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Abstract

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons
(ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN
responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr)
receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here
we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a
protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses.
Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNSs, but do not affect
responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the
dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites
is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As
dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in
phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement
for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.
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transduction cascade (for an excellent recent review see [8]). For
example, heterologous expression experiments demonstrated a
slower metabotropic current after Or stimulation, as well as an
increase in cCAMP [4]. Orco has been suggested to be activated by

Introduction

In insects such as Drosophila melanogaster the detection of
environmental odours is achieved by arrays of olfactory receptor

neurons (ORNGs) housed in different types of chemosensory hairs
(sensilla) on two olfactory organs, the antenna and the maxillary
palp. Each class of ORN is tuned to specific chemical signals by
expression of different olfactory receptor genes. The responses of
most insect ORNs are reliant on members of two large and
divergent families of olfactory receptor proteins, the odorant
receptor (Or) and Ionotropic glutamate-like receptor (IR) families.
Or proteins are seven trans-membrane domain proteins that are
topologically inverted in comparison to G-protein-coupled recep-
tors [1,2], raising the question as to whether they do interact with
G proteins. Indeed, several studies have concluded that Or-
signalling is rather ionotropic, and that the functional receptor is a
ligand-gated cation channel composed of a variable Or odorant-
binding subunit and a co-receptor subunit called Orco [1-4].
Orco is required for Or proteins to be transported to the dendrites
[5], and heterologous expression studies suggest Orco is also part
of the functional receptor and is essential for the initial fast
inward current upon ligand binding [6,7]. However, there is also
genetic and pharmacological evidence for a slower metabotropic
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cAMP [4], and in addition it has been suggested that phosphor-
ylation of Orco by protein kinase C (PKC) is required for its
activation [9]. However, several studies of loss of function of Go—
encoding genes in Drosophila have yielded conflicting results [10
12]. A recent study suggests that metabotropic regulation of Orco
regulates Or sensitivity [13]. Overall, the mechanism of Or
signalling appears to be complex, with both ionotropic and
metabotropic pathway involvement, and despite much investiga-
tion is not fully understood.

IR genes encode a very different family of receptors, they are
three trans-membrane domain ligand-gated ion channels that are
related to ionotropic glutamate receptors [14]. IR proteins form
heteromers but are not reliant on Orco [15,16]. A third family of
receptors, the gustatory receptors (Grs), are also seven trans-
membrane proteins and are evolutionarily related to the Ors
[17,18]. Where the Or and IR families both detect a range of
structurally diverse odorants and function in many ORNs [19,20],
only one functional class of ORN, specialized for detection of
carbon dioxide (COy), expresses Gr genes [21,22]. Most other Gr
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Author Summary

The olfactory systems of insects are fundamental to critical
behaviours such as finding mates, food and host plants.
Insects can detect a wide range of environmental cues
using three different families of olfactory receptor proteins.
Why insects have three different families of receptor
genes, and how they function together, is not fully
understood. Here we identified a new gene, dATP8B,
which is critically and specifically required for the function
of only one of these receptor families in Drosophila.
dATP8B is a member of the P4-type ATPases, or phospho-
lipid flippases; these enzymes function in establishing a
difference or asymmetry in lipid composition between the
outer and inner leaflets of plasma membranes. This is
thought to be important for many cellular membrane
processes; however, specific functions of individual flip-
pase proteins are not well described. We find that dATP8B
is required for the function of the odorant receptor family,
but not the ionotropic-like and gustatory receptor families.
This further highlights the functional differences between
these receptor families and suggests a role for phospho-
lipids in the signalling of a specific family of receptor
proteins.

genes are expressed in chemosensory neurons in taste sensilla on
appendages of the fly that detect non-volatiles such as sugars and
alkaloids [23,24]. Although the Grs are evolutionarily related to Or
genes [18], they are not reliant on Orco for function [5]. Their
signalling properties have been much less extensively studied and it is
not clear whether they utilize similar signalling mechanisms to Ors.

Relatively few other genes involved in the function of the
peripheral olfactory system have been identified. Accordingly, to
identify novel genes important for Drosophila peripheral olfaction,
we conducted a screen for mutants defective in ORN responses.
We identified a recessive mutation that specifically affects Or
expressing  ORNs, dramatically reducing their sensitivity to
ligands, but has no effect on IR or Gr-expressing sensory neurons.
The causative gene, dATP8B, is a member of the phospholipid
flippase family of P4-ATPases, which function to maintain the
asymmetry in natural lipid composition between the outer and
inner leaflets of cell membranes. Our results demonstrate that
dATPS8B is critically and specifically required for the function of the
Or receptor family.

Results

To identify new genes involved in olfactory neuron function we
screened 482 lines carrying homozygous viable EMS-induced
mutations on chromosome III (from the Zuker Collection [25]) for
defects in olfactory responses. Electroantennograms (EAGs) were
employed to measure voltage changes across the antennal
epithelium in response to a set of odorants known to excite a
variety of different ORN classes. We identified one line (/2) in
which homozygous mutant flies showed reduced EAG responses to
most tested odorants compared to heterozygous controls (p<<0.05,
Fig. 1A). Neurons on the second olfactory organ, the maxillary
palp, showed an equivalent reduction in response to odorants in
the mutant line (p<<0.05, Fig. 1B). In contrast to the general
odorants, the EAG response to carbon dioxide, which is generated
by one specific antennal ORN class (ab1C) and mediated by two
gustatory receptor genes, was unaffected in the mutant (Fig. 1A).

We next used genomic deficiencies to map the mutation. We
found that flies trans-heterozygous for the //2 chromosome and

PLOS Genetics | www.plosgenetics.org

Drosophila Flippase and Odorant Receptors

either Df(3R)Exel7512 or Df{5R)Exel8155 showed the same mutant
phenotype as homozygous /2 flies (Fig. 1C). This localised the
mutation to an 86.5kb genomic region that contains 14 annotated
genes (Fig. 1D). Whole genome sequencing experiments identified
a nonsense mutation in the CGI/4741 gene within this region
(genomic location 7,902,447, mutation C79024471). CGI14741 has
seven predicted isoforms; the nonsense mutation is in the first coding
exon common to all predicted isoforms and thus is predicted to
severely truncate all proteins encoded by the locus. The CG14741
gene has not previously been functionally characterised. However,
sequence comparisons reveal it belongs to the type 4 P-type ATPase
family of integral membrane transporter proteins [26]. This group
of proteins includes four human members named ATPB1-4 and
(CG14741 as the sole Drosophila representative. Henceforth we refer
to the gene CG14741 as dATPSB.

To confirm that the nonsense mutation in dATP8B was the
cause of the olfactory defects observed in the /2 line we examined
an independent mutant allele, a line containing a piggyBac element
inserted in the coding region and predicted to affect all the
isoforms (dATP8B /"*” Fig. 1D). Flies homozygous for the
dATP8B"*% allele showed the same EAG defect as homozygotes
for the original EMS allele (p<<0.05, Fig. 1C). This phenotype was
reverted when the piggyBac insertion was precisely excised (Fig. 1E),
confirming that the olfactory defect is due to the insertion in
dATP8B. We also showed that the EMS and piggyBac insertion
alleles failed to complement; trans-heterozygotes for the two
mutant alleles also exhibited the olfactory defect (p<<0.05, Fig. 1C).
Together, these data confirm that mutations in dATP8B cause a
severe reduction in ORN responses.

In our initial EAG recordings we noted that the dATP8B™
mutant flies had normal responses to carbon dioxide (COy). Unlike
the other odorants tested, which are detected by ORNs that
express members of the Or receptor family, COy is detected by the
ablC ORN which expresses two members of the Gr receptor
family, Gr2la and Gr63a [21,22]. These data suggested that the
mutation might be specifically affecting Or-expressing ORNs
rather than all ORNs. To determine if this was the case we
characterised mutant responses from selected ORN classes on the
antenna whose responses are determined by members of all three
different receptor gene families. In each neuron type we examined
that expresses Or genes we found that the responses to ligands were
substantially reduced over a range of concentrations (Fig. 2). This
was the case regardless of the morphological type of sensillum, as
we found greatly reduced responses to 2-heptanone from the ab3B
neuron in basiconic sensilla (Fig. 2A), to cis-vaccenyl acetate from
the atlA neuron in trichoid sensilla (Fig. 2B), and to Z3-hexenol
from the ac3B neuron in coeloconic sensilla (Fig. 2C).

These experiments also confirmed a finding we had noted from
our EAG recordings, namely that the responses of d4TP8B mutant
flies, while greatly reduced, are not completely abolished. We
found that at high odorant concentrations mutant neurons were
still able to fire at relatively high rates (an average of 100 spikes per
second; Figs. 2A-C). We also noted that the effect of the mutation
can be different for different odorants activating the same
receptor. For the ab3A neuron, which expresses Or22a, we found
that the sensitivity to its high affinity ligand ethyl hexanoate was
reduced by three log steps (Fig. 2D). However, when we recorded
responses from ab3A neurons for a lower affinity ligand, ethyl
butanoate, we found that the curve is shifted much less (Fig. 2E).
This suggests that sensitivity to different ligands of the Or22a
receptor is affected by the d4ATP8B mutation to differing extents.

In contrast, we found that mutations in d47P8B have no effect
on responses of ORNs that express IR or Gr genes. This was the
case for two ORN types that express IR genes; the responses to
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Figure 1. Mutations in dATP8B cause severe olfactory defects. (A) Electroantennogram (EAG) and (B) electropalpogram (EPG) responses to a
panel of odorants. Bars represent mean response = SEM (n = 10), asterisks are significant differences. Responses of homozygous /I2 mutant flies (blue
bars) are severely reduced when compared with controls (black bars) for all the tested odorants except CO, (t-test, Bonferroni, p<<0.05). Heterozygote
flies (grey bars) are not affected. (C) A deletion that removes dATP8B and a piggyBac element inserted in dATP8B both fail to complement the /I12
phenotype. Bars represent mean EAG responses *+ SEM (n =6-10). Trans-heterozygotes for //2 and deficiency Df(3R)Exel8155 (blue bars) have reduced
EAG response compared to controls (black bars, t-tests, Bonferroni, p<<0.05), and homozygotes for the piggyBac insertion dATP8B™2% (red bars) and
trans-heterozygotes for 12 and dATP8B*?% (red/blue hatch) show similar reductions when compared to heterozygote controls (grey bars; t-tests,
Bonferroni, p<0.05). (D) The mapped genomic interval for the //2 mutant and the gene model of dATP8B (CG14741). The candidate region contained
14 annotated genes. The identified nonsense mutation in dATP8B and the insertion site of the piggyBac line dATP8B™2% are in the 1% and the 10t
common coding exon respectively, affecting all the annotated transcripts. For isoforms RC, RF, RG, RH and Rl the EMS mutation causes R18-X and for
isoforms RB and RD the mutation causes R197-X. Coding exons are colored in orange and the 3’ and the 5" UTR are in grey. (E) The olfactory defect in
the dATP8B™52% Jine is reverted when the piggyBac insertion is precisely excised. EAG responses of homozygous dATP8B>293E flies (red bars) to a
panel of odorants were not different from controls (black bars). Bars represent mean response = SEM (n =5, t-test, Bonferroni). Odorants are: EA, ethyl
acetate, PA, pentyl acetate, MS, methyl salicylate, OL, 1-octen-3-ol, HB, ethyl 3-hydroxybutanoate, EH, ethyl hexanoate, MH, 6-methyl-5-hepten-2-one,
BZ, benzaldehyde, MP, 4-methylphenol, PO, paraffin oil (solvent blank).

doi:10.1371/journal.pgen.1004209.g001

1,4-diaminobutane of the ac2A neuron (Fig. 2F) and to propionic
acid of the ac3A neuron (Fig. 2G) were unaffected in the mutant.
Consistent with the initial EAG data, in dATP8B mutants the CO»
response from the ablC neuron, which is determined by Gr genes,
is not significantly reduced for any of the concentrations that evoke
a wide range of excitation levels (Fig. 2H). We also performed
recordings from gustatory neurons on the labellum expressing
members of the Gr family, and showed that in d47P8B mutants the
response to both sucrose and caffeine, mediated by different Gr
receptors [23], was unaffected (Fig. 2I). Taken together, these data
strongly suggest that dATP8B is specifically required for the
function of Or-expressing neurons, and not for chemosensory
neurons in general.

dATP8B was identified in a previous study as being present in
the antennal proteome [27]. To confirm its expression in antennae
and to determine the cell type in which dATP8B is expressed we
performed immunohistochemistry using an anti-dATP8B anti-
body. Strong staining was seen within the shafts of the sensilla, the
location of the outer dendrites of the ORNSs (Fig. 3A). Staining was
observed in both basiconic and trichoid sensilla, which both house
neurons expressing Or genes. We could not easily visualise the
sensilla shafts of the coeloconic sensilla. Staining was absent from
the outer dendrites in the sensilla shafts in mutants for dATPS8B
(Fig. 3B). Signal was also observed in the inner dendrites and the
cell bodies, however this signal was also observed in mutants for
dATPS8B, albeit more weakly, (compare Figs. 3A and B), and thus
may be largely background staining.

Given dATP8B function seems to only be required in the Or-
expressing neurons we next asked if it is specifically expressed in
Or-expressing, but not IR or Gr-expressing, neurons. We confirmed
that dATP8B is expressed in the Or-expressing neurons by showing
that it co-localises with Orco (Fig. 3C). We then asked if AATP8B
is expressed in the ablC neurons that express Gr2la. These
neurons are housed in abl basiconic sensilla together with three
other neurons, which all express Or genes. We visualised the ab1C
neurons by using Gr2la-Gal4 to drive the membrane-localised
mCD8:GFP and staining with anti-GFP. Strong GFP signal was
observed in the outer and inner dendrites and cell bodies (Fig. 3D).
Double staining with anti-GFP and anti-dATP8B showed that
dATP8B is absent from the outer dendrites of Gr2/a-expressing
(ab1C) neurons (Fig. 3D). We saw many examples where the GFP-
positive dendrites of the abl1C neurons ran parallel to but did not
overlap dATP8B-positive dendrites within the sensilla shafts. We
conclude that dATP8B localises to the outer dendrites in Or-
expressing neurons, and likely does not in Gr-expressing neurons.

We also showed that d4TP8B function is required in the ORNS,
rather than another cell type, by using RNA interference (RNAi)
to knock down dATP8B in the Or-expressing ORNs using an Orco
driver. In Orco-GAL4:UAS-dATP8B™** flies the EAG response was

PLOS Genetics | www.plosgenetics.org

significantly reduced for some of the odorants for which we also
saw reduced responses in the two dATPS8B mutant alleles, for
example methyl salicylate and ethyl hexanoate (Fig. 3E). Although
this defect is much less severe than seen in the loss of function
mutants (Fig. 1A), taken together with the immunohistochemistry
data these results suggest that dA7TP8B has a functional role in
ORNg, rather than in another cell type such as support cells. As
Orco has a relatively late onset of expression in pupal development
[5], this result also suggests that dATP8B plays a role in these
neurons after the initial development of olfactory sensilla.

The phenotype of dATP8B mutants bears a strong resemblance
to that of mutations in the Orco gene, which is required for the
localisation and function of the Or receptors, but not for the IR or
Gr receptors [5,15,16]. We thus asked if loss of dATP8B
caused Orco itself and/or the other Or proteins to be incorrectly
localized. We tested this by using antibodies to examine the
localization of both Orco and Or22a. In wild type flies anti-Orco
staining is seen in both the outer dendrites and the cell bodies,
for anti-Or22a there is strong staining in the outer dendrites only
(Fig. 4). No difference in localization of either Orco or Or22a
was observed in dATPS8B mutants (Fig. 4). In addition, no
noticeable difference was observed in the length or shape of the
dendrites in the mutant. This confirmed an initial finding that the
overall appearance of the olfactory sensilla in the mutant is normal

(Fig. S1).

Discussion

dATP8B is a member of the type 4 subfamily (P4-ATPases) of P-
type ATPases. Unlike the other subfamilies, most of which encode
ion transporters, the P4-ATPases are believed to share a distinct
function as phospholipid translocases or “flippases” [26]. Eukary-
otic plasma membranes have an asymmetrical distribution of
phospholipids across the bilayer, with sphingolipids and phospha-
tidylcholine enriched in the exoplasmic leaflet, and more polar
lipids such as phosphatidylserine and phosphatidylethanolamine
enriched in the cytoplasmic leaflet. Phospholipid flippases
contribute to asymmetry by “flipping” phospholipids from the
exoplasmic to the cytoplasmic leaflet [28]. The physiological
significance of this asymmetry is not well understood but it seems
to be important for critical membrane processes such as vesicle
trafficking and intracellular signalling [26,29]. Disruption of the
asymmetry may affect the conformation, membrane insertion, or
trafficking, of integral membrane proteins. Alternatively it could
affect lipid-signalling molecules, or membrane fluidity or bending.
There are six members of the phospholipid flippase family in
Drosophila and C.elegans and 14 in humans [26]. Genetic studies in
C.elegans have suggested that the different members have different
functions [30]. One of the six Drosophila flippases (CG33298) has
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different (n=6-10 sensilla from 3-5 flies, t-tests, Bonferroni). Controls are either wild type or heterozygous dATP8B™52% mutants.
doi:10.1371/journal.pgen.1004209.g002

been implicated in secretory vesicle formation and cholesterol
homeostasis [31], the others have been uncharacterized to date.

sensory cells of the inner ear, ATP8B1 has been shown to localize
to the stereocilia that transduce the mechanical vibrations in the

dATP8B is the Drosophila homologue of four mammalian
ATP8B proteins [26]. Of these only ATP8B1 has been
substantially studied. Mutations in human ATP8B1 are associated
with intrahepatic cholestasis [32] and also cause hearing loss [33].
The protein localizes to the apical plasma membrane of
hepatocytes [32,34], where it is thought to play a role in protection
from the detergent effects of bile salts [35]. In hair cells, the
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cochlea [33]. ATP8BI deficient mice exhibit a progressive
degeneration of cochlea hair cells, possibly due to changes in the
mechanical properties of stereocilia or the disruption of a Ca*"
transporter crucial for sensory transduction [33].

Here we have found that dATP8B is essential specifically for the
responses of Or-expressing neurons, and not for IR or Gr-
expressing neurons in general. Our expression studies suggest that
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Bonferroni, p<<0.05) for some of the same odorants that are affected by the two dATP8B mutant alleles. Bars represent mean EAG responses + SEM
(n=6-10). Odorants are: EA, ethyl acetate, PA, pentyl acetate, MS, methyl salicylate, OL, 1-octen-3-ol, HB, ethyl 3-hydroxybutanoate, EH, ethyl

hexanoate, BZ, benzaldehyde, PO, paraffin oil (solvent blank).
doi:10.1371/journal.pgen.1004209.g003

dATP8B is not expressed in the latter, although further studies are
needed to confirm the generality of this. Several lines of evidence
suggest that mutation in d4TP8B is not disrupting the development
or morphology of the Or-expressing neurons and that its function
is required in adult ORNS. First, in spite of the dramatic effects on
sensitivity to odorants, the affected ORNs are still functional
neurons, as evidenced by some response at high odorant doses,
and have normal morphological appearance. Second, we found
two examples where Gr or IR-expressing unaffected neurons (ac3A
and ablC) are housed in the same sensilla as affected Or-
expressing neurons. This indicates that the defect is intrinsic to the
Or-expressing neurons, and is not due to altered sensillum
morphology or perireceptor processes.

Our data suggest that dATP8B is not required for the
localization of the Or proteins to the dendrites, although we
note that we have only examined Orco and one ligand-binding
Or protein (Or22a) and thus cannot completely rule out effects
on localisation of other Or proteins. Nonetheless, it seems most
likely that dATP8B is necessary instead for the function of the Or
receptor complex and for primary receptor signal transduction
processes. This is further supported by our finding that dATP8B
mutations differentially affect sensitivity of an individual receptor to
different odorants. At present there is no biochemical evidence
that dATP8B functions as a phospholipid flippase, however all
members of this family of P4-ATPases for which biochemical
assays have been performed do function to translocate phospho-
lipids [26,28,29]. If dATP8B functions as expected there are
several ways it could affect Or signal transduction. An
altered phospholipid composition of the plasma membrane in

dATP8B™

control

anti-Or22a

Figure 4. Orco and Or22a localize normally to the dendrites in
dATP8B mutants. 14 um thick antennal sections from wild type flies
(CS-5) were stained for anti-Orco or for anti-Or22a. No difference in
either Orco or Or22a localisation to the outer dendrites was observed in
dATP8B mutants (dATP8B™*?°%) compared to control flies.
doi:10.1371/journal.pgen.1004209.g004
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dATP8B mutants may affect Or-Orco interactions, or interfere
with binding of odorants to the receptor complex. Alternatively,
reduced availability or activity of membrane-localised signalling
molecules may affect Or signalling. For example, phosphatidyl-
serine (PS) is required for activation of PKC once it translocates
to the plasma membrane in response to increases in diacylglycerol
[36]. In dATP8B mutants reduced availability of PS in the
inner leaflet could thus lead to loss of PKC activation. PKC has
functions in many signalling pathways, and has been suggested
to be important for Orco activation [8]. Another possibility is
that mutations in dATP8B affect the minor plasma membrane
phospholipid phosphatidylinositol 4,5-bisphosphate (PIPy). PIPy
is found primarily in the cytoplasmic leaflet of the membrane
and does not flip between leaflets, but levels could potentially
be disrupted by flippase disfunction. PIPy; has many signalling
roles. Its cleavage products inositol 1,4,5-trisphosphate and
diacylglycerol are key components of G protein-activated
signalling pathways. In addition, a number of families of ion
channel and ion transporter proteins, for example the transient
receptor potential channels, are dependent on PIP, for their
activation [37].

In conclusion, we have identified a new olfactory gene, dATPSB,
which is specifically required for odour responses of Or-expressing,
but not Gr or IR-expressing, sensory neurons in Drosophila. Given
the very high level of homology of dATP8B to known phospholipid
flippases, our findings suggest a specific role for cell membrane
phospholipids in Or receptor signalling, as well as providing further
evidence for fundamental differences between the signalling
mechanisms of the different families of insect olfactory receptors.
Further studies of this interesting gene may provide insight into the
potentially complex mechanisms of Or signalling.

Materials and Methods

Drosophila stocks

Drosophila  stocks were reared on yeasted semolina/syrup
medium in 30 ml vials at 22°C under a natural daylight cycle.
All crosses were performed at 22°C. Flies carrying the dATP8B™
mutation were part of a collection of mutagenized stocks obtained
from Charles Zuker’s laboratory [25]. The piggyBac insertion line
dATP8B" 2% (BL18847) and deficiency lines Df{3R)Exel7312
(BL7966) and Df{3R)Exel8155 (BL7967) were obtained from
Bloomington Stock Center. The RNAI line for dATP8B was
obtained from the Vienna Drosophila RNAi Center (v102648). The
Orco-Gal4 line was obtained from Leslie Vosshall (Rockefeller
University) and the Gr2/a-Gal4 line from Kristin Scott at
University of California Berkeley.

Electrophysiological recordings and data analysis
Recordings from whole olfactory organs. We recorded
electrical signals from whole antennae (electroantennogram, EAG)
and maxillary palps (electropalpogram, EPG) as described in Tom
et al. 2011 [38]. A single fly was immobilized and a reference
electrode inserted in the eye. For EAGs the recording electrode
was placed on the surface of the antenna and for EPGs on the
palp. Changes in voltage (mV) in response to 1 s stimulation with
odorants were amplified using an active probe and a serial-IDAC
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amplifier (Syntech, Hilversum, the Netherlands). EAGs and EPGs
represent the summed activity of a population of ORNs.

Recordings from single olfactory sensilla. Activity of
individual olfactory receptor neurons was studied using the single
sensillum recording (SSR) technique as described elsewhere [39].
Action potentials were recorded by a glass electrode inserted at
the base of an olfactory sensillum and amplified via an IDAC-4
amplifier (Syntech). Action potential firing rates during
500 ms stimulations were analysed by subtracting firing rates
during the 2 seconds before stimulation. Action potentials from the
different neurons in a single sensillum were separated as in de
Bruyne et al. [39]. A two-tailed Student’s t-test with a Bonferroni
correction for multiple comparisons was used to compare firing
rates. Odor stimulation for SSR, EAG and EPG recordings was by
injecting volatiles from 5 ml disposable syringes into an airstream
blown over the preparation. All odorants were at highest available
purity (>98%, Sigma-Aldrich) and dissolved in paraffin oil at
different dilution from 0.0001 to 10% v/v. Because of its low
volatility, the Drosophila pheromone cis-vaccenyl acetate (>98%,
Cayman Chemicals) was dissolved in hexane and delivered from a
pasteur pipette that was briefly heated prior to use. Male flies of
age 3-7 days were used for all electrophysiological recordings,
except for the RNAI experiment where newly emerged male flies
were incubated at 25°C for exactly 7 days before recordings were
performed.

Recordings from taste sensilla. Single sensillum tip
recordings were performed from large (L-type) and intermediate
(Ib-type) sensilla in the labellum as described earlier [20]. Male
flies were aged 3—7 days and prepared for recordings by insertion
of a glass micropipette reference electrode filled with Ringer’s
solution. Tastants were dissolved in 30 mM tricholine citrate,
which was used as the electrolyte for the recording electrode.
Action potentials obtained by using a TasteProbe and IDAC-4
amplifier (Syntech), were counted during the 500-ms period after
initial contact with the stimulus solution in the recording electrode,
and multiplied by two to obtain firing rates in spikes per second. A
two-tailed Student’s t-test was used to compare firing rates
between mutant and wild-type flies. Sucrose and caffeine were
purchased from Sigma Aldrich.

Genome sequencing and data analysis

Genomic DNA was extracted from adult heterozygous males
using a QIAGEN Genomic-tip 20/G. A paired-end library with
~300 bp insert size was prepared and sequenced by the Australian
Genome Research Facility. In total ~19 million 100 bp paired-
end reads were generated using 0.5 lane on the Illumina HiSeq
system. Sequencing reads were mapped to the Drosophila reference
genome (Release 5 assembly) using BWA (Version 0.5.9) with
default settings [40]. Integrative Genomics Viewer (Version
1.5.64) was used to visually inspect overall mapping quality of
the candidate region [41]. After quality validation, consensus was
generated using SAMtools (Version 0.1.13) with default settings
[42]. Sequence variations were annotated using ANNOVAR’s
gene-based annotation option [43] with FlyBase Release 5.36
annotation [44]. SNPs from the Drosophila melanogaster Genetic
Reference Panel [45] were used to filter naturally occurring
variations. All computations were performed on the Monash Sun
Grid. The nonsense mutation in dATP8B was verified with Sanger
Sequencing using an independently prepared genomic DNA
sample. The following primers were used to amplify a 655 bp
region flanking the mutation site: forward primer 5'CATACG-
CATCCTTAACAGCCS', reverse primer 5’ACCCAACAAAT-
CCGATGACC3'.
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Antibody production

cDNAs encoding six different regions of the CG14741-PB
isoform (PEL, a.a. 2-236; PE2, 261-450; PE3, 527-630; PE4,
655-1115; PE5, 967-1359; PE6, 1562-1726) that are not part
of predicted transmembrane domains were cloned into a pET100/
D-TOPO vector (Invitrogen, Carlsbad, CA) such that the
expressed peptide was tagged N-terminally with 6xHis. The
6xHis:PE1-6 peptides were expressed in FE. coli and purified
using a Ni-NTA column (Invitrogen). Peptides PE3, 5, and 6
were soluble and were individually injected into two guinea pigs
by Cocalico Biologicals (Reamstown, PA). The obtained antisera
(90 day protocol) were screened for antibodies against dATP8B
using Western blots of both fly head protein extracts and the
bacterially expressed peptides. The antisera obtained from injecting
PE5 and PE6 showed positive signals and PE6 was used for

Immunostaining.

Immunohistochemistry

Antibodies and dilutions used were as follows: guinea pig anti-
dATP8B (1:10,000); rabbit anti-Orco (1:5,000; Vosshall lab);
rabbit anti-Or22a (1:1,000; Vosshall lab); rabbit anti-GFP
(1:1,000; Life Technologies). Secondary antibodies raised in
mouse, rabbit and guinea pig were Alexa-conjugated (Alexa Fluro
488 at 1:250-500, Alexa Fluro 568 at 1:500) (Molecular Probes).
14 uM cryo-sectioned adult heads were mounted on SuperFrost
Plus slides (Thermo Scientific), dried for up to 3 hours, and then
fixed in 4% paraformaldehyde/PBS for 30 mins at room
temperature. Samples were washed for 10 minutes three times
with PBST (PBS, 0.3% Triton-X-100), incubated in Block (5%
normal goat serum in PBST) for 2 hours at room temperature and
then incubated with the primary antibodies diluted in Block
overnight at 4°C. After three 10 minutes washes with PBST,
samples were incubated with secondary antibodies diluted in Block
for 2 hours at room temperature. Sections were washed for
10 minutes three times with PBST before being mounted in
Vectashield (Vector Labs). Samples were viewed and images
acquired using a Nikon C1 confocal microscope.

Supporting Information

Figure S1 The olfactory sensilla of the antenna show normal
morphology in d4A7TP8B mutants. Scanning electron micrographs
of third antennal segments and maxillary palps from wild type and
homozygous dATP8B " mutants. No obvious abnormalities are
seen in the mutant flies. Scale bars are 20 um.
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