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THE EMERGENCE OF RANGE LIMITS
IN ADVECTIVE ENVIRONMENTS*

KING-YEUNG LAM', YUAN LOU%, AND FRITHJOF LUTSCHERS

Abstract. In this paper, we study the asymptotic profile of the steady state of a reaction-
diffusion-advection model in ecology proposed in [E. Pachepsky et al., Theoret. Popul. Biol., 67
(2005), pp. 61-73; D. Speirs and W. Gurney, Ecology, 82 (2001), pp. 1219-1237]. The model de-
scribes the population dynamics of a single species experiencing a unidirectional flow. We show the
existence of one or more internal transition layers and determine their locations. Such locations can
be understood as the upstream invasion limits of the species. It turns out that these invasion limits
are connected to the upstream spreading speed of the species and are sometimes subject to the effect
of migration from upstream source patches.
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1. Introduction. Most species have spatially limited distributions [1]. Ecolo-
gists have identified a few basic aspects of dispersal and birth-death dynamics that can
explain several mechanisms underlying range limits [7]. For example, local biotic and
abiotic conditions determine the basic rate of increase of a population. The species is
expected to be present where its rate of increase is positive (its “niche”) and absent
where this rate is negative. A range limit then indicates a sign change of this rate of
increase. Dispersal can enlarge a species’ range and maintain a population in regions
where the intrinsic growth rate is negative (source-sink dynamics). In streams and
rivers, water flow can induce a strong directional bias in dispersal. What then is the
effect of this biased dispersal on the emergence of range limits?

Abiotic conditions can change considerably along the course of a river or stream.
Temperature and nutrient loading tend to increase downstream whereas shading de-
creases [18]. But conditions need not change monotonically. Local habitat attributes
are also affected by substrate, confluences, dams, or point source disturbances such
as waste-water treatment plants. Accordingly, algal community composition varies
considerably between upstream and downstream [16, 21] and with it the food chain
that it can support. These assemblages are formed by the combined effects of local
growth conditions (source and sinks) and of passive transport in the water column.
Because of the strong bias of transport, one could expect a species to be absent from
the upstream end of its niche or source region and persist in sink habitats further
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downstream. Can one quantify this effect of hydrology on the actual range of a
species?

The dynamics of a spatially distributed species, moving passively in a stream
or river, have been modeled with a reaction-advection-diffusion equation to explore
population persistence and the so-called “drift paradox” [13, 17]. In the simplest case,
the equation for the density u(z,t) of a population at time ¢ and location z is given
by
(1) Uy = Dugy — qug + u(r — Ku),
where D > 0 is the diffusion coefficient, ¢ > 0 is the flow speed in the direction of in-
creasing x, r is the population growth rate at low density, and x denotes the strength
of intraspecific competition. (Subscripts denote partial derivatives.) Lutscher, Mc-
Cauley, and Lewis studied this model (and a two-species extension) with linearly
increasing growth function r = r(x) (i.e., the habitat quality of the downstream loca-
tion is better than the upstream location) and observed the emergence of upstream
range limits [11]. Specifically, when the stream was long, the steady state population
showed a sharp transition layer from low to high density, much steeper than the local
growth conditions would predict. Numerically, the authors found that a species ini-
tially occupying a downstream region may propagate upstream in a wavelike fashion
with decreasing speed. This upstream invasion wave comes to a halt at some loca-
tion Z, even though local growth conditions are favorable upstream of that location,
ie., r(z) >0 for z < Z.

Traveling waves are well studied for the Fisher model, given by (1) with ¢ = 0
and constant r. They arise at a minimal speed ¢* = 2v/rD, the asymptotic spreading
speed [20]. In an environment with unidirectional flow of speed g > 0, there are two
spreading speeds, one in the direction of the flow (downstream), given by ¢* + ¢, and
one against the flow (upstream), given by ¢* — ¢ [13]. When the flow speed is lower
than ¢*, then the upstream spreading speed is positive and the population can spread
against the flow. When the flow speed is higher than ¢*, then the upstream speed is
negative and the population retreats downstream.

When growth conditions vary spatially, r = r(x) is a nonconstant function. It is
then tempting to define the “local upstream spreading speed” as 2+/r(z)D — q [7].
A range limit then emerges where the local upstream spreading speed is zero. For a
monotone growth function r(z), there is a unique location z* defined by r(z*) = %.
Numerical simulations for model (1) indicated that, indeed, & = z* [11].

To see why the steady state density @ can be very small even though the local
growth rate r(x) is positive, we introduce the transformation u(z,t) = w(x, t)ed®/ D),
Then w satisfies the equation

2
q
2 =D qz/(2D)
(2) wy Weg + W (7’(1:) D e

with local intrinsic growth rate r(z) — %. Hence, the stream flow can be viewed as
decreasing the local growth rate. Specifically, regions with r(z) > f5 are population
dynamic sources whereas regions with r(x) < j are sinks.

The first purpose of this paper is to prove the existence of a steady state profile
with the steep transition layer as observed in numerical simulations [11] when the
growth function is monotone increasing and the stream segment is long. In the second
part of the paper, we consider the case that the adjusted growth function r(x) — %
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changes sign more than once. In this case, we could expect multiple transition layers
of @ occurring at locations xf with r(z}) — % = 0. We show that there is at most
one transition layer per source patch, i.e., an interval where r > 0. More specifically,
when there is only one source patch and the population persists, then there is only
one transition layer, even if the adjusted growth rate is negative somewhere. If there
are two or more disjoint source patches, then a second transition layer maybe located
further upstream than would be predicted by the locations ;. This phenomenon arises
when emigrants from high-density regions upstream contribute to local population
growth at the next downstream source patch. We give a precise characterization of
the location of a second transition layer.

We introduce the model with boundary conditions and scalings in detail in sec-
tion 2. We state all the main results in section 3, and present numerical illustrations
in section 4. Auxiliary lemmas are given in section 5. Proofs of the main theorems
are presented in section 6. Finally, an extension of our results concerning a boundary
transition layer is discussed in section 7.

2. Model description. We denote the density of the species at time ¢ and
location z in the bounded interval [0, L] with u(x,t), where L is the length of the
river. We denote the diffusion constant by D > 0 and the flow speed by ¢ > 0 so
that advection points to increasing z-values. We supplement the equation in model
(1) with a generalized Danckwerts boundary condition at the upstream (z = 0) and

downstream (x = L) end. The model then reads

(3) Ut = Dugy — qug +u(r(z) —ku) forO<ax <L, t>0,
Duz(0) — qu(0) = ¢byu(0), Dug(L) — qu(L) = —gbqu(L) for ¢t > 0.

The (dimensionless) parameters b,, and by determine the magnitude of population loss
at the upstream and downstream boundaries, respectively. The no-flux condition at
the downstream boundary corresponds to by = 0, whereas a hostile condition results
as by — 0o0. An important intermediate case is by = 1, when net movement across the
boundary results only from diffusion. For a more detailed discussion and derivation
from a random walk model, we refer to [8, 10]. The function r(z) stands for the
quality of the habitat; the population can grow where r > 0 and will decline where
r < 0.

Based on the numerical results in [11], we consider the case where the river is
very long compared to the scales of advective and diffusive movement. We introduce
nondimensional variables ¢ = t/7, # = x/L, and @ = ru, and a small parameter
€ = g7/ L. Since we will study the steady state problem, we may choose the time scale
7 = 1. With this scaling, the model becomes
(4) )

Gy = €2Dlgp — etig +a(F —a) for0<z <1, >0,

{ eD1:(0,1) — 4(0,1) = b,a(0,7), eDig(1,1) —a(1,1) = —bgti(1,) for i >0,

where D = D/q? is the rescaled diffusion coefficient and #() = r(z) denotes the
rescaled growth profile on [0,1]. After dropping “"” for ease of notation, we finally
obtain our dimensionless model system as
()

g = € DUy — €ty +u(r —u) for0<az <1, >0,

€Du,(0,t) — u(0,t) = byu(0,¢), €eDuy(l,t) —u(l,t) = —bgu(l,t) fort> 0.

Throughout this paper, we assume that r € C%1([0,1]), i.e., r is Lipschitz continuous
in the interval [0, 1].



4 KING-YEUNG LAM, YUAN LOU, AND FRITHJOF LUTSCHER

The dynamics of this model are completely determined by the linear stability of
the trivial solution since the system is monotone [4]. If the zero solution is locally
asymptotically stable, then it is globally stable. If it is unstable, then there is a
unique positive steady state, which is globally stable among nonnegative, nontrivial
solutions. The nontrivial steady state solution @(z) of (5) satisfies the equation

(6)

In this paper, we study existence conditions for @ and its spatial profile.

€ Diligy — €liyz +0(r —a) =0 for0<az<1,
€Dy (0) — (0) = byi(0), eDiin(1) — (1) = —baii(1).

3. Main results. In this section, we explain and interpret our main results
on the existence and spatial profile of the positive solution @(z) of (6). We formu-
late all of our results in terms of the local upstream spreading speed, which, in the
parametrization of (5) is given by

o) —{ «(2/r(@)D 1) when r(z) >0,

when r(z) < 0.
Note that when r < 0, ¢ is simply the transformed flow speed —e.

3.1. Persistence results. It is well known that the persistence of the single
species governed by (5) is characterized by the principal eigenvalue A1 of

{ D¢ry — €y +rd+ M0 =0 for0<uz<l,
€D¢,(0) — #(0) = by 9(0), €Dy (1) — (1) = —bag(1).

Namely, if A\; < 0 then there exists a unique positive steady state of (5) which is
also globally asymptotically stable among all nonnegative, nontrivial solutions, and if
A1 > 0, then the zero solution is globally asymptotically stable. See, e.g., [4, p. 150]
and also [3, 6, 12, 15]. The principal eigenvalue A1 is in general a nonlinear function
of coefficients €, D, r(z), by, bq.

We state below two practical persistence/extinction results that are uniform for
all (small) values of e which are relevant to our investigation.

THEOREM 3.1. If maxpy ¢ > 0, i.e., maxpr > %, then there exists € > 0

such that for all € € (0,€¢) (and all b,,bq > 0), (6) has a unique positive solution @
that is the globally asymptotically stable steady state for (5), among all nonnegative
and not identically zero initial data.

THEOREM 3.2. If maxg ¢ <0, i.e., maxjg 7 < %, and if bg > %, then for all
€ >0, (6) has no positive solution, and the zero solution of (5) is globally asymptoti-

cally stable among all nonnegative and not identically zero initial data.

Theorem 3.1 states that when the upstream spreading speed is positive some-
where, then a locally introduced population can spread in both directions and persist
in the habitat. This result holds only when the habitat is sufficiently long so that
potential boundary loss does not impact population survival. Specifically, we are not
considering a minimal domain-size problem here.

As a complement to Theorem 3.1, Theorem 3.2 shows that the population cannot
persist in any upstream portion of the river if its upstream invasion speed is nonpos-
itive. This result arises only when there is some population loss at the downstream
end of the habitat. For example, if both boundary conditions are no-flux conditions
(i.e., by, = by = 0), then the population will persist as long as some appropriate

average of the growth rate is positive, i.e., fol r(z)exp(z/(eD))dz > 0.
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Fia. 1. Left panel: illustration of Theorem 3.3. Right panel: illustration of Theorem 3.4.

We refer the interested reader to previous works on population persistence 8,
17, 19]. We note that if no-flux boundary conditions are imposed at both ends (i.e.,
by, = bg = 0), and if 7(z) > 0, then the population always persists, regardless of €, D.
In particular, the condition that by > % is indispensable. A recent detailed study of
the influence of upstream and downstream loss rates is given in [9].

In the rest of this section, we will focus on the Danckwerts boundary condition,
which corresponds to no-flux upstream conditions (b, = 0) and Neumann downstream
conditions (bg = 1). We note also that Neumann conditions only describe a no-flux

scenario when there is no advection (¢ = 0).

3.2. Single internal transition layer. We define the upstream invasion limit
as the furthest upstream location where the upstream invasion speed is positive, i.e.,

) z1 =inf{z € (0,1) : ¢(x) > 0} = inf{z € (0,1) : r(x) > 1/4D}.
We note that when maxjg ;¢ > 0, i.e., maxpr > ﬁ, then z; is well defined and
z1 € [0,1]. In addition, z; is uniquely defined even when r(x) is constant in some
intervals.

The following result shows, in the case of z; > 0, how the range of species can be
characterized by the upstream invasion limit.

THEOREM 3.3. Suppose that maxy ¢ > 0, z1 € (0,1), and that r(z) > 0 for
x > z1. Then, as ¢ — 0,

@ — (@), 1y locally uniformly in [0,1]\ {21},
where 11, 1) denotes the characteristic function of the interval [21,1].

The statement of Theorem 3.3 is illustrated in Figure 1. See also Figure 2 for a
numerical example. When the upstream invasion limit z; is below the upstream end
of the habitat, then, in a long river, the population will approach a spatial profile with
a single internal transition layer from near zero density upstream of z; to carrying
capacity downstream of z;.

3.3. Multiple internal transition layers. Theorem 3.3 requires r > 0 down-
stream of z; = inf{z € [0,1] : 7(z) > 1/(4D)}. When r < 0 for some intermediate
region downstream of z; and r(1) > 1/(4D), then there will be a second internal
transition layer. The main question is the location of this second layer. To this end,
we study a representative situation.
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F1a. 2. Monotone increasing resource function r(x) and steady state profile a(z) for three values
of € =0.02 (dash-dot), ¢ = 0.01 (dashed), and ¢ = 0.005 (solid).

Suppose that there exists a partition 0 < z1 < x2 < 23 < 1 such that
8) rx)<0 in[0,z1)U(z2,z3) and r(z)>0 in (r1,z2)U (z3,1].

Naively, we would expect another internal transition layer located at the second in-
vasion limit zo, given by

(9) 29 :=inf{z € (z3,1) : r(z) > 1/4D}.

Our next theorem shows that while this situation can occur, more subtle effects may
arise. In fact, the second transition layer may be located upstream of zs; see Figure 3.

Specifically, we require the maximum upstream invasion speed to be positive in
both patches [z, x2] and [z3, 1], i.e.,

max ¢(z) >0 and maxc(z) >0,

[x1,72] [#3,1]
or equivalently,
(10) max r(z) > 75 and maxr(z) > ;5.
[z1,22] [z3,1]

When ¢(x) < 0 (ie., r(x) < 1/(4D)), we can define the quantities

(11) ot (z) = @.

2D

Note that o™ is always positive whereas o~ has the same sign as r(z).
It turns out that the sign of f;; a~(t) dt plays a critical role in determining the
location of the second internal transition layer.

THEOREM 3.4. Suppose r(zx) satisfies conditions (8) and (10).
(a) Assume that fxzj a~ (t)dt <0. Then as e — 0,

U = 7(x) (L2 0y + Lpspq)]  locally uniformly in [0,1]\ {z1, 22},

where z1 and zy are defined in (7) and (9), respectively.
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TABLE 1
Distance between the transition layer and the upstream invasion limit for linearly increasing
r(z). We conjecture that y1 — z1 is of the order of €, i.e., the actual location of the transition layer
lies in an e-neighborhood of zi.

€ 0.02 0.01 0.005
y1 —2z1 | 0.139 | 0.0775 | 0.022

(b) Assume that f;j a~ (t)dt > 0. Then as € — 0,
= 7(2) (L2 00 + Lizq]  locally uniformly in [0,1]\ {z1, 22},

where Zy € (x3,22) is uniquely determined by the relation fjj a~(t)dt = 0.

The statement of this theorem is illustrated in Figures 1 and 3. The first transition
layer is located at the upstream invasion limit z; as before. Downstream of the region,
where r < 0, there is a second point, zo, where the upstream invasion speed is zero. If
we only consider the region downstream of r < 0, then we would expect a transition
layer at z3 based on the same reasoning as the layer at z;. This reasoning is correct
when the region r < 0 is large. However, if this region is small, then there will be
immigration of individuals from the upstream patch [z1, 23] to the downstream patch.
This influx of individuals allows the population to establish further upstream of zo,
more specifically, at Zs.

4. Numerical results. In this section, we present some numerical results that
complement and illustrate our analytical results from the previous section. We begin
with the shape and location of a single transition layer in the case of a monotone,
increasing resource function as in Theorem 3.3.

We choose the simple linear function r(x) = z to represent how habitat quality is
increasing downstream, and we fix a diffusion coefficient of D = 1/2. The condition
r(z1) = 1/(4D) gives a theoretical upstream invasion limit of z; = 1/2. We illustrate
the statement of Theorem 3.3 in Figure 2. We plot the resource function, r(x), and
the steady state solution, @(z), for the three different values of €. As e decreases, the
steady state profile becomes steeper and the transition layer “moves closer” to the
theoretical value z;. We evaluated the latter distance by numerically calculating the
value y1 such that @(y1) = r(21)/2 = 1/2. The results are summarized in Table 1.

To illustrate the case of multiple transition layers, we choose a resource function
that has a (negative) local minimum at the upstream end and a (positive) local max-
imum at the downstream end, as well as a (positive) local maximum and (negative)
minimum in the interior of the domain. We choose the function

sin (37mc — g) + 0.8,

whose positive part is plotted as r(z) in Figure 3. We denote by K the interval where
r is negative in-between the two maxima. We then introduce a parameter v > 0 to
modify the above function on K and thereby change the value of the integral of o ;
see (11) and Theorem 3.4.

Specifically, we set

r(z) = sin (37733 — g) + 0.8 —vlg,

and we fix parameters ¢ = 0.005 and D = 1/6. By increasing v we can decrease
the value of r(z) on K and thereby decrease the value of the integral f;; a~ (z)dz.
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FiG. 3. An oscillating resource function, v(x) (dashed) and the steady-state profile u(x) for
various values of v = 0,0.5,1,2. Increasing v changes r(x) in the region where r < 0 between the
two mazima. Fized parameters are e = 0.005 and D = 1/6.

TABLE 2
Summary values for the first and second transition layers for different values of v.

v 0 0.5 1 2 5
f;; o~ (z)dz | 0.1613 | 0.1003 0.046 -0.0488 -0.2726
Y1 — 21 —-0.017 | —0.017 | —0.017 —0.017 —0.017
Y2 — 22 —0.076 | —0.044 | —0.0225 | —0.0175 | —0.01754

Accordingly, we find that the second (downstream) transition layer is upstream of the
expected limit zo when v is small but moves downstream to zo as v increases; see
Figure 3.

The two invasion limits are given by z1 = & + z=sin"'(0.7) &~ 0.249 and z, =
5 4+ Lsin™(0.7) ~ 0.916 as defined in (7) and (9). Furthermore, the left endpoint of
K is xo = % + % sin~1(0.8) ~ 0.598. The values of the integral

= [ 1—/1—4Dr(x)
/M ! (:1c)d:L—/QC2 5D dx

are listed in Table 2.

We note that the integral f;; o~ (z)dx is positive for v = 0,0.5,1, whereas it is
negative for v = 2,5. While the location of the first transition layer (as determined by
the distance y1 —z1) is independent of v, the second transition layer (as determined by
the distance y2 — z2) moves downstream as v increases. The locations y; are calculated
as u(y;) = 1/2 and '(y;) > 0.

5. Preliminaries. We introduce the notion of weak upper (lower) solution,
which will play an instrumental role for the rest of the paper. We refer to [5, Chap. 4]
for the following definitions and results.

DEFINITION 5.1. We say that w € H'([0,1]) is a weak upper (resp., lower) solu-
tion to (6) if

/0 [— (2 Dw, — ew) Ny +w(r —w)n] dz—e (byw(0)n(0) +bgw(1)n(1)) <0 (resp., > 0)

for any n € C*=([0,1]) such that n > 0 in [0,1].



RANGE LIMITS IN ADVECTIVE ENVIRONMENTS 9

If b, = by = 00, then we say that w € H'([0,1]) is a weak upper (resp., lower)
solution to (6) if w(0),w(l) >0 (resp., <0), and that

1
/ [— (2Dw, — ew) 0y +w(r —w)y] dz <0 (resp., > 0)
0

for any nonnegative test functions n € C§°([0,1]).

The next observation will be used frequently in this paper to construct weak
upper and lower solutions.

LEMMA 5.2. When 0 < by, bq < +00, a function w is a weak upper (resp., lower)
solution to (6) if

(i) we C([0,1]);
and there exists a partition 0 = xo < 1 < T3 < - - < Tp—1 < T = 1 such that for all
i=0,..., k-1,

(i) w = minj<j<j,{w;;}, where w; j € C*([x;,x:41]) and satisfies
Lw; j = €D (w; ;) pw—e(w; j)etw; j(r—w; ;) <0 (resp., >0) in (z;,zi11);

(iil) foralli=1,...,k =1, wy(z;—) > wy(z;+) (resp., <);
and at the boundary points x = 0,1,
(iv) eDw,(0) — w(0) < b,w(0) (resp., >) and eDw,(1) — w(l) > —bsw(l)
(resp., <).

Proof. The lemma can be verified in a straightforward manner, via integration
by parts. We skip the details here. 0

THEOREM 5.3 (see [14]). If W and w are, respectively, weak upper and lower
solutions of (6), and w < w, then (6) has at least one solution u such that w < u < .
In particular, if w > 0,% 0, then u is a positive solution of (6).

We refer to [5, Theorem 4.15] for the proof of Theorem 5.3.

THEOREM 5.4. Let D,ry be given positive numbers.
(a) If 4Drg < 1, then there exists a unique positive solution wp r, t0

{ Dwyy —wy + (ro —w)w =0 in (—oo,+00),
w(—o0) =0, w(0)=re/2, w(+00)=r0.

Moreover, wy, > 0, wy/w / a~ as y — —oo, where o~
4Drg < 1, then w(y) ~ exp(a™y) as y — —o0.
(b) If 4Dro > 1, then there exists a unique positive solution wp r, to

VAP0 Apg if

Dwyy —wy + (ro —w)w =0 n (0, +00),
w(0) =0, w(+o0)=r0.

Moreover, wy > 0.

The proof of Theorem 5.4 is based on standard phase plane analysis. We refer to
[22] for the proof of (a) and [2] for the proof of (b).
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6. Proofs.

6.1. Proof of persistence results. The following results hold true for diffusive
logistic equations of indefinite weight, see [4, p. 150] and also [3, 6, 12, 15].

LEMMA 6.1.

(a) If (5) has a positive steady state u, then it is globally asymptotically stable
among all nonnegative, nontrivial solutions.

(b) If (5) has no positive steady state, then the trivial solution is globally asymp-
totically stable among all nonnegative solutions.

Proof of Theorem 3.2. By Lemma 6.1, it suffices to show that (6) has no positive
solution. Suppose to the contrary that (6) has a positive solution .

By the assumption r < 1/(4D), b, > 0, and by > 1/2, it is easy to see that for
any positive constant M > 0, @ := Me*/(2P) ¢ C¢*°([0,1]) is an upper solution of
(6), i.e., w satisfies
(12) { DWWy, — €W, + (r—w)w < 0 in [0,1],

—eDw,(0) + w(0) > —b,w(0), eDw,(1)—w(l) > —bgw(l).

Next, let My = inf{M > 0 : a(z) < Me*/P) for all € [0,1]}, and define z :=
Mye*/2¢D _ &, Then it can be verified that z satisfies
(13) D2y — €25 + (1 — 1 — Moe®/ P))z <0 in [0,1],

—eDz;(0) + 2(0) > —b,2(0), and €eDzy(1) — z(1) > —bgz(1).

Moreover, by the definition of My,
(14) 2>0 in[0,1], and z(zg) =0 for some zg € [0,1].

We consider the following cases separately: (i) b, = bg = +o0, (i) b, < +00 = by,
(iil) bg < 400 = by, (iv) by, by < +o00.

Case (i): Then z(0) and z(1) are positive and x¢ € (0,1), but then by (14), we
deduce that z(xg) = zz(z9) = 0 and 2y (xo) > 0, which contradicts (13).

Case (ii): Then z(1) > 0. By the arguments in Case (i), the minimum value
cannot be attained in (0,1), hence we deduce that zp = 0, i.e., 2(0) = 0. Then
(14) implies that z,(0) > 0. But then the boundary condition in (13) implies that
z(0) < (1 +b,)2(0) = 0. Hence 2,(0) = 0. By (13), we deduce that z;,(0) < 0, and
hence z(z) < 0 for all 0 < x < 1. This is a contradiction to the nonnegativity of z.

Cases (iii) and (iv) can be handled similarly.

Therefore, (6) has no positive solution. We thus conclude by Lemma 6.1 that the
zero solution is globally asymptotically stable among all nonnegative initial data. 0O

Proof of Theorem 3.1. By Lemma 6.1, it is enough to show that (6) has a positive
solution. In view of Theorem 5.3, and the fact that @ = Me*/(¢P) is an upper
solution for all large M > 0, it suffices to construct a nontrivial, nonnegative weak
lower solution. (See, e.g., [4, Theorem 1.24].) Since maxp ;7 > ﬁ, there exist
positive constants ro and ¢, and xg € (0,1 — 39) such that ro > ﬁ, and r(x) > rg in

[z0, 0 + 6] C [0,1].
Define
T —2x
wlo)i=p (2.
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Fic. 4. Lemma 6.2: construction of weak upper solution uy.
where

5\ wir [ VAreD—1 27D
p(s)—{ exp(2D)sm (—2D s) for0<s<—\/m.,

otherwise.

Then, since p satisfies Dpss — ps + 19p = 0, one can easily verify that nw is a weak
2w D

lower solution of (6), provided [zg, zo + e\/ﬁ] C [zo, w0 + 0], Le., € < 5/\/%
and 7 is a sufficiently small positive constant. 0
6.2. Proof of Theorem 3.3.

LEMMA 6.2. Suppose r(0) < % < maxo 7, then for each 6 small and all €
sufficiently small, there is a weak upper solution w1 such that
(i) 1 < max{r(z),0} + 4,
(ii) w1 =9 and (41) =0 in {x € [z1,1] : r(z) < 0},
(iii) @ < in 0,21 — 4], where z = inf{x € [0,1] : r(x) > 1/(4D)}.
Here and throughout this article we denote z; = inf{x € [0,1] : (x) > 1/(4D)}.

Proof of Lemma 6.2. Fix § > 0. Define

wi(z) = min{8, (21 — 8)} exp (M) .

Then take any smooth function p; such that (p1).(1) =0, and
(15) max{r(z),0} < p1 <max{r(z),0}+4J in [0,1],
p1,2(1) =0, and

(16) p1=06 and p1,=0 whenr(z)<O0.
Then define (see Figure 4)

wr () in [0,21 — 9),
1=« min{wi (z),p1} infz1 —3d21—6/2],
p1 in (z1 —0/2,1].

We claim that @; is a weak upper solution of (6). First, we verify the continuity of
%1, which follows from the fact that at x = 23 — J, by the definition of wy,

wi(z1 —0) <r(z1—0) < p1(z1 — 9),
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which implies that, in a neighborhood of * = 21 — §, W1 = w; is smooth. On the other
hand, at z = 21 — §/2, one can deduce by (15) that for all € small,

wi(z1 —6/2) = kg exp (%) > max{r(z1 — §/2),0} + 38 > p1(z1 — 6/2),

where kg = min{J, r(z; — §)}. This implies that, in a neighborhood of x = z; — /2,
%1 = p1 is smooth. Hence %3 is continuous.
Second, we check that %; satisfies the required differential inequality,

L] == €D(U1)ze — (U)o + U (r —u1) <0,

whenever it is smooth. This follows from the fact that in [0, 21 — /2], r(z) < 1/(4D)
and

1 1
Liw] =w; [ —= — — +7— .
[wi] = w1 <4D 55 " wl> <0

And that in [z1 — §, 1], for all € sufficiently small,

L <e(l+eD 2 — inf inf — < 0.
) < e+ D)ol (inf o) (int (or-1)

Finally, we check the boundary conditions.

— _ 1
[—€D(T1)z + T, = [—€D(w1)s +w1],_o = w1 {—ED@ + 1] > 0,

and (%1)(1) = (p1)2(1) = 0 by definition of p;. This completes the proof. O
LEMMA 6.3. Suppose maxjg 1) > ﬁ, and there exists x1 € (0,1) such that
r<0 in[0,z1], and r>0 in(z1,1].

Then for each dg > 0, for e sufficiently small, there is a weak lower solution u; such

that
_ 0 m [Oa Zl}a
U7 r(@) =0 <uy <r(@) [z + 0, 1),

LEMMA 6.4. Suppose 0 < x1 < o < 1 satisfy
r(z1) =r(z2) =0 and r>0 in (x1,22).

Assume % € (0,maxpy, ,17). Then for each 6o > 0, if € is sufficiently small, there
is a weak lower solution w, such that

0 in [0, 2],
w — r(z) — 6o <uy <r(x) in[z1 + do, 2 — 3dp),
173 & at x = xo,

0 in [z + 200, 1],

where zy = inf{x € (x1,22) : r(z) > 1/(4D)}.

Note that Theorem 3.3 follows directly from Lemmas 6.2 and 6.3. We will prove
Lemma 6.3, and indicate the modifications to get Lemma 6.4. The latter result plays
an important role in the construction of the second transition layer.
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Fic. 5. Left panel: Lemma 6.3: construction of weak lower solution wu;. Right panel:
Lemma 6.4: construction of weak lower solution u, .
Proof of Lemma 6.3. Let §g > 0 be given. By the definition of
=inf{x €(0,1] : r(z) > 1/(4D)},
we may choose Z1 € (21,21 + 00/2) such that r(Z1) > 1/(4D). Given any 0 < 6 <
min {6o/2,7(21) — 1/(4D)}, there exists, by Lipschitz continuity of r, 51 = §1(5) €
(0,00/2) such that
0
(17) Ir(z) —r(y)| < 3 for any x,y € [0,1] such that |z — y| < ;.

Next, let wy be the unique positive solution to

{ Dwyy —wy + (r(21) — /2 —w)w =0 in (0,400),
w(0) =0, w(+o0)=r(z1)—04/2,

which exists since 4D(r(21) — §/2) > 1 (Theorem 5.4). Next, choose
p2 € C([Z1 + 01/2,1))
such that

(18) {T<x2—5<p2<m> <r(@) in[E+6/21] (p2)(1) =0,
pa(Z1+01/2) <1(31) = /2, pa(5r+61) > 1(31) — 6/2,

which is possible, as 7(Z1 + 01/2) — 6 < r(21) — /2 < r(Z1 + 1) by (17). Finally, we
define (see left panel of Figure 5)

o n [0,21),

o (=) n [F1 5+ 00/2),

=1 max {wy (£=24) , pa(2)}  in [Z + 61/2 Z1+61),
p2(x) n [21 461, 1],

It remains to check, for e sufficiently small, that u, is a weak lower solution of (6).
First, we check that u, is continuous at @ = 21, 21 4+ 01/2, 21 + 61. This follows from

u (Z14) = w2(0) = 0 = 2, (21 -)
and that when x = Z; + 61/2, (and € small), by (18),

.%—51
w2
€

=~ ’I'(Z~1) — 5/2 > pg(gl + 61/2)
x:21+61/2
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which implies that u; = wso is smooth in a neighborhood of z; + 61/2; and that when
T =2z + (517 by (18),

(x — 21)
w2
€
which implies that, in a neighborhood of z; + 61, u; = p2 is smooth.
Second, we check that at © = 21,21 + 61/2,21 + 61, (uy), satisfies (uy)z(xz—) <
(uq)z(z+). This is clearly satisfied when & = 2;, and also at x = 21 + 01/2,21 + &1
since u; is smooth near those points.

Finally, we check that u, satisfies the required differential inequality L{u;] > 0
whenever it is smooth. Now, in (21, 21 + 01), r(z) > r(21) — 6/2 (from (17)) and

~r(Z)—0/2 < p2(Z21+61)
r=Z14+61

L |:'LU2 (x _e 21>} > Dwy yy — waoy +wa2(r(Z1) — 6/2 —wse) =0,

whereas in [Z1 + 01/2, 1],

Ll = =1+ D)l + ( jut, on) ((, int, (= pm)) 0

[21-‘1-61/2,1 [Z1+51/2,1]
for all e sufficiently small. This completes the proof of Lemma 6.3. 0
Next, we indicate the modifications to show Lemma 6.4.

Proof of Lemma 6.4. We first modify po to satisfy, in addition to (18),

1 .
_J 55 (mf[z2 28,05—0] T ) (zo —d—x) infzy— 28,20 — 4],
(19) p2{ 0 in (22 — 4,1],
and let
_ T — T 3 & — (g — 20) (1 —€?) 25€2
2 - = — g — .
(20) p2(2) 6(;1:2725)71“2_'_6 xo — (o — 20) 25 T 1— €2

Then it can be easily seen that, for € > 0 sufficiently small (see right panel of
Figure 5),

0 1 [0721) U [.2?2 + 25, 1],
wa (%) n [21,21—‘—(51/2),
max{ws (2=21) , pa(2)}  in [Z1 +61/2, 51 + 61),

Uy = pg( ) in [21+61,x2726),
max{pz2(x), p2(z)} n [zg — 24, x9 — 9),
p2(x) n [z — 8,22 + (20€%)/(1 — €%)),
0 n [xe + (2062)/(1 — €2),1].

is a weak lower solution. The boundary inequalities are satisfied, as u; = 0 near to
the boundary points. The continuity of u; follows from previous arguments, and the
fact that

p2(x2 - 25) = %inf[:tz—25,:1:2—5] r>e= p~2($2 - 25)7

p2(r2 —0) =0 < pa(z2 — ),

palws + (2662)/(1 - ) = 0,
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P 1 [ w (z—zg+6)
7 o (i f0) = () mw

F1G. 6. Construction of upper solution @ in the proof of Theorem 3.4(a).

so that w; is smooth near x = Z; + 61/2, 21 + 01,22 — 20, z2 — J, continuous at xa +

(26€2)/(1 — €2) and
Pa(lwa + (20€%) /(1 — €)]=) < 0= fy([wa + (20€*) /(1 — €*)]+).

It remains to check the differential inequalities for ps and po. The differen-
tial inequality L[p2] > 0 in [Z; 4+ 61/2,22 — 26] can be verified as in the proof
of Lemma 6.3. In [zg — 20,22 — d], p2 is linear and satisfies p2(r — p2) > 0, so
Llp2] > —e (54 inf{y, —25.4,—8)7) > 0. Also, in [z3 —20, 22+ (20€%) /(1—€2)], 0 < po < €
and

L[pe] > ~epa — (2" > ¢ (~5) = >0
in [zg — 26, x9] (Where r(x) > 0) and

Lipa] = —epa e +7(x)p — (p2)°
€
> —¢ (75) — [rlcoaoap [T — xale — €

—€2<4i51)0(62)>0

in [, 72 + (28€?)/(1 — €?)], independent of all small ¢, since ¢ is a small and fixed
constant. O

2

6.3. Proof of Theorem 3.4(a).

Proof of Theorem 3.4(a). Let o~ be given by (11) for & € (x2,22). By choosing
d smaller, we may assume without loss that r(z) > ¢ for all z € [z — 20, 29].

CLAIM 6.5. There exists a smooth function a such that
(i) o~ <a<a’ n|re,22);
(i) there exists To € (w2, x3) such that a(Z2) < 0 and f;;_5 a =0, and o changes
sign ezxactly once, from negative to positive, in [E2, 22 — 0);
(ili) a(zz —0) > o™ (22) = 5.
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To see the claim, observe that o~ < 0 in (z2,23) and o~ > 0 in (3, 22). Therefore
for § > 0 small
z2—6 z2
/ a” < / a <0.

Therefore, we may choose a function « satisfying (i) and (iii) such that f;;ig a<0
and that it changes sign exactly twice, i.e.,

(21) a>0 inry,r)U@", 226, and a<0 in(2/,2")

for some 2’2" € (x2,x3) such that zo < 2’ < 2" < x3 < 25. Finally, (21) implies (ii)
with some %5 € (z/,2"). We then define (see Figure 6)

ﬂl in [0,.’%2),

— Jexp (% f;; a) in (Zg, 20 — 4),
min{ws(x),ps} in [z2 — 0,20 —/2),
03 in [z2 —40/2,1],

where %, is given by Lemma 6.2, so that
(22) ﬂl(i‘g) =4§ and (17,1)1(532) =0.

We also choose the smooth function ps such that r < p3 < r 4+ din [z2 — 4,1],
p3(z2 — 6/2) < r(22) = 75, and p3»(1) = 0. Also, ws is given by

z— 2+
ws(x) = 0 exp (ﬁ) .

Now, we proceed to show that u is a weak upper solution of (6). First, we check the
continuity. The continuity at x = %o follows since

U1(Z2) =0 = 6 exp (%[ a)

by Lemma 6.2(ii). Atz = 25—4, by Claim 6.5(ii), T((22—8)—) = d exp(L f;;_(s ) =0,

while ws(22 — ) = § < r(22 — &) < p(z2 — &), which implies that u((z2 — d)+) = § as
well. At = 20 — §/2,

T=T2

ws(z2 — 6/2) = dexp <4%D) > p(z2 — 6/2)

for all € small. Hence 4 = p3 near zo — 6/2.

Next, we check that discontinuities of U, at * = T2, 22 — d, 22 — § /2 are consistent
with the definition of weak upper solutions. At Zg, U, (T2—) =0 > ga(ﬁcg) = Uy (Za+)
by (22) and Claim 6.5(ii). At z = 23 — 4,

4] d 1
Tol(2 = 0)-) = 2z —8) > Dol = (ws)a(zs ) = (22 — 9))
by Claim 6.5(iii). Hence T, ((z2 — 0)—) > Uy ((22 — §)+). Also, @ = ps is smooth near
zZ9 — 5/2
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Next, we check the differential inequality. By Lemma 6.2, L[u1] < 0. Let w =
Sexp(L f; a), then, for z € [T2, 20 — ¢,

L] < €Dy — €ty + ri

ZQZ)[DOLQ—I—EDO%—O(—I—T}

<o [ sup (Da® —a—ra) + De||a||c1] <0

[Z2,22—46]

for all e sufficiently small, where the last inequality holds since o~ < a < a® on
a compact interval [Z2,22 — d], whence SUD[z, 25— o] (Da? — a —r) < 0. Also, in
[22 — 61,22 — 01/2], r(z) < 1/(4D) and

L [w3] = ws (%-%4-7’-11)3) <0.
Also, L[ps] <0 for all € sufficiently small as before.
Finally, the boundary conditions are satisfied since w = u; in a neighborhood of
0, and T, (1) = p3,,(1) = 0. Hence @ is a weak upper solution.
Next, we construct the weak lower solution. To this end, we take the lower solution
u, supported within (z1,2z2) which was constructed in Lemma 6.4, and construct a
lower solution u, analogously to Lemma 6.3, supported within (22, 1]. Finally, define

Uy in [OaxQ)v
0  in [z2,22 +0),
Uy in [z9 + 4, 1].

(S
Il

Then u clearly satisfies (i)—(iv) of Lemma 5.2. Hence u qualifies as a weak lower
solution. The pair of weak upper and lower solutions given by % and u proves that
(6) has a positive solution & with the asserted profile. By the uniqueness of positive
solution %, Theorem 3.4(a) is proved. o0

6.4. Proof of Theorem 3.4(b).

Proof of Theorem 3.4(b). Fix § > 0, and let §; be given by the Lipschitz conti-
nuity of r as in (17). Suppose fj; a” > 0. By the fact that = changes sign exactly
once from negative to positive in (3, z2), there exists a unique number 25 € (3, 22)
such that fj: a” = 0. Let « : [z2 + d1, 22] be a smooth function that changes sign
only once from negative to positive,

2—01
(23) a” <a<at  for [xy+ 61,7 — 1), and / a =0,
x2+01
and
(24) a(ry +61) <0, «a(Zz—46) > 0.

We claim that this is possible for ¢; small (and still satisfy (17)). To see the claim,

let g(t) = fj;;; a~, then g(0) = 0 and

g'(0) = —a (%) —a (z2) = —a  (%2) < 0.
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F1G. 7. Left panel: construction of upper solution in the proof of Theorem 3.4(b). Right panel:
construction of lower solution in the proof of Theorem 3.4(b).

So fz2+§1 a” < 0 for all §; > 0 small. And we may choose a function « that
approximates o~ such that it changes sign exactly once from negative to positive,
and that (23) and (24) hold.

Choose a smooth function p4 defined on [Z3 — §1,1] such that r(z) < ps(x) <
r(z) + 9, pa(1) = 0. We also define

1 X
W = §exp <— / a) ,
€ Jaotdy

and define our weak upper solution by (see left panel of Figure 7)

u1 in [0 To + (51)

min {wy,w} in [x2 + 01, Z2 — 01),
min {@, ps} in [Z2 — 91, 22 — 61/2),
P4 in [Zo —61/2,1],

S
I

where @1 (22 + 61) = ¢ and (41)z(z2 + 61) = 0. The continuity of @ at x = z2 +
01,29 — 01,29 — 51/2 follows from (1) ﬂl(l‘z + (51) =4 = ’UNJ(Z‘Q + (51); (ii) at Zo — 01,
ﬁl(ig — (51) =)= 11](22 — (51), and (ﬂl)l(gg — (51) =0< 05(22 — (51) = 11]1(22 — 51),
so u = for x /S Z3 — 01. Since also W(Zz — 1) = § < r(Z2 — 01) < pa(Z2 — &1),
we have & = @ in a neighborhood of Zy — dq; (iil) at @ = 2o — 61/2, w(Z2 — 61/2) =
§exp(L fz{(f;” ) > pa(Z2 — 61/2) for 0 < e < 1 since o > 0 in (35 — &1, 2o — 01/2).
So @ = p4 in a neighborhood of Z3 — d1/2.

Next, we claim that the discontinuities of @, have the correct signs: At x = x2+461,
it is a minimum of two smooth functions, so 4, ((x2 + d1)—) > 4z ((x2 + d1)+). In
a neighborhood of z = Z3 — §1, 4 = W as explained previously, so % is smooth near
Z9 — 01. Also 4 = py4 is smooth in a neighborhood of Zo — 61/2.

Next, we check the differential inequalities. We already have L[a;] < 0 by
Lemma 6.2. Also, we may deduce that for [z2 + d1, 22 — §1/2),

L[] < (Do’ + eDay, —a+r —w) < ( sup (Da2a+7’)+e||acl) <0
[w2+01,22—61]

for all € small, similarly to the proof of Theorem 3.4(a). Next, L[ps] < 0 in [Z2 — 01, 1]
for all e sufficiently small as before.

The function @ satisfies the boundary conditions for upper solution, as % satisfies
the boundary conditions at x = 0, —eDu1 5(0) + T (0) > 0, and p4 (1) = 0 (by
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definition of p4). This proves that @ is a weak upper solution. Since « changes sign
only once, from negative to positive in [zo + 81,22 — 61] and that ff;;;ll
see that @w < ¢ in [x2 + 01, 22 — d1], which proves the desired property for the upper
solution .

Next, we construct the weak lower solution u. Given § > 0, let u; be given by

Lemma 6.4. Choose a smooth function & : [x2, Z2 4+ 1] which satisfies

a = 0, we

Z2+61/3
/ a=0, a<a in|ze,Zs+ 01,
x

2

(25)

1—+/1—4D(r(z2) — 6/2)
2D

(34(22 -+ (51/3) < &g =

and & changes sign only once in [z2, Z2 + 01], from negative to positive.
Next, let ws be the unique positive solution to

{ Dwyy —wy +w(r(Z2) —6/2—w) =0 in (—o0, +00),
w(—o0) =0, w(+o0) =7r(Z2)—3/2, w(0)=(r(22)—46/2)/2.

Again, ws exists since 4D(r(22) + 6/2) < 1 for ¢ small. By Theorem 5.4,

(26) ws(y) ~ O (exp(dpy))  and -

5, .
Y MGy, asy— —oo.
W5

Since wy, > 0 in (—o0,00), let y. be the unique number such that ws(y.) = €3, and
then (by (26)) y. < 0 satisfies |y.| ~ O(loge). In particular, for any fixed constant
K >0,

. K 5 1)
(27) tim w; (ye n ;) — ws(o0) = 1(E2) — 5.

Next, choose ps € C?([Z2,1]) such that r(z) — § < ps(z) < r(z) in [Z2,1],
(28) [)5(22 + 251/3) < T(ZQ) — (5/27 [)5(22 + (51) > 7“(22) — (5/27 ([)5)90(1) =0.

Such a choice of ps is possible since (22 + 281/3) — 3§ < r(Z2) — /2 < r(Z2 + §1) by
(17). With that, we define (see right panel of Figure 7)

Uy in [0, z2),
max{gl,e?’exp (%fi d)} in [x2, Z2 + 01/3),

U:i=4q ws (%4—%) in [Z2 +01/3, 22 + 261/3),
max {ws (Lfl/g + ye) aps(f)} in [Z3 + 201/3, 22 + d1),
ps(x) in [Z2 + 61, 1].

We verify that u is a weak lower solution for (6) in detail. We claim that u
is continuous at @ = xg, 7 + 01/3, % + 261/3,%2 + 61. At © = 29, Uy (22) = €
¥ exp(L ffZ &) |p=z,, SO w is continuous at = x3. At Zy + 61/3, since u; = 0, we
have, by (25) and the definition of ye,

w((Z2 +61/3)—) = {53 exp G /: a)} s =€ = ws(ye) = u((Z2 + 61/3)+).
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At x = Z; 4 261/3, by (27) and (28), we have

€ 3€

— % —61/3 s
ws (M + y> — ws <_1 + ye) ~1(Z9) — §/2 > ps(Za — 261/3).

Hence u = ws in a neighborhood of Z5 + 241/3. Similarly, at @ = 2 + 61,

€ 3¢

— % —01/3 20
ws (M + ye> = ws (—1 + ye> ~1(Z2) — 8/2 < ps(Z2 — 61).

Hence u = p5 is smooth in a neighborhood of Zs 4+ §;. This proves the continuity of
the function .
Second, we verify that at @ = x9, Z2 + 81/3, Z2 + 281 /3, Z2 + J, we have u, (z—) <
u, (x+). This holds when & = 2, as u is a maximum of two functions there. For
x less than and close to Zy + 01/3, u(x) = 0, so u(x) = € exp(L f;; &). Hence
u,((Z2 + 61/3)—) = €2a(Z2 + 61/3). Next, by (26)
Ws,y Ws,y

1 1
—Su, ((Zo+61/3)+) = sws 4 (ye) = ~ —=(—00) = Q.
el + 81/D) = sy fu) = | =B oo) =

Hence, w,((22 + 61/3)+) > u,((22 + 61/3)—) by (25). The remaining possible dis-
continuities of u, are consistent, as u is smooth in some neighborhoods of =z =
Zo + 2(51/3, Zo + 01.

Third, we claim that L[u] > 0 whenever it is smooth. This has already
been verified for w;. Letting @ = eexp(% f; &), we then proceed to compute in
[z2, 22 + 61/2],

Lw] =w
Since infly, , 16, /5/(DG* — & + ) > 0 independently of €, it suffices to show the
following claim.

[(D&* — & +7r) + eDé, — ] .

CLAIM 6.6. @ = €® exp(2 f;z &) < € in [xa, 72 + 61/3].

To see the claim, first recall that &, changing sign only once (from negative to
positive) in [z2, Z2+61/3], and hence fi &, which vanishes when x = x5 and 234 91/3,
is always nonpositive in [xg, Z2 + 01/3] . This proves Claim 6.6.

Hence, L[] > 0 in [z2, Z2 + 61/3] for € sufficiently small. It follows as before that
L[wg,(%)} > 01in [Z3 + 61/3, 22 + 01] and Lps] > 0 in [Z2 + 261/3,1].

Finally, we verify that u has the correct boundary conditions. Now, we have
verified previously that u, has the correct boundary condition at x = 0. The other
boundary condition at x = 1 follows by (28). O

7. Extension. In this work, we focused on internal transition layers. When the
upstream invasion limit is at the upstream end, i.e., z; = 0, then the population is
only limited by the boundary condition at the upstream habitat end. We expect there
to be a boundary transition layer at the upstream end, in which the population is
below the carrying capacity.

Remark 7.1. Suppose that z; = 0. We can show that as e — 0, & — r4(z) (i.e.,
the positive part of 7(x)) locally uniformly in (0,1] and that lim._,o @(0) exists.

We illustrate this case in Figure 8. We choose the linearly decreasing resource
function r(z) = 0.8 —z and fix D = 1/4. As ¢ decreases, the transition layer decreases
in width, and the value %(0) converges, as Table 3 indicates.



RANGE LIMITS IN ADVECTIVE ENVIRONMENTS 21

1/4D

space

F1a. 8. Decreasing resource function r(x) and steady state @(x) for the three values of ¢ = 0.020

(dash-dot), ¢ = 0.01 (dashed), and € = 0.005 (solid).

TABLE 3
Linearly decreasing .

| e | 002 | 0.01 | 0.005 |
| @(0) | 0.0116 | 0.014 | 0.016 |
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