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ABSTRACT

We present predictions for the 21 cm brightness temperature power spectrum during the Epoch of Reionization
(EoR). We discuss the implications of the “light cone” effect, which incorporates evolution of the neutral hydrogen
fraction and 21 cm brightness temperature along the line of sight. Using a novel method calibrated against radiation-
hydrodynamic simulations, we model the neutral hydrogen density field and 21 cm signal in large volumes (L =

2 Gpc h−1). The inclusion of the light cone effect leads to a relative decrease of about 50% in the 21 cm power
spectrum on all scales. We also find that the effect is more prominent at the midpoint of reionization and later. The
light cone effect can also introduce an anisotropy along the line of sight. By decomposing the 3D power spectrum
into components perpendicular to and along the line of sight, we find that in our fiducial reionization model, there
is no significant anisotropy. However, parallel modes can contribute up to 40% more power for shorter reionization
scenarios. The scales on which the light cone effect is relevant are comparable to scales where one measures the
baryon acoustic oscillation. We argue that due to its large comoving scale and introduction of anisotropy, the light
cone effect is important when considering redshift space distortions and future application to the Alcock–Paczyński
test for the determination of cosmological parameters.
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1. INTRODUCTION

During the cosmological dark ages, the massive components
of the universe were largely cold dark matter and neutral
hydrogen. As the first stars and galaxies began to form, the
UV photons emitted into the surrounding intergalactic medium
(IGM) reionized the hydrogen. This phase transition is known
as the Epoch of Reionization (EoR; Loeb & Furlanetto 2012).
During the reionization process, it is expected that ionized
hydrogen formed bubbles in the IGM surrounding stars, creating
patches of reionized gas. As the photons travelled farther out into
the IGM, the ionized bubbles grew larger, until they eventually
joined together. Subsequently, most of the remaining neutral
hydrogen was localized to the inside of galaxies, with the rest
of the IGM being highly ionized. For reviews of the EoR, see
Furlanetto et al. (2006), Morales & Wyithe (2010), Loeb &
Furlanetto (2012), and Pritchard & Loeb (2012).

This currently accepted description is overly simplistic be-
cause the precise details of reionization are still largely un-
known. From observing the Gunn–Peterson absorption trough
(Gunn & Peterson 1965) in the Lyα forest, we can infer that
the global neutral hydrogen fraction fH i was greater than 10−3

until z ∼ 6 (Fan et al. 2006). Recent probes of the cosmic
microwave background radiation (CMB) such as the Wilkin-
son Microwave Anisotropy Probe (WMAP) and Planck have
measured the Thomson optical depth of the IGM, which is a
measure of the integrated electron density (Hinshaw et al. 2013;
Planck Collaboration et al. 2013). WMAP-9 reports a value of
τ = 0.089 ± 0.014, which assuming an instantaneous reioniza-
tion gives zreion = 10.6 ± 1.1. Another experimental constraint
comes from using the Hubble Space Telescope Ultra Deep Field
observations of the very first galaxies, which contains informa-
tion about the UV luminosity of star-forming galaxies at early
times (Robertson et al. 2013).

One of the most promising tools for further probing this epoch
comes from the hyperfine transition of neutral hydrogen. The
rest-frame wavelength of this transition is λ ≈ 21 cm. The pre-
cise nature of the 21 cm signal depends on several factors, in-
cluding when the midpoint of reionization occurred, the duration
of reionization, and the dominant method by which hydrogen is
reionized (e.g., ionization via UV versus X-ray photons). When
making a measurement using the 21 cm brightness temperature,
one can observe the global signal or the power spectrum. The
former is the brightness temperature average over the entire sky,
which during reionization is O(10) mK. The power spectrum is
a statistical measure of the fluctuations in the field as a function
of k-space. More information about the importance of the 21 cm
signal can be found in, for example, Loeb & Zaldarriaga (2004),
Cooray (2004), and Bharadwaj & Ali (2004).

With the advent of large radio-telescope and dipole arrays
constructed specifically to observe the EoR, there have recently
been several exciting advances regarding 21 cm observations.
Some of the observational probes that are currently taking EoR
data (or will be in the near future) are, for example, the Low
Frequency Array (LOFAR5; Harker et al. 2010), the Precision
Array for Probing the Epoch of Reionization (PAPER6; Parsons
et al. 2010), the Giant Metrewave Radio Telescope (GMRT7;
Pen et al. 2009), the Murchison Widefield Array (MWA8;
Bowman et al. 2005), and the Experiment to Detect the Global
EoR Step (EDGES9; Bowman & Rogers 2010). These arrays
are designed to extract the 21 cm signal over a relatively narrow
frequency band, targeting a particular redshift. An upcoming

5 http://www.lofar.org
6 http://eor.berkeley.edu
7 http://gmrt.ncra.tifr.res.in
8 http://www.mwatelescope.org
9 http://www.haystack.mit.edu/ast/arrays/Edges
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telescope, such as the Square Kilometre Array (SKA10; Mellema
et al. 2013), will be designed to take full tomographic data of
the EoR, and map the 21 cm signal as a function of frequency.

When performing a three-dimensional measurement of the
21 cm signal, there are several important caveats to bear in
mind. Two of the major effects are the light cone effect and
redshift space distortions (RSD). The light cone effect comes
purely from the time delay of propagation of the signal to
the observer. In general, different comoving distances from an
observer correspond to different points in redshift space. For
sufficiently large scales, the comoving distance spanned by the
observed volume corresponds to a large duration in redshift
space. The neutral hydrogen fraction can change significantly
if the length of the observed redshift interval is comparable to
or larger than the duration of reionization. This evolution of
the neutral fraction also introduces anisotropy along the line of
sight in the 3D power spectrum. The light cone effect has been
explored with respect to 21 cm observations semi-analytically
by Barkana & Loeb (2004) and numerically by Datta et al.
(2012). In previous works, the light cone was deemed to have
an O(1) effect on the 21 cm brightness temperature two-point
correlation function or power spectrum, respectively. We show
in this work that the light cone can have a similar effect for
sufficiently large volumes. Furthermore, we show that the light
cone is most important around the midpoint of reionization,
where 0.4 ! fH i ! 0.6.

RSD are the result of peculiar velocities of the signal sources.
Since the simplest computation of the 21 cm signal assumes
that the only source of velocity is the Hubble flow, peculiar
velocities lead to a correction of the predicted signal. The effect
of RSD has already been applied to 21 cm cosmology (e.g.,
Barkana & Loeb 2005; Bharadwaj & Ali 2005; Mao et al. 2012;
Jensen et al. 2013; Shapiro et al. 2013; Majumdar et al. 2013).
In general, RSD have an O(1) effect on the 3D 21 cm brightness
temperature power spectrum at the largest scales. The effects of
RSD are thought to be most prominent early in reionization. For
example, Jensen et al. (2013) show that RSD are most important
for 0.7 ! fH i ! 1.0, peak at fH i ∼ 0.9, and have little impact
after the midpoint of reionization.

The light cone effect also has important implications for
measurements that use the baryon acoustic oscillation (BAO)
method. The BAO method is important for understanding the
accelerating expansion of the universe, and is used to make
measurements of fundamental parameters such as H (z). The
BAO scale is large, typically 150 comoving Mpc. As we show,
the light cone effect also becomes important on these scales.
The BAO method can be subjected to the Alcock–Paczyński
test (Alcock & Paczyński 1979), which uses spherical features
and relates their angular diameter distance to their extent in
redshift space to determine cosmological parameters. Proper
application of this test requires an accurate understanding of
any anisotropies between perpendicular and parallel behavior
of these features. As is discussed more in the body of this paper,
the light cone effect can introduce anisotropy in the 21 cm signal
in the parallel direction. Therefore, if the 21 cm signal is to be
used in BAO methods, the light cone effect must be properly
understood and included in calculations. For application of
the BAO method to the 21 cm signal, see Nusser (2005) and
Barkana (2006); for discussion of the BAO theory and current
implementations, see Weinberg et al. (2013).

10 http://www.skatelescope.org

Our approach combines numerical simulations with semi-
analytic tools. We first perform a reionization simulation includ-
ing hydrodynamics and radiative transfer on a relatively small
volume. Once a statistical measure has been devised for how the
matter overdensity field is related to the redshift of reionization,
this statistical measure is used on a matter-only simulation in
a larger volume that still accurately predicts reionization ob-
servables. In addition, different reionization histories can be
explored rapidly without rerunning computationally expensive
simulations. For a more thorough explanation of the general
method outlined here, see Battaglia et al. (2013b). For applica-
tions of this method to EoR observables related to the CMB, see
Natarajan et al. (2013) and Battaglia et al. (2013a).

The main purpose of this paper is to quantify how the 21 cm
power spectrum signal changes with the inclusion of the light
cone effect. In Section 2, we discuss the methodology behind
the analysis and briefly describe the numerical techniques being
applied. In Section 3, we discuss the basic science of the
21 cm brightness temperature power spectrum, and the types of
statistical tests we perform on the data. Also in this section, we
examine the application of these tests to data which comes from
performing the analysis on a simulation box at a single redshift
snapshot. (Hereafter, we refer to this type of data as “coeval
cubes.”) In Section 4, we discuss the light cone effect on the
3D power spectrum. Then, in Section 5, we talk about specific
applications to various observational endeavors, and how this
signal might appear in real-world measurements. In Section 6,
we discuss other effects and potential difficulties related to the
21 cm signal. To conclude, in Section 7, we talk about future
prospects and outlooks. We assume a ΛCDM cosmology with
ΩΛ = 0.73, Ωm = 0.27, Ωb = 0.045, h = 0.70, and σ8 = 0.80.
These values are consistent with the WMAP-9 results (Hinshaw
et al. 2013).

2. METHODOLOGY

In Paper I (Battaglia et al. 2013b) we developed a semi-
analytic model for relating the matter content in a computational
simulation cell with the redshift at which the cell becomes
90% ionized. This approach exploits the fact that the matter
overdensity field, defined as

δm(x) ≡
ρm(x) − ρ̄m

ρ̄m

, (1)

is highly correlated with fluctuations in the redshift of reioniza-
tion field (zre(x)) defined as

δz(x) ≡
[zre(x) + 1] − [z̄ + 1]

z̄ + 1
, (2)

on large scales ("1 Mpc h−1; Battaglia et al. 2013b). To mo-
tivate this observation, note that in an “inside-out” reionization
scenario the densest regions are the ones which form stars and
galaxies capable of producing reionizing photons the earliest.
The difference in amplitude between the two fields can be quan-
tified using the bias parameter bzm(k) which is applied to the
two fields in Fourier space. The bias parameter can be written
as:

b2
zm(k) ≡

⟨δ∗
z δz⟩k

⟨δ∗
mδm⟩k

=
Pzz(k)

Pmm(k)
, (3)

where Pxx(k) is the auto-power spectrum of a field δx . In order
to quantify how similar two fields are, the cross-correlation
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coefficient r can be used. This quantity can be defined as:

rzm(k) ≡
⟨δ∗

z δm⟩k√〈
δ2
z

〉
k

〈
δ2
m

〉
k

=
Pzm(k)

√
Pzz(k)Pmm(k)

, (4)

where Pxy(k) is the 3D cross-power spectrum of the fields δx

and δy . The normalization ensures that r ∈ [−1, 1]. For values
where the cross-correlation coefficient becomes 1, the fields are
highly correlated, and the amplitudes of the fields differ only
by their bias factor. This is true for the matter and reionization
fields during the EoR on large scales (Battaglia et al. 2013b).

Since the matter and reionization fields are highly correlated
on large scales, the bias parameter can be used to relate their
amplitude difference. In general, the bias will change as a
function of k. We have chosen a functional form of the
bias defined in Equation (3) in such a way to reproduce
the relationship observed in simulations. We define this bias
bzm to be

bzm =
b0(

1 + k
k0

)α . (5)

There are essentially three free parameters in this model: b0,
k0, and α. The value of b0 can be predicted using excursion set
formalism in the limit that k → 0 (Barkana & Loeb 2004). We
have chosen b0 to be 0.593.

In order to determine best-fit values for the parameters k0

and α, we compare the matter overdensity and reionization-
redshift fields using a RadHydro code, which contains radiative
transfer + hydrodynamics + N-body simulation (Trac et al.
2008). These particular simulations contain 20483 dark matter
particles, 20483 gas cells, and 17 billion adaptive rays in a
100 Mpc h−1 cubical box. We find that the best fits for the
values are α = 0.564 and k0 = 0.185 h Mpc−1. In addition
to these physically motivated “fiducial” values, two other sets
of values are chosen to represent more extreme reionization
scenarios: a long and short reionization history, parameterized
in our model with the values of (α, k0) = {(1.8, 0.1), (0.2, 0.9)},
respectively. Examining different reionization histories allows
for the identification of features in the power spectrum which
may indicate how quickly reionization occurred.

Once the values in the bias relationship have been fixed, the
matter overdensity field can be used in order to construct the
reionization-redshift field. Accordingly, we performed a dark-
matter-only simulation with a particle–particle–particle–mesh
(P3M) N-body code using 20483 dark matter particles in a
2 Gpc h−1 box. Then, using a snapshot of the matter overdensity
field at the midpoint of reionization z̄, we apply the bias relation
in Equation (5). For more details on this method, see Battaglia
et al. (2013b).

Figure 1 shows a plot of the ionization fraction of the sim-
ulation volume, both mass- and volume-weighted. All neutral
fractions reported in the rest of this paper, unless otherwise
noted, are mass-weighted. The duration of reionization is mea-
sured by finding the redshift range for when the simulation cube
is 25% ionized to 75% ionized, which measures the “50% ion-
ization width” ∆z50. The 50% reionization duration in redshift
for the long, fiducial, and short cases (weighted by mass) are:
∆z50 = 2.11, 1.10, and 0.24. The reionization model consid-
ered here does not allow for “exotic” reionization scenarios,
such as extended reionization or recombination before a second
ionization.

3. ANALYSIS

3.1. 21 cm Theory

The 21 cm signal tracks regions of neutral hydrogen in the
IGM. The application of the radiative transfer equation to CMB
photons free-streaming from the surface of last scattering and
passing through neutral hydrogen in the intergalactic medium
predicts whether the neutral hydrogen will absorb or emit
radiation at 21 cm.

The difference between the brightness temperature and the
temperature of the CMB is given as (Madau et al. 1997; Harker
et al. 2010):

δTb

mK
= 38.6 h(1 + δm)xH i

(
TS − TCMB

TS

)

×
(

Ωb

0.045

) [(
0.27

Ωm

) (
1 + z

10

)] 1
2

= T0(z)(1 + δm)xH i, (6)

where xH i is the neutral hydrogen fraction (assumed to be 0 or
1 for an individual gas cell), and T0 is the redshift-dependent
“average temperature” of the signal, which is modulated by
the spatial fluctuations of the matter overdensity field and the
ionization state. This analysis was performed in a regime where
ΩΛ can be safely ignored. Equation (6) gives the difference of the
brightness temperature at a frequency corresponding to 21 cm
from the CMB as a function of redshift and spatial position.

In the following analysis, it has also been assumed that the
spin temperature is large compared to the CMB temperature,
TS ≫ TCMB. Following from the results of Santós et al.
(2008), this factor is approximately 1 for mass-weighted neutral
fractions fH i ! 0.75. Once the neutral fraction has reached this
value, the spin temperature is collisionally coupled to the kinetic
temperature of the gas, which is typically 2 orders of magnitude
larger than the effective CMB temperature. This assumption is
applicable to a large range of reionization scenarios, e.g., ones
where UV photons from stars photo-ionize and photo-heat the
neutral hydrogen, so that hydrogen’s spin temperature couples to
the kinetic energy of the gas particles and becomes much hotter
than the CMB. Exotic reionization scenarios, e.g., those where
reionization is caused by X-ray heating, do not necessarily meet
the condition that TS ≫ TCMB. However, these scenarios have
not been examined in this analysis, and these considerations
have been saved for future work.

Figure 1 shows the global 21 cm signal as a function of red-
shift for the different reionization scenarios. The duration of
the reionization history affects the rate at which the global sig-
nal diminishes: the long reionization scenario drops gradually,
whereas the short reionization scenario drop rapidly. Observa-
tionally, the signal from a shorter reionization scenario is easier
to measure than a longer one (Bowman & Rogers 2010), since a
shorter reionization scenario would appear as a sharper feature
in frequency space.

3.2. 3D Power Spectrum

We define the 3D power spectrum as Pxx(k) = ⟨δ∗
xδx⟩k ,

and the dimensionless power spectrum ∆
2(k) ≡ k3P (k)/2π2.

The features of the coeval matter overdensity field power
spectrum have already been extensively explored, so we will
only list some common features. As the universe evolves over
time, the amplitude of the matter power spectrum increases
monotonically. Because the 21 cm brightness temperature
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Figure 1. Left: the average neutral hydrogen fraction as a function of redshift. Plotted are the mass-weighted average (solid lines) and the volume-weighted average
(dashed lines). In an inside-out reionization scenario, the densest regions of the universe are the first ones to reionize, so the mass-weighted neutral fraction is always
lower than the volume-weighted one. Right: the global 21 cm signal as a function of redshift for the different reionization histories from Equation (6), with the
simplifying assumption that TS ≫ TCMB. This approximation is only physically justifiable for mass-weighted neutral fractions of fH i ! 0.75; nevertheless, we
plotted the global temperature predicted by Equation (6) for higher redshifts since it is still approximately true in this redshift range. We have marked the points
where fH i ∼ 0.75 by small ticks on the lines. By construction, all of the histories have the same midpoint of reionization of z̄ = 10, which accounts for the point of
intersection.

(A color version of this figure is available in the online journal.)

(cf. Equation (6)) is proportional to the matter overdensity field,
one might expect the 21 cm brightness temperature power spec-
trum also to increase monotonically. However, the 21 cm signal
also incorporates the neutral hydrogen fraction, and so as the
universe becomes increasingly ionized, the signal diminishes.
This evolution causes the amplitude of the 21 cm signal to
increase as the universe begins to ionize, peak at a particular
neutral fraction, and then decrease as the universe ionizes fur-
ther. The shape of the 21 cm power spectrum in the coeval case
has also been examined (e.g., Lidz et al. 2008), and the value
corresponding to a peak in large scale power is ∼50% ionization
fraction.

We calculate the power spectrum as a function of neutral
fraction, since equal neutral fractions between reionization
scenarios capture the same physics better than equal redshifts.
We linearly interpolate between matter overdensity fields from
adjacent snapshots in order to create a power spectrum as a
function of specific neutral fractions. The 21 cm brightness
field was computed from this interpolated matter overdensity
field using Equation (6) where xH i was determined from zre(x).

Figure 2 shows the features of the 3D power spectrum
from the fiducial reionization scenario. On large scales, the
amplitude peaks near the midpoint of reionization, fH i ∼ 0.5.
On small scales, the power is largest for the highest neutral
fraction, fH i ∼ 0.75. Early on in reionization, only the densest
regions have become ionized, which means the 21 cm brightness
temperature power spectrum looks very similar to the matter
power spectrum. As the universe becomes more ionized, this
small-scale power is lost due to the ionized regions growing
larger.

Figure 2 also shows the 3D power spectrum across the
different reionization scenarios of our model. The general shape
of the spectra changes dramatically as a function of reionization
history: as the duration of reionization decreases, more power
is transferred from small scales to large ones. For our model,
although the underlying matter overdensity field is identical

across the simulations, the reionization history dramatically
changes the predicted shape of the 21 cm power spectrum.

3.3. Bias Parameter and Average Bias

Figure 3 shows a plot of the bias parameter (Equation (3))
between the 21 cm brightness temperature field and matter
overdensity field. (The cross-correlation coefficient is discussed
further in Section 4.2.) As already mentioned, the bias parameter
can be used to quantify the relative amplitudes between the
different power spectra. This quantity has already been applied
in a number of settings (e.g., Fry & Gaztañaga 1993; Heavens
et al. 1998; Croft et al. 2002, etc.). The application at hand is the
bias factor between the matter overdensity field and the 21 cm
brightness temperature field. Note that for the calculation of
the bias parameter, the average temperature T0(z) is divided out
in Equation (6) (resulting in δ̂T b = (1 + δm)xH i), in order to
remove dependence on redshift. For high values of the neutral
fraction, the bias is flatter, meaning that the 21 cm brightness
temperature field is more similar to the matter overdensity field.
As the universe becomes more ionized, the bias changes more
dramatically as a function of k. As in the case of the 3D power
spectrum, the amplitude of the bias on large scales peaks at
fH i ∼ 0.5. The evolution of the matter overdensity field is small
compared to the change in the 21 cm brightness temperature.

In regions where the bias is roughly constant, an “average
bias” can be defined as:

b̄21,m =

〈√
δ∗

21δ21

δ∗
mδm

〉

k<k⋆

(7)

where k⋆ (0.1 h Mpc−1) is a predefined cutoff value to ensure
that the selected regime is relatively constant. For a given
reionization history, the power spectrum of both the 21 cm field
and the matter overdensity field is calculated. The average of
the ratio of the two power spectra is computed for all k-values
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Figure 2. Left: a plot of the 3D 21 cm brightness temperature power spectrum, as a function of neutral hydrogen fraction. On large scales, the power peaks at
fH i ∼ 0.5, but at smaller scales it peaks for a larger neutral fraction, fH i ∼ 0.75. The reason for this is that at a larger neutral fraction, only the densest regions are
ionized, so the 21 cm power spectrum looks more like the matter power spectrum. At a neutral fraction of less than 50%, the differences in amplitude for different
values of fH i on large scales is roughly proportional to the difference in neutral fraction. This phenomenon is due to the fact that the redshift evolution of the 21 cm
signal after the midpoint is dominated by the changing neutral fraction. Right: the evolution of the power spectrum for different reionization histories. Across all
reionization histories, the power spectrum is larger near 50% ionization. The shape of the power spectrum changes dramatically for different reionization histories,
where in general, a shorter duration of reionization implies more large-scale power and less small-scale power.

(A color version of this figure is available in the online journal.)

Figure 3. Left: the scale-dependent bias between the two fields, defined in Equation (3), for the fiducial reionization history. To remove the redshift dependence
between different neutral fractions, we divide the 21 cm brightness temperature by T0(z) defined in Equation (6). One can see that the value is fairly constant in the
region k ! 0.1 h Mpc−1, leading to the choosing of this value for the large-scale bias parameter. The small-scale structure for large k-values changes noticeably as the
universe becomes more ionized. Right: a plot of the large scale bias relationship between the 21 cm power spectrum and matter power spectrum at different neutral
fractions. Shown are the mass-weighted neutral fraction (solid lines) and the volume-weighted neutral fraction (dashed lines). The bias is calculated according to
Equation (7), which only takes into account the largest scales (k < 0.1 h Mpc−1). When the bias is largest, there is the most 21 cm signal relative to the underlying
matter overdensity field. Note that as the reionization history becomes shorter, the bias becomes larger at all neutral fractions.

(A color version of this figure is available in the online journal.)

out to k⋆ at several different values of the neutral fraction. The
large scale bias is important because it predicts the amplitude
of the 21 cm power spectrum compared to the matter power
spectrum, especially at large scales. As in the case of the scale-
dependent bias, the average temperature of the 21 cm brightness
temperature field T0(z) has been divided out.

Figure 3 shows the average bias for the three different
reionization scenarios. As seen in the figure, the bias peaks
at an ionization fraction of roughly 50% by mass. As already
discussed in Section 3.2, this coincides with the peak in the
power of the 21 cm power spectrum. A large value of the

bias implies that the sources of reionization are themselves
“highly biased,” in the sense that they are larger and rarer
for larger values of the bias parameter. Figure 4, which shows
the 21 cm brightness field in the coeval and light cone cases,
demonstrates this visually. In the coeval column on the left, the
short reionization scenario has larger but fewer ionized regions,
which implies that the sources are massive and rare. Indeed,
the difference between the large voids in the case of short
reionization and the small pockets of ionized gas in the long
reionization is striking. Thus, the large scale bias parameter is
important not only because it yields valuable information about
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Figure 4. Visualization of the evolution of the 21 cm brightness of the simulation
cube. Left: a coeval sub-box at 50% ionization fraction with side length of
500 Mpc h−1 for long (top), fiducial (middle), and short (bottom) reionization
scenarios. Right: the corresponding light cone cube, which includes evolution
of the ionization field. The x-axis on the right shows the redshift instead of the
comoving distance, with the center of the box placed at the redshift equaling
50% ionization by mass. We notice that the 21 cm signal initially follows the
underlying matter fluctuations at the side of the box farther from the observer
where it is almost entirely neutral, then gradually fades to zero brightness as
the IGM becomes increasingly ionized. For the long reionization scenario, the
coeval case has smaller bubble sizes at 50% reionization, and the light cone
effect is not as pronounced. For the short reionization scenario, the coeval case
has very pronounced bubbles of ionized gas at 50% reionization, and the light
cone effect is quite dramatic.

(A color version of this figure is available in the online journal.)

the relation between the 21 cm brightness temperature and the
matter overdensity field, but also because it is related to the
sources of reionization.

4. LIGHT CONE EFFECT

The light cone effect on 21 cm power spectra has been
examined semi-analytically in Barkana & Loeb (2006) and
numerically in Datta et al. (2012). The previous numerical
work was concerned only with relatively small volumes, and
found that the light cone effect is an O(1) effect on their largest
scales. We examined the impact of the light cone effect on
volumes larger than those used by Datta et al. (2012), and we
conclude that this effect is an essential consideration for 21 cm
measurements.

In essence, the light cone effect is due to evolution of the signal
along the line of sight. Although the coeval power spectrum is
easy to compute in a simulation volume, it is not representative
of a 3D power spectrum that would be observed. Given a flat

ΛCDM cosmology, the comoving distance from an observer
today can be calculated as a function of redshift:

r(z) =

∫ z

0

c

H (z′)
dz′. (8)

As an example, if the center of the 2 Gpc h−1 box is placed at
a comoving distance corresponding to a redshift of z = 10 for
our particular cosmology (i.e., the 21 cm signal at the center
of the box has a redshift of 10 relative to an observer), then a
signal from the far side of the box (from the perspective of the
observer) has a redshift of z ∼ 21, whereas the near side of
the box has a redshift of z ∼ 6. The duration in redshift space
spanned by the box is much larger than the ∆z50 for all of the
reionization histories of our model. This means that, even for
very extended reionization scenarios, the far side of the box
would correspond to a totally neutral universe, and the near side
would be completely ionized. The matter overdensity field also
evolves from z ∼ 21 to z ∼ 6. Intuitively, one would expect
that such a radical change could affect the power spectrum of
21 cm, because the signal is dependent upon the presence of
neutral hydrogen. In other words, the evolution along the line
of sight is non-negligible for these large volumes.

To produce the light cone effect, we divided the full simulation
volume into a series of cubes with smaller dimensions, since
2 Gpc h−1 spans a redshift range that always exceeds the
duration of reionization in our model. We treated these different
sub-boxes as fully independent because the matter overdensity
field, which generates the reionization field, has the same
statistical values (e.g., mean value, standard deviation, σ8,
etc.) in each sub-volume, with some acceptable fluctuation.
Specifically, we cut the 2 Gpc h−1 box into sub-volumes of
500 Mpc h−1, 250 Mpc h−1, and 125 Mpc h−1. This yields 64,
512, and 4096 independent cubes, respectively. We placed the
center of the sub-boxes at the redshift corresponding to 25%,
50%, or 75% neutral hydrogen fraction by mass. For each cell
in the simulation volume, the comoving distance r from the
observer is calculated along with the redshift corresponding to
that distance z(r), the inverse of Equation (8). Then, the mass
of the cell is linearly interpolated from the snapshots of coeval
mass density arrays from the bracketing redshifts, just as is done
for the coeval case. Finally, the 21 cm brightness temperature is
computed as in Section 3.2.

Figure 4 shows the evolution of the 21 cm signal in the
simulation volume as a function of redshift. One can see that the
late-time portion (left side of the box) contributes almost nothing
to the signal, and the earlier times (right side) has variation in
the temperature proportional to the fluctuations in the matter
overdensity field.

4.1. 3D Power Spectrum with the Light Cone Effect

To determine the impact the light cone effect has on the 3D
power spectrum, we find the power spectrum of each individ-
ual sub-box, take the average, and then compute the standard
deviation to get the corresponding 1σ values. Because the sim-
ulation volumes were constructed in this way, periodicity was
explicitly broken which altered the power on large scales. How-
ever, we found that this does not greatly affect the computation
of the power spectrum. Furthermore, many of these results in-
volve ratios between power spectra that are both affected by the
problem of broken periodicity, so the problems introduced do
not significantly change the predictions. Also note that when
computing the 3D power spectrum with the light cone effect,
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Figure 5. Light cone effect for a sub-box with side length 500 Mpc h−1 (left column), 250 Mpc h−1 (center column), and 125 Mpc h−1 (right column), for the fiducial
(top row), long (middle row), and short (bottom row) reionization scenarios. The coeval power spectrum (solid blue line) is computed at the midpoint of reionization.
The light cone effect (yellow line) has 1σ error regions shaded in. Note that these spectra do not include modes where kx = ky = 0 (see Appendix A). Also shown
are coeval power spectra corresponding to the bracketing redshifts of the light cone cube for the far side from the observer (red dashed line) and the near side (cyan
dashed line). The percent difference between the coeval and light cone lines is shown in the bottom panel, with the same 1σ error regions shaded in. The light cone
effect is most pronounced at the largest scales. The light cone effect can also change the shape of the power spectrum, where a shorter reionization scenario leads to
more deviation from the coeval case.

(A color version of this figure is available in the online journal.)

Fourier modes where k⊥ = 0 relative to the line of sight have
been removed. The inclusion of these modes leads to signifi-
cantly more power on large scales, but they cannot be observed
by radio interferometers. (See Appendix A for more discussion.)

In Figures 5 and 6 (along with Figures 12, 13 and 14 in
Appendix B), we present the 3D power spectra with and without

the light cone effect. Figure 5 compares the power spectra
across box sizes and reionization histories, but with constant
fH i = 0.5. A general feature is that the power is suppressed at
all scales. Including the light cone effect is somewhat analogous
to averaging over the duration in redshift range spanned by
the volume. For the large sub-volume size (500 Mpc h−1),
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Figure 6. Plot similar to Figure 5, but showing the power spectrum as a function of neutral fraction. All plots are for the fiducial reionization history, with rows
corresponding to fH i = 0.75 (top), 0.50 (center), and 0.25 (bottom). The columns have their same ordering as in Figure 5. We can see that only the small-scale power
changes appreciably between different neutral fractions. Thus, on large scales, only the coeval power spectrum changes shape appreciably. Compare the coeval shape
change to Figure 2. This implies that the shape of the light cone power spectrum might not change as dramatically as in the coeval case, especially for large sample
volumes.

(A color version of this figure is available in the online journal.)
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Figure 7. Top: light cone power spectra, plotted at different neutral fractions across all sub-box sizes for the fiducial reionization scenario. These spectra are the same
as in Figure 6, but reproduced here for more straight-forward comparison. Bottom: percent difference of the f = 0.75, 0.25 spectra from f = 0.50 spectra. As the
extent in redshift space becomes larger with respect to the duration of reionization, the large scale power becomes increasingly similar across neutral fractions. This
effect is most apparent in the short scenario, but also partially seen in the long scenario.

(A color version of this figure is available in the online journal.)

this leads to an effective averaging over a significant portion of
the reionization history. This explains why there is less power on
all scales: the neutral fractions where the large- and small-scale
power peak (fH i = 0.50 and fH i = 0.75, respectively) are being
averaged with other neutral fractions that contain less power.
Thus, the averaging tends to decrease power on all scales for
our reionization scenarios. Note also that in the limit where the
redshift space duration is relatively small (i.e., the 125 Mpc h−1

volume), there is little deviation from the coeval case.
One feature to point out is the 1σ spread of the power

spectrum, represented by a shaded region surrounding the light
cone line. As discussed in Section 4, the sub-boxes are treated
as independent and identically distributed sub-samples of the
larger volume. Specifically, we treat the power spectrum from
each sub-volume as the random variable of an underlying
cosmological distribution. The standard deviation calculated
here is that of the power spectra themselves, computed over
the 64, 512, or 4096 sub-boxes for a particular sub-volume
size. The relatively larger spread for the smaller sub-volumes
demonstrates there is more fluctuation when examining smaller
scales.

Figure 6 compares the 3D power spectrum across different
box sizes and different neutral fractions, but only for the
fiducial reionization scenario. Similar to Figure 5, the light
cone enhances power at large scales and diminishes power at
small scales. Another similarity is that the deviation from the
coeval case is greater for large sub-volumes than for small ones.
An interesting feature of these plots is that the shape of the
light cone power spectrum does not change as drastically for
different ionization fractions as it does for different reionization
histories in our model. This implies that differences in the
shape of the power spectrum are most sensitive to the duration
of reionization, and are not as dependent on the midpoint of
reionization.

Figure 7 shows the power spectra for the fiducial reionization
scenario at different neutral fractions. As the sub-box size
becomes larger and the extent in redshift space becomes large
compared to the duration of reionization, the large-scale power
of the different neutral fractions becomes increasingly similar.
This is due to how the region of maximal contrast near fH i ∼ 0.5

relates to where the box is centered in redshift space. Since the
light cone cube is centered on the redshift corresponding to a
particular neutral fractions, longer reionization scenarios will
have a greater change in where the cubes are centered. Sub-
box sizes where the region of maximal contrast is adequately
spanned for all neutral hydrogen fractions will have similar
amounts of large scale power. The figure shows this is true for
the largest sub-box size in the fiducial reionization scenario.
As an observational implication, our model predicts that future
measurements will not be able to easily distinguish different
neutral fractions for briefer reionization scenarios.

Related to this phenomenon, the average bias (cf., Section 3.3)
also behaves differently when the light cone effect is included.
In the coeval case, the average bias is initially relatively small
early in reionization, rises with increased ionization, and then
falls following the midpoint of reionization (see Figure 3).
The inclusion of the light cone effect flattens out this curve,
so that the average bias does not change significantly as a
function of neutral fraction. Again, this phenomenon is related
to the duration of reionization compared to sub-box size, with
briefer reionization scenarios being flatter. This result further
demonstrates that when the light cone effect is included, it
becomes difficult to determine the change in neutral fraction
as a function of redshift. One alternative to the 3D power
spectrum would be to measure the 2D angular power spectrum
as a function of frequency, where the large scale bias would
likely rise and fall as a function of neutral fraction in a manner
similar to the coeval case.

4.2. Cross-correlation Coefficient with the Light Cone Effect

We examined the cross-correlation coefficient between the
21 cm brightness temperature and the matter overdensity fields
for the light cone effect. We computed the cross-correlation
between the two fields using Equation (4). Figure 8 shows the
cross-correlation coefficient for the light cone. In general, on
large scales the fields show less statistical correlation than in the
coeval case. We can motivate this by noting that when the box
is completely neutral, there is perfect correlation between the
two fields. Conversely, once the box becomes totally ionized,
there is no longer any correlation between the matter overdensity
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Figure 8. Left: the cross-correlation coefficient between the 21 cm brightness temperature and the matter overdensity field, defined in Equation (4), for the fiducial
reionization history plotted at different neutral fractions. On very large scales, there is almost perfect anti-correlation between the two fields. Right: cross-correlation
coefficient including the light cone effect, across different sub-box sized and reionization scenarios at constant fH i = 0.5. For the fiducial and long reionization
scenarios, there is generally a tendency toward −1 on large scales, though the anti-correlation is not as pronounced as in the coeval case. However, this correlation
does not exist to the same extent for the short reionization scenario.

(A color version of this figure is available in the online journal.)

and 21 cm fields, because the 21 cm signal is zero everywhere.
Because this effect is more pronounced in the short reionization
scenario (cf. Figure 4), the short histories (the dotted lines in
Figure 8) deviate the most from perfect anti-correlation. In
fact, the combination of zero correlation in ionized regions
and almost perfect correlation in neutral regions accounts for
why the short reionization scenario exhibits a large degree
of positive correlation on small scales. The amount of anti-
correlation grows larger for longer reionization scenarios, and
the fields tend toward perfect anti-correlation on large scales for
the fiducial and long reionization scenarios.

4.3. Anisotropic Power Spectrum

We are interested in quantifying any anisotropy in the power
spectrum because the light cone effect inherently alters the
signal along the observer’s line of sight of the volume, but
does not affect the signal perpendicular to the line of sight.
The computation of an anisotropic power spectrum proceeds
in a fashion similar to that of the 3D power spectrum (as in
Section 3.2); however, instead of binning in terms of a single

spherical magnitude k =
√

kx
2 + ky

2 + kz
2, the binning is done

in terms of two quantities k∥ ≡ kz and k⊥ ≡
√

kx
2 + ky

2.
When decomposing the power spectrum in this manner, we
use a “flat-sky” approximation which neglects the curvature
of the sky. In our calculations, the distance to the observer is
large enough that the effects of the flat-sky approximation are
negligible. Additionally, we noticed that on small scales, there
is a significant amount of anisotropy in the figure even in the
coeval matter power spectrum. The density field is constructed
by assigning particles to a Cartesian grid using an anisotropic
cubical top hat filter. Deconvolution with this filter is not perfect,
and does not completely remove the anisotropy. The deviation
from isotropy becomes increasingly important on scales that are
close to the size of a grid cell. Accordingly, we only trust this
statistic for which k ! 1 h Mpc−1.

Figure 9 shows a pseudo-color plot in which the different
k-modes k⊥ and k∥ are on the x- and y-axes, respectively. The
power spectrum P (k) is plotted as a function of these two modes
on a linear scale, so that the isotropy (or anisotropy) is appar-

ent in the plot. An interesting feature to point out is that the
light cone introduces a subtle deviation from the isotropy seen
in the coeval case. For the same spherical magnitude, k, there
is slightly less power in modes where k⊥ ∼ k∥ compared to
modes where k⊥ ≫ k∥ or vice versa. Compare this to the coeval
case, where the contours are almost perfectly circular with little
deviation from isotropy. The anisotropy indicates there is more
power for volumes with small extent in redshift space or small
extent in the plane of the sky, compared to ones where the extent
is almost equal.

In the case of an isotropic box with no preferred direction
(e.g., a coeval cube containing the matter overdensity field), one
would expect the contours of equal power to be roughly circular,
because there should be equal contributions in all directions
without a preferred orientation. When the light cone effect is
included, we find that there is generally less power at all scales
k ! 1 h Mpc−1, which is consistent with Figure 5. Figure 5
demonstrates that including the light cone effect leads to a
similar spectrum but with less power at all scales, and Figure 9
shows that there is little anisotropy introduced by the effect.

4.4. Power Wedges

We quantify the anisotropy produced by the light cone effect
using a tool we name “power wedges,” in analogy to the
“clustering wedges” tool recently introduced in BAO analysis
for the two-point correlation function (e.g., Kazin et al. 2013;
Sánchez et al. 2013). To perform the power wedges analysis,
the plane of k∥ and k⊥ is bisected along the line k∥ = k⊥. Then,
the power corresponding to these combinations is binned as a
function of k. This process produces decompositions P∥ and
P⊥, where k∥ > k⊥ or vice versa. Finally, the ratio of the power
spectra (χ (k)) is taken:

χ (k) ≡
⟨P∥(k)⟩
⟨P⊥(k)⟩

. (9)

In the case that the k-values are equal, the contribution to the
power is added to both spectra. In a perfectly isotropic case,
this parameter should be equal to 1 (with some fluctuation).
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Figure 9. Plot of the anisotropic power spectrum, broken down into parallel and perpendicular Fourier modes. Top left: the anisotropic power spectrum of the coeval
21 cm field, fH i = 0.5, fiducial reionization scenario. As with the 3D power spectrum, the result has been averaged over the 64 independent 500 Mpc h−1 sub-boxes.
Top right: same plot, but including the light cone effect and all Fourier modes for the fiducial reionization scenario. Here, k∥ is taken to be along the line of sight
and coincident with the direction of the light cone effect. Both cases appear similarly isotropic. The anisotropy changes slightly based on the reionization history,
especially in the short case. The effect is also more pronounced for larger scales. Bottom: the long and short reionization scenarios, respectively.

(A color version of this figure is available in the online journal.)

If the parameter is greater than 1, then there is more power
coming from the modes along the line of sight of the simulation
box, and vice versa.

Figure 10 shows the results of using the power wedges
analysis. One can see that χ changes noticeably as a function of
reionization history. For the fiducial and long histories, the value
is very close to 1, meaning that the signal is isotropic. However,
the short history demonstrates a moderate degree of anisotropy
on large scales (almost ∼40%). The deviation from 1 becomes
less as the sub-box size becomes smaller. Physically, the shorter
reionization scenario displays a greater change in the variance
of the 21 cm signal along the line of sight compared to the long
reionization scenario.

Another interesting result evident in Figure 10 is how the
evolution within the volume affects χ (k). There is a much
larger deviation from unity for the case of the short reionization
scenario compared to the fiducial and long ones. For a larger
sub-box size, there is more evolution of the neutral hydrogen
fraction, especially for the short reionization scenario. Because
the anisotropy induced depends on this evolution, the larger
anisotropy for larger box sizes makes sense.

4.5. Comparison to Previous Work

As mentioned previously, the light cone effect has been
investigated in Datta et al. (2012). The work presented here
differs from the previous one in several key aspects. First,
some of the volumes considered here are significantly larger.
The simulation volume in the previous work was 163 Mpc
(≈114 Mpc h−1) on a side, compared to the light cone sub-
box volumes of 500, 250, and 125 Mpc h−1. In the previous
work, the light cone was predicted to deviate from the coeval
signal by ∼30%–40%. Additionally, the previous work also
found for the early- and mid-points of reionization, there was
an increase in power when compared to the coeval case on
large scales, and a decrease at small scales. When looking at the
results for the 125 Mpc h−1 sub-box, we find that the predictions
presented here match the ones presented previously, but only
in the long reionization scenario early in reionization. Since
our long reionization duration is comparable to their fiducial
case, there is good agreement. We also note that the light cone
effect becomes increasingly important as the scales get larger.
As Figure 5 shows, for the 500 Mpc h−1 volumes, the light cone
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Figure 10. Power wedges measurement, across different sub-box size and reionization histories. The fiducial and long reionization scenarios show little anisotropy.
However, for larger sub-box sizes and on large scales, the short reionization scenario does display some anisotropy. This is due to the fact that for the short reionization
scenarios, there is greater variance in the 21 cm signal along the line of sight compared to the longer reionization scenarios. Note that as the scales considered become
smaller, all of the scenarios are nearly isotropic.

(A color version of this figure is available in the online journal.)

effect can deviate by more than 50% for the fiducial scenario
and up to an order of magnitude for the short scenario. To see
the full effect of the light cone, larger volumes must be used.

Another difference is that the light cone cubes presented here
are constructed from a sub-volume of the entire simulation vol-
ume available. In the previous work, the light cone volume
was the same size as the total simulation volume. This leads to
pseudo-periodic boundary conditions in the perpendicular direc-
tions. Breaking the periodicity of the FFT can have important
implications on the predicted power spectrum, especially for
large-scale modes. These considerations are especially impor-
tant for real-world data acquisition, where in general periodic
boundary conditions do not apply. So, by explicitly breaking
periodicity with the light cone cubes, we present predictions
that will more readily conform to practical data processing.

The use of sub-volumes in the light cone calculation also
means we are able to eliminate much of the cosmic variance
for large scales. By averaging the power spectra over many
independent sub-volumes of the total simulation volume, we
reduce the scatter inherent in the large scale modes. Accordingly,
we are able to make progress toward a smooth power spectrum,
creating an improved statistical measure of the 21 cm brightness
temperature field.

5. OBSERVATIONAL COMPARISON

Recently, upper limits on the 21 cm signal were derived based
on data from PAPER (Parsons et al. 2010; Pober et al. 2013).
Specifically, we are interested in recent results presented in
Parsons et al. (2013), which reported an observational upper-
limit on the 21 cm power spectrum of 2700 (mK)2 at a redshift of
z = 7.7 in the neighborhood of k ∼ 0.1 h Mpc−1. We computed
a predicted observation using the bias model discussed in
Section 2. We considered here a prediction for the light cone
power spectrum, with a midpoint of reionization to be z̄ = 8
for a more apt comparison, using the 500 Mpc h−1 sub-box
size, measured at fH i = 0.5 by volume (which corresponds to
z = 7.9).

The GMRT also has derived upper limits on the 21 cm signal
from measurements (Paciga et al. 2011, 2013). In this result,
GMRT has upper limits on the power spectrum amplitude at a
redshift of z = 8.6 in the neighborhood of k ≈ 0.50 h Mpc−1.
The most restrictive measurement at 2σ is (248 mK)2 at k
= 0.50 h Mpc−1, with four singular value decomposition
(SVD) modes removed to correct for foreground contamination.

Figure 11. Comparison of experimental results from PAPER (Parsons et al.
2013) and GMRT (Paciga et al. 2013) with theoretical predictions incorporating
the light cone. The data from PAPER represents 2σ upper limits. The data
from GMRT also represents 2σ upper limits of the power spectrum. The solid
curves are the predicted power spectrum of the 500 Mpc h−1 sub-box for the
fiducial reionization scenario at 50% ionization with a midpoint of reionization
at z̄ = 8. The difference between the predictions and the data is several orders
of magnitude.

(A color version of this figure is available in the online journal.)

(See Paciga et al. 2013 for further explanation.) One aspect to
note is that the foreground removal techniques of PAPER and
GMRT are different, and the measurements are reported for
different redshift values. A direct comparison should not be
made between the two, but instead compared directly to the
theoretical prediction (solid line).

Figure 11 presents the 21 cm power spectrum upper-limits
from PAPER (Parsons et al. 2013) and GMRT (Paciga et al.
2013), compared to the reionization model at 50% reionization
for z̄ = 8 with the light cone effect. For the plot of GMRT
data, we selected the most restrictive point among the different
number of SVD modes removed. The predicted amplitude is
∼10–100 mK2, which is at least two orders of magnitude
smaller than the upper limits reported by PAPER and GMRT.
However, other theoretical predictions that do not include
exotic reionization scenarios have similar order of magnitude
differences (e.g., Zahn et al. 2007; Iliev et al. 2008). Varying the
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reionization history did not raise the signal to the same order of
magnitude of the upper limits.

Another important observational constraint comes from the
EDGES experiment (Bowman & Rogers 2010). In this result,
the authors reported a lower limit to the duration of reionization,
stating that the total duration of reionization is ∆z50 " 0.07 with
95% confidence. We have converted the EDGES definition of
∆z, which assumes a functional form of a hyperbolic tangent,
to the definition of ∆z50 discussed in Section 3.1. The short
reionization scenario has a 50% reionization duration of ∆z50 =

0.24. Thus, the EDGES observations do not yet rule out any of
the theoretical models presented here.

6. DISCUSSION

An important observational consideration when measuring
the 21 cm signal is the process of foreground removal. 21 cm
brightness temperature fluctuations are typically 3–5 orders of
magnitude smaller than signals coming from foreground con-
tamination, such as galactic synchrotron radiation and extra-
galactic point sources. Typical schemes for removing these
contaminants are to look at their spectra in frequency space.
The 21 cm signal is expected to vary rapidly as a function of
frequency, whereas these contaminants are expected to vary
smoothly (Zaldarriaga et al. 2004; McQuinn et al. 2006; Liu
et al. 2009). By removing these smoothly varying components
from the spectrum, the true 21 cm signal emerges from the fore-
grounds. Unfortunately, this technique may also remove some
of the long-frequency modes of the power spectrum, which is
also the region of interest for the light cone effect. Care must
be taken to ensure that the 21 cm signal is not being discarded
along with the foregrounds.

The implications of the light cone effect can also be compared
to the effect of RSD. Recent work by Jensen et al. (2013) showed
that RSD are most important at early stages of reionization
(0.7 ! fH i ! 1.0). At these stages, RSD contribute to an
O(1) enhancement of the 3D power spectrum on large scales
k ! 0.3 h Mpc−1. For later stages in reionization, RSD have
a less important effect, and by fH i ∼ 0.5 onward, RSD induce
only a percent-level change on the 3D power spectrum. As
Figure 6 demonstrates, the light cone can have a decrement of
up to ∼50% for scales k ! 0.02 h Mpc−1. Figure 5 shows
that the light cone effect has an important effect on large scales
for the midpoint of reionization, 0.25 ! fH i ! 0.75. RSD
also introduce an anisotropy to the 3D power spectrum, though
the formalism presented in Jensen et al. (2013) expresses the
anisotropy as an expansion in terms of µ ≡ cos θ , the angle
between the line of sight and the direction in k-space. We plan
to further investigate the different implications of the light cone
effect and RSD in future work.

7. CONCLUSIONS

We accomplished the following in this paper:

1. Using a parameterized bias factor between the redshift of
reionization and the matter overdensity field, we created
a reionization field for a large (∼2 Gpc h−1) simulation
volume.

2. We made predictions about the global 21 cm brightness
signal using this large volume.

3. We calculated the 3D power spectrum and cross-correlation
coefficient for both the coeval and light cone cases.

4. We showed that including the light cone effect makes a
moderate difference in the amplitude (up to 50% for small

k-modes), and can change the shape of the spectrum at all
scales.

5. Using “power wedges” analysis, we showed that the
anisotropy introduced by the light cone is only present
for our short reionization scenario. We also showed this
anisotropy is most sensitive to large changes in the neu-
tral fraction of the contained volume. Thus, the light cone
effect likely will not induce significant anisotropy in up-
coming experiments.

6. We compared predictions from our model to the recent
results from the PAPER and GMRT surveys, and showed
that our predictions are an order of magnitude smaller than
their upper-limits on the 3D power spectrum of the 21 cm
brightness temperature signal.

As mentioned in Section 1, the light cone effect has important
implications for measurements that use the BAO method.
The BAO scale, ∼150 comoving Mpc (k ∼ 0.06 h Mpc−1),
approaches the scale where the light cone effect becomes non-
negligible. The light cone effect can have up to a ∼50% effect
on the predicted signal on these scales. We have also shown that
the light cone effect can introduce an anisotropy along the line
of sight for short reionization scenarios. This complicates using
the Alcock–Paczyński test to determine the proper cosmological
parameters of the universe. Future applications of the BAO
method to the 21 cm signal will have to account for the light
cone effect in their analyses.

In future work, we would like to include redshift space dis-
tortions with the light cone effect. RSD have been investigated
with respect to the 21 cm signal (e.g., Bharadwaj & Ali 2004;
Barkana & Loeb 2005; Bharadwaj & Ali 2005; Mao et al. 2012;
Jensen et al. 2013; Shapiro et al. 2013; Majumdar et al. 2013).
However, these previous explorations did not include the light
cone effect in their analysis. We would like to examine both si-
multaneously, and determine which scales are important for the
effects, and how measurements are affected by each. As the data
thus far suggests, smaller volumes are affected less by the light
cone effect; the logical conclusion of this observation would be
to analyze the 2D power spectrum, where we only examine the
signal in the plane of the sky for a very narrow redshift range.
By performing the analysis in this fashion, we are no longer
plagued by the problem of disproportionate power from along
the line of sight, but we potentially lose out on valuable three-
dimensional information. Thus, we hope to make predictions at
different points in redshift/frequency space and then combine
the results to reconstruct the 3D signal.
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Figure 12. Same plot as in Figure 5, but at a 75% ionization fraction and with all Fourier modes included. The inclusion of all Fourier modes produces a dramatic
increase in the power spectrum, especially at small k-modes. (See the text in Appendix A for more discussion.) We also find for the long and fiducial reionization
scenarios that there is more power on large scales for the light cone than the coeval case. In general, the light cone effect at this neutral fraction is less pronounced,
though still very significant. As in the main case of 50% ionization, the effect is most noticeable for large box sizes. By extension, in the small sub-box case, the effect
is still not very significant, as is the same for 50% ionization fraction. One can also see that the shape of the power spectrum has changed dramatically in the case of
short reionization.

(A color version of this figure is available in the online journal.)
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Figure 13. Same plot as in Figure 5, but with all Fourier modes included. Note that the inclusion of the k⊥ = 0 mode still dramatically increases the power at small
k-modes. On small scales, the inclusion of these modes do not change the signal significantly.

(A color version of this figure is available in the online journal.)
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Figure 14. Same plot as in Figures 5 and 12, but at a 25% ionization fraction. As with the case of a 75% ionization fraction presented in Figure 12, in general the
difference between the light cone and coeval cases is not as great as 50% ionization. Nevertheless, is it still an important feature, and especially on the largest scales.
One of the major implications is that the light cone effect is very important at large scales across a large ionization fraction range. Additionally, as in the coeval case,
the light cone signal peaks at roughly a 50% ionization fraction.

(A color version of this figure is available in the online journal.)
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Figure 15. Comparison of the anisotropic power spectrum across different reionization histories and sub-box sizes. One interesting aspect in these plots is how the
isopower lines are shaped: when the light cone effect is included, there is a change in the semi-circular contours. The central portion, near values where k⊥ ∼ k∥,
has less power than regions with the same spherical magnitude k, where one component is much larger than the other. This is an interesting and subtle change in the
contribution to the power introduced in the light cone.

(A color version of this figure is available in the online journal.)

APPENDIX A

EXCLUSION OF k⊥ = 0 MODES

Modes where k⊥ = 0 correspond to the total flux at a
particular frequency defined by k∥. For radio interferometers,
this mode is inaccessible, since interferometers only measure
fluctuations relative to a background level. Alternatively, to
probe modes where k⊥ = 0, the antennas would have to
have no separation between them, which is not possible. These
modes would not be detectable in most experiments proposing
to measure the 21 cm brightness temperature (Datta et al.
2012).

In order to determine how the exclusion of the k⊥ = 0
modes changed our predictions, we performed the preceding
analysis both including and excluding these modes. Removing
these modes is roughly equivalent to subtracting the mean
temperature from each 2D slice in the xy-plane. Accordingly, the
variance measured by the power spectrum has three components:
the change in the average neutral fraction, the change in this
average temperature as a function of redshift, and the average
H ii region bubble size as a function of redshift. The removal of
k⊥ = 0 essentially eliminates the variance due to the changing
average temperature, but it does not eliminate the contributions
from changing neutral fraction contribution or the bubble size.

Throughout the analysis, we computed different statistics
both including and excluding modes where k⊥ = 0. In general,
we find that removal of this mode causes the light cone case
to appear similar to the coeval case. However, performing the

analysis with k⊥ = 0 included has theoretical interest, since it
explicitly demonstrates that the light cone effect shifts power
from small scales to large scales. Plots similar to Figures 5
and 6, but with all of the Fourier modes included, are shown in
Figures 12–14.

The inclusion of all Fourier modes in the analysis produces a
signal that deviates by up to two orders of magnitude for large
scales (k ! 0.05 h Mpc)−1. This deviation is with respect to both
the light cone effect without these modes, and the coeval case.
The dramatic increase in power at these scales is largely due
to the combined change in neutral fraction during reionization.
In other words, since there is a significant change in the mean
temperature when examining large scales, there is much excess
power on these scales. Note that the ringing in the case of
the short reionization scenario is due to the sharp discontinuity
between the front and back of the box.

This effect also introduces a strong anisotropy in the signal.
When analyzing the signal using the power wedges analysis
presented in Section 4.4, we found that the modes parallel to
the line of sight contributed about an order of magnitude more
power than modes perpendicular, with all of this excess being
due to the k⊥ = 0 mode.

APPENDIX B

ADDITIONAL FIGURES

In addition to the plot presented in Figure 5, we also computed
the light cone effect for all box sizes and reionization histories
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with fH i = 0.75, 0.25. These plots are shown in Figures 12
and 14. Also, as mentioned in Appendix A, these plots include
all Fourier modes. As in the case of fH i = 0.5 in Figure 5,
the light cone effect is still pronounced, though not quite as
prominently. As before, the light cone effect is larger for bigger
scales, and is most evident in the 500 Mpc h−1 sub-box size. We
conclude that regardless of the precise details of reionization,
the light cone effect is an essential consideration for the 3D
power spectrum of large volumes.

Figure 15 shows the anisotropic power spectrum for the
medium and small box sizes. At small scales, there is more
power in the k⊥ > k∥ modes, with the exception of k⊥ = 0.
Another interesting feature of these plots is how the shape of
the isopower contours changes when the light cone effect is
included. As discussed in Section 4.3, the difference in the
extent in redshift space and extent along the line of sky changes
the amount of power for a given overall k. Also, as can be seen
in Figure 10, the anisotropy not including the k⊥ = 0 mode
is greater for shorter reionization scenarios. For the smallest
sub-box size, there is almost no anisotropy in most of the plot,
because the extent in redshift space is small compared to the
duration of reionization.
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