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Phylogenetic systematics is heading for a renaissance where we shift from
considering our phylogenetic estimates as a static image in a published
paper and taxonomies as a hardcopy checklist to treating both the phyloge-
netic estimate and dynamic taxonomies as metadata for further analyses.
The Open Tree of Life project (opentreeoflife.org) is developing synthesis
tools for harnessing the power of phylogenetic inference and robust taxonomy
to develop a synthetic tree of life. We capitalize on this approach to estimate a
synthesis tree for the freshwater crayfish. The crayfish make an exceptional
group to demonstrate the utility of the synthesis approach, as there recently
have been a number of phylogenetic studies on the crayfishes along with a
robust underlying taxonomic framework. Importantly, the crayfish have also
been extensively assessed by an IUCN Red List team and therefore have accu-
rate and up-to-date area and conservation status data available for analysis
within a phylogenetic context. Here, we develop a synthesis phylogeny for
the world’s freshwater crayfish and examine the phylogenetic distribution
of threat. We also estimate a molecular phylogeny based on all available
GenBank crayfish sequences and use this tree to estimate divergence times
and test for divergence rate variation. Finally, we conduct EDGE and
HEDGE analyses and identify a number of species of freshwater crayfish of
highest priority in conservation efforts.

1. Introduction

The freshwater ecosystems represent only 0.8% of the Earth’s surface, but house
nearly 6% of all described species and are under severe pressure from multiple
impacts, including: overexploitation, water pollution, flow modification, destruc-
tion or degradation of habitat, and invasion by exotic species [1]. Freshwater
ecosystems in areas such as the southeastern United States house a highly diverse
array of fauna that exhibits high levels of endemism [2]. The fragmented nature of
these habitats both drives speciation (resulting in exceptional biodiversity) and
results in high susceptibility to habitat destruction and limited dispersal capa-
bility. The combination of these factors promotes an accelerated extinction rate
(on the order of 4% per decade) on par with extinction rates in tropical rainforests
[3]. Thus, freshwater habitats are critical to biodiversity, but are at extremely high
risk and therefore are in need of conservation efforts.

Crayfish are an important component of these endangered ecosystems
and represent an opportunity to capitalize on our knowledge of their diversity
(taxonomic and phylogenetic) to help assess relative conservation priorities for
freshwater ecosystems as well as conservation priorities for these endangered
species themselves [4,5]. Crayfish play a central ecological role in many freshwater
ecosystems and provide an important economic and cultural role in many com-
munities [6,7]. Indeed, they have been categorized as keystone species in stream
communities both based on consumer activity [8] as well as directly through pre-
dation and indirectly through sediment bioturbation and increasing organic
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matter processing rates [9]. Even in terrestrial systems, the
freshwater crayfish play a significant role as ecological engin-
eers [10,11]. Unfortunately, both the freshwater ecosystems
and the crayfish from around the world are under severe
pressure and should be high priorities for conservation efforts.

Crayfish are a highly endangered component of these fresh-
water ecosystems with over 30% of the world’s described species
considered endangered and at risk of extinction [12]. The extant
representatives are composed of over 600 species distributed
taxonomically across three families (Parastacidae, Cambaridae
and Astacidae) and 30 genera [13,14]. They are distributed in
temperate areas across the globe and are on all continents
except Antarctica and continental Africa (although there is an
endemic genus in Madagascar). The centre of diversity for the
Southern Hemisphere family, Parastacidae, is in southeast Aus-
tralia and Tasmania; whereas, the centre of diversity for the
species rich Cambaridae is in the southeastern United States
[13]. Crayfish represent an excellent candidate for phylogenetic
synthesis because of their robust underlying taxonomy [15,16]
and extensive phylogenetic work across the group (table 1 and
references therein). Importantly, they have also been the focus
of a recent International Union for Conservation of Nature
(IUCN) Red List assessment and have been thoroughly assessed
using Red List criteria for endangerment [12].

In this study, we bring together recent crayfish phylo-
genetic studies with this underlying taxonomic framework
to estimate a synthesis tree for all the freshwater crayfish
(taxonomy + phylogeny). With this synthesis tree, we map
TUCN endangered species status and test for associations
with phylogenetic clades and taxonomic groups. Additionally,
we estimate a crayfish phylogram using GenBank sequence
data from across the freshwater crayfish to obtain branch
length estimates and anchor these with divergence time esti-
mates calibrated with extensive fossil data [17]. Using the
resulting chronogram, we estimate divergence and extinction
rates across the freshwater crayfish. Finally, by combining
this phylogenetic information with phylogenetic diversity
(PD) calculations and endangered status, we identify crayfish
species that are especially evolutionarily distinct and globally
endangered (EDGE analysis) [36]. Therefore, our study
effectively demonstrates the power of combining robust taxon-
omy with synthetic phylogeny to aid conservation assessment
based on PD and endangerment assessment.

2. Material and methods

(a) Phylogenetic analyses and synthesis

(i) Synthetic tree estimation

Phylogenetic synthesis is the merging of multiple sources of phylo-
genetic information with an underlying taxonomy. Thus, the
generation of synthetic trees differs from supertree approaches
[37] both conceptually as well as practically. Supertrees treat mul-
tiple phylogenetic estimates as the ‘data’ for a new phylogenetic
analysis resulting in the supertree without consideration of the
underlying taxonomy. Synthetic trees are the graphical uniting
of multiple estimates of phylogeny without re-estimation and
therefore they do not suffer from signal enhancement, where
novel relationships can appear in the supertree that are not present
in the input source trees [38]. Instead, conflict can be visualized
and traced back to the source trees without novel relationships
being generated from conflicting source trees [39]. Because the syn-
thetic tree approach uses a taxonomy as the underlying backbone
structure, conflicts in taxonomy can also be quickly identified.

Table 1. Phylogenetic studies included in the synthesis tree. OTU, JJEI

operational taxonomic unit.

taxonomic
study level 0TUs
molecular phylogeny, Astacidea 387
this study
Bracken-Grissom Astacidea 66
et al. [17]
Ainscough et al. [18] Fallicambarus 19
Breinholt et al. [19] Cambarus 93
Pedraza-Lara et al. [20] (ambarellinae 77
Toon et al. [21] Parastacidae 61
Breinholt et al. [22] Astacidea 21
Buhay & Crandall [23] Cambarus 47
Schultz et al. [24] Engaeus 53
Buhay & Crandall [25] Orconectes 69
Buhay et al. [26] Cambarus 130

Fratini et al. [27]
Rudolph & Crandall [28]
Schull et al. [29]
Trontelj et al. [30]

Austropotamobius 61
Virilastacus 31
Euastacus 129
Austropotamobius 72

Munasinghe et al. [31] Cherax 58
Rode & Babcock [32] Astacidea 37
Taylor & Hardman [33] Orconectes 24
Crandall et al. [34] Parastacidae in Toon et al. [21]

in Bracken-Grissom
et al. [17]

Crandall et al. [35] Astacidea

Published phylogenies representing 20 studies were uploaded
as rooted Newick [40] files and stored in The Open Tree of Life
Study Curator (http://tree.opentreeoflife.org/curator) (table 1).
The Study Curator is a database that provides infrastructure to
store phylogenies and all metadata from phylogeny studies (doi,
title, year, etc.). It also provides a graphical user interface to map
taxon names from uploaded source trees to a user-curated taxon-
omy. The Open Tree of Life project (opentreeoflife.org) has
generated a new user-curated taxonomy for Arthropoda (OTT2.2)
by combining and hand-curating public taxonomy databases such
as the World Register of Marine Species (WoRMS) [41], GenBank
and the Global Biodiversity Information Facility (GBIF). This
includes removing species from the taxonomy that are the result
of spelling errors. This taxonomy provides flexibility for taxon map-
ping, including mapping to higher taxonomic ranks if the species
designation is missing or in conflict with the OTT. Once studies
are uploaded to phylografter and curated, they are exported from
phylografter as NeXML files [42]. The NeXML files are loaded
into treemachine (https://github.com/OpenTreeOfLife/treema-
chine) to generate a graph database for all studies that were
included in the synthesis, which also includes a NeXML of the tax-
onomy. The source trees and taxonomy are then merged into a tree
alignment graph [39], according to a user pre-defined order, to gen-
erate a synthetic tree. Those taxa not represented by a source tree are
represented by the taxonomy graph in the synthetic tree.

(ii) Crayfish phylogeny with branch lengths
In order to calculate PD measures, we require a tree with branch
lengths. Phylogeny branch lengths are estimates of genetic
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change along the branch of a phylogeny, usually specified in units
of expected number of substitutions per site. The synthesis tree
does not include branch length information currently; therefore,
we generated a crayfish phylogram using PHLAWD [43] to
obtain a phylogeny with branch lengths that contains all species
with sequence data from GenBank. We removed intraspecific
sequences and tried to retain only species because the PHLAWD
method does not distinguish between species and intraspecific
variants. This includes those new species that authors of previous
crayfish studies identified as potential species, but may not be for-
mally described. The loci assembled included portions of the three
mitochondrial genes (125, 16S and cytochrome c oxidase subunit I
(COI)) and portions of two nuclear genes (185 and 28S). Sequences
for COI were checked for complete open reading frame and Gen-
Bank sequence identifiers that included “-like” to prevent nuclear
copies of the COI gene from being included [44]. All loci were
aligned using MAFFT 7.130b [45], while poorly aligned regions
were identified and removed using GBLocks [46] according to the
least stringent settings. Two lobsters, Homarus americanus and Eno-
plometopus occidentalis, from two superfamilies within the
Astacidea were used as outgroup taxa [17]. An optimal partition-
ing scheme and models of sequence evolution were determined
using PARTITIONFINDER v. 1.1.1 [47] according to the Bayesian Infor-
mation Criterion (BIC) with the nucleotide alignment divided into
seven subsets: 125, 165, 18S, 285, COI 1st pos., COI 2nd pos. and
COI 3rd pos. A maximum-likelihood (ML) phylogeny was esti-
mated in GARLI 2.0 [48] according to the models and partitions
identified in the PARTITIONFINDER analysis. Multiple searches from
random starting trees were conducted to ensure searches were
not being trapped in local optima. Branch support was assessed
using 100 non-parametric bootstrap replicates [49].

(iii) Crayfish chronogram

A chronogram was estimated using penalized likelihood in r8s
[50] with the best ML tree. Node calibrations included six fossils
used in previous crayfish chronogram estimation studies [21,22].
These six calibration points spanned from Mid Triassic (approx. 225
million years ago (Ma)) [51], through Late Jurassic (approx. 145 Ma)
[52], Early Cretaceous (approx. 135 Ma) [53], to the Eocene (approx.
40 Ma) [54], providing a variety of calibration points throughout the
phylogeny [55]. The optimal smoothing parameter was chosen
based on a cross-validation procedure [56].

(b) Diversification rates through time

To determine whether this group radiated through time at a constant
rate, we first assessed whether branching times fit a pure-birth Yule
model using the Monte Carlo Constant Rates Test [57]. Studies have
shown that this test is sensitive to non-random sampling and miss-
ing taxa [58—-60]; therefore, we chose to account for missing taxa
using birth—death chronogram simulations [58]. We simulated con-
stant rate birth—death chronograms using CorSM [58] assuming
40% missing taxa based on those described species missing from
the phylogeny. Furthermore, we assumed the youngest genus was
9.95 Ma old based on the chronogram estimate and the taxonomy
used for the synthetic tree. The observed gamma statistic was com-
pared with the null distribution of 1000 simulated birth—death trees
using the APE module [61] in R [62].

To assess whether time-dependent speciation and extinction
rates varied throughout the history of crayfish, we estimated diver-
sification rate shifts using ML in TREEPAR [63]. This method moves
across a chronogram in intervals and for each interval calculates
birth and death, while accounting for missing taxa. At the end of
a cycle, the largest change in rate is recorded with the likelihood
of the model. This process is continued for additional cycles with
each cycle adding one more diversification rate change to the
model, while conditioning on the rate changes previously
identified in earlier iterations. A y*-test was used to compare

alternative models with different numbers of rate changes with n

three d.f. We set the maximum number of diversification rate
changesto four, while estimating a birth—death model every 1 Myr.

(c) Conservation status, phylogenetic diversity, and
EDGE and HEDGE analyses

Crayfish conservation priorities were assigned first by designating
TUCN Red List status to each species retrieved from the IUCN Red
List of Threatened Species v. 2013.2 [12,64]. Next, we conducted an
Evolutionarily Distinct, Globally Endangered (EDGE) analysis [36]
and Heightened Evolutionary Distinctiveness and Globally Endan-
gered (HEDGE) analysis [65]. The EDGE analysis ranks species
according to their evolutionary distinctness by measuring
the length of the branches leading to the tip taxa weighted by the
number of descendants from each node, thereby calculating a prob-
ability that a species may go extinct. This calculation requires a
probability of extinction which we assigned using a numerical des-
ignation associated with the IUCN Red List category [36,66]: Least
Concern = 0.025, Near Threatened =0.05, Vulnerable=0.1,
Endangered = 0.2 and Critically Endangered = 0.4. The HEDGE
analysis ranks species based on their expected contribution to
PD; therefore, the metric aims to preserve species that contribute
the most PD. The HEDGE calculation is an extension of probabilis-
tic PD where the probability of extinction can reach 0 [67,68]. Both
EDGE and HEDGE metrics were estimated in MEesQuITE [69] using
the Tuatara module [70].

In addition to estimating EDGE and HEDGE, we measured the
PD of crayfish in each of eight terrestrial Freshwater Animal Diver-
sity Assessment (FADA: http://fada.biodiversity.be) recognized
ecozones [71] to examine broad geographical patterns of diversity
and endangerment within the context of pre-established freshwater
ecozones. We used the IUCN Red List [64] to gather range data and
code the presence or absence of FADA ecozones for each of the 382
species in the chronogram. This information was used to estimate
the phylogenetic species variability (PSV), which is a measure of
PD that is independent of species richness [72]. PSV is a metric
that evolves a hypothetical independent neutral trait forward in
time along a phylogeny to quantify how shared evolutionary his-
tory decreases the variance of the hypothetical trait [72]. As
applied here, we are examining the variance in branch lengths as
a proxy of relatedness within FADA ecozones. It is important to
note that we also estimate PSV variance because our phylogeny is
not clocklike; therefore, there is variation around the single PSV
value. We chose to use PSV as measure of diversity and relatedness
due to the variability in the number of species across regions. PSV
estimates can range from 0 to 1 with 0 indicating species within a
FADA ecozone are closely related and 1 indicating species within
a FADA ecozone are distantly related. We calculated PSV and
Faith’s PD [73] in the R package picante [74] using the chronogram
without the outgroup; picante calculates PD for each FADA ecozone
by summing the total length of all branches connecting species
within a FADA zone on the unrooted phylogeny.

3. Results
(a) Phylogenetic synthesis

Construction of the synthetic tree and curation of the taxonomy
yielded 719 terminal taxa (figure 1). The terminal taxa consist
of all 590 described species of freshwater crayfish [12] and
multiple representatives of species with unique GenBank iden-
tifiers from population level data. Of the 719 taxa, 387 (60% of
all described species) are unique species represented with pub-
licly available sequence data. The genus Procambarus is the
largest genus with the lowest number of species with available
sequence data (31 available/178 species described).
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Figure 1. Synthetic tree consisting of the studies in table 1 and a combined taxonomy including WoRMS, GBIF and National Center for Biotechnology Information
taxonomies. Colours indicate those species assigned an IUCN Red List status: black, Extinct; red, Critically Endangered; orange, Endangered; brown, Vulnerable; yellow,

Near Threatened; blue, Least Concern; and green, Data Deficient.

(b) Molecular phylogeny

The final nucleotide alignment contained 5259 bp of nucleo-
tides after GBrocks trimming. The BIC favoured each
partition subset as the best partitioning scheme. The ML tree
strongly supported sister clades consisting of the Northern
Hemisphere and Southern Hemisphere taxa (bootstrap value
(BS) = 100); however, branch support only favoured mono-
phyly for one family (figure 2). Parastacidae is strongly
supported (BS = 98), while Cambaridae and Astacidae are
paraphyletic (figure 2). The monophyly of Southern Hemi-
sphere genera is mostly supported, but no support is present
for the relationships among the genera (figure 2). This is
similar to the Northern Hemisphere genera, but in the North-
ern Hemisphere the genera containing many species (e.g.
Orconectes, Procambarus, Cambarus) are not supported as
being monophyletic (figure 2).

(c) Diversification rates through time

The Monte Carlo Constant Rates test rejected the Yule model
with a single rate of diversification through time. A three-
rate birth—death model fitted the branching times the best
according to the y*-test with changes in diversification rate
occurring at 20 Ma and 4 Ma (figure 3). The death parameter
increased towards the present, while the birth parameter
decreases and then increases at the present. Finally, the turn-

over rate (death/birth) is the greatest for the rate nearest
the present.

(d) Conservation status, phylogenetic diversity, and

EDGE and HEDGE analyses
The PD and PSV calculations of FADA ecozones differed when
compared with one another owing to variation in species
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Table 2. Estimates of phylogenetic species variability (PSV), PSV variance
and phylogenetic diversity (PD) using the molecular phylogeny with species
grouped according to FADA ecozone.

ecozone PSV PSV variance )]
Australasian 0.72 107 x 1072 6025.27
Afrotropical 0.16 740 x 103 266.54
Nearctic 0.59 249 x 10°° 11026.91
Neotropical 0.74 219 x 107* 1407.77
Palearctic 0.63 853 x 10°* 861.7

richness (table 2). The Nearctic region had the highest PD, while
the Neotropical region had the highest PSV. The Australasian
region, on the other hand, has a high PSV owing to the relatively
long branch lengths. This indicates that the species in this region
have fewer close relatives and represent a greater amount of
evolutionary history and more distinct lineages. Although
both measures predict different regions with the highest diver-
sity, both estimate the Afrotropical region to be the least
diverse (there is only the Malagasy genus with seven species).
The low PSV can be attributed to shorter branches, thus being
more closely related, ultimately lowering the PSV value.
It should be noted that the PSV variance is the greatest for
this group, shedding light on the fact that PSV is a mean
and although they are closely related, there is branch length
heterogeneity (non-clocklike) among the seven taxa.

The EDGE and HEDGE scores were calculated for all
species with IUCN values in our molecular phylogeny
(figure 4). Calculations of EDGE ranged from 35.54 to 0.36,
while calculations for HEDGE ranged from 34.91 to 0.12. Fall-
icambarus hortoni had the largest EDGE and HEDGE scores of
all species. The 10 species with the highest EDGE and HEDGE
scores include species that are critically endangered and
endangered, with the bulk of these species being located in
Australia (e.g. Engaeus sp., Engaewa sp., Euastacus sp.) plus a
few North American cave species (e.g. Cambarus tartarus,
C. laconensis, C. aculabrum).

4. Discussion

Recently, phylogenies have been used in combination with
TUCN values and associated statistics to address conservation
questions in order to focus species-based conservation efforts
on preserving the greatest amount of PD [36,65,66,75]. Species
that have few close relatives have a greater responsibility for
evolutionary history [73]. Thus, the combination of phylo-
genetic information with endangered status allows for
conservation biologists to make informed decisions about con-
servation priorities that incorporate threat and evolutionary
history and processes [76]. Despite its predictive value, no
comprehensive phylogeny has been proposed for the crayfish.
Crayfish suffer from severe habitat loss, and as a result a large
percentage of the species are endangered [12]. A phylogeneti-
cally informed conservation plan would benefit this group of
organisms immensely to prioritize species-based conservation
efforts and provide overarching protection for diverse fresh-
water ecosystems. Here we synthesize all taxonomic and
phylogenetic information to define priorities given the current
available information. Finally, we describe the limitations of
findings and what is needed to achieve a robust framework
to inform conservation priorities in the future.

(a) Taxonomy
Taxonomy is the foundation of conservation, and without
sound taxonomy conservation priorities can become mislead-
ing [76-78]. Our phylogenetic analyses, in addition to
previous published phylogenies, show crayfish taxonomy is
in need of review and curation. For example, both our mol-
ecular phylogeny and synthetic tree confirm multiple
genera are paraphyletic (figures 1 and 2). This is concordant
with previous molecular studies of North American fauna
where species are not monophyletic [20] and genera are not
monophyletic [18]. In addition, our dataset only supports
one of three families as monophyletic (figures 1 and 2).
Two issues may be causing the paraphyly and polyphyly of
families and genera. First, traditional molecular loci used in
crayfish systematics may not be the best choice to resolve the
relationships being estimated (discussed in the molecular
data section below). The second potential cause of conflict
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Figure 4. Bivariate plot of the largest EDGE and HEDGE scores for taxa included in the molecular phylogeny. Calculations were performed in the Mesquire module

Tuatara.

between taxonomy and molecular phylogeny may be that the
morphological characters used to diagnose species are not
informative about species relationships at higher taxonomic
levels. The majority of taxonomic conflict occurs among the
North American fauna. This group of crayfish forms a clade
that most likely resulted from a recent rapid radiation, which
is portrayed on a phylogeny as short branches near the term-
inal nodes (figure 2). Quick bursts of cladogenesis leave few
morphological synapomorphies, making it difficult to establish
relationships among species due to the short amount of time
sister taxa were in isolation or gene flow was limited. We
suggest a major reappraisal of North American crayfish taxon-
omy with the aid of a molecular phylogeny that capitalizes on
loci from throughout the genome (see suggestions below).

The Southern Hemisphere taxonomy is not exempt from
problems. The centre of diversity for the Southern Hemisphere
is Australia, where the phylogeny consists of long terminal
branches relative to the North American fauna [21]. The long
terminal branches reflect low diversification rates in recent
years, which may have resulted from the desiccation of Australia
starting with the formation of the Antarctic Circumpolar Current
during the Miocene and the formation of the Antarctic ice sheets
and glacial cycles [79]. With the long terminal branches and
increased time since speciation, the genera form monophyletic
groups, unlike the Northern Hemisphere crayfish. However,
published phylogenies have shown paraphyletic relationships
for genera such as Euastacus [29] and Engaeus [24]. Although
there is limited conflict between phylogeny and taxonomy of
Southern Hemisphere taxa, most of these discrepancies represent
undescribed species rather than true taxonomy conflict.

As part of this study, we revised the existing taxonomy that
forms the basis of the synthetic tree. Although we removed
non-recognized species names from the list of all species in
use in morphological and molecular studies, a larger effort
is needed to describe the undescribed material and formally
re-describe higher taxa according to new molecular, highly

supported, phylogenetic hypotheses. This level of curation
will be difficult as the number of alpha taxonomists has
declined greatly in the molecular and genomics era [80], but
it is desperately needed for conservation efforts.

(b) Crayfish phylogeny

Our effort here to reconstruct the crayfish phylogeny with publi-
cally available sequence data shows the immense historical effort
needed to reconstruct the evolutionary relationships. Despite this
great effort, many generic and intergeneric relationships remain
uncertain. This can be seen in our synthetic tree and supermatrix
we assembled for this study (figures 1 and 2, respectively). We
have sampled approximately 60% of all crayfish species. Unfor-
tunately, from a conservation priority standpoint, our confidence
in conservation priorities estimated in this study is limited by the
percentage of sampled species. The EDGE and HEDGE calcu-
lations all rely on a fully resolved and sampled phylogeny with
branch lengths. Our phylogeny contains 60% of the known
species; therefore, missing 40% of the known species may drasti-
cally overestimate EDGE and HEDGE calculations owing to the
missing taxa not shortening the edge lengths of terminal taxa.
EDGE and HEDGE analyses have primarily focused on the
mammals, where there are estimates of a complete phylogeny.
Although the mammal phylogeny is nearly complete, research-
ers have dealt with missing taxa by placing them as best they
can on the phylogeny [81]. While we can place these taxa accord-
ing to taxonomy (and have done so in our synthetic tree, figure 1),
we do not have branch length information for these data which is
critical to the EDGE/HEDGE calculations. Furthermore, many
of the genera in the Northern Hemisphere crayfish are paraphy-
letic, making the placement of species based on taxonomy
suspect. Therefore, our EDGE and HEDGE estimates should be
taken lightly until a more robust phylogeny and taxonomy are
assembled (work in progress).
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Traditionally in crayfish phylogenetics, five core genes are
sequenced: COI, 125, 165, 18S and 28S [82]. Although providing
a well-supported backbone for many groups (figure 2), this set
of loci in combination has failed here to resolve many of the
relationships within and among genera and families. We are
at a time in molecular systematics where genomic data are
being generated at substantial pace and systematics can begin
to look across the genome for loci with a modest amount of
work. Three techniques are currently being used to target
single-copy nuclear genes across the nuclear genome: highly
conserved regions [83], ultraconserved regions [84] and tran-
scriptomes [85]. Each of these methods produces hundreds to
thousands of loci informative across time scales. The crayfish
phylogeny would benefit greatly from a study that targets
one of these sources for loci to estimate and confirm the phylo-
genetic backbone and add support to the relationships within
and among genera.

Recent advances in comparative methods have allowed
researchers to estimate extinction from phylogenies [86],
although some are sceptical [87]. Our diversification analyses
show diversification rates were not constant through time
(figure 3). In fact, the best-fit birth—death model for our data
supports three different time-dependent divergence rates.
The timing of changes in diversification are fairly congruent
with the timing of the formation of the Antarctic Circumpolar
Current and the formation of ice sheets [88] approximately
20 Ma, while the most recent change in diversification rate

corresponds to recent glaciation in the Northern Hemisphere
[89]. Future crayfish divergence time estimation should
attempt estimation in a Bayesian framework. Unfortunately,
getting convergence of parameter estimates for a large tree is
difficult; therefore, we have relied on point estimates here as
an approximation and recognize the variance associated with
these dates.

Although we give a general picture of historical diversifi-
cation and extinction here on a geological time scale, future
studies can leverage a more complete tree and other compara-
tive methods to obtain diversification and extinction rates on
a local time scale. For example, new binary and multi-state
character models of diversification rates exist [90,91]. We
envision using these models in conjunction with environ-
mental data layers to look at diversification and extinction
rates of taxa associated with certain types of habitat and natu-
ral history characteristics. Analyses that combine ecology,
morphology, geography and phylogeny can provide power-
ful correlative evidence with high extinction rates that are
associated with particular characters.
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