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Antimicrobial peptides, which play multiple host-defense roles, have garnered increased experimental focus
because of their potential applications in the pharmaceutical and food production industries. While their
mechanisms of action are richly debated, models that have been advanced share modes of peptide-lipid
interactions that require peptide dynamics. Before the highly cooperative and specific events suggested in
these models take place, peptides must undergo an important process of migration along the membrane
surface and delivery from their site of binding on the membrane to the actual site of functional performance.
This phenomenon, which contributes significantly to antimicrobial function, is poorly understood, largely
due to a lack of experimental and computational tools needed to assess it. Here, we use '°N solid-state
nuclear magnetic resonance to obtain molecular level data on the motions of piscidin's amphipathic helices
on the surface of phospholipid bilayers. The studies presented here may help contribute to a better
understanding of the speed at which the events that lead to antimicrobial response take place. Specifically,
from the perspective of the kinetics of cellular processes, we discuss the possibility that piscidins and
perhaps many other amphipathic antimicrobial peptides active on the membrane surface may represent a
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class of fast scavengers rather than static polypeptides attached to the water-lipid interface.
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1. Introduction

Antimicrobial peptides (AMPs) play multiple host-defense roles
against many pathogens, act quickly, and evidence little if any
resistance effects [1-6]. They have garnered increased experimental
focus because of their potential applications in the pharmaceutical
and food production industries [7-10]. AMPs that are highly
antimicrobial (as judged by their minimum inhibitory concentration,
MIC) and not lethal to mammalian cells (as shown by low hemolytic
effects on red blood cells) are excellent candidates for drug
development [4,11-13]. Although more than a thousand natural
antimicrobial peptides have been discovered to date and the number
is growing rapidly, AMPs appear to adopt a relatively small number of
conformational states, with the amphipathic a-helix as a dominating
element of secondary structure [14,15]. Despite the overall broad
diversity of AMPs in terms of their tertiary structures and molecular

Abbreviations: AMPs, antimicrobial peptides; APD, antimicrobial peptide database;
CSA, chemical shift anisotropy; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphocholine;
DMPG, 1,2-dimyristoyl-sn-glycero-3-phosphoglycerate; E-field, electric-field; HPLC,
high performance liquid chromatography; MIC, minimum inhibitory concentration;
NMR, nuclear magnetic resonance; p1(or 3)-COO ™, non-amidated piscidin 1 (or 3); p1
(or 3)-NH,, amidated piscidin 1 (or 3); PC, phosphatidylcholine; PDB, protein data
bank; PG, phosphatidylglycerol; TFE, trifluoroethanol
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targets, AMPs have key attributes in common: a net positive charge to
allow for initial interaction with negatively charged membranes;
structural flexibility to facilitate folding into a bio-active conformation
upon membrane binding; and hydrophobicity to facilitate partial or
total membrane insertion. The subsequent events, such as membrane
perturbations and permeation, as well as the mechanisms by which
they are achieved, may differ significantly even though interfacial
activity is a common theme [2,4,10,13,16-34].

While the mechanisms of action of AMPs are richly debated, the
non-receptor-mediated models that have been advanced share modes
of peptide-lipid interactions that require peptide dynamics. The Shai-
Matsuzaki-Huang model [1-4,6] describes two steps for the initial
interactions of AMPs with membranes: (1) adoption of an amphi-
pathic structure upon binding; (2) insertion that leads to thinning of
the bilayer. Next, depending on the peptide and targeted membranes,
pore formation can ensue when a certain threshold concentration of
peptide is reached. In the barrel-stave model, the pores are
transmembrane and highly organized. Alternatively, other models
describe the formation of supramolecular peptide-lipid systems that
can lead to toroidal pores and/or a carpet that disrupts the membrane
through detergent or micellar aggregate effects. However, before the
highly cooperative and specific events suggested in these models take
place, peptides must undergo an important process of migration along
the membrane surface and delivery from the site of binding on the
membrane to the actual site of functional performance. This process,
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which contributes significantly to antimicrobial function, is frequently
neglected, largely due to a lack of experimental and computational
tools needed to assess it. Yet, understanding the rates of these
processes would provide valuable information about the overall rate
of antimicrobial response under physiological conditions and their
deviations.

According to the antimicrobial peptide database (APD), which
stores functional, sequence, and structural information about approx-
imately 1400 antimicrobial peptides from all biological sources, the
three-dimensional structures of only 13.3% of them have been
reported [14]. These structures are largely (>95%) determined by
NMR primarily because membrane or membrane-associated proteins
and peptides are notoriously difficult to crystallize and therefore X-
ray crystallography cannot be readily employed to solve their three-
dimensional structures. Solid-state Nuclear Magnetic Resonance
(ssNMR), which was solely utilized here to investigate the dynamics
of two AMPs, offers the advantage of enabling the study of AMPs in a
“native-like” environment that mimics bacterial cell membranes
[35,36].

While molecular dynamics simulations make available a wide
range of protein dynamics information on the time scale of up to
several hundreds of nanoseconds commensurate with increasing
computational power, they fall short in identifying dynamic processes
of membrane proteins on the time scale of micro- and milliseconds
[37,38]. The NMR chemical shift anisotropy (CSA) of '°N sites of the
peptide backbone is on the order of 5000-15 000 Hz in modern NMR
spectrometers corresponding to the time scale of 60-200 ps. There-
fore, the >N CSA, which can be characterized by ssNMR and
supplemented by T, and T, relaxation measurements, is an excellent
atomic-level probe to target dynamics processes on the time scale of
microseconds and distinguish these dynamic events from those on the
time scale of milliseconds. Additionally, ssSNMR offers a unique
advantage for the structural and dynamic characterization of
membrane associated peptides and proteins in their “native-like”
membrane environment [39,40], as compared to solution NMR
methods.

Here, we demonstrate the power of ssSNMR on antimicrobial
piscidin 1 (FFHHIFRGIVHVGKTIHRLVTG-COO~ /NH,, p1-COO~/NH,)
and piscidin 3 (FIHHIFRGIVHAGRSIGRFLTG-COO~ /NH,, p3-CO0~/
NH,) in the presence and the absence of carboxyamidation.
Specifically, we used N ssNMR to monitor on a molecular level the
motions of the amphipathic helices of piscidin 1 and piscidin 3 on the
surface of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC)/1,2-
dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) hydrated lipid
bilayers to mimic the electrostatics on the surface of anionic bacterial
membranes where cationic AMPs bind to initiate their antimicrobial
activity. Our approach involved the measurement of anisotropic
chemical shifts in peptide samples oriented in “native-like” hydrated
lipid bilayers and studied in multiple peptide orientations with
respect to the external magnetic field Bo.

Three isoforms of piscidin, piscidins 1, 2, and 3, were discovered in
the mast cells of fish as a mixture of amidated and non-amidated
peptides. They are highly potent antimicrobial, cationic, and amphi-
pathic peptides that play a vital role in the fight against many aquatic
infections [41-44]. Piscidin 1 is the most active, while the least active
is piscidin 3. Piscidin 2 differs from piscidin 1 only at position 18
(arginine in piscidin 1 vs. lysine in piscidin 2). Piscidins, which have
recently been found in many fish species [45], display common gene
structures with pleurocidin and share a number of features with other
AMPs, including a broad-spectrum activity against pathogens includ-
ing multi-drug resistant bacteria, fungi, and viruses [41-44,46,47]; an
amphipathic character; the occurrence of amidated and acidic
carboxyl-ends [44]; highly conserved structural motifs; and the
presence of arginine and lysine residues to increase the cationic
character as reflected in a high pl (~12 in the case of piscidin 1).
Special features of piscidins [42,44,48] that make them unique targets

for the development of novel therapeutics include: (1) a tolerance to
high salt concentrations [44], which may be useful in the treatment of
cystic fibrosis [49]; (2) a high content of histidine, a key amino acid in
biomolecules due to its pK,, which is close to physiological pH; (3) an
antiviral activity that remains high at low temperature [42-44]; (4)
synergistic effects with hepcidin, an important AMP and hormone
peptide.

Solid-state NMR was originally applied to piscidins to demonstrate
their a-helical structure and residence on the lipid bilayer surface
[50-52]. While it was suggested that large amplitude motions existed
in the plane of the bilayer [51], no detailed chemical shift tensor
analysis was provided. Moreover, since these results were derived
from >N ssNMR data confined to the Val;, site of piscidin 1, it was also
unclear whether these “in-plane” motions were restricted to a single
site or the entire piscidin molecule and whether they were universally
present in the whole piscidin family. Interestingly, a recently
published solution NMR structure of piscidin's a-helix in zwitterionic
micelles has provided context for the ssNMR dynamic results at
position 12 since the solution NMR data pointed at significant N-
terminal disorder due to fast dynamics [53,54]. Here, position 20 near
the well structured and dynamically ordered C-terminus was labeled
with >N in amidated and non-amidated piscidin 1 and piscidin 3. The
results are discussed in terms of their relevance to the antimicrobial
function of piscidin and other related AMPs.

2. Materials and methods
2.1. Materials

Isotopically labeled carboxyamidated and non-amidated piscidin 1
and piscidin 3 were synthesized by United Biochemical Research
(Seattle, WA) using Fmoc chemistry and solid phase peptide
synthesis. After in-house protection following previously established
protocols [55-57], >N labeled amino acids (Cambridge Isotope
Laboratories, Andover, MA) were incorporated in the peptides at
position 20. Following synthesis, the peptides were cleaved from the
resin support and purified on a Waters HPLC system using a Terra C18
column and a 25 minute-gradient of acetonitrile/water with 0.1%
2,2,2-trifluoroacetic acid (TFA). Piscidin 1 and piscidin 3 were
collected when the acetonitrile concentration reached approximately
30%. Peptide purity was confirmed by mass spectroscopy performed
on a Bruker Esquire Ion Trap spectrometer (University of Washington,
Seattle, WA). Only piscidin (with charge states of +2, 43, and +4)
was detected in the purified fractions. Singly labeled piscidin 1 and
piscidin 3 gave rise to signals corresponding to the expected
molecular masses of ~2572 and 2492 Da, respectively. Solvents
(e.g.; acetonitrile, chloroform, HPLC grade water, methanol, TFA, and
2,2,2-trifluoroethanol) were purchased from Fisher Scientific (Pitts-
burgh, PA).

2.2. Preparation of samples for solid-state NMR

Oriented samples were prepared following a procedure reported
previously [50,51]. Briefly, lipid films of 3:1 DMPC/DMPG containing
piscidin 1 or piscidin 3 (typically 10 to 12 mg) in a 1:20 peptide to
lipid molar ratio were dried under nitrogen gas prior to overnight
lyophilization. The peptide-lipid films were hydrated at ~40 °C with a
20 mL-phosphate buffer solution (NaH,PO4/Na;HPO,4, 3.5 mmol, pH
6). Following mixing to allow for complete suspension, the binding of
the peptide to the lipids was allowed to take place overnight at
~40 °C, above the phase transition temperature of the lipids (~24 °C).
Next, the samples were centrifuged for 3.0 h at 4 °C and 46 000xg, and
the pellet was spread on about 40-50 thin glass slides (dimensions
5.7x12x0.03 mm> from Matsunami Trading Co., Japan or
5.7%12.0x0.07 mm? from Paul Marienfeld GmbH & Co., Germany).
After the samples reached equilibrium in a chamber at a relative
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humidity greater than 90% in the presence of a saturated solution of
K;S0,4, some phosphate buffer solution was added to the slides at a
ratio of 1 pL of buffer per 1 mg of the peptide/lipid mixture. The slides
were then stacked and inserted into glass cells (internal dimensions
6x20x4 mm?, Vitrocom Inc., NJ), which were sealed with beeswax to
maintain hydration. The samples were incubated at ~40 °C until they
appeared homogeneously hydrated. Partial hydration of a piscidin 3
sample was achieved by decreasing the amount of buffer present in
the sample. Full hydration of this sample was obtained by adding to
the glass cell an amount of phosphate buffer equal by weight to the
combined amount of dry peptide and lipids and incubating the sample
until equilibrium was reached at ~40 °C.

2.3. Solid-state NMR experiments

5N cross-polarization experiments were performed at a reso-
nance frequency of 60.83 MHz on a 600 MHz WB Bruker Avance x 3
NMR spectrometer at the National High Magnetic Field Laboratory
(NHMFL, Tallahassee, FL). Standard [58] and low electric-field (E-
field) [59] flat coil '°N/'H probes built at the NHMFL were used to
obtain >N chemical shifts from oriented samples. The use of the
NHMFL low-E field probe and well-sealed samples offered the
advantage of preserving sample authenticity during the ssNMR
experiments. The NHMFL probes also provided the capability to easily
switch between vertical and horizontal coil assemblies. Experimental
parameters included a temperature of 404-0.1 °C unless otherwise
indicated, a contact time of 0.8 ms, a cross-polarization field of
~45 kHz, a decoupling field of ~60 kHz, and a recycle delay of 4-6 s.
5N chemical shifts were referenced to a saturated solution of
15SNH4NO3, which resonates at 22.3 ppm with respect to liquid NHs.
The measurements of error bars are based on the linewidth at half
height for oriented samples analyzed in the horizontal sample coil,
and the signal to noise ratio and spectral resolution for powder
patterns obtained in the vertical sample coil [60].

3. Results

In a-helical peptides such as piscidin 1 and piscidin 3, the >N
chemical shift eigenvectors are conserved with &6;; being in the
peptide plane and deviating from the N-H bond vector by ~20°, 633
being in the peptide plane as well, and 65, being orthogonal to the
peptide plane [60-63]. Since the N-H bond vector is directed
approximately along the helical axis, 617 is pointed approximately
along the helical axis of piscidin while 6,, and 633 are orthogonal to the
helical axis, as shown in Fig. 2. While the magnitudes of the principal
components of piscidin's chemical shift tensor can be obtained directly
from the peaks and shoulders of the powder pattern spectrum from a
randomly oriented sample of piscidin (Fig. 1A, red trace), both the
magnitudes and orientation of the >N chemical shift tensor in the
molecular frame of piscidin's ai-helix determine the spectral appear-
ance of oriented samples (Fig. 1B). In the specific case of [>N-Leuyg]-
p3-CO0~ studied under low hydration conditions at T=40 °C (i.e.;
above the phase transition of the lipids) (Fig. 1A, red trace), the
spectral simulation for the powder pattern (Fig. 1A, dashed line)
yielded 611 =186 £5 ppm, 6,2 =56+5 ppm, and 633 =404+5 ppm,
which is consistent with values previously obtained on peptides
[60,61,64].

When the correlation time of the dynamic events is much larger
than 1/CSA, where the CSA is expressed in Hertz, and the oriented
sample of ["°N-Leu,]-p3-COO ™ is macroscopically aligned so that the
bilayer plane normal is along By, 611 is approximately orthogonal to By
(the so-called “perpendicular” orientation of the sample, which is
obtained for a horizontal sample coil orientation) and thus has
approximately zero influence on the observed anisotropic chemical
shift frequency. The resonance frequency is then determined by the
orientation of &,, and 833 (Fig. 2). For example, if the a-helix of
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Fig. 1. Proton decoupled >N spectra of ['°N-Leu,o]-p3-COO~ obtained using the
vertical (the so-called parallel orientation of the helix, red trace) and horizontal (the so-
called perpendicular orientation of the helix, blue trace) coil orientations with respect
to magnetic field Bo. The spectra were collected under conditions of (A) partial
dehydration and 40 °C, (B) full hydration and 40 °C, and (C) high hydration and 20 °C.

piscidin were aligned so that 6,,, which is orthogonal to 633, was
pointed along By, the observed resonance frequency would be closer to
the value of 6,,. This would correspond to the situation when the Leu,q
peptide plane is parallel to the DMPC bilayer surface. As shown in Fig.
1A, ["°N-Leu,o]-p3-CO0~ investigated in the perpendicular orienta-
tion at T=40 °C under low hydration conditions gives rise to a
relatively broad peak with §,,s =48 ppm (Fig. 1A, blue trace), which
falls between 6,,=56+5 ppm and 633 =404+5 ppm determined
above. At first glance, this might be interpreted as indicating that the
orientations of 6, and 633 may be unique. However, when this
anisotropic sample is studied using high hydration conditions and the
same orientation with respect to By (Fig. 1B, blue trace), line narrowing
occurs indicating that 6, and 633 are now averaged by a motion about
the helical axis. This result also suggests that heterogeneous orienta-
tions of 65, and 633 were responsible for the broad line observed under
low hydration conditions (Fig. 1A, blue trace). This heterogeneity also
explains that a full powder pattern is observed when the low hydration
sample of ['°N-Leus,]-p3-CO0~ is tilted by 90° with respect to By (Fig.
1A, red trace, the so-called “parallel” orientation of the sample, which
is obtained for a vertical sample coil orientation) and the multiple
orientations of 8,1, 522, and 833 with respect to By create the powder
pattern expected for a randomly oriented sample.

Under high hydration conditions, the rapid motion of piscidin's o-
helix about the lipid bilayer normal is introduced in addition to the
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Fig. 2. Diagrams of the a-helical rotations of piscidin about the membrane normal and
helical axis, and the effects of these motions on the '’N chemical shift tensor
components. As illustrated in the top (side view) and bottom (in-plane view) figures,
piscidin experiences motions about two axes, the helical axis of the peptide and the axis
along the lipid bilayer normal.

motion about the helical axis. Indeed, when the sample of [">N-Leuyg]-
p3-CO0~ is observed in the parallel orientation of the helix with
respect to By, 611 =186 ppm is averaged with 6, =48 ppm, the
averaged projections of §,; and 833 on the bilayer plane, resulting in
Ojefr= (186 +48) /2 =117 £5 ppm, which is in excellent agreement
with the sharp resonance experimentally observed at 114.5 4+ 0.5 ppm
(Fig. 1B, red trace; Table 1). While the same motion has very little
effect on the linewidth of the spectrum obtained when the sample is
oriented with the bilayer normal parallel to By (Fig. 1B, blue trace;
Table 1), the motion about the helical axis contributes to the
observation of a narrow line. These results indicate that Leuyq of

Table 1
5N chemical shift tensors for piscidin 1 and piscidin 3 at T=40+0.2 °C.

6. (ppm) O efr (PPM) ) (ppm) djiso (PPm)
15N-V,, p1-CO0~ 514405 109.4+0.5 167 +5 90+5
15N-V,0 p1-NH, 51.0+ 0.5 107.0+0.5 163+5 88+5
15N-Lyq p3-CO0~ 51.0+05 114.5+ 0.5 178 +5 93+5
15N-L,o p3-NH, 495+ 0.5 1155+ 0.5 181+5 93+5

Referenced to '>NH4NOs;, which resonates at 22.3 ppm when referenced to >NHs. p1:
piscidin 1; p3: piscidin 3, COO~: free carboxyl end; NH,: carboxyamidated end.
Numbers in bold are experimental, other numbers are calculated based on experimental
values: § is calculated as (2 x 6y efr— 6. ); iso is calculated as (&) +2x6,)/3.

piscidin 3 undergoes large-scale averaging on a time scale faster than
110 ps, the reciprocal of §;1-633, the tensor span. Interestingly, the bi-
axial motion about the bilayer normal and helical axis can be stopped
either by using low hydration conditions or decreasing the sample
temperature to 20 °C, which is below the phase transition of DMPC
(Fig. 1).

Similarly to ['®N-Leuyo]-p3-CO0~, carboxyamidated piscidin 3 as
well as piscidin 1 with and without carboxyamidation yield high
resolution "N proton decoupled spectra (Fig. 3, Table 1), which are
also consistent with the same in-plane large scale motion at position
20, implying that this motion is universal within the piscidin family of
AMPs. Combined with the analogous effect observed for Val;; in
piscidin 1 [51] and the highly ordered a-helical structure of piscidin 1
[51,53,54], our results indicate that this motion is not restricted to a
single peptide plane or sub-domain in piscidin 1, but rather is an
inherent feature of the entire piscidin a-helix. Neither amidation nor
amino acid substitution has any effect on this motion suggesting that
this is perhaps a universal feature of antimicrobial amphipathic
helices. The universality of the rapid motion in natural AMPs is
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Fig. 3. Proton decoupled '°N spectra of single site >N labeled piscidin 1 and piscidin 3
acquired with vertical (the so called “parallel” orientation of the helix, red trace) and
horizontal (the so called “perpendicular” orientation of the helix, blue trace) sample
coil orientations with respect to magnetic field By at full hydration and 40 °C: (A)
[°N-Valy]-p1-CO0 ™, &) er=109.440.5 ppm, 5, =51.4+0.5 ppm, (B) ['°N-Valy]-
p1-NHy, 6jer=107.040.5 ppm, 6, =51.040.5 ppm, (C) ['*N-Leuy]-p3-C0O0,
Sjerr=114.540.5 ppm, 6,=51.0+0.5 ppm, and (D) ['°N-Leuyo]-p3-NH,, &jerr=
11554+ 0.5 ppm, 6, =49.5+ 0.5 ppm.
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additionally supported by the previous observations of in-plane
dynamics in the somewhat shorter antimicrobial peptide ovispirin
studied by Yamaguchi and colleagues [65] and the detection of an
isotropic type of motion in the peptides from Australian amphibians
investigated by Boland and Separovic [66]. Cornell and coworkers
used '3C solid-state NMR to characterize the rotation of melittin and
gramicidin A in lipid bilayers [67,68] while Aisenbery and Bechinger
[69,70] also observed the motional averaging of synthetic peptides in
the plane of the bilayer. In addition, Ramamoorthy and coworkers
discussed the effect of motion on the mechanism of membrane
disruption of several peptides including pardaxin, LL-37, magainin,
and derivatives of magainin-2 and melittin [71-74].

4. Discussion

Thanks to new experimental and computational advances, the
exploration of protein dynamics has stimulated substantial interest.
The significance of this pursuit is multifaceted. It is well accepted that
the internal motions of proteins have strong influence on their
function. Furthermore, there is increasing awareness that as we
characterize the conformational and dynamic substates of peptides
and proteins, a better understanding of their functional properties will
be obtained [75]. Here >N chemical shift tensors were used to
investigate fast in-plane motions in the piscidin family of AMPs. With
the prior knowledge that piscidin is a-helical and oriented parallel to
the bilayer surface, the observation of averaged individual tensor
components has provided us with the basis to characterize fast
motions about both the bilayer normal and helical axis of the peptide.
It is interesting to note that Kuttner and colleagues [76] recently
discussed the role of translational and rotational diffusion in many
aspects of intracellular and multicellular processes that rely on
macromolecular interactions. These motions, which share some
similarity with piscidin's fast dynamics, facilitate the search for
partners within the bilayers as needed for the successful association of
complexes that are biologically active.

In addition to the dynamic investigation presented here, the
detailed analysis of the averaging process that takes place in piscidin
should also be sufficient to delineate the peptide plane orientation
with respect to the membrane plane normal. Unfortunately, a
resolution of 5 ppm typical for randomly oriented samples and
(622-033)<15 ppm or less for '°N amide nitrogens in o-helices [60]
would impose large experimental errors and make these measure-
ments impractical. At high magnetic fields, 7O chemical shift tensors
that have orientations similar to the one of the >N amide site shown
in Fig. 2 should be of more practical importance since (622-033)>
400 ppm [77]. High field studies of the 70 chemical shift tensors of
piscidins would also facilitate the assessment of the same molecular
motion on a time scale of 0.02 ms rather than the 0.11 ms scale
presented here. The outcome of integrating peptide dynamic and
structural data is that a higher resolution description of both
dynamics and structure can be achieved, which bodes well in terms
of enhancing our understanding structure-function relationships in
important biomolecules such as piscidins and other AMPs.

Our results support the concept that water activates protein
motions [78-80. Here low hydration as well as low temperature
eliminate the fast motions of piscidin. Conspicuously, water also
affects the structure, order, and dynamics of the surrounding
membrane components. Therefore, while biological membranes are
controlled by many complex factors, including membrane composi-
tion, hydration, pH, ionic strength, and temperature, water is a
versatile agent that couples the components and enables fluctuations,
cooperativity, and correlated dynamics such that local order [81,82]
and possibly the formation of molecular complexes may be achieved
out of disorder. Interestingly, it has been noted that the numerous
conformational substates accessed by hydrated proteins provide them
with a “reservoir of entropy” that is fundamental to enabling their

function [78]. Here, the entropy generated by the fast dynamics of
piscidin may provide some of the energy needed by the peptide to
perform its function of disrupting bilayers and killing bacterial cells.

Since the rather unusual bi-axial “in-plane” dynamics presented
here for piscidins is largely lateral diffusion of the amphipathic helix
along the membrane surface, it is interesting to estimate the role that
this motion plays in the biological function of these peptides. A simple
calculation using a ~3.3 nm «-helical length and the reciprocal of
110 ps (i.e.; the upper limit of the correlation time) suggests that
piscidin can travel a trajectory equivalent to more than 30 um per
second; if this is the case, the circumference of a single bacterial cell
could be traveled in a fraction of a second. From the perspective of the
kinetics of cellular processes, piscidins and perhaps many other
amphipathic antimicrobial peptides active at lipid bilayers may
represent a class of fast scavengers, rather than static polypeptides
attached to the water-membrane interface. Being an active and
integral part of the mechanism that removes bacteria from a host
organism, these peptides may rely on their high mobility to search for
their targets and perform their function of contributing to the
immune system's first line of defense against pathogens. This
knowledge may benefit the wide range of research currently
conducted on amphipathic a-helical peptides. Notably, the approach
described here to assess fast peptide dynamics and correlate it to
biological function could be extended to other host-defense peptides.
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