the
local/global whole cell model of Ca?* homeostasis in permeabilized
ventricular myocytes that is the focus of this article. Figure 2 shows
the relationship between the bulk Ca?* concentrations of the myo-
plasm (cmyo) and the network SR (cns) and the local Ca** concen-
trations associated with each CaRU. With respect to global aspects of
Ca®* signaling, the material balance equations of the whole cell
model are

(15)

M N C—
dt myo pump

de

+ Jom (16)

== ( Tae + Toump) (17)
I‘Rl‘

where A, is an effective volume ratio that accounts for both physical
volume and Ca*>* buffering capacity of the myoplasm and network
SR. A plasma membrane flux may take the form Jom = kpm(Cext —
Cmyo). The sarco(endo)plasmic reticulum Ca?*-ATPase (SERCA)
type Ca>" ATPase flux is (37)

(Cmyo/Kfs)n/s - (Cnsr/Krs)T|rs

/ Vpumpl + (Cmyo/Kfs)nfs + (Cnsr/Krs)nrs.

pump —

8
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Fig. 2. Diagram of compartments and Ca>*
fluxes in the local/global whole cell model.
The model includes [Ca®>*] in 2 bulk com-
partments: network sarcoplasmic reticulum
(SR) (cnsr) and myoplasm (Cmyo). M Ca?™*
release units (CaRUs) are coupled to these
bulk compartments; each includes a dyadic
subspace (cg,) and junctional SR (c;,). The
bulk myoplasmic [Ca®*] is a model parame-
ter, as this quantity is clamped in permeabil-
ized ventricular myocytes. Fluxes include
passive exchange between network and junc-
tional SR (Ji,) and between dyadic subspace
and myoplasm (J;;,,); release fluxes between
junctional SR and dyadic subspace (/. rel) SR
uptake from myoplasm to network SR via SR
Ca?*-ATPase (SERCA) (Jpump); and (for in-
tact cells) plasma membrane fluxes (Jpm).

The aggregate fluxes me0 = ’n"f _ 1];“1),0 and J:sr = ’n"f _ Jo in Egs. de
16 and 17 account for the stochastic dynamlcs of Ca?* release, where = —( Jo t J;”“) (21)
Jhyo = Vmyo(Cly = Cmyo) With vinye = vi /M is the flux from the mth dr N
dyadic subspace into the bulk myoplasm and J7i, = vnsr(Cnsr — €5, In these equations, Ngs and N are effective volume ratios, that is,
where Vosr = Vi /M is the flux from the network SR to the mth = (Vas/Bas)(Vinyo/Bmyo), Where Voo = VI/M and V& is the
junctional SR (m = 1, 2, ..., M). See Table 1 for parameters. aggregate volume of the diadic subspaces (similarly for Nj.). J" l1s the
Each CuRU in the whole cell model isa collectlorrnl of N RyRs.w1th release flux though the mth RyR cluster given by J”, = vy lfm( i
open fractlo;l +f’o” and assoelated dyadic subspace (cj,) and junctional ¢y form = 1, 2,..., M and v~/M. The random functlons of time
SR (cj5;) Ca”™" concentrations: &"(r) are indepenent Gaussmn white noise terms with zero mean,
dcd (&"(r)) = 0 for all m, and the two-time covariances are
S
= ( rel J;:llyo) (19) form #+ m’
m(r)em' (1)) = 22
€ (e () { (rp)8(t—1t") form=m' (22)
75 _ =k ()1 = f3) =k f5+€"(1) (20
dr where

Table 1. Parameters for the local/global whole cell model of calcium homeostasis in permeabilized ventricular myocytes

Parameter Definition Units Value
Cmyo Myoplasmic Ca?* concentration M Varied
Amr Effective volume ratio of network SR and myoplasm 1.46

myo = Mvmyo Rate of myoplasmic domain collapse s! 31.25

Voo = Mvnse Rate of SR domain recovery s 1 0.45

v = My Maximum release rate via RyRs s! 1.56
Vpump Maximum pump rate via SERCA nM/s 161.25
Kis, Kis Forward and reverse half-saturation constant M 0.17, 1702
MNfss Nrs Forward and reverse cooperativity constant — 0.75
N Number of RyRs per CaRU — Varied
k* Association rate constant for Ca?>* binding to RyRs pM Mgl 0.4
k™ Disassociation rate constant for Ca>* unbinding s! 50

n Cooperativity of Ca>" binding to RyRs — 2
M Number of CaRUs in Langevin simulations — 200

Myoplasmic Ca?* concentration (cmyo) is under experimental control in permeabilized myocytes, and thus it is a parameter of the whole cell model. The
effective volume ratio that accounts for Ca>* buffering in Eq. 17 is given by Ansr = (Vase/Bns)/(Vinyo/Bmyo), Where Vg and Vinyo are the volume of network
sarcoplasmic reticulum (SR) and myoplasm, respectively, and Bnsr and Bmyo are the buffer factors of network SR and myoplasm, respectively. The rate constants

m o mr, and vrel scale the ﬂuxes between domains and bulk, given by integrals over the density function p(fif): myo =f vE]yo( Cas ™ Cmyo)P(fs1)Af,

Jrel fvrelf( Cir—Cas)p(f, 1)df, and Jy, fvmr (Cosr—Cisr)p(fi)df, where Cus(f) and ¢js(f) are given by Egs. 32 and 33. The flux via SR Ca®*-ATPase (SERCA) is
governed by Vpump, Kts, Krs, Mes, and mys (Eq. 18). Ca®* activation and dissociation of the 2-state ryanodine receptor (RyR) channel model are governed by k",
k=, and m (Eq. I). The number of Ca>" release units (CaRUs; M) in the Fokker-Planck formulation is large but unspecified.
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K (ep)"(1 =13

N

¥(75) = RLEL

(23)

Note that the dyadic subspaces only influence each other through the
bulk concentrations Cmyo and cusr. Below we refer to Egs. 16-23 as
the “full local/global whole cell model.”

Reduced local/global whole cell model. The Langevin description
of each CaRU (Egs. 19-21) in the full local/global model may be
simplified by assuming that the dyadic subspace and junctional SR
rapidly equilibrate with the bulk myoplasmic and network SR [Ca®™"],

that is, Jie, = Jimy o, and Jig; = Ji. These balanced fluxes relate the 2M
domain Ca®* concentratlons ¢y, and ¢y, to the bulk concentrations,

Cmyo and Cngr, and the fraction of open channels f in the mth CaRU
as follows (22),

— m m
- (1 - meo)cmyo + XmyoCnsr (24)
—=m m
Jsr anr myo + (1 anr)cnsr’ (25)
where X:gyo = ﬁnsnj(‘}m)’o + Vrglr) and X;A"sr = myo/(vrlsr vr:'llyo)’
~m _ ~m ~m — ~m
Visr = VreIVnﬁr/(vrel + Vasr), vmyo - Vrelvl‘ﬂyol(vrel + meo) Vre] Vl'elfron'

Equations 24 and 25 eliminate 2M of the 3M ODE:s representing the
population of M CaRUs, with the remaining ODEs,

Yo w@r-m) -k pre@. oo

dependent on the rapidly equilibrated dyadic subspace concentration
é,d,f that is an algebraic function of f3, Cmyo, and cner. Realizations of
this “reduced local/global whole cell model” are obtained by numer-
ically integrating Egs. 16, 17, and 26.

Fokker-Planck local/global whole cell model. The full and reduced
local/global whole cell models presented above include heterogeneous
local Ca" signaling and stochastic Ca®>* release. Unfortunately, a
physiologically realistic ventricular myocyte simulation would in-
volve M ~ 20,000 CaRUs (6). Rather than perform Monte Carlo
simulations with a lesser, unphysiological value for M that is compu-
tationally feasible, we recognize that a Fokker-Planck equation similar
to Egq. 9 is the master equation for a CaRU and its associated domains.
Because the M CaRUs in the whole cell model are identical and
independent except for fluxes to and from the bulk myoplasm and
network SR, we replace the M SDEs representing these CaRUs (Egq.
26) with this Fokker-Planck equation (a good approximation for large
M that is exact as M — ). In this way, we obtain the “Fokker-Planck
local/global whole cell model.”

In the study of Ca®" homeostasis in permeabilized ventricular
myocytes presented below, the governing equations are Egs. 9, 16,
and /7, with the fluxes ]Im, and JT redefined as functions of the
probability distribution function for fo in a randomly sampled CaRU.
In permeabilized myocytes, the bulk myoplasmic [Ca>*] is clamped
(kpm 1s large) and cmyo = Cex¢ i NO longer a variable but a parameter.
Consequently, Eq. 16 is superfluous and the governing equations for
the Fokker-Planck equation description of the local/global model of
permeabilized ventricular myocytes are therefore given by

dcn%r

= ( ‘]nsr pump) (27)
ap 1 6?
- 28
o p] 33 fz[w] (28)
where
n%r nsrf(cnsr _]bl') p(f t)df (29)
In Eq. 28, a(f) and y(f) are given by Egs. 10 and /1, with
cdg(l -1). (30)
=k f. (31)

CALCIUM HOMEOSTASIS IN A LOCAL/GLOBAL WHOLE CELL MODEL

The equilibrated domain concentrations are given by

Cas = [(1 = Ximyo) Cmyo + XimyoCnsr] (32)
Cisr = [XosiCmyo + (1 = Xasr) €nsr] (33)

where Xmyo and Xner are the following functions of f,
Xinyo = P’ (Viyo & Vo (39
Xose = Py’ (Vi & Pinyo) (35)

where

Pnse = TretVnse’ (Pret + Vase (36)
Pmyo = PretVmyo” (Pret myo) (37)
and vre] = vI, (cf. Egs. 24 and 25). In the local/global whole cell

model calculations presented below, the Fokker-Planck equation was
numerically integrated using a total variation diminishing scheme
(37), with boundary conditions as described in APPENDIX C.

RESULTS

Calcium homeostasis in the local/global whole cell model.
We use the Fokker-Planck version of the reduced local/global
model (Egs. 27-33) to investigate Ca>* homeostasis in perme-
abilized ventricular myocytes, in particular, the influence of
Cmyo 0N SR Ca?" load and release. The relationship between
Cmyo and Ca?* homeostasis is complex, as Cmy, can promote
elevated c, through increased SERCA uptake. On the other
hand, a sufficiently elevated c,s also promotes Ca’™ sparks
that may deplete the network SR (i.e., decrease cCp).

With the use of an intermediate value for the myoplasmic
[Ca®™] (Emyo = 0.18 wM) in the permeabilized ventricular
myocyte model, Fig. 3A shows the bimodal steady-state prob-
ability density function for the fraction of open channels, pg(f),
calculated via the Fokker-Planck version of the whole cell
model (solid line). This bimodal density reflects the dynamics
of CaRUs composed of RyRs that are usually closed but
occasionally open in a concerted fashion. For comparison, Fig.
3A also shows a (nearly identical) estimate of the steady-state
density function obtained from a whole cell model with the
corresponding Langevin description of M = 200 release sites
(dashed curve). Figure 3B compares the stationary distribution
for a whole cell model that uses a Markov chain description of
release sites (white bars) and the corresponding distribution
calculated via the Fokker-Planck version of the model (appro-
priately discretized). The two histograms are qualitatively
identical and in strong qualitative agreement (the Markov chain
simulation is slightly shifted to larger fo), validating the min-
imal Fokker-Planck formulation of the local/global whole cell
model (Egs. 27-37).

With the use of the Fokker-Planck-based whole cell model,
Fig. 3C shows the monotone increasing relationship between
the fraction of open channels and stochastic Ca’" release rate,
given by Vel f(Cjsr — Cas) Where Cjsr and Cqs are functions of f
(Egs. 32 and 33). Figure 3D shows the steady-state release flux
density, given by vie f(Cjsr — Cas)pss, that is, the product of the
curves in Fig. 3, A and C. Note that the steady-state release flux
density is also a bimodal function of f, with the first and second
modes corresponding to nonspark-mediated (light gray area,
£<0.1) and spark-mediated stochastic Ca>* release (dark gray
area, f = 0.1), respectively.

Figure 4 shows steady-state values for total release flux
(JrTe]), network SR [Ca®"] (cny), and the spark Score as a
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Fig. 3. Spark- and nonspark-mediated release
from the population of CaRUs represented in the
local/global whole cell model. A: steady-state den-
sity function pss(f) of the Fokker-Planck-based
whole cell model (solid line) and the correspond-
ing density in the Langevin model (dashed line,
M = 200 release sites). B: binned (discretized)
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function of cny,, obtained from simulation of the local/global
model using the Langevin (+ symbols) and Fokker-Planck
(solid lines) descriptions of the CaRU population. The spark
Score is the index of dispersion of the fraction of open
channels (fo),

Var[ fo]
E[fo] ’

where E[fo] = [fpssdf, Var[fo]l = [(f — E[fo])*pssdf, and pss(H)
is the steady-state probability density of open channels. The
spark Score takes values between 0 and 1, and a Score greater
than ~0.25 indicates the presence of robust Ca>* sparks (21).
Over a wide range of cny, values, there is agreement among
JrTel, Cnsr» and the spark Score calculated using the Langevin and
Fokker-Planck approaches, validating the use of the Fokker-
Planck version of the model and our implementation of both
methods. Note that J%, is a monotone increasing function of

Cmyo (Fig. 4A), while ¢y, is biphasic, increasing for cpmyo < 0.2

Score =

(38)

A B

non-spark-mediated

/ release
spark-mediated

release

steady-state density of the Fokker-Planck model
(black histogram) and distribution of the number
of open channels in the Markov chain-based
whole cell model (white histogram, average of
M = 200 release sites). C and D: RyR release rate
function (C) given by Vil f(Cjsr — Cas) and the
steady-state release flux density (D) given by
Vret f(Cjse — Cas)pss, plotted as functions of the
fraction of open channels (f). Parameters: cmyo =
0.18 uM, N = 40 RyRs per CaRU. In this figure
and those follow, see Table 1 for other parameters.

uM and decreasing for ¢y, > 0.2 pM (Fig. 4B). The spark
Score shows similar biphasic dependence on cpy, (Fig. 4C).
The biphasic dependence of ¢y and the spark Score on cmyo
can be understood by considering the representative stochastic
trajectories for the fraction of open channels in a randomly
sampled CaRU in the Langevin model (Fig. 4A) or, alterna-
tively, the steady-state population density function pgs(f) in the
Fokker-Planck model (Fig. 4C). For a low myoplasmic [Ca®"]
(Emyo = 0.1 uM), pss(f) is located near f = 0, consistent with
few channel openings (Fig. 4, A and C, insets). As Cmyo
increases to an intermediate value of 0.2 wM, increased
SERCA uptake elevates cpy and pgs(f) is distinctly bimodal,
consistent with robust sparks and the observed increase in J%,
and Score. However, a further increase in myoplasmic [Ca®*]
(Cmyo = 0.6 pM) promotes tonic activation of CaRUs (as
opposed to sparks, for a decreasing Score). The resulting
increase in release flux (/%) depletes the network SR [Ca®"]
(lower values of cpg) and eliminates robust sparks. APPENDIX D

c
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Fig. 4. A—C: steady-state values for total RyR release flux J%

1 (A), network SR [Ca®™] (cnsr; B), and spark Score (C) as a function of myoplasmic [Ca?*] (Cmyo)

as calculated using the Fokker-Planck local/global whole cell model (solid black lines). The + symbols indicate the average across 10 simulations, each 20 s
in duration, of the Langevin version of the model (with M = 200 CaRUs). Insets: sample trajectories from the Langevin model (A) and the steady-state population
density function pss(f) from the Fokker-Planck model (C), respectively, for cmyo = 0.1, 0.2, and 0.6 wM.
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Fig. 5. Balance between SR Ca®* release and uptake at steady state. The SR
Ca2™ release flux J%, (black dashed lines) and SERCA uptake flux Jpump (solid
gray lines) are shown as a function of a fixed (clamped) network SR [Ca®™"] (as
though cnsr were a parameter) for different values of myoplasmic [Ca®*]
(Cmyo)- Steady-state release fluxes (solid black lines) are shown as a function
of clamped cner for increasing values of Cmyo from 0.06 to 1.2 wM (arrows).
Each intersection of these curves (3 open circles) indicates a steady-state
release flux (J%;) and corresponding unclamped SR Ca>* load (cns) solving
Egs. 27-37 for a particular cmyo.

provides more details regarding the influences of cpy, on
steady-state spark statistics.

In Fig. 5, J.,, (black dashed lines) and J,ump (solid gray lines)
are shown as a function of ¢, for three values of cmyo. JrTel I
a monotone increasing function of c,g; the increasing slope at
high cpe levels is due to spark-mediated Ca’" release. Joump
decreases approximately linearly with c,, and both J%, and
Jpump increase for increasing cmyo. The intersection of the J&,
and Joump curves (open circles) indicate the steady-state total
release flux and SR Ca?" load (cp) for a given value of cpyo
(solid black line, arrow indicates increasing cmyo). For a given
Cnsr, tWo distinct steady-states are possible, one with low cmyo
and JL, (primarily nonspark-mediated release) and another
with high ¢y, and JY, (primarily spark-mediated release). The
next section further explores the dependence of spark- and
nonspark-mediated release on cmyo.

Spark- and nonspark-mediated SR Ca?* release. In a recent
experimental study, Bovo et al. (3) demonstrated that myoplas-
mic Ca’>" levels augment both spark-mediated SR Ca** release
and nonspark-mediated SR Ca’" release in ventricular myo-
cytes (3). While controlling myoplasmic [Ca**] (cmyo) by
permeabilization of the cell plasma membrane, the time course
of network SR [Ca®"] (cqr) depletion was measured following
application of the SERCA inhibitor thapsigargin (cf. Ref. 3,
Fig. 1A). Assuming negligible SERCA activity (i.e., Jpump =
0), the rate of change of ¢,y was used as a measure of the SR
Ca®>* release flux (see Eq. 27), and further analysis was
performed to distinguish spark- and nonspark-mediated release
as functions of ¢y, and ¢y Figure 6 uses a similar protocol
(setting vpump = 0) to elucidate the influence of ¢y, on spark-
and nonspark-mediated release. Consistent with Bovo et al. and
Fig. 4B, Fig. 6 shows that steady-state cps increases as Cmyo
increases from 0.12 to 0.18 wM (compare initial values, solid,
dashed, and thick solid lines). Consistent with the experiment,
increasing Cmyo in this range of concentrations also leads to an
increased Ca”™ release rate, as evidenced by faster SR deple-

CALCIUM HOMEOSTASIS IN A LOCAL/GLOBAL WHOLE CELL MODEL

tion upon simulated block of SERCA with thapsigargin (TG in
Fig. 6).

Figure 7 shows the total release flux, J%,, and the spark- and
nonspark-mediated release (J3,; and J%; as defined in Fig. 3C)
as a function of c,s during the SR depletion simulation of Fig.
6 for different values of cmyo (cf. Ref. 3, Fig. 3). While
JrTe]increases as a function of both c,sr and cmyo (Fig. 7A), the
contributions of the spark- and nonspark-mediated release (J3,,
and J%7) are highly dependent on c,. At low network SR
[Ca®"] (Cosr), the spark-mediated release flux (J5,) is negligi-
ble, but it increases exponentially as cyg increases (Fig. 7B).
The nonspark-mediate release (/%) is small for low cpg levels
and increases as a linear function of cy (Fig. 7C). When the
SR load is clamped at c,y = 950 pM, both J5, and J3}
increase as Cmyo increases (Fig. 7D). However, the spark-
mediated release flux (J3,) increases to a greater extent than the
nonspark-mediated release (/). Steady-state calculations of
JL,, J3,, and NP closely agree with time-varying simulations
(Fig. 7, + symbols). In summary, when the SR is depleted,
most SR Ca?" release occurs via nonspark-mediated release;
conversely, when the SR is replete, most SR Ca’" release
occurs via Ca?* sparks, more S0 as Cmyo iNCreases.

The number of RyRs per CaRU, N, can vary over a wide
physiological range (11). Figure 8 shows the steady-state

values for JL,, J5,, and J37 for different values of N. As N
T

rel>
increases (scaling vy appropriately such that J.,, when all N
channel are open is unchanged), /%, becomes a steeper function
of cusr (Fig. 8A). Interestingly, when the network SR [Ca®™]is
higher (chsr = 1,000 uM), JrTel is larger for large N, but when
Cusr 15 slightly lower (Cosr = 950 wM), J%, is smaller for large
N (Fig. 8A, arrows). Spark-mediated release (J3.) varies with N
in a manner similar to J%, (Fig. 8B), while nonspark-mediated

release (J%y) generally decreases as N increases (Fig. 8C).

rel

Figure 9 shows how steady-state probability density func-
tion, pss(f), and the release flux density, vrT,:l S(Cjsr — Cas)Psss
depend on the number of RyRs per release site (N) when the
total release rate vrTe] is fixed (i.e., MN is a constant). For
network SR [Ca®"] of cne = 950 pwM (Fig. 9A), a larger
number of channels per CaRU (N) decreases the “diffusion”

term (channel gating fluctuations) in Eg. /1 and both spark-

1100 1

900

C. o (M)
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500 A A )
0 100 200 300
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Fig. 6. SR Ca?* depletion following inhibition of SERCA uptake in perme-
abilized ventricular myocytes. Network SR Ca?* concentration, Cnsr, is shown
as a function of time for different values of myoplasmic Ca®>" concentration,
Cmyo. At t = 30 s, SERCA inhibition by thapsigargin (TG) is simulated by
setting uptake rate constant vpump = 0.
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Fig. 7. Spark- and nonspark-mediated release
during SR Ca®* depletion. Total (JX; A), spark

rel»

mediated (J3,; B), and nonspark mediated (J3;

rel »

C) release flux are shown as functions of net-

@ spark-mediated release
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work SR [Ca?*], cne, during SR depletion
simulations (see Fig. 6), for different values of
myoplasmic [Ca®"], cmyo. Steady-state calcula-
tions of JT,, J5,, and JN3 (“+” symbols) are
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®  shown for cmyo = 0.18 uM. D: J5, (filled
circles) and J% (open circles) as functions of
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and nonspark-mediated SR Ca?* release. However, for a
slightly larger value of c, = 1,020 pM, larger N decreases
nonspark-mediated release (Jy) while promoting robust
sparks and increasing spark-mediated release J3.,,. However, if
the total release flux (v\,) is proportional to N (as opposed to
a constant), larger N results in higher release flux regardless of
Cnsr because of high release flux rate (see APPENDIX E).
Finally, Fig. 10 shows the steady-state spark Score for
“clamped” cmyo and ¢y and illustrates the interplay of bulk
concentrations and Ca2* sparks. For a given value of Cpyo, the
Score is a bell-shaped function of ¢y, that is, there is a specific
range of SR Ca’?" load that supports robust sparks. As ob-
served in prior work (21), the range for robust sparks decreases
as N is increased (Fig. 10, B and C). Most importantly, the solid
black lines indicate the steady-state (unclamped) network SR
[Ca®™] (cnsr) as a function of Cmyo (cf. Fig. 4B). When cpyo is
sufficiently elevated that further increase leads to decreased
Cnsr, the SR Ca?™ load equilibrates to a value that maximizes
the Score, that is, the steady-state c, decreases (with increas-
ing Cmyo) just enough to maintain robust sparks. This intriguing

A

— —_
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= =
= =
[ n @
r] r)

and potentially significant result is also observed when the total
release flux vL, is proportional to N (not shown).

DISCUSSION

Summary of main findings. In this article, we present a novel
local/global whole cell model of Ca>* homeostasis based on a
Langevin description of stochastic Ca®" release that includes
both spark-mediated and nonspark-mediated release dynamics.
The Fokker-Planck equation associated with the Langevin
formulation of stochastic Ca?>* release is coupled to balance
equations for the bulk myoplasmic and network SR [Ca?*].
With the use of this approximate representation of the collec-
tive dynamics of a large number of identical CaRUs, this whole
cell modeling approach avoids Monte Carlo simulation of a
large population of CaRUs and facilitates our study of Ca**
homeostasis in permeabilized ventricular myocytes.

In permeabilized myocytes, the interplay between bulk myo-
plasmic [Ca?*] (Cmyo), and network SR [Ca®*] (Casr) On SR
Ca®" release is complex, in spite of the fact that myoplasmic
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Fig. 8. Total (A), spark-mediated (B), and nonspark-mediated (C) release flux as functions of ¢y at steady state. Parameters: N = 40 (thick line), 80 (dash line),

and 120 (thin line); cmyo = 0.18 wM; other parameters as in Table 1.
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channels and release flux density for chsr = 950 (A and
B) and cper = 1,020 pM (C and D). Parameters: N = 40
(thick line), 80 (dash line), and 120 (thin line); cmyo =
0.18 wM; other parameters as in Table 1.
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[Ca%"] is under experimental control (i.e., Cmyo is not a dy-
namic variable but a model parameter). Elevated cpyo pro-
motes Ca’™" uptake into the network SR via the SERCA pump,
and this may elevate c,s. On the other hand, high ¢y, and high
Cnsr bOth promote increased SR Ca?™" release and depletion of
SR Ca>*.

We use the Langevin and Fokker-Planck local/global whole
cell model of a permeabilized ventricular myocyte to charac-
terize the depletion of network SR [Ca®™] (cpsr) that occurs via
both spark-mediated release and nonspark-mediated release, as
well as dependency of SR Ca®>* load on myoplasmic [Ca®"]
(Cmyo)- In agreement with recent experimental work (3), we
find that spark-mediated release increases exponentially as
Cmyo increases, while nonspark-mediated release increases lin-
early (Fig. 7).

The interplay among Cmyo, Cnsr, and spark- and nonspark-
mediated release in the local/global whole cell model generates
several phenomena of Ca*>* homeostasis in permeabilized cells
that are worth highlighting. For example, the model predicts
the presence of two distinct stable steady states that lead to the
same SR Ca?* load, one with low myoplasmic [Ca®"] and

A
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—

s 1500

nsr (I"L

© 1000

500

predominantly nonspark-mediated SR Ca®* release and an-
other with high myoplasmic [Ca®*] and release that is primar-
ily spark mediated (Fig. 5). Significantly, in our permeabilized
ventricular myocyte model, for any clamped myoplasmic
[Ca’*] (Cmyo) that is large enough to trigger spark-mediated
release, the resulting spontaneous stochastic Ca™ release tends
to decrease the network SR Ca?™ load just enough to maintain
robust Ca>* sparks (Fig. 10). To our knowledge this potentially
significant characteristic of Ca?>" homeostasis in permeabilized
cells has not previously been identified.

Physiological significance. Significant effort in recent years
has been devoted to understanding the mechanisms influencing
RyR regulation and SR Ca®* release. Abnormal regulation of
RyRs can lead to aberrant SR Ca®* release that directly
contributes to excitation-contraction coupling dysfunction (13,
14). Previous studies have shown RyR-mediated Ca>" release
was enhanced in myocytes from failing rabbit hearts (40),
which increases the likelihood of Ca?"-dependent arrhythmias
(13). Recent experiments suggested that hidden RyR release
contributes to the total release flux and influences Ca** ho-
meostasis (3, 4, 40). In this article, we are particularly inter-
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Fig. 10. Score as function of cmyo and cnsr when N is 20 (A), 60 (B), and 100 (C), respectively. The solid line indicates the steady-state value for cng as a function

of Cmyo (cf. Fig. 4).
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ested in how myoplasmic [Ca®"] (Cmnyo) influences SR Ca®*
release via regulation of stochastic Ca?" release mediated by
CaRUs composed of clusters of RyRs. Our model shows that
RyRs may produce both visible (spark-mediated) and invisible
(nonspark-mediated) stochastic Ca>* release. High Cmyo 1N-
creases both spark- and nonspark-mediated release by increas-
ing the open probability of Ca®>*-activated RyRs. However,
Cmyo affects these pathways in two distinct and characteristic
ways. Nonspark-mediated Ca>* release increases linearly as a
function of ¢y, while spark-mediated release increases expo-
nentially with cmyo.

We investigated how the number of RyRs in each individual
CaRU influences network SR Ca*>" depletion and stochastic
Ca’" release. When v, is fixed (single channel conductance
inversely proportional to N), we found that a larger number of
RyRs per CaRU results in a steeper release flux (primarily
spark-mediated release) as a function of network SR [Ca®™],
when the SR is replete. However, when network SR [Ca?™] is
depleted, and the release flux is primarily nonspark mediated,
increasing the number of RyRs per CaRU decreases the total
release flux, due to reduced triggering of Ca?" sparks (Figs. 8
and 9). When v%, is proportional to N (fixed single channel
conductance), SR Ca®>" decreases with increasing N, due to
higher release rates (not shown).

Because recent studies have shown that the number of RyRs
per CaRU is variable (1), we note that the local/global whole
cell model presented here can be modified to account for
CaRUs of different size by simultaneously solving multiple
Fokker-Planck equations, each with a different value for N.
Assuming M = > ;M; CaRUs, with CaRUs of type i composed
of N; RyRs, the population densities p; solve

pi_ 132

S =y oy = 0f FV)IN, v = k)N —
f and v~ = k~f. The stochastic Ca>" release flux (Eq. 27)
becomes

nsr( ) = _E M f nsr(cnsr jisr)pi(f’ t) df
:VEs( Cnsr — EMf Jsrplft df)

where [pdf = 1 and thus M~ > fM;p,df = 1. In these equa-
tions, c4,(f) and ¢ (f) are given by indexed versions of Egs. 32
and 33 where 7/, = VO Nf and Vo, is analogous to the RyR
unitary conductance. Writing vy, and v, as the domain time
constants for a representative of the ith class of CaRU, Xjnyo
and X!, are given by Egs. 34—37 upon replacement of i for T.
The Fokker-Planck equations are coupled, because «; is a
function of ¢, through Cg,, and dc,/df depends on the p;
through v\ (Eq. 32).

Comparison to other whole cell models. A number of math-
ematical and computational whole cell models have been
developed to understand Ca?" homeostasis and the cardiac
Ca®" cycle. For example, computational models of excitation-
contraction coupling in ventricular myocytes have been devel-
oped in which SR Ca?* release depends directly on the average
myoplasmic [Ca®"] (25, 34). These “common pool” models
(33) exhibit all-or-none triggered SR Ca** release, contrary to

where o; = v;

Jsr

H519

experiments showing that release is smoothly graded with
changes in Ca?* influx (5, 36). This discrepancy is a conse-
quence of the “local control” mechanism of CICR. In ventric-
ular myocytes, the cellular SR Ca®* release flux is not a
function of the spatially averaged intracellular [Ca®"] but
instead depends on thousands of different local Ca>* concen-
trations fluctuating in response to stochastic openings and
closings of RyRs located on the SR membrane. The picture is
further complicated by dynamic changes in localized SR
[Ca®*] that are also spatially heterogeneous and thought to
influence the gating of RyRs (31).

To overcome this problem, stochastic models that account
for the heterogeneous dyadic subspace and junctional SR
[Ca®*] have been developed (19, 22, 39). Similar to the
Langevin model that is the focus of this article, these local
control models include a large number of CaRUs. In such
models, RyR stochastic gating is typically described by a
discrete-state Markov chain. This approach has recently
been used to examine issues such as allosteric coupling
between RyRs (39) and refractoriness of Ca?™ release after
termination (28).

While Markov chain and Langevin models of CaRUs may
lead to similar results (Fig. 1), the state space for Markov chain
simulations is proportional to the number of CaRU states, a
quantity that is exponential in the number of distinct RyR
states. To see this, consider a CaRU composed N identical
K-state channels (and thus K" states). It is well-known that the
number of distinguishable CaRU states is given by (N + K —
DUNU(K — 1D)!'=[(N+ K — 1)..(N + DI/(K — 1)!, a quantity
that includes a term proportional to N ~ ! (the numerator has
K — 1 terms) and is thus exponential in K. On the other hand,
the run time for Langevin simulations is independent of the
number of RyRs (N is a model parameter that scales the
channel noise) and proportional to the number of RyR states K
(the required number of SDEs). Similarly, the run time of the
Langevin local/global model does not scale with N, and the
model may be extended to include RyRs with more than two
states (see below). Because the Langevin version of the local/
global model that has been our focus involves only a single
SDE (two-state RyR model), the probability density function
for CaRU state is univariate. For this reason, the Fokker-Planck
local/global whole cell model is extremely computationally
efficient. Because a K-state RyR model leads to a Fokker-
Planck equation with K — 1 independent variables (conserva-
tion of probability), the Langevin version of the local/global
model is likely to be more straightforward than the Fokker-
Planck version when K = 3 (see Eq. 41 below).

It is instructive to compare the local/global model presented
here with our prior work. In Hartman et al. (22), we presented
a similar minimal model of a permeabilized myocyte, in which
bulk myoplasmic and network SR Ca®* levels were coupled to
a Markov chain CaRU model with N Ca**-activated RyRs per
release site. The master equation in this case was a linear
system of N + 1 ODEs. The Langevin and Fokker-Planck
local/global models presented here are also distinct from prior
work of Williams et al. (37, 38). In these studies, Ca®" release
dynamics were described by a set of coupled multivariate
probability density functions (advection-reaction equations)
for the dyadic subspace and junctional SR [Ca™], cas and Cisr»
conditioned on CaRU state. This population density method
and the associated moment-based reductions (38) are limited
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by a state-space explosion that is exponential in K, while the
computational efficiency of the Langevin local/global model is
linear in K.

Limitations and extensions of the model. In the Langevin
model, we assume that the number of channels in each CaRUs
is large enough that the fraction of RyRs in different states can
be treated as a continuous variable. When the number of RyRs
per CaRU is small, the error associated with the Langevin
approximation to the Markov chain CaRU model may not be
acceptable (15). In the local/global whole cell model presented
here, the Langevin formulation was validated using a physio-
logically realistic numbers of RyRs per CaRU (see Figs. Bl
and B2). The number of RyRs per CaRU required for the
Langevin formulation to be highly accurate likely depends on
the details of the RyR model used but is easily determined in
any specific case.

In the derivation of the reduced local/global model, we
assume that the dynamics of dyadic subspace [Ca®"] and
junction SR [Ca®*] are fast compared with the gating of RyRs.
However, slow translocation of junctional SR [Ca®*] can be
incorporated into the Langevin local/global whole cell model
through the addition of an additional SDE (24). This extension
might be important if the chosen RyR model includes luminal
regulation, that is, transitions whose rate is a function of
junctional SR [Ca’"]. Accounting for slow junctional SR
dynamics would increase the dimensionality of the probability
density function (Eq. 28) used in the corresponding Fokker-
Planck whole cell model.

Upgrading the Langevin formulation of the local/global
whole cell model to accommodate more complex RyR models
is straightforward. A K-state RyR model leads to a linear
system of K SDEs,

d

I jo+ ) 39
dr

where f = (f1, f2,..., fx) and & = (&, &, ..., &) are row
vectors, Q = (g;j) is the RyR model’s transition matrix (the
Markov chain’s infinitesimal generator), the random term is
mean zero ((§(r)) = 0) with two-time covariance matrix,

(E' (e )y =T(H)d(t—1"), (40)

where I' = (yy), v = —(qufi + ¢;fp)/N for i # j and y; =
—>j+i Vi (the vy;; are positive) (26). The corresponding Fokker-
Planck equation for the K-state RyR is

Do) = -3 L [(0)elr. 0]

i=10f;
1K
+ 5[2 =~ af,afl[’yup(f’ [)]’ (41)
where (fQ); is the ith element of the row vector fQ.

The Langevin and Fokker-Planck formulations of the local/
global whole cell model presented here are not explicitly
spatial. That is, a large population of CaRUs are assumed to
influence one another indirectly via the spatially averaged
bulk myoplasmic and network SR [Ca?*] (the CaRUs are
mean-field coupled). This form of the local/global model is
not well-suited to investigate macrosparks and other explic-
itly spatial phenomena that might occur in permeabilized
ventricular myocytes when myoplasmic [Ca®"] is very high.

K 2
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By partitioning (discretizing) the bulk myoplasm and SR
into regions that interact via buffered Ca®* diffusion, the
formalism would allow for propagation of intercellular Ca®*
waves, subcellular alternans, and so on. Such extensions of
the Langevin local/global model approach would be
straightforward and robust. Extending the Fokker-Planck
local/global model in this way require a discretization suf-
ficiently coarse that number of CaRUs per subcompartment
remains large.

APPENDIX A: DERIVATION OF THE LANGEVIN CARU
MODEL

Assuming a time interval At is small enough so that at most one
event occurs in the interval [z, + + Ar], a CaRU composed of N
two-state channels will undergo a No — No — 1, transition (ANg =
—1) with probability p~ = k~NoAt, and a No — No + 1 transition
(ANo = 1) with probability p™ = (N — No)k"c At, where cy,, is the
local [Ca®?*] for No open channels (Eq. 3). By conservation, the
probability that ANo = 0is p® = 1 — k" NoAr — (N — No)k"cj Ar.
Conditioning on the current state, the expected infinitesimal increment
of the number of open channels (ANo) is thus

hm —E[ANINo(1)] = 11m [—1 p+0-p°+1-p*]
Ar—0 At Arﬁo N

= (N = No)k'c} —k No.
The deterministic part of the right hand side of Eq. 5 is derived as the
corresponding infinitesimal expected increment in fo = No/N. Simi-
larly, the infinitesimal variance of ANg is

hmA E[AN3INo(7)] = hm [(— )2 p+02-p"+ 12 p*]
Ar—0

= (N = No)k"cj +k No.
The function y(fo) that occurs in Eq. 8 is derived from this quantity
using E[Af3lfo(t)] = E[ANEINo(1)]/N>.

APPENDIX B: COMPARISON OF MARKOV CHAIN AND
LANGEVIN CaRU MODELS

Figure B1A compares the spark Score calculated via the Langevin
(+ symbols) and the Markov chain (lines) description of a CaRU
composed of two-state channels. The Score is a biphasic function
of the coupling strength ¢+ (Eg. 38), with robust sparks occurring
over a wider range of coupling strength when N = 20 vs. 60
(dashed and solid lines, respectively). The Langevin method agrees
with the Markov chain result, but overestimates the Score slightly
for N = 20 and small c« (parameter regimes with few channel
openings). Figure B1B shows that the Score calculated via the
stationary distribution of the Markov chain and the Fokker-Planck
equation are in agreement.

The Langevin method is also applicable to more complex single
channel models. For example, consider a three-state RyR that is
activated as well as inactivated by Ca®*

kM k™
C(closed) === O(open) ===R(refractory), (42)
k; K

where c is the local [Ca®™], k+c“, k, , k c", and k,, are transition rates
with units of time™!, k] and k; are ass001ation rate constants with
units of conc™ M-time !, and the cooperativity of Ca>" binding v is the
same for activation and inactivation. The Langevin description of a
CaRU composed of N three-state channels (Eq. 42) is given by Eq. 39,
where the fraction of channels in each state, f = (fc, fo, fr), 1S a row

vector, Q is the transition rate matrix,
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Fig. B1. A: Comparison of the Langevin (+
symbols) and the Markov chain (lines) de-
scription of an individual CaRU composed of
2-state channels. The spark Score as a function
of the coupling strength (c=) is for N = 20 or
60 (dotted and solid lines, respectively). Error
bars are SD of 20 10 s trials using the Lan-
gevin model. B: Score vs. c« for the Markov
chain model (gray) and the Fokker-Planck
equation (dash lines). Parameters as in Fig. 1.
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where the diagonal elements (<) are such that each row sums to zero
(2;gi; = 0) and the local [Ca®>"] is ¢ = c.. + foC€ where T = Nc- (cf.
Eg. 3). The rapidly varying forcing function in the Langevin equation
(Eq. 39), &) = [Ec(D), &o(1), Er(D)] is mean zero ((§(1)) = 0) with
two-time covariance (£§T()&(t)) = T()d(r — t') (Eq. 40). Here I’ =
(v;) is given by yoc = yco = [k, e + k,fol/N, Yor = Yro =
[k c"o + k, fr]/N, ycr = Yre and the diagonal entries are such that
each row sums to zero.

Figure B2 plots Score vs. coupling strength (c+) for this Langevin
model of a CaRU composed of N three-state channels with Ca**
inactivation. This may be compared with the result for a CaRU
composed of N two-state channels with no inactivation (Fig. B1).
Consistent with a previous computational study (21), Fig. B2 shows
that Ca>-dependent inactivation facilitates spark termination (i.e.,
CaRUs spark for a wider range of coupling strengths). Most impor-
tantly, the Langevin (+ symbols) and Markov chain (lines) simula-
tions agree.

APPENDIX C: LANGEVIN EQUATION BOUNDARY
CONDITIONS

Because solutions of the Langevin CaRU model (f;) represent the
fraction of channels in state i, physical values are in the range 0 = f; =
1 and, formally, the stochastic processes that solve the Langevin
CaRU models (Egs. 5 and 39) have this property. However, numerical
integration via the Euler-Maruyama method (16) involves a finite time
step; consequently, there is a small probability of crossing f; = 0 or 1,
thereby exiting the physical range.

In the context of stochastic ODE modeling of ion channel dynam-
ics, several modifications of the Euler-Maruyama scheme are com-
monly used to address this numerical issue. These include rejection
and projection methods as well as more sophisticated approaches such
as equilibrium noise approximations (18) and reflected stochastic
differential equations (reviewed in Ref. 7). Unfortunately, these meth-
ods yield solutions that may disagree with the corresponding Markov
chains when N = 20-200 (11). In the context of Langevin CaRU
models, a superior approach is to define auxiliary variables (observ-

ables) restricted to the physical range, i.e., f; = max[0, min(1, f;)], for
evaluation of state-dependent rates, without projecting the stochastic
trajectory f; to the boundary. For example, the Euler-Maruyama
scheme use to integrate Eq. 5 is

= ada(em) + /() asm |

0.06
c, (uM)

0.12

where the AB™ are i.i.d. normal random variables with mean zero and
variance 1/At, a(f) = kTé"(1 — f) — k f,and3y(f) = [kTE"(1 —
)+ k fYNand é = c.. + ¢f. Because the deterministic flux is positive
(o > 0) when f < 0 and negative (o < 0) when f > 1, no restriction

is necessary for the factors 1 — fand fin &; in fact, we found that not
doing so yields better agreement with the corresponding Markov

chain simulations. Conversely, )? is used in the evaluation of the
diffusive term to ensure ¥. This method has similarities to the reflected
stochastic differential equation technique discussed in Dangerfield et
al. (2012).

APPENDIX D: SPARK STATISTICS ANALYSIS VIA THE
LANGEVIN DESCRIPTION OF THE LOCAL/GLOBAL WHOLE
CELL MODEL

Figure D1 shows the mean steady-state spark amplitude (A),
spark duration (B), and interevent intervals (C) as a function of
Cmyo, calculated via the Langevin version of the local/global whole
cell model. The duration of the ith Ca®>* release event is the time
elapsed between the first channel opening and last channel closing
of each simulated spark, here defined as fo crossing the threshold

0.5r

Score

0 O.E)S 0:1
c. (uM)

0.15 0.2

Fig. B2. Comparison of the Langevin (+ symbols) and the Markov chain
(lines) description of an individual CaRU composed of N = 20 (solid) or 60
(dashed lines) three-state channels that include fast Ca>" activation and slow
Ca®" inactivation (Eq. 42). The dissociation constant of inactivating Ca?* is
fixed (K» = 5.8); however, the thick lines indicate inactivation rates slowed
10-fold compared with thin lines. Parameters: ¢ = 0.05 WM, n = 2,k = 1.5
pM ™ ™ms™ !, k; = 0.5 ms™!; thin lines: k, = 0.015 pM "ms™ ', k, = 0.005
ms~'; thick lines: k7 = 0.0015 wM "ms~', k, = 0.0005 ms~'. Error bars as
in Fig. BI.

AJP-Heart Circ Physiol - doi:10.1152/ajpheart.00296.2014 - www.ajpheart.org



H522

CALCIUM HOMEOSTASIS IN A LOCAL/GLOBAL WHOLE CELL MODEL

C

6 0.6 100

@ 80
- g
w 4 o 04 5

p <L 2 60
o c £
2 2 4
= Iod c

g 5 2 40
c 2 T 02 o
—
2

€ 20

0 0 0

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Crnyo (M) Cyo (M) Cpnyo (M)

Fig. D1. Mean spark amplitude (A), duration (B), and interevent interval (C) as a function of myoplasmic [Ca®>*] (cmyo), calculated via the Langevin version of

the local/global whole cell model (average over 1,000-s simulations).

1/N in the upward/downward direction. The amplitude of ith Ca>*
release event is the integrated area under fo(#) during the event.
The ith interevent interval is the length of time between the (i —
1)th and ith Ca®" release events. Note that spark amplitude and
spark duration are biphasic functions of cmyo, peaking at cmyo =~
0.25 wM, similar to the steady-state cns and spark Score (Fig. 4, B
and C).

APPENDIX E: Ca?>* RELEASE FLUX AND CARU SIZE

Most of the parameter studies presented above assume that the total
number of RyRs per cell is fixed. When the number of channels per
CaRU (N) is varied, the number of CaRUs per cell (M) is changed
so that MN is a constant (i.e., the total release flux rate v\, is fixed).
Alternatively, M may be fixed; in this case, v, is proportional to
CaRU size (N). Figure El shows the total release flux (J7L)),

spark-mediated release (JS,,), and nonspark-mediated release (J%;

rel

when the number of channels per CaRU (N) are varied under this
assumption (fixed single channel conductance). In this case, re-
gardless of cng, the total release flux and spark-mediated release
are higher for larger N. Conversely, when v, is fixed (Fig. 8), the
clamped network SR [Ca®*] ¢, determines whether CaRU size N

increases or decreases the total release flux J.,. Figure E2 shows

release flux density increases with CaRU size when v\, is propor-
tional to N (cf. Fig. 9).
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