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In vivo bioluminescent imaging (BLI) permits the visualization of engineered biolu-
minescence from living cells and tissues to provide a unique perspective toward the
understanding of biological processes as they occur within the framework of an authen-
tic in vivo environment. The toolbox of in vivo BLI includes an inventory of luciferase
compounds capable of generating bioluminescent light signals along with sophisticated
and powerful instrumentation designed to detect and quantify these light signals
non-invasively as they emit from the living subject. The information acquired reveals the
dynamics of a wide range of biological functions that play key roles in the physiological
and pathological control of disease and its therapeutic management. This mini review
provides an overview of the tools and applications central to the evolution of in vivo BLI
as a core technology in the preclinical imaging disciplines.
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INTRODUCTION

In vivo bioluminescent imaging (BLI) enables the visualization of biological processes as they occur
within the living subject. The information obtained is unprecedented in its ability to elucidate
biology beyond the boundaries of the conventional in vitro assay, where the complex interactions
of a living system are all but ignored. In vivo BLI uses the luciferase family of proteins to create
signature bioluminescent outputs that are then externally captured by advanced cameras (Figure 1).
Luciferases operate in tandem with their luciferin substrates to generate light via an oxidation
decarboxylation reaction that forms an excited state intermediate that releases energy in the form
of photons as it returns to its ground state. In nature, bioluminescence is generated by various
bacteria, fungi, protozoa, dinoflagellates, and higher-order terrestrial and marine organisms, with
the firefly being the most recognized example. Molecular biology has enabled the genes involved
in bioluminescent light reactions to be isolated, manipulated, and reapplied toward applications,
such as in vivo BLI, where bioluminescence as an optical emission signature exhibits certain unique
imaging advantages. Among the most critical is a superior signal-to-noise ratio due to cells and
tissues emitting virtually no intrinsic bioluminescence, thus effectively eliminating background
interference when probing for a bioluminescent signal within the intricate milieu of a living entity.
However, detecting bioluminescence at depths beyond a few centimeters inside of a living animal
remains challenging because light signals must be obtained and evaluated after passing through
host tissue that absorbs, attenuates, and scatters their emissions (1). This has currently constrained
in vivo BLI to small animal models, such as mice and rats, with service primarily limited to
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FIGURE 1 | In vivo BLI uses advanced camera imaging systems to visualize live animal subjects as they express bioluminescence from targeted
cells and tissues, thereby allowing fundamental biological processes to be monitored non-invasively. Advances in the in vivo BLI field have created
luciferase proteins with expanded wavelength emission profiles, stronger and more stable signal generation, substrate-independent real-time expression, and
proximity-based expression characteristics that are providing innovative tools for preclinical diagnostics, drug discovery, and toxicology research.
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preclinical imaging applications. This mini review provides an
overview of the luciferases currently being applied in in vivo
imaging applications along with the toolbox of approaches that
continue to expand the capabilities of in vivo BLL

LUCIFERASES FOR BLI APPLICATIONS

Luciferases applied in in vivo BLI include those derived from
beetles, bacteria, and various marine species (Table 1), with the
firefly luciferase (FLuc) being the most widely used. FLuc requires
D-luciferin (a heterocyclic carboxylic acid), ATP, and molecular
oxygen for light production. At a pH between 7.5 and 8.5, FLuc
catalyzes the reaction between p-luciferin and ATP to form
luciferyl-adenylate, which in the presence of oxygen then under-
goes an oxidative decarboxylation reaction to form CO,, AMP,
and oxyluciferin. Initially formed as an excited state intermedi-
ate, oxyluciferin quickly returns to its ground state and releases
energy in the form of light (2). In addition to FLuc, other beetle
luciferases, such as the green (CBG) and red (CBR) click beetle
luciferases, emerald luciferase (ELuc), and stable red luciferase
(SRL), also utilize p-luciferin as their substrate. However, despite
this common substrate, these luciferases emit light of different
wavelengths (Table 1).

Within the bacterial genera, bioluminescence from Photo-
bacterium and Aliivibrio/ Vibrio are typically applied. These
systems encode the [ux gene cassette, which includes the
luxAB genes encoding a heterodimeric bacterial luciferase and
the IuxCDE genes encoding a fatty acid synthetase/reductase

complex that generates a long-chain fatty aldehyde substrate
from endogenous intracellular metabolites. Marine biolumines-
cent bacteria also possess a luxG/frp gene that encodes a flavin
reductase that recycles reduced flavin mononucleotide (FMNH,)
for the luciferase reaction. Similar to beetle luciferases, bacterial
luciferase generates light in an ATP-dependent manner in the
presence of long-chain aldehyde, FMNH,, and molecular oxygen
(33). Distinctive to bacterial bioluminescence is the ability of
cells expressing the full luxCDABE gene cassette to produce
light autonomously without the need for exogenous luciferin
by self-supplying the aldehyde and FMNH, substrates. While
bacterial bioluminescence is traditionally employed to label
bacterial pathogens for in vivo real-time infection tracking due
to its prokaryotic origin, the lux cassette has been syntheti-
cally optimized for autonomous bioluminescent expression in
eukaryotic organisms, allowing substrate-free in vivo imaging
of mammalian cells (18).

The remaining luciferases include those isolated from marine
invertebrates. Unlike other luciferases, marine luciferases utilize
their luciferin substrate and molecular oxygen to generate light
in an ATP-independent fashion. There is also no common
luciferin substrate for all marine luciferases. While Gaussia
(GLuc), Renilla (RLuc), and Metridia (MLuc) luciferases share
the same substrate coelenterazine, Cypridina (CLuc) and Vargula
(VLuc) luciferases catalyze their reactions using cypridina and
vargulin, respectively. Some marine luciferases, including GLuc
and MLug, are naturally secreted outside of the cell, thus allowing
bioluminescent detection without cell lysis (25, 27).
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TABLE 1 | The inventory of luciferases for in vivo BLI applications.

Luciferase Luciferin substrate Peak emission Reference Examples of in vivo BLI applications
(nm) (25°C)
Beetle luciferases
Photinus pyralis (firefly; FLuc, ffluc, or luc) and p-luciferin 560 (3-5) e Detection of cancer cells and evaluation of
its enhanced variants (effLuc, luc2) tumor treatment (3, 5)
Red-shifted firefly luciferase PRE9 o-luciferin 620 ) * Imaging of neural precursor cell migration to
Pyrearinus termitilluminans (click beetle p-luciferin 538 (10) glloma tumor (6) L
emerald; ELuc) * Imaging of T cell migration to tumors (7)

' ) . ) o e Split luciferase assay to image apoptosis in
Pyrophorus plagiophthalamus (click beetle red; p-luciferin 615 (11) response to chemotherapy and radiotherapy
CBR) in a glioma model (8)

Pyrophorus plagiophthalamus (click beetle p-luciferin 540 (12)
green; CBQG)
Phrixothrix hirtus (railroad worm stable p-luciferin 630 (13)
luciferase red; SLR)
Bacterial luciferases
Aliivibrio fischeri, Vibrio harveyi, and Photorhabdus FMNH. + long-chain 490 (14, 15) e Simultaneous imaging of lux-labeled bacterial
luminescens lux for bacterial expression aliphatic aldehyde trafficking to FLuc-tagged tumor (14)
Synthetic /ux for mammalian expression FMNH; + long-chain 490 (18,19) ° Subs'tratle—free imaging of human
aliphatic aldehyde cells in vivo (16)
(self-supplied by * Substrate-free real-time imaging of bacterial
JuxCDEfrp) infection of human cells (17)
Marine luciferases
Renilla reniformis (RLuc) and its enhanced variants Coelenterazine 482-535 (20-22) ¢ RLuc multiplexed with FLuc to monitor tumor
(RLuc8 and RLuc8.6-535) regression in response to therapeutic genes
Gaussia princeps (GLuc) and its mutants (I90L, Coelenterazine 482-503 (25, 26) delivery by neural precursor cells (6)
8990, 90115, Monsta, etc.) ¢ V0Luc multiplexed with FLuc and RLuc to
Metridia fonga (MLuc7, MLuc164) Coelenterazine 486-498 ©7, 28) track delivery of therapeutic genes into brain
T ) ) tumor (23)
Aequorea victoria (aequorin) Coelenterazine 470 (29) « BRET assay to detect tumor metastasis (24)
Vargula hilgendorfii (VLuc) Vargulin 462 (30)
Cypridina noctiluca (CLuc) Cypridina 460 (81)
Oplophorus gracilirostris (NanoLuc) Furimazine 460 (32)
Benthosema pterotum (BP) Coelenterazine 475 (7)

THE TOOLBOX OF BLI APPROACHES

Mutated and Synthetic Luciferase

The high utility and common limitations shared by luciferases has
made them especially attractive targets for synthetic modifica-
tion. One of the first major synthetic luciferase modifications
was a polymutated variant of RLuc, which incorporated eight
independent single amino acid changes to increase protein stabil-
ity and improve light output (20). This mutated variant allowed
for improved function during serum exposure in small animals,
provided a facile means for conjugating luciferase protein to
various ligands (34), and has recently been used for conjugation
to immunoglobulin G proteins for visualizing antigen—antibody
reactions (35).

Perhaps the most valuable synthetic luciferase modifications
for in vivo BLI have been those that shift the luciferases’ emission
signal further into the red spectrum, thereby improving signal
penetration through living tissue. To overcome the naturally
blue-shifted emission wavelength of RLuc, Loening et al. (21)
generated a library of active site mutations and identified multiple
variants with emission spectra peaks ranging from 475 to 547 nm.
Branchini et al. (36) employed a similar approach with FLuc that
shifted its native 557 nm emission peak to 617 nm.

Leveraging the proteomic sequences of known luciferases,
Kim and Izumi (37) applied a consensus sequence-driven
mutagenesis strategy to identify amino acids common to
copepod luciferases and arranged these sequences under the
constraints suggested by a statistical coupling analysis (38) to
mimic the natural evolutionary constraints of the proteins.
Using this strategy, they designed artificial luciferases (ALucs)
that retained favorable emission wavelengths in the 515-548 nm
range. This strategy enables the synthetic generation of alternative
classes of luciferases for the continued expansion of BLI beyond
those found in nature.

Synthetic Luciferin Analogs

For in vivo BLI to occur under the majority of luciferase/luciferin
combinations, the luciferin substrate must first be injected into
the animal and then diffuse to where the luciferase-expressing
cells are located. This series of events can be challenging. The
biodistribution of luciferin substrates in small animals is not
homogenous, individual eukaryotic cells are limited in their
ability to freely take up substrate, and the mere presence of the
luciferin substrate represents a chemical contaminant that may
unknowingly introduce experimental artifacts and/or toxicologi-
cal side effects. Synthetic luciferins with properties better tuned
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to the in vivo environment are being developed to address some
of these problems. Craig et al. (39) created some of the early
chemically modified (esterified) p-luciferin analogs designed for
improved cellular uptake kinetics and consequent near sixfold
increases in bioluminescence output. However, for in vivo
imaging, the focus has transitioned to red-shifting the emission
wavelength for improved tissue penetration. This has resulted
in aminoluciferin analogs, such as cyclic aminoluciferins and
seleno-p-aminoluciferins, with wavelength emissions around
600 nm (40). Unfortunately, the majority of these analogs yield
lower light intensities than conventional luciferin, although the
CycLucl substrate reported by Evans et al. (41) does demonstrate
superior photon flux under non-saturating substrate condi-
tions. Infra-luciferin (Anx = 706 nm), a m-conjugated analog
(Amax = 675 nm), and CycLuc10 (Anax = 648 nm) have successfully
shifted their wavelengths even further into the far-red regions
(42-44). However, maintaining elevated photon yields remains
challenging, although the increased efficiency of signal penetra-
tion at these longer wavelengths does offer heightened resolution.

Multiplexed BLI

In multiplexed BLIL, the subject is tagged with multiple luciferases
that utilize different substrates, which are injected sequentially
to trigger each bioluminescent signal to enable simultaneous
monitoring of multiple biological processes. Common luciferase
combinations include p-luciferin-activated beetle luciferase and
coelenterazine-activated marine luciferase. The selectivity and
specificity of luciferin substrates ensures minimal cross talk.
This approach has been applied to monitor gene expression and
promoter activities (45), mesenchymal stem cell differentiation
(46), and cell migration and tumor apoptosis (6, 47). A triple
BLI system consisting of the FLuc/D-luciferin, GLuc/coelen-
terazine, and VLuc/vargulin pairs has also been reported for
simultaneous monitoring of three distinct biological events in
an orthotopic brain tumor model (23). However, using multiple
substrates inevitably introduces biases due to differential sub-
strate biodistribution and uptake in animal tissues. Meanwhile,
multiple substrate injections can be stressful for the animal and
introduce potential operational errors. These drawbacks can be
alleviated by utilizing a single substrate to simultaneously initiate
multiple luciferases that emit light of separable colors. A com-
mon approach is to employ one luciferase with a green emission
spectrum and a second luciferase emitting a more red-shifted
wavelength. Upon a single-substrate application, both luciferases
are activated, and the resulting green and red light signal can be
spectrally resolved using appropriate detection systems. Beetle
luciferases activated by p-luciferin, including FLuc, CBG, and
CBR, are currently the most common reporters used for single-
substrate multicolor BLI applications (13, 48-51). However, for
in vivo applications, this arrangement is still constrained due to
increased absorption and attenuation of the shorter wavelength
(green) light compared to that of the red-shifted signal in animal
tissues, which introduces potential detection biases.

Split Luciferases
Split luciferases, or luciferase fragments, are unique tools for
probing protein—protein interactions. Instead of using the

complete enzyme, the luciferase protein is split into a C-terminus
fragment and an N-terminus fragment that are not capable of
catalyzing the bioluminescent reaction on their own. In split
luciferase complementation assays, each luciferase fragment is
attached to each partner of the interacting peptides, domains,
and/or full proteins. Upon interaction of the proteins of interest,
the luciferase fragments are brought to a close proximity to form
a complete and functional enzyme that produces bioluminescence
when a luciferin substrate is available (52). Luciferase fragment
complementation imaging can be designed to directly identify
interacting protein pairs (53) and to indirectly report protein—
protein interactions induced by various biological processes, such
as binding of intracellular messengers (e.g., cyclic AMP and Ca**)
(54, 55), protein kinase activities (56, 57), caspase-3-mediated
apoptosis (8), and activation and/or inhibition of disease-related
cell signaling pathways (58, 59). Multiple luciferases can also be
used for multiplexed examination of complex interactions involv-
ing multiple protein partners simultaneously in the same subject
(12, 60). For improved in vivo applications, novel split sites and
modifications of the luciferase enzyme are being continuously
identified to enhance their characteristics (i.e., decreased basal
activity, increased specificity, improved signal-to-noise ratio) (61).

Caged Luciferin

The caged luciferin reporter system uses a luciferin substrate
that has been modified such that it cannot interact with its
complementary luciferase to generate bioluminescence until an
enzymatic cleavage event occurs (62). Lugal (p-luciferin-O-p-
galactoside) is one example of a caged luciferin that only actively
interacts with FLuc upon removal of its galactoside moiety by
B-galactosidase. Thus, the bioluminescent reporter cell remains
“dark” even after the addition of the Lugal substrate, with the co-
addition of p-galactosidase being required to ultimately initiate
light emission. Using this strategy, one cell (the reporter cell) can
be designed to express FLuc, while another cell (the activator cell)
expresses [-galactosidase. If the two cells are in close proximity,
then the p-galactosidase released from the activator cell cleaves
the Lugal to initiate light emission from the reporter cell. As the
distance between these two cells increases, the intensity of the
light response correspondingly decreases. For example, this has
enabled in vivo bioluminescent visualization of tumor metastasis
in mouse models, where p-galactosidase-expressing hematopoi-
etic cells distributed throughout a mouse functionally activated
luciferase-expressing breast cancer cells that had metastasized
from a tumor implant (63). Due to Lugal being somewhat
non-selective under biological conditions, other caged luciferin
substrates have been developed that operate under a number of
more selective enzymatic reaction schemes (p-lactamase, alkaline
phosphatase, nitroreductase) (64, 65).

Bioluminescence Resonance

Energy Transfer

Bioluminescence resonance energy transfer (BRET) pairs
together two chromophores such that the emission spectra of one
(the bioluminescent donor) activates the excitation spectra of the
other (the fluorescent acceptor) (66). In its earliest configuration,
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it exploited the 482-nm bioluminescent emission of Renilla lucif-
erase to activate an enhanced yellow fluorescent protein (EYFP),
thereby “switching” the blue-green color of RLuc to a 527-nm
yellow emission (67). The switching only occurs if the donor and
recipient chromophores are properly oriented and situated in
close proximity (<10 nm apart), which enables BRET’s primary
application as an indicator of protein-protein interactions via
the attachment of the donor chromophore to one protein and
the recipient chromophore to the other protein (68). BRET has
since evolved to include other bioluminescent/fluorescent pair-
ings, which, for in vivo applications, have centered on shifting
the emission spectra more toward the red to far-red regions to
improve tissue penetration (24, 69-71). BRET has also advanced
beyond fluorescent proteins to include organic dye (72) and
quantum dot conjugates (73).

Fluorescence by Unbound Excitation

from Luminescence

Fluorescence by unbound excitation from luminescence (FUEL)
is similar to BRET in that it uses the emission spectra of a bio-
luminescent donor to activate the excitation spectra of a fluores-
cent acceptor. However, whereas BRET requires the donor and
acceptor to reside within an approximate 10 nm distance of each
other, FUEL can theoretically occur at donor/acceptor distances
separated by micrometers to centimeters (74, 75). FUEL takes
advantage of the unfocused radiative dissemination of photons
by luciferase-bearing entities to activate neighboring fluorescent
light sources. In one of its earliest demonstrations, Escherichia
coli cells expressing bacterial luciferase were placed in one quartz
cuvette, while red-emitting quantum dots (QD705, Invitrogen)
with overlapping excitation wavelengths were placed in a neigh-
boring cuvette. Photons emitted by E. coli were shown to activate
red-shifted fluorescence from QD705, with signal intensity being
dependent on the distance separating the two cuvettes. Injection
of bioluminescent bacteria and QD705 into mice showed similar
activation of red fluorescence emission under in vivo BLL. FUEL
may serve as a unique mechanism to gage coproximity of donors
and acceptors, much like BRET, but across larger spans of space,
for example, to discern interactions between tissues and organs
separated on a mesoscopic scale.

Bioluminescence Assisted Switching

and Fluorescence Imaging

Bioluminescence assisted switching and fluorescence imaging
(BASF]I) is another spin-off of BRET, wherein a bioluminescent
donor activates a reversible photoswitchable fluorescent accep-
tor protein. Proof of concept for BASFI has been demonstrated
using the pairing of the bioluminescent Rluc8 donor with the
photoswitchable fluorescent protein DG1 acceptor (76). DG1
normally exists in its excited state, emitting green fluorescence at
450-550 nm, but can be switched to an off-state when exposed
to wavelengths around 488 nm. A DG1-Rluc8 fusion construct
was transfected into a human embryonic kidney cell, thereby
endowing it with a green fluorescent phenotype. Exposing the
cell to a 488 nm laser switched DG1 to its off-state, and the cell
became “dark” Addition of a coelenterazine methoxy substrate

then activated Rluc8, whose 400 nm emission switched DGI
back to its on-state. In traditional BRET, this on-state is transient
and short-lived. In BASF], this on-state persists for as long as
the donor bioluminescence is being provided, thereby enabling
the accumulation of signal over time. This allows supply of the
activation signal to be decoupled from measurement of the
emission signal to potentially reduce background and increase
sensitivity. BASFI still requires close association between the
donor and acceptor (<10 nm), so its primary application remains
with studying protein-protein interactions.

Bioluminescent Enzyme-Induced

Electron Transfer

The bioluminescent enzyme-induced electron transfer (BioLeT)
concept uses luciferin analogs that have been modified to
contain moieties of differing electron donating capacities and
then using the ensuing electron transfer process as an on/off
switch to modulate bioluminescent signal output. In its proof-
of-concept format, aminoluciferin substrates were modified to
contain benzene moieties of differing highest occupied molecular
orbital (HOMO) energy levels (77, 78). Substrates containing
benzene moieties with high HOMO energy levels, such as a
diaminophenyl moiety, were shown to quench bioluminescence
when added to a FLuc reaction, presumably due to the elec-
tron transfer process occurring much more rapidly than the
light-emitting reaction. Substrates containing benzene moieties
with low HOMO energy levels did not quench bioluminescent
signal output. A diamino-phenylpropyl-aminoluciferin (DAL)
substrate was ultimately developed as a BioLeT probe for the
targeting of biological nitric oxide. Upon reaction with nitric
oxide, the diaminophenyl moiety is converted into a benzotria-
zole moiety with a lower HOMO energy level, thus transitioning
from minimal to a highly bioluminescent output in the presence
of luciferase. The scheme was validated in vivo in a transgenic
FLuc rat model intraperitoneally injected with DAL substrate
followed by injection of a NOC7 compound that spontaneously
released nitric oxide under physiological conditions. Nitric oxide
accumulation was detected via increased bioluminescence emis-
sion as the diaminophenyl to benzotriazole conversion occurred
within the rat. It is anticipated that the BioLeT process can be
designed to target other biomolecules, such as singlet oxygen and
metal ions, to assist in the real-time, non-invasive surveillance
of a subject’s physiological state.

CONCLUSION

The superior signal-to-noise ratio due to the absence of intrinsic
bioluminescence background in cells and animal tissues has made
BLI an attractive tool for investigating biological processes as they
occur in real-time in living animals. The past two decades have
witnessed not only a bloom in the discovery and engineering of
luciferases with improved expression and performance in mam-
malian cells but also the emergence and expansion of innovative
applications of such luciferase reporters for in vivo imaging.
Despite in vivo BLI currently being constrained to small animal
models, it has increasingly become a promising tool in preclinical
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biomedical research to investigate real-time biological events in
complex biological systems, and it is reasonable to expect that
in vivo BLI will continue to play a crucial role in basic research,
drug development, disease diagnosis, therapy management, and
many other biomedical research and applications.
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