OPEN a ACCESS Freely available online

"PLOS @he

Autonomous Bioluminescent Expression of the Bacterial
Luciferase Gene Cassette (/ux) in a Mammalian Cell Line

Dan M. Close’, Stacey S. Patterson’, Steven Ripp', Seung J. Baek? John Sanseverino’, Gary S. Sayler'*

1 The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Tennessee, United States of America, 2 Department of Pathobiology, The University

of Tennessee College of Veterinary Medicine, Knoxville Tennessee, United States of America

Abstract

Background: The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products
synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous
manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-
bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian
HEK293 cell line in vitro and in vivo.

Methodology/Principal Findings: Autonomous in vitro light production was shown to be 12-fold greater than the
observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate
(FMNH,) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the
addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH, supplementation led to a 151-
fold increase in bioluminescence in cells expressing mammalian codon-optimized /uxCDE and frp genes. When injected
subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted
independently for the 60 min length of the assay with negligible background.

Conclusions/Significance: The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular
environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing
bioluminescent and fluorescent imaging technologies.
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Introduction

In vivo optical imaging is becoming increasingly utilized as a
method for modern biomedical research. This process, which
involves the non-invasive interrogation of animal subjects using
light emitted either naturally from a luciferase protein or following
excitation of a fluorescent protein or dye, has been applied to the
study of a wide range of biological processes such as gene function,
drug discovery and development, cellular trafficking, protein-
protein interactions, and especially tumorigenesis and cancer
treatment [1]. While the detection limits and resolution of charge
coupled devices (CCDs) has increased greatly in recent years [2],
there have been relatively few introductions of improved imaging
compounds that function as light production centers within an
animal subject m vio.

Generally, the currently available imaging compounds can be
divided into two classes: those containing luciferase proteins
(capable of producing bioluminescent light without exogenous
excitation) and those containing fluorescent compounds (dyes or
proteins that require an initial excitation followed by emission at a
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given wavelength). For mammalian-based whole animal imaging,
fluorescent compounds are limited due to high levels of
background fluorescence from endogenous biological structures
upon excitation [3]. Although dyes have been developed and
employed that fluoresce in the near infrared wavelengths [4,5]
where light absorption is lowest in mammalian tissues, they can
become increasingly diffuse during the process of cellular division,
negating their usefulness in long term monitoring studies [1]. In
contrast, luciferase proteins are highly amenable towards n vivo
optical imaging (referred to as bioluminescent imaging or BLI)
because they produce a controllable light signal in cells with little
to no background bioluminescence, thus allowing for remarkably
sensitive detection [6]. While historically the luciferase proteins
used have been based on beete luciferases (i.e., firefly or click
beetle luciferase) or marine aequorin-like proteins (those that
utilize coelenterazine), these each possess disadvantages when
applied to whole animal BLI. For example, the popular firefly
luciferase protein is heat labile when incubated under whole
animal BLI imaging conditions, and can display a half life as short
as 3 min in its native state at 37°C [7]. Coelenterazine-stimulated
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luciferases are similarly handicapped in regards to long-term
monitoring, as it has been reported that their rapid uptake of
coelenterazine necessitates prompt imaging following substrate
injection [8]. Applications of both these luciferase systems also
suffer from the drawback that they require addition of an
exogenous substrate to produce a detectable light signal. This
current work reports for the first time that a modified bacterial
luciferase gene cassette can be expressed in mammalian cells in
culture or in whole animal BLI without the use of exogenous
substrates or coincident infection with a bacterial host, thus
overcoming the limitations imposed by currently available
luciferase-based BLI assays.

Setting the bacterial bioluminescence system apart from other
bioluminescent systems such as firefly luciferase and aequorin is its
ability to self-synthesize all of the substrates required for the
production of light. While the luciferase component is a
heterodimer formed from the products of the lux4 and luxB genes,
its only required substrates are molecular oxygen, reduced
riboflavin  phosphate (FMNH,), and a long chain aliphatic
aldehyde. Oxygen and FMNH, are naturally occurring products
within the cell while the uxCDE gene products produce and
regenerate the aldehyde substrate using endogenous aliphatic
compounds initially targeted to lipid biogenesis. To produce light,
the luciferase protein first binds FMNH,, followed by O,, and
then the synthesized aldehyde. This allows the lux cassette to utilize
only endogenous materials to form an intermediate complex that
then slowly oxidizes to generate light at a wavelength of 490 nm as
a byproduct [9]. The overall reaction can be summarized as:

FMNH>+ RCHO+ O,—FMN + HyO+ RCOOH + hvagoum
FMNH>+ RCHO+ Oy—»FMN + H,O+ RCOOH + hvigonm

Realizing the distinct advantages bacterial luciferase would
afford as a cukaryotic reporter, many groups have attempted to
express the luciferase (luxAB) component of the lfux system using
either fusion proteins [10,11,12,13] or multiple plasmids [14,15],
but with minimal success over the last twenty years. Although the
use of fux in the study of bacterial infection of a mammalian host
has been demonstrated using whole animal BLI [16], its
functionality has not been demonstrated outside of a bacterial
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host until now. Recently, successful expression of a mammalian
optimized luciferase dimer in an HEK293 cell line has provided
for the limited use of /ux as a mammalian bioluminescent reporter
system, although the addition of luciferin in a manner similar to
firefly luciferase is still required [17]. To fully exploit the
advantages of bacterial luciferase, all five genes (luxCDABE) of
the lux operon must be expressed simultaneously. Here it is
demonstrated that codon-optimized, poly-bicistronic expression of
the full lux cassette produces all of the products required for
autonomous bioluminescent production in a mammalian back-
ground. We further demonstrate that cells expressing the full fux
cassette can be applied towards whole animal BLI without the
need for substrate addition, thus overcoming the limitations
imposed by currently available luciferase-based whole animal BLI
probes.

Results

Codon Optimization of the luxCDE and frp Genes

A major concern prior to mammalian expression was the
thermostability of the luciferase proteins at the mammalian
temperature optimum of 37°C. Traditionally, the marine dwelling
bacterium Vibrio harveyi has been used as the cloning platform for
lux-based manipulations, but its lack of protein thermostability
above 30°C is not conducive for mammalian expression.
Constructs were therefore derived from the genes of the terrestrial
bacterium  Photorhabdus  luminescens, which, unlike V. harveyi,
maintains fux protein product stability at 37°C [18]. While this
species does not contain an associated NAD(P)H:Flavin reductase
gene like V. harveyr, previous work suggested that incorporation of
the V. harveyt oxidoreductase gene (f1p) can increase bioluminescent
output in lower eukaryotic systems [19]. Therefore, the fip gene
was included in our constructs to shift the intracellular FMN/
FMNH, equilibrium to a more reduced state to provide an
increased level of the required FMNH, substrate.

Prior to expression, the P. luminescens luxCDE and V. harveyt fip
gene sequences were interrogated for exogenic probability and the
presence of interfering genetic regulatory signals upon expression
in a mammalian cellular background using the GENSCAN
algorithm (http://genes.mit.edu). Predictions indicated that the
genes would not be efficiently expressed in a mammalian cell
line in their wild-type form (Table 1). To promote improved

Table 1. Predicted expression of the of lux genes before and after codon-optimization.

Predicted Start

Number of Nucleotide

Probability of Recognition

Gene Position Length % GC Substitutions as an Exon Exon Score
wtluxC 1 1443 37% N/A 0.921 50.78

coluxC 1 1443 60% 449 0.999 360.72
wtluxD 1 924 38% N/A 0.875 29.53
coluxD 1 924 59% 294 0.999 238.19
wtluxE 102 1087 38% N/A 0.443 33.11

coluxE 1 1113 60% 331 0.999 271.01

wtfrp 1 613 47% N/A 0.715 30.70

cofrp 1 723 64% 249 0.999 179.43

restriction enzyme sites for improved cloning efficiency. N/A - not applicable.
doi:10.1371/journal.pone.0012441.t001
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GENSCAN translation prediction scores for expression of wild-type (wt) and codon-optimized (co) lux genes in a mammalian host cell (http://genes.mit.edu). Predicted
start position is the predicted nucleotide sequence location for initiation based on the transcription of the nucleotide gene sequence. The predicted truncation in

length of the wild-type luxE gene was due to the presence of a non-mammalian preferred start codon in the original gene sequence. Exon score interpretation: 0-50
weak, 50-100 moderate, >100 strong. Additional length in the codon-optimized version of the frp gene is the result of additional nucleotides added to introduce new
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transcriptional and translational expression, all genes were
synthesized de novo using codon-optimized sequences (Figures S1,
S2, 83, S4), as this process has previously been used to increase
transcription and translation of a variety of native and non-native
genes in mammalian cells [17,20,21,22,23]. Following optimiza-
tion, GENSCAN analysis predicted a significantly higher transla-
tional level in the mammalian cellular background than the wild-
type sequences, including the predicted full-length expression of
the luxE gene due to the removal of regulatory signals (Table 1).

Construction and Validation of Bicistronic Expression
Vectors

Following codon-optimization, the fux genes were grouped into
pairs and separated by internal ribosomal entry site (IRES)
elements from the encephalomyocarditis virus to more efficiently
drive translation in the mammalian cell environment (Figure 1A~
Q). This expression strategy was chosen because it has previously
been demonstrated that the use of intervening IRES elements
allowed bicistronic expression of the /lux genes in the lower
cukaryote Saccharomyces cerevisiae [19]. The presence of intervening
IRES elements allows for transcription of a fused mRNA product
from a single promoter, followed by cap-independent translation
of the gene distal to the promoter concurrent with traditional cap-
dependent expression of the promoter proximal gene [24]. To
avoid problems associated with transfection efficiency and stable
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maintenance of a single large plasmid, the lux cassette was divided
between two plasmids prior to transfection. This strategy also
provided for the translation of proteins requiring proximity for
function to occur as near to one another as could be controlled.
The first plasmid, pluxcpesp:CO - (Figure S5A), contained the
codon-optimized luxCDEfrp genes responsible for production and
regeneration of the required aldehyde substrate and increased
turnover of the FMNH, substrate. The luxD gene encodes a
transferase responsible for attachment of an endogenous myristyl
group to water to form myristyl acid. The luxE gene encodes a
synthase that then activates the acid via addition of an AMP group
in order to prepare the reduction of the activated acid to aldehyde
through the reductase encoded by luxC. The fip gene operates
separately to cycle FMN to FMNHjy in the cytosol [9]. To validate
the GENSCAN predictions and establish the effectiveness of the
codon-optimization process, an alternate version of this plasmid
was created, pLuxcprap:WT (Figure S5B), which uses the wild-
type P. luminescens and V. harveyr gene sequences. A second plasmid,
pLux,g, contained the fuxA and luxB genes separated by an IRES
element for bicistronic expression of the luciferase dimer subunits
responsible for providing the scaffolding and enzymatically
eliciting the production of light following the binding of all
required substrates. When expressed i vivo, pLuxap in combina-
tion with pLuxcpgap:CO or pLuxepesp:WT contains all of the
genes required for autonomous bioluminescent expression
(Figure 1D). HEK293 cells were subsequently co-transfected with

D oMV

Luciferase

Figure 1. Schematic showing construction and expression of the full /ux cassette using a two-plasmid system. The two-plasmid system
takes advantage of IRES-based bicistronic expression to drive transcription/translation of all the genes required for autonomous bioluminescent
production. (A) The pLuxag plasmid contains the genes responsible for production of the luciferase protein. Individual /uxA and /uxB genes were
removed from their respective vectors and ligated into the pIRES vector using the unique Nhel (N) and EcoRl (E) or Sall (S) and Notl (Nt) restriction
sites. (B) The pLuxcpesp plasmid expresses the genes required for production and regeneration of the aldehyde and FMNH, substrates. The individual
luxE and luxC genes were cloned into a pIRES vector using the unique Notl (Nt) and Sall (S) or Nhel (N) and EcoRl (E) restriction sites. (C) A second
pIRES vector was created that contained the luxD and frp genes inserted at the same sites. The entire JuxC-IRES-/uxE fragment was then inserted under
the control of the EF1-o. promoter in pBudCE4.1 using the unique Xhol (X) and Sfil (Sf) restriction sites, while the luxD-IRES-frp fragment was inserted
under the control of the CMV promoter using the unique Pstl (P) and BamHI (B) restriction sites. (D) When expressed simultaneously, these two
plasmids produce all the proteins required for bioluminescence expression by utilizing the FMN and molecular oxygen stores supplied endogenously

by the host cell.
doi:10.1371/journal.pone.0012441.g001
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the pLuxcpgsp:CO/pLuxap or pLuxapesp:WT/pLuxag plasmid
combinations and selected by antibiotic resistance. A lineage of
HEK?293 cells remained untransfected for use as a control to
determine background in the presence of standardized amounts of
cellular material.

To determine and compare the bioluminescent output kinetics
of HEK293 cells containing the luxCDEfrp genes in either their
wild-type (pLuxcpeap:WT) or codon-optimized (pLuxcprsp:GO)
form, cells were propagated under identical conditions, harvested,
and resuspended directly in a cuvette for measurement of
bioluminescence against a standard photomultiplier tube interface.
Cells containing pLuxcpgap:CO/pLuxsp showed an average
bioluminescent production 12-fold greater than background in
the presence of untransfected control cells and 9-fold greater than
the bioluminescent production of their wild-type counterparts
(Table 2). The superior bioluminescent production by cells
containing pluxcpesp:CO/pLluxp validates our dual plasmid,
bicistronic, codon-optimized expression strategy and substantiates
our hypothesis that the full bacterial lux cassette can be designed
for functional autonomous expression in a mammalian cell line.

Growth Curve Analysis of lux-Containing HEK293 Cells

To determine if the maintenance and expression of full
complements of lux genes was detrimental to cellular growth rates
in HEK293 cells, the rates of growth among wild-type,
pLuxepeap:CO, and pLuxcprap:WT containing cells was mon-
itored over the course of a normal passage cycle. It was
hypothesized that any adverse effects from production of aldehyde
or increased presence of FMNH, resulting from the expression of
the pLuxcpgg, plasmid would result in a slowed growth rate
relative to the wild-type HEK293 cell line. No significant
difference in the rates of growth was observed among any of the
cell lines tested (Figure S6), suggesting that any adverse effects
resulting from expression of the luxCDLEfrp genes are minimal in
regards to cellular growth and metabolism.

in vitro Bioluminescent Imaging

For a lux-based system to function as a reporter in whole animal
BLI, the resulting signal must be detectable using commercially
available equipment designed for this purpose and be easily
distinguishable from background light emissions. To determine if
this was the case in HEK293 cells expressing full lux cassettes,
approximately equal numbers of cells containing either codon-
optimized or wild-type lux genes were plated in 24-well tissue
culture plates and compared with untransfected cells as a negative

Table 2. Bioluminescent production from unsupplemented
HEK293 cells expressing P. luminescens lux genes.

Cell Line Bioluminescent Detection (RLU/sec)
Cell Free Media 745 (+63)
Untransfected HEK293 Cells 655 (+£44)
HEK293+pLuxag+pLuxcpefrp:WT 884 (*+44)

HEK293+pLuxag+PLUXCEfrp:CO 7600 (*1241)

Actively growing HEK293 cells expressing various combinations of P.
luminescens lux genes were harvested from culture and directly assayed for in
vivo bioluminescent production. Lower levels of bioluminescent output from
untransfected cells as opposed to cell free medium are most likely the result of
background light absorption from endogenous chromophoric material in the
cells. All values are the average of at least three trials and are reported with the
standard error of the mean.

doi:10.1371/journal.pone.0012441.t002
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control for background. The bioluminescent signal from cells co-
transfected with codon-optimized luxCDEfip was differentially
detectable from background using a 10 sec integration time
(Figure 2A) and increased in magnitude with no appreciable
increase in background up to integration times of 30 min
(Figure 2B-F). To determine the maximal duration of the
bioluminescent signal during constitutive expression under exper-
imental conditions, approximately equal numbers of HEK293
cells in either their untransfected state or containing pLuxap co-
transfected with either pLuxcpgsp:WT or pLuxepgsp:CO were
continually monitored for bioluminescence production (Figure 2G)
in an IVIS Lumina imaging system using a stage temperature of
37°Ct to mimic as closely as possible their normal growth
conditions. Cells containing the lux cassette genes demonstrated
bioluminescent output over an approximate three-day period
without any exogenous input. Peak bioluminescent output was
achieved between 12 and 13 h for both the codon-optimized and
wild-type containing cell lines, however, following peak biolumi-
nescent output a slow decrease in bioluminescent production
over time was observed. This decrease is presumably due to a
combination of the inability to reliably regulate the air
temperature, COy levels, and humidity in the imaging system,
and the continued depletion of nutrients from the media during
the normal process of cellular growth and metabolism. While the
bioluminescent output of cells containing pLuxcpesp:WT/pluxag
was of a lesser magnitude than that of their codon-optimized
counterparts over this time period, their bioluminescent expression
profiles were similar under the same conditions, suggesting that the
codon-optimization process had not significantly altered the
function of the lux proteins m vivo.

Determination of Minimal Detectable Cell Number
in vitro

To be useful as an optical reporter, cells expressing biolumi-
nescence must be detectable over a dynamic population range. To
determine the minimum detectable cell number, HEK293 cells
containing pLuxcpesp:CO/pluxag at concentrations ranging
from 1,000 to 500,000 cells were plated in triplicate in equal
volumes of media over a constant surface area and imaged over a
10 min integration time. The minimum number of cells reliably
detected above background was approximately 20,000 although
some visible signal was detected at approximately 10,000 cells in at
least one case (Figure 2H).

Correlation of Bioluminescent Flux to Cell Number

A major advantage imparted by the use of bioluminescent or
fluorescent-tagged reporter cells is that they allow an investigator
to approximately quantify the population size of those cells
noninvasively in a living host. For this approximation to be made
using a lux-based system, it must be demonstrated that the
bioluminescent flux of the cell population correlates tightly with
the overall population size. To determine if this is the case in
HEK293 cells constitutively expressing codon-optimized bacterial
luciferase genes, the average radiance of cells producing a visibly
detectable bioluminescent signal was determined over cell
concentrations ranging from 500,000 to 1,000 cells. The average
radiance closely correlated with the number of cells present
(R?=0.95275) over all visibly detectable cell numbers tested
(Figure 2I).

Whole Animal Bioluminescent Imaging
Although /lux has been previously used in whole animal BLI
[16], this is the first demonstration of its functionality outside of a
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Figure 2. /n vitro bioluminescent imaging of /ux cassette containing cells. pLuxcpep:CO/pLuxag containing (CO), pLuXcpefrp:WT/pLuxag
containing (WT), and untransfected negative control (NEG) HEK293 cells were plated in 24-well tissue culture plates and integrated for (A) 10 sec, (B)
1 min, (C) 5 min, (D) 10 min, (E) 15 min, and (F) 30 min. Bioluminescence from cells co-transfected with pLuxcpefp:CO/pLuxag Was distinguishable
from background in the presence of untransfected cells after 10 sec and showed no increase in background detection even after a 30 min integration
time. Long term in vitro expression (G) demonstrates the temporal longevity of the signal without exogenous amendment. The minimum detectable
number of bioluminescent cells was determined (H) by plating a range of cell concentrations in equal volumes of media in triplicate (downward
columns) in an opaque 24-well tissue culture plate. The minimum number of cells that could be consistently detected was approximately 20,000.
Average radiance was shown to correlate with plated cell numbers (1), yielding an R? value of 0.95275.

doi:10.1371/journal.pone.0012441.g002

bacterial host. Bacteria-free expression of this genetic system
assures that the results seen are directly related to the object of
study, and are not artifacts of a host-pathogen interaction
stemming from the previously required bacterial infection. To
demonstrate this functionality, 5 week old nude mice were
subcutaneously injected with HEK293 cells co-transfected with
pLuxcpeap:CGO/pLuxap or pLuxap alone and imaged. Cells
containing only pLuxsp were injected as a negative control to
determine if the substrates supplied by the luxCDEfip genes in the
pluxcpesp plasmid were capable of being scavenged from
endogenously available stocks within the host in the presence of
the luciferase dimer formed by the products of the luxAB genes on
the pLux,p plasmid. Bioluminescent signal emission from injected
pLuxcpeap:CO/pLuxag HEK293  cell lines was  detectable
immediately (<10 sec) following injection (Figure 3A), mirroring
the results of subcutaneous tumor mimic bioluminescence from
firefly luciferase (FLuc)-tagged [25] and Renilla luciferase (RLuc)-
tagged [8] cells following intravenous (IV) injection of their D-
luciferin or coelenterazine substrates, respectfully. Following
injection, the lux signal increased slowly in intensity over the full

@ PLoS ONE | www.plosone.org

60 min course of the assay (Figure 3B). This is in contrast to FFLuc-
based bioluminescent signals that exhibit a steady decline over the
same period following IV injection of D-luciferin to a level ~20%
of their initial intensity [25]. RLuc bioluminescence is even more
temporally limited and subsides within 5 min following IV
injection of coelenterazine [8] (Figure 3C). In contrast, the lux
bioluminescent signal remained detectable 60 min after injection
using integration times as low as 30 sec (Figure 3D). Conversely,
FLuc signals are asymptotically approaching their minimum [25]
and RLuc signals have become fully attenuated [8] by 30 min,
thus making imaging at all but the shortest post-injection
incubation times impossible (Figure 3C). It is important to note
that the duration of the bioluminescent signal in FLuc containing
systems can be extended by using a subcutaneous or intraperito-
neal injection of luciferin, however, each injection route also
produces a different bioluminescent emission profile over time
[25]. lux-based systems are not subject to these effects because they
forgo the addition of exogenous substrates to trigger biolumines-
cence. The lack of a signal after injection of cells expressing only
pLux,p at any of the time points sampled (Figure 3A) confirms

August 2010 | Volume 5 | Issue 8 | e12441



Mammalian lux Expression

A
4
] : / 16000 r’ 2000 g E= —_ i‘ .‘ 22500
hlml:’ - | luxAB ; luxAB luxAB luxAB i
Full [l F° Full f | Full 1o Full 2 Full [ff| —=
19500
O oA
& 21500
' Mo " 12300 1
21000
£000 6000
12500
Blescjon-zfsr ; { ' i " 20500
’ uw!f:]:.n r Lot |- plsecin2st
0 MPI 10 MPI 20 MPI 30 MPI 40 MPI
B 14000
| =&=pluxAB +
- c 12000 A pluxCDEfrp:CO -
' e - 5 @ - /
luxAB T 26000 E . i 4 pluxAB only
Full 00 Full 308 %\: ._E /
@ “‘E 8000
- o0 e E
8 & 6000 1=
000 24500 E E
o — |
1 o 3 29000 é 4000
sl 2is hseslone2is 2000 - _*_-;__;__ S e = —
0 T T T T T T 3
- 0 10 20 30 40 50 60
50 MPI 60 MPI Minutes Post Injection
G D
100
90
g ¥
~§ 70
o
g
® S0 Hlux
E
® 22 Rluc
10
000
0 psec/om2lst

0 10 20 30 40 50 60

Minutes Post Injection

Figure 3. in vivo bioluminescent imaging using HEK293 cell expression of mammalian-adapted /ux. (A) HEK293 cells containing the
mammalian adapted pLuxcpesp:CO/pLuxag cassette (Full) were subcutaneously injected into nude mice and imaged. Detection occurred nearly
immediately (<10 sec) post-injection and remained visible up to the 60 min time point of the imaging assay. HEK293 cells containing only the pLuxag
plasmid (luxAB) were subcutaneously injected into the same mouse as a negative control. Note that the automatic scaling of signal intensity differs
among images, therefore creating the false appearance that image intensity is decreasing after the 10 min post-injection time point when in fact it
continually increases as shown in panel (B). (C) Comparison of mammalian-adapted /ux-based bioluminescence from HEK293 cells versus published
data on the expression of FLuc (*[25]) and RLuc (**[8]) tagged cells over the 60 min course of the assay. (D) Upon termination of the assay 60 min
post injection, the bioluminescent signal from HEK293 cells expressing the full complement of /ux genes was detectable using an integration time as
low as 30 sec. (E) Subcutaneous injection of HEK293 cells containing pLuxcpefp:CO/pLuxag at concentrations ranging from 500,000 to 25,000 cells in
100 pul volumes of PBS demonstrated a tested lower limit of detection of 25,000 cells using a 10 min integration time. MPI, minutes post injection.
doi:10.1371/journal.pone.0012441.g003

that the luciferase dimer alone is not capable of producing experimental environment to invasively inject additional luciferin
unintended bioluminescence above the background levels of light substrate.

detection by scavenging endogenously available substrates. These

results demonstrate the utility of the /ux system in providing Determination of Minimal Detectable Cell Number in vivo
bioluminescent data on relatively prolonged time scales without Having illustrated the ability to reliably detect at least 20,000
the potentially error-inducing requirement of disturbing the cells in a tissue culture setting (Figure 2H), the minimum
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detectable number of cells in small animal models remained to be
determined. The detection of bioluminescent cells following
subcutaneous injection is more difficult than detection in a culture
setting due to the increased presence of chromophoric material
leading to higher absorption of emitted photons as they must travel
through more tissue to reach the detector. Subcutaneous injections
of decreasing numbers of cells into a nude mouse model revealed
that the introduction of at least 25,000 cells was capable of
producing a detectable signal (Figure 3E). As predicted from the
correlation of cell number to bioluminescent flux, injection of
higher cell concentrations produced larger bioluminescent signals
over identical integration times.

Oxidoreductase Supplemented in vitro Light Assays

Previous work with the /lux system in lower eukaryotes has
shown the initial substrate, FMNHj, to be a limiting reagent in the
reaction [19]. To determine if this was the case in HEK293 cells,
i vitro supplementation assays were performed with the addition of
1 U of NAD(P)H:Flavin oxidoreductase protein isolated from
Photobacterium fischeri. Protein extracts from cells containing the lux
genes in either their codon-optimized or wild-type forms were
subjected to @ witro analysis to determine if the addition of
oxidoreductase protein could improve light output. Upon addition
of the flavin oxidoreductase protein, the average bioluminescent
output increased from 1,400 (£200) RLU/mg total protein to
111,500 (£10,500) RLU/mg total protein in pLuxcpgap:WT
containing cells (Figure 4A) and from 1,600 (£200) RLU/mg total
protein to 245,000 (=20,500) RLU/mg total protein in pLuxc.
pEap:CO containing cells (Figure 4B).

Aldehyde Supplemented in vitro Light Assays

The synthesized co-substrate required for light production in
the lux system is a long chain aliphatic aldehyde that binds to the
luciferase and is oxidized [9]. The ability, conferred by the luxCDE
genes, to produce and recycle the aldehyde substrate endogenously
makes lux a uniquely beneficial reporter system. To assay for the
production of aldehyde, cell extracts were supplemented with
0.002% (w/v) n-decanal, as this has previously been shown
capable of functioning in place of the natural aldehyde substrate
[17,19,26,27,28]. When supplied with aldehyde, both the
pluxcpesp:WT  and  pluxepesp:CO  containing  cell  extracts
showed increases in bioluminescent output. Cell extracts from
wild-type containing cells showed an increase from 1,400 (+200)
RLU/mg total protein to 22,000 (£1,500) RLU/mg total protein
(Figure 4C). Extracts from codon-optimized cells increased from
the baseline of 1,600 (=200) RLU/mg total protein to 94,000
(%£10,800) RLU/mg total protein (Figure 4D).

Discussion

Development of the /lux cassette into a functional and
autonomous mammalian bioluminescent system provides re-
searchers a unique new tool that allows for real-time monitoring
of bioluminescence from whole animals or cell cultures without
exogenous substrate addition or cell lysis. The first step in the
creation of this reporter was the functional demonstration of the
luciferase heterodimer formed by the luxAB genes [17]. This set
the stage for the use of fux in eukaryotic cells as a non-autonomous
reporter system via the addition of aldehyde. Since that time, the
production of aldehyde has been demonstrated in S. cerevisiae [19],
leading to the development of the first eukaryotic /lux-based
autonomous reporter system. Here we demonstrate for the first
time that expression of codon-optimized forms of the luxCDE
genes from P. luminescens and the fip gene from V. harveyi are
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capable of producing sufficient levels of the aldehyde and FMNH,
substrates required to drive light production autonomously in
mammalian cells. We further demonstrate that these biolumines-
cent cells can be applied in whole animal BLI without the need for
substrate addition.

While the addition of luxCDEfip to cells containing luxAB
demonstrates light emission at a level 12-fold greater than
background (Table 2), it is clear that concentrations above the
available levels of either the FMNH, (Figure 4A and C) or
aldehyde substrates (Iigure 4B and D) will result in increased
bioluminescent output. However, an increase in aldehyde
production can be cytotoxic, as has been demonstrated in lux4B
containing S. cerevisiae and Caenorhabditis elegans cells [29]. This may
lead to a scenario where the luxCDE containing cells that most
efficiently produce the aldehyde substrate are selected against
during the initial period of growth following transfection with
luxCDEfrp due to slowed growth and/or elevated cytotoxicity. The
increased presence of aldehyde may therefore cause those cells
capable of most efficiently producing aldehyde to inhibit their own
growth, mimicking the effects of antibiotic selection and causing
them to be out-competed in culture by cells expressing lower levels
of aldehyde production. Mathematical models of the lux system
have indicated that the production of light is much more sensitive
to the aldehyde turnover rates modulated by the luxCE genes
responsible for encoding the reductase and synthase that convert
the myristyl acid to a myristyl aldehyde than it is to the
concentration of luciferase dimer formed by the uxdB genes
responsible for catalyzing the reaction and facilitating the
production of light. The model predicts that a reduction in the
concentration of the luxC or luxE gene products will lead to a
drastic reduction in light output [30]. If true, then it is
hypothesized that the cytotoxicity of aldehyde within the cell
may be a non-issue in regards to selecting cell lines that can
function in bioluminescent imaging assays. Cells with cytotoxic
levels of aldehyde production will be removed early in the selection
process due to slow growth rates and inability to compete with
faster growing cell lines during the antibiotic selection phase
following transfection. Similarly, cells with low levels of luxCDE
expression will not generate high levels of bioluminescence during
wn vitro screening of luxCDEfrp containing cell lines. This would tend
to encourage only the selection of cell lineages capable of
producing just enough aldehyde to drive the lux reaction, but
not enough to impair cellular growth and function, as platforms
for biosensor development. Experiments aimed at determining if
expression of the lux cassette genes (and, by extension, the products
of their associated reactions) altered cellular metabolism and
growth rates have supported these predictions. This investigation
revealed no significant variation among the growth rates of
untransfected HEK293 cells or those expressing either pLuxc.
pEap: WT/pLuxap or pLuxepesp: CO/pLuxag at levels capable of
supporting continuous bioluminescent production (Figure S6).
These cells are necessarily producing the required aldehyde
substrate as demonstrated by their constitutive bioluminescent
production, but do not show a detectable difference in their rate of
growth when compared to cells that are grown under identical
conditions but without the /uxCDE genes required for the
production and maintenance of the aldehyde substrate.

As shown in Figure 4, the availability of FMNHy appears to
contribute as a limiting reagent for the /lux reaction in a
mammalian cell environment. Supplementation with as little as
1 U of oxidoreductase protein i vitro led to relatively large (up to
151-fold) increases in bioluminescent output levels, while supple-
mentation with 0.002% n-decanal produced less substantial (up to
58-fold) increases in light production. When supplemented with

August 2010 | Volume 5 | Issue 8 | e12441



Mammalian lux Expression

(NGNS

Extracts of HEK293 cells
containing pLuXepq :WT

—
Extracts of HEK293 cells
containing pLUX ¢ WT

eR=NatEy
Extracts of HEK293 cells
containing pLuX¢pe:CO

==
Extracts of HEK293 cells
containing pLUX¢pp,:CO

supplemented with 1U
oxidoreductaes protein

supplemented with 1U
oxidoreductaes protein

3.0x10*
2.5x10* A
2.0x10% 1
1.5x10* 1

10-//

/]
1.5x10%

RLU/mg total protei

N\
N

, L

1.2x10°%
1.1x10%

10%
9.0x104

/ 7/

/
2.0x10*

RLU/mg total protein
~N

10¢

0 S ——

(NANAWAY
Extracts of HEK293 cells
containing pLuX¢pq,sWT

Extracts of HEK293 cells
containing pLuX ¢y, WT

Extracts of HEK293 cells
containing pLuX¢pp,:CO

I
Extracts of HEK293 cells
containing pLUX¢pp,:CO

supplemented with
0.002% n-decanal

supplemented with
0.002% n-decanal
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lines. Supplementation with 0.002% n-decanal resulted in increased bioluminescent output in both the (C) wild-type and (D) codon-optimized cell
extracts as well, but at a lower magnitude than oxidoreductase supplementation. Values are the average of four trials, and are reported with the

standard error of the mean.
doi:10.1371/journal.pone.0012441.g004

additional oxidoreductase protein to drive the turnover of FMN to
FMNH,, the average production of light increased by 82-fold in
wild-type cell extracts (Figure 4A) and by 151-fold in extracts from
cells containing codon-optimized lux genes (Figure 4B). The
increases in light production attributed to additional FMNH, were
consistently of greater magnitude than those associated with
aldehyde supplementation. The highest increase in light output
achieved through addition of n-decanal was 58-fold in cells
containing codon-optimized genes (Figure 4D), compared with
only a 16-fold increase in light output from cell extracts co-
transfected with the wild-type genes (Figure 4C). These results
suggest that codon optimization of the remaining luxCDE genes
from P. luminescens allows for more efficient processing of the
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available substrates in the mammalian cell environment, but does
not allow for production levels that rival the ideal conditions of in
vitro substrate supplementation where the bioluminescent output
would be limited only by the efficiency of the LuxAB luciferase
dimer. When supplemented with identical levels of aldehyde, cell
extracts containing codon-optimized luxCDEfip genes were able to
produce over four times as much light as those containing the wild-
type genes (Figure 4C and D). A similar result was obtained under
oxidoreductase supplementation, with extracts from the codon-
optimized cell lines producing over twice as much light as their
wild-type counterparts (Figure 4A and B).

When codon-optimized lux containing HEK293 cells were used
in cell culture, concentrations of approximately 20,000 cells were
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reliably detected in 1 ml of media immediately using a 10 min
integration time (Figure 2H). Increasing cell numbers in the same
volume and area correlated with measured levels of biolumines-
cence emission, allowing one to predict the total cell number in a
given sample from the measured average radiance (Figure 2I) and
permitting non-invasive estimation of target size based on
bioluminescent measurements.

When the same bioluminescent cell lines were applied in whole
animal BLI, the low levels of detectable background signal and
deficit of endogenous bioluminescent production associated with
mammalian cells enabled /ux-based bioluminescence to remain
detectable despite relatively low levels of aldehyde and FMNH,
substrate availability as compared to ideal, i vitro supplemented
conditions. This sensitivity was demonstrated both in cell culture
and under subcutaneous whole animal BLI conditions where very
little light is produced due to attenuation of the bioluminescent
signal by absorption from endogenous chromophores [31]. We
have demonstrated here that cells co-transfected with the codon-
optimized luxCDEfip genes can produce a lasting signal that can be
amplified over integration times as long as 30 min with little to no
background to interfere with signal acquisition (Figure 2F) in a cell
culture setting. However, it is important to note that the
bioluminescent signal from this reaction is produced at 490 nm.
This is relatively blue-shifted as compared to the Luc-based
bioluminescent probes that display their peak luminescent signal at
560 nm. The shorter wavelength of the lux-based signal has a
greater chance of becoming attenuated within the tissue and
therefore may not be as easily detected if it is used in deeper tissue
applications (such as intraperitoneal or intraorganeller injections),
and may require longer integration times to achieve the same level
of detection as a longer wavelength reporter would when injected
subcutaneously. For instance, it has been reported that a single cell
expressing I'Luc can be detected following subcutaneous injection
[32], whereas we have demonstrated that the approximate lower
level of detection for lux-tagged cells is closer to 25,000 cells, most
likely due to the lower quantum efficiency of the lux biolumines-
cent system coupled with the higher rates of attenuation due to
absorption at the emission wavelength of 490 nm. Therefore, the
goals of a particular experiment should be carefully weighed
before applying a lux-based bioluminescent reporter. While a fux-
based system can produce a continuous bioluminescent signal over
prolonged time periods without being subjected to the dynamic
effects of repeated luciferin injections, it may not be appropriate
for situations with high levels of signal attenuation due to its lower
emission wavelength.

Despite such drawbacks, the use of cells expressing bacterial
luciferase genes as a probe for whole animal BLI solves many of
the problems associated with the currently available luciferase-
based imaging systems. Previous work with /ux genes isolated from
P. luminescens has demonstrated that the luciferase is thermostable
at the 37°C temperature required for mammalian imaging
experiments [33]. This prevents the associated loss of signal
associated with the short half-life of the firefly luciferase, which has
been shown to be thermolabile at 37°C in its native state [7]. In
addition, the autonomous nature of bioluminescent production
assoclated with the lux system circumvents continuous re-injection
of the test animal with an exogenous luciferin substrate. This
simultaneously reduces the amount of invasive injections required
for imaging experiments, eliminates the detection of artificial
results stemming from any non-specific biological reactions with
the luciferin compound being administered, and negates the
inability to compare otherwise similar experiments due to
differential bioluminescent production kinetics based on dissimilar
routes of substrate injection. Thus, the bacterial luciferase offers a
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more specific, longer lasting, and more humane luciferase-based
reporter system than the currently available alternatives.

While mammalian-adapted bacterial luciferase gene expression
has some notable disadvantages such as requisite introduction of
multiple gene sequences and bioluminescent production at a
wavelength that is relatively highly absorbed in mammalian
tissues, it remains casily detectable using currently available
imaging technology and offers several important advantages over
the currently available reporter systems for prolonged expression
without the cost or disturbance to the system associated with
substrate administration. We have shown here that expression of
the luxCDE genes in mammalian cells can produce a long chain
aliphatic aldehyde that is available for use as a substrate for
bioluminescent production and that incorporation of the fip gene
increases this output. Codon optimization of these genes improves
their performance and leads to an overall increase in light
production as compared to their wild-type counterparts. When co-
expressed with the luxAB genes responsible for formation of the
luciferase heterodimer, aldehyde production occurs at a level
capable of inducing autonomous light production, but not of high
enough concentration to be adversely cytotoxic. When cells
containing full complements of lux genes are enlisted as probes in
whole animal BLI, they are easily detectable when introduced at
levels comparable to cells expressing other currently employed
target luciferase genes and allow for facile differentiation from
background over prolonged integration times at 37°C, making
them ideal reporter systems for cell culture, subcutaneous, or other
low absorption environments that require prolonged, real-time
monitoring without disruption.

Materials and Methods

Ethics statement

All animal work was performed in adherence to the institutional
guidelines put forth by the animal care and use committee of the
University of Tennessee. All animal research procedures were
approved by the University of Tennessee Animal Care and Use
Committee (protocol number 1411) and were in accordance with
National Institutes of Health guidelines.

Strain maintenance and growth

Escherichia coli cells were routinely grown in Luria Bertani (LB)
broth with continuous shaking (200 rpm) at 37°C. When required,
kanamycin or ampicillin was used at final concentrations of 40 and
100 pg/ml, respectfully, for selection of plasmid containing cells.
Mammalian cell lines were propagated in Eagle’s modified
essential medium (EMEM) supplemented with 10% fetal bovine
serum, 0.01 mM non-essential amino acids, and 0.01 mM sodium
pyruvate. Cell growth was carried out at 37°C in a 5% CO,
environment and cells were passaged every 3—4 d upon reaching
80% confluence. Neomycin and/or zeocin were used for selection
of transfected cells at concentrations of 500 pg/ml and 200 pg/ml,
respectfully, as determined by kill curve analysis, for each
antibiotic.

Codon optimization of lux genes

Codon usage patterns in the luxCDE genes for P. luminescens and
the flavin reductase gene (fip) from V. harveyi were compared to the
highest 10% of expressed genes as represented in GenBank. Silent
mutations at the DNA level that would alter native codon usage
were plotted to more closely mimic the preferred mammalian
codons while maintaining 100% amino acid identity with the
bacterial protein sequences. When multiple codons were preferred
in equal or near equal frequencies by mammalian genes, the
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codon for the optimized sequence was randomly selected from the
available options. These optimized sequences were submitted and
synthesized de novo by GeneArt and returned as synthetic DNA
constructs inserted into unique Apnl and Sacl restriction sites in
pPCR-Script vectors (GeneArt). Codon-optimized versions of each
gene were compared to their wild-type counterpart for predicted
translational efficiency using the freely available GENSCAN
software at http://genes.mit.edu. All sequences were deposited to
GenBank under the following accession numbers GQ850533
(codon-optimized lux(), GQ850534 (codon-optimized luxD),
GQ850535 (codon-optimized luxE), and GQ850536 (codon-
optimized fip).

Vector construction

Previously described [17] P. luminescens luxA and luxB genes
partially codon-optimized for expression in human cell lines were
obtained as a bicistronic operon in a pIRES vector (Clontech) and
designated pLuxap. This vector includes an internal ribosomal
entry site (IRES) for increased translation of downstream gene
inserts. The remaining P. luminescens genes (luxC, luxD, luxE) and
the flavin reductase gene (fip) were used in either their wild-type
(wt) or codon optimized (co) states. colux( was cloned into multiple
cloning site (MCS) A of the pIRES vector using the unique MNel
and FeoRI restriction sites (Figure 1A-C). coluxE was then inserted
into MCS B using the unique Sa/l and Nodl restriction sites. This
entire  coluxC-IRES-coluxl; sequence was then removed and
ligated into pBudCE4.1 (Invitrogen) behind the human elongation
factor lov (EF-1ot) promoter using unique Xhol and S$fil restriction
sites. A second pIRES vector was constructed by adding the
coluxD gene to MCS A via the unique Nel and EcoRI restriction
sites and the addition of cofip to MCS B using the unique Sa/l and
Notl restriction sites. This entire coluxD-IRES-cofip sequence was
then inserted behind the pBudCE4.1 human cytomegalovirus
immediate early promoter (CMV) using the unique PsfI and
BamHI restriction sites to create pLuxaprgyp:CO. This process was
repeated using wild-type codon usage versions of each of the genes
to generate an identically oriented, but non-codon-optimized,
vector referred to as pLuxepgapWT.

Mammalian cell transfection and selection of cell lines

Transfection was carried out in six-well Falcon tissue culture
plates (Thermo-Fisher). HEK293 cells stably expressing the
pLuxsp vector were passaged into each well at a concentration
of approximately 1x10° cells/well and grown to 90-95%
confluence in complete medium as described above. pLuxc.
pEap:CO and pLuxepgp:WT plasmid vectors were purified from
100 ml overnight cultures of E. coli using the Wizard Purefection
plasmid purification system (Promega). On the day of transfection,
cell medium was removed and replaced and vector DNA was
introduced using Lipofectamine 2000 (Invitrogen). Twenty-four h
post-transfection, the medium was removed and replaced with
complete medium supplemented with the appropriate antibiotic.
Selection of successfully transfected clones was performed by
refreshing selective medium every 4-5 d until all untransfected
cells had died. At this time, colonies of transfected cells were
removed by scraping, transferred to individual 25 cm? cell culture
flasks, and grown in complete medium supplemented with the
appropriate antibiotics.

Growth curve analysis

Cells were harvested during exponential growth from a 75 cm?
tissue culture flask and split into four 25 cm” tissue culture flasks at
~5x10" cells/cm?. At 24 h intervals, the cells were detached from
the flasks by mechanical agitation and resuspended in 3 ml
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phosphate buffered saline (PBS). A 15 pl aliquot was removed and
diluted into an equal volume of trypan blue. Cells were counted
using a hemocytometer and the average of 4 counts was used to
determine the total viable cell number.

Protein extraction

Total protein was extracted from co-transfected pLuxc.
pEap:CO/pluxag and pLuxepesp:WT/pLuxag cell lines using a
freeze/thaw procedure. Cells were first grown to confluence in
75 cm? tissue culture flasks, then mechanically detached and
resuspended in 10 ml of PBS. Following collection, cells were
washed twice in 10 ml volumes of PBS, pelleted and resuspended
in 1 ml PBS. These 1 ml aliquots of cells were subjected to three
rounds of freezing in liquid nitrogen for 30 sec, followed by
thawing in a 37°C water bath for 3 min. The resulting cell debris
was pelleted by centrifugation at 14,000g for 10 min and the
supernatant containing the soluble protein fraction was retained
for analysis.

Bioluminescence assays

Bioluminescence was measured using an FB14 luminometer
(Zylux) with a 1 sec integration time. To prepare the sample for
vitro bioluminescent measurement, 400 pl of the isolated protein
extract was combined with 500 pl of either oxidoreductase
supplemented light assay solution containing 0.1 mM NAD(P)H,
4 uM FMN, 0.2% (w/v) BSA and 1 U of oxidoreductase protein
isolated from V. fischer: (Roche), or oxidoreductase deficient light
assay solution (distilled water substituted for the 1 U of
oxidoreductase protein). Following the initial bioluminescent
reading, samples were amended with 0.002% (w/v) n-decanal
and the readings were continued to determine if additional
aldehyde could increase light output. All bioluminescent signals
were normalized to total protein concentration as determined by
BCA protein assay (Pierce) and reported as relative light units
(RLU)/mg total protein. All sample runs included processing of
cell extracts from HEK293 cells stably transfected with pLuxap as
a control for light expression upon amendment. To prepare cells
for i vivo bioluminescent measurement, the total cell contents of a
75 cm? tissue culture flask were resuspended in 1 ml of Dulbecco’s
Modified Eagle Medium (DMEM) without phenol red supple-
mented with 10% fetal bovine serum, 0.0l mM non-essential
amino acids, and 0.01 mM sodium pyruvate. A 15 ul aliquot of
cells was removed and counted using a hemocytometer to allow all
values to be normalized to viable cell counts. The remainder was
used directly for bioluminescent measurement using the FB14
luminometer with a 1 sec integration time.

Cell culture bioluminescent imaging

Photon counts were recorded using an IVIS Lumina i vivo
imaging system and analyzed with Living Image 3.0 software
(Caliper Life Sciences). Actively growing HEK293 cells expressing
either pLuxcprgp:CO/pLluxap, pluxepea,WT/pluxsg, or no
exogenous DNA (untransfected, negative control) were trypsinized
and harvested from 75 cm? tissue culture flasks and approximately
one million cells were plated in each of three wells in a 24-well
tissue culture plate in DMEM without phenol red and supple-
mented with 10% fetal bovine serum, 0.01 mM non-essential
amino acids, and 0.01 mM sodium pyruvate. Average radiance in
photons/sec/cm?/sr was determined over 10 min intervals every
hour for the first 24 h and every 2 h thereafter until radiance
returned to the initial level to obtain representative counts.
Untransfected HEK293 cells were included in all trials as negative
controls to assay for background noise.
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Determination of minimal detectable cell number and

correlation of bioluminescent flux to cell number in vitro
Actively growing HEK293 cells expressing pLuxcpesp: GO/
pLux,p were trypsinized and harvested from 75 cm? tissue culture
flasks and counted using a hemocytometer. Using a 24-well tissue
culture plate, groups of approximately either 500,000, 250,000,
100,000, 50,000, 40,000, 30,000, 20,000, 10,000, 5,000, 2,000, or
1,000 cells were plated in each of three wells in 1 ml of DMEM
without phenol red supplemented with 10% fetal bovine serum,
0.0l mM non-essential amino acids, and 0.01 mM sodium
pyruvate. As a negative control, three wells were supplemented
with 1 ml of media without cells to observe background. Average
radiance in photons/sec/cm?/sr was determined in the IVIS
Lumina using a 10 min integration time 15 h after plating. To
establish the relationship of cell number to bioluminescent flux, the
average radiance values from cells producing a visible light signal
under the conditions above were correlated to cell number.

Whole animal bioluminescent imaging

Five week old nude mice were anesthetized via isoflurane
inhalation until unconscious. Subjects were then subcutaneously
injected with ~5x10° HEK293 cells co-transfected with pLuxc.
pEAp:CGO/pLluxap in a 100 pl volume of PBS. An equal number of
HEK?293 cells (~5x10°% containing only pLux,g were injected as
a negative control in the same volume. The subject was imaged
immediately following the injections and average radiance was
determined over integration times of 1 to 10 min at intervals over
a 30 min period.

Determination of minimal detectable cell number in vivo

Six week old nude mice were anesthetized via isoflurane
inhalation until unconscious and then injected with decreasing
numbers of HEK293 cells expressing pLuxcpesp: CO/pLuxp. In
a preliminary experiment, animals were subcutaneously injected at
4 separate locations with 5 million, 2.5 million, 1 million, and
500,000 cells, each in a volume of 100 ul PBS. The subject was
imaged for 10 min following injection of the final group of cells.
Minimum detectable cell numbers were further delineated in a
second round of injections in a fresh mouse model using cell
concentrations of 500,000, 250,000, 50,000, and 25,000 cells in
100 ul PBS and identically imaged.

Statistical analysis
Means = S.E.M. were calculated and significant differences

between groups were determined using the Student’s #test at
P<0.05.
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Supporting Information

Figure S1 [uxC codon-optimization. Alignment of the P.
luminescens wild-type luxC' gene (wtluxC) and the codon-optimized
luxC gene (coluxCl). Altered bases are highlighted in red.

Found at: doi:10.1371/journal.pone.0012441.s001 (0.84 MB TTF)

Figure 82 [uxD codon-optimization. Alignment of the P.
luminescens wild-type luxD gene (wtluxD) and the codon-optimized
luxD gene (coluxD). Altered bases are highlighted in red.

Found at: doi:10.1371/journal.pone.0012441.s002 (4.06 MB TTF)

Figure S3 [ux[E codon-optimization. Alignment of the P.
luminescens wild-type luxE gene (wtluxE) and the codon-optimized
luxE gene (coluxE). Altered bases are highlighted in red.

Found at: doi:10.1371/journal.pone.0012441.s003 (2.76 MB TTF)

Figure S4 fip codon-optimization. Alignment of the V. harvey:
wild-type frp gene (wtfrp) and the codon-optimized fip gene (cofrp).
Altered bases are highlighted in red.

Found at: doi:10.1371/journal.pone.0012441.s004 (1.94 MB TTF)

Figure 85 plLuxcpegp in its codon-optimized and wild-type
forms. Vectors were created to express the P. luminescens luxCDE
genes responsible for aldehyde biosynthesis as well as the
NAD(P)H:Flavin oxidoreductase fip gene from V. harveyi using
cither the (A) codon-optimized (co) or (B) wild-type (wt) gene
sequences.

Found at: doi:10.1371/journal.pone.0012441.5s005 (1.12 MB TIF)

Figure S6 Growth curve analysis of lux-containing HEK293
cells. Growth curve analysis of cells containing no plasmids
(negative control, untransfected HEK293) or cells containing
pluxap co-transfected with either pLuxcpgapWT or pLuxc.
pEap:CO. Cells were grown over a 96 h period until 80%
confluent, representing normal passage conditions. Values are the
average of three trials and are reported with the standard error of
the mean.

Found at: doi:10.1371/journal.pone.0012441.s006 (2.87 MB TIF)
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